xref: /dflybsd-src/sys/netinet/tcp_input.c (revision 67bf99c4e3c62e257027c8f0d3b312f44cfe622f)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.68 2008/08/22 09:14:17 sephe Exp $
69  */
70 
71 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
72 #include "opt_inet.h"
73 #include "opt_inet6.h"
74 #include "opt_ipsec.h"
75 #include "opt_tcpdebug.h"
76 #include "opt_tcp_input.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/proc.h>		/* for proc0 declaration */
85 #include <sys/protosw.h>
86 #include <sys/socket.h>
87 #include <sys/socketvar.h>
88 #include <sys/syslog.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/socketvar2.h>
92 
93 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/route.h>
98 
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_var.h>
104 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
105 #include <netinet/in_pcb.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/ip6.h>
108 #include <netinet/icmp6.h>
109 #include <netinet6/nd6.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet6/in6_pcb.h>
112 #include <netinet/tcp.h>
113 #include <netinet/tcp_fsm.h>
114 #include <netinet/tcp_seq.h>
115 #include <netinet/tcp_timer.h>
116 #include <netinet/tcp_timer2.h>
117 #include <netinet/tcp_var.h>
118 #include <netinet6/tcp6_var.h>
119 #include <netinet/tcpip.h>
120 
121 #ifdef TCPDEBUG
122 #include <netinet/tcp_debug.h>
123 
124 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
125 struct tcphdr tcp_savetcp;
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 
133 #ifdef IPSEC
134 #include <netinet6/ipsec.h>
135 #include <netinet6/ipsec6.h>
136 #include <netproto/key/key.h>
137 #endif
138 
139 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
140 
141 static int log_in_vain = 0;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
143     &log_in_vain, 0, "Log all incoming TCP connections");
144 
145 static int blackhole = 0;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
147     &blackhole, 0, "Do not send RST when dropping refused connections");
148 
149 int tcp_delack_enabled = 1;
150 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
151     &tcp_delack_enabled, 0,
152     "Delay ACK to try and piggyback it onto a data packet");
153 
154 #ifdef TCP_DROP_SYNFIN
155 static int drop_synfin = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
157     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
158 #endif
159 
160 static int tcp_do_limitedtransmit = 1;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
162     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
163 
164 static int tcp_do_early_retransmit = 1;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
166     &tcp_do_early_retransmit, 0, "Early retransmit");
167 
168 int tcp_aggregate_acks = 1;
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
170     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
171 
172 int tcp_do_rfc3390 = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
174     &tcp_do_rfc3390, 0,
175     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
176 
177 static int tcp_do_eifel_detect = 1;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
179     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
180 
181 static int tcp_do_abc = 1;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
183     &tcp_do_abc, 0,
184     "TCP Appropriate Byte Counting (RFC 3465)");
185 
186 /*
187  * Define as tunable for easy testing with SACK on and off.
188  * Warning:  do not change setting in the middle of an existing active TCP flow,
189  *   else strange things might happen to that flow.
190  */
191 int tcp_do_sack = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
193     &tcp_do_sack, 0, "Enable SACK Algorithms");
194 
195 int tcp_do_smartsack = 1;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
197     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
198 
199 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
200     "TCP Segment Reassembly Queue");
201 
202 int tcp_reass_maxseg = 0;
203 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
204     &tcp_reass_maxseg, 0,
205     "Global maximum number of TCP Segments in Reassembly Queue");
206 
207 int tcp_reass_qsize = 0;
208 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
209     &tcp_reass_qsize, 0,
210     "Global number of TCP Segments currently in Reassembly Queue");
211 
212 static int tcp_reass_overflows = 0;
213 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
214     &tcp_reass_overflows, 0,
215     "Global number of TCP Segment Reassembly Queue Overflows");
216 
217 int tcp_do_autorcvbuf = 1;
218 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
219     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
220 
221 int tcp_autorcvbuf_inc = 16*1024;
222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
223     &tcp_autorcvbuf_inc, 0,
224     "Incrementor step size of automatic receive buffer");
225 
226 int tcp_autorcvbuf_max = 2*1024*1024;
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
228     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
229 
230 
231 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
232 static void	 tcp_pulloutofband(struct socket *,
233 		     struct tcphdr *, struct mbuf *, int);
234 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
235 		     struct mbuf *);
236 static void	 tcp_xmit_timer(struct tcpcb *, int);
237 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
238 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
239 
240 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
241 #ifdef INET6
242 #define ND6_HINT(tp) \
243 do { \
244 	if ((tp) && (tp)->t_inpcb && \
245 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
246 	    (tp)->t_inpcb->in6p_route.ro_rt) \
247 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
248 } while (0)
249 #else
250 #define ND6_HINT(tp)
251 #endif
252 
253 /*
254  * Indicate whether this ack should be delayed.  We can delay the ack if
255  *	- delayed acks are enabled and
256  *	- there is no delayed ack timer in progress and
257  *	- our last ack wasn't a 0-sized window.  We never want to delay
258  *	  the ack that opens up a 0-sized window.
259  */
260 #define DELAY_ACK(tp) \
261 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
262 	!(tp->t_flags & TF_RXWIN0SENT))
263 
264 #define acceptable_window_update(tp, th, tiwin)				\
265     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
266      (tp->snd_wl1 == th->th_seq &&					\
267       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
268        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
269 
270 static int
271 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
272 {
273 	struct tseg_qent *q;
274 	struct tseg_qent *p = NULL;
275 	struct tseg_qent *te;
276 	struct socket *so = tp->t_inpcb->inp_socket;
277 	int flags;
278 
279 	/*
280 	 * Call with th == NULL after become established to
281 	 * force pre-ESTABLISHED data up to user socket.
282 	 */
283 	if (th == NULL)
284 		goto present;
285 
286 	/*
287 	 * Limit the number of segments in the reassembly queue to prevent
288 	 * holding on to too many segments (and thus running out of mbufs).
289 	 * Make sure to let the missing segment through which caused this
290 	 * queue.  Always keep one global queue entry spare to be able to
291 	 * process the missing segment.
292 	 */
293 	if (th->th_seq != tp->rcv_nxt &&
294 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
295 		tcp_reass_overflows++;
296 		tcpstat.tcps_rcvmemdrop++;
297 		m_freem(m);
298 		/* no SACK block to report */
299 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
300 		return (0);
301 	}
302 
303 	/* Allocate a new queue entry. */
304 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
305 	       M_INTWAIT | M_NULLOK);
306 	if (te == NULL) {
307 		tcpstat.tcps_rcvmemdrop++;
308 		m_freem(m);
309 		/* no SACK block to report */
310 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
311 		return (0);
312 	}
313 	atomic_add_int(&tcp_reass_qsize, 1);
314 
315 	/*
316 	 * Find a segment which begins after this one does.
317 	 */
318 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
319 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
320 			break;
321 		p = q;
322 	}
323 
324 	/*
325 	 * If there is a preceding segment, it may provide some of
326 	 * our data already.  If so, drop the data from the incoming
327 	 * segment.  If it provides all of our data, drop us.
328 	 */
329 	if (p != NULL) {
330 		tcp_seq_diff_t i;
331 
332 		/* conversion to int (in i) handles seq wraparound */
333 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
334 		if (i > 0) {		/* overlaps preceding segment */
335 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
336 			/* enclosing block starts w/ preceding segment */
337 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
338 			if (i >= *tlenp) {
339 				/* preceding encloses incoming segment */
340 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
341 				    p->tqe_len;
342 				tcpstat.tcps_rcvduppack++;
343 				tcpstat.tcps_rcvdupbyte += *tlenp;
344 				m_freem(m);
345 				kfree(te, M_TSEGQ);
346 				atomic_add_int(&tcp_reass_qsize, -1);
347 				/*
348 				 * Try to present any queued data
349 				 * at the left window edge to the user.
350 				 * This is needed after the 3-WHS
351 				 * completes.
352 				 */
353 				goto present;	/* ??? */
354 			}
355 			m_adj(m, i);
356 			*tlenp -= i;
357 			th->th_seq += i;
358 			/* incoming segment end is enclosing block end */
359 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
360 			    ((th->th_flags & TH_FIN) != 0);
361 			/* trim end of reported D-SACK block */
362 			tp->reportblk.rblk_end = th->th_seq;
363 		}
364 	}
365 	tcpstat.tcps_rcvoopack++;
366 	tcpstat.tcps_rcvoobyte += *tlenp;
367 
368 	/*
369 	 * While we overlap succeeding segments trim them or,
370 	 * if they are completely covered, dequeue them.
371 	 */
372 	while (q) {
373 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
374 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
375 		struct tseg_qent *nq;
376 
377 		if (i <= 0)
378 			break;
379 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
380 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
381 			tp->encloseblk = tp->reportblk;
382 			/* report trailing duplicate D-SACK segment */
383 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
384 		}
385 		if ((tp->t_flags & TF_ENCLOSESEG) &&
386 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
387 			/* extend enclosing block if one exists */
388 			tp->encloseblk.rblk_end = qend;
389 		}
390 		if (i < q->tqe_len) {
391 			q->tqe_th->th_seq += i;
392 			q->tqe_len -= i;
393 			m_adj(q->tqe_m, i);
394 			break;
395 		}
396 
397 		nq = LIST_NEXT(q, tqe_q);
398 		LIST_REMOVE(q, tqe_q);
399 		m_freem(q->tqe_m);
400 		kfree(q, M_TSEGQ);
401 		atomic_add_int(&tcp_reass_qsize, -1);
402 		q = nq;
403 	}
404 
405 	/* Insert the new segment queue entry into place. */
406 	te->tqe_m = m;
407 	te->tqe_th = th;
408 	te->tqe_len = *tlenp;
409 
410 	/* check if can coalesce with following segment */
411 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
412 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
413 
414 		te->tqe_len += q->tqe_len;
415 		if (q->tqe_th->th_flags & TH_FIN)
416 			te->tqe_th->th_flags |= TH_FIN;
417 		m_cat(te->tqe_m, q->tqe_m);
418 		tp->encloseblk.rblk_end = tend;
419 		/*
420 		 * When not reporting a duplicate segment, use
421 		 * the larger enclosing block as the SACK block.
422 		 */
423 		if (!(tp->t_flags & TF_DUPSEG))
424 			tp->reportblk.rblk_end = tend;
425 		LIST_REMOVE(q, tqe_q);
426 		kfree(q, M_TSEGQ);
427 		atomic_add_int(&tcp_reass_qsize, -1);
428 	}
429 
430 	if (p == NULL) {
431 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
432 	} else {
433 		/* check if can coalesce with preceding segment */
434 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
435 			p->tqe_len += te->tqe_len;
436 			m_cat(p->tqe_m, te->tqe_m);
437 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
438 			/*
439 			 * When not reporting a duplicate segment, use
440 			 * the larger enclosing block as the SACK block.
441 			 */
442 			if (!(tp->t_flags & TF_DUPSEG))
443 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
444 			kfree(te, M_TSEGQ);
445 			atomic_add_int(&tcp_reass_qsize, -1);
446 		} else {
447 			LIST_INSERT_AFTER(p, te, tqe_q);
448 		}
449 	}
450 
451 present:
452 	/*
453 	 * Present data to user, advancing rcv_nxt through
454 	 * completed sequence space.
455 	 */
456 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
457 		return (0);
458 	q = LIST_FIRST(&tp->t_segq);
459 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
460 		return (0);
461 	tp->rcv_nxt += q->tqe_len;
462 	if (!(tp->t_flags & TF_DUPSEG))	{
463 		/* no SACK block to report since ACK advanced */
464 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
465 	}
466 	/* no enclosing block to report since ACK advanced */
467 	tp->t_flags &= ~TF_ENCLOSESEG;
468 	flags = q->tqe_th->th_flags & TH_FIN;
469 	LIST_REMOVE(q, tqe_q);
470 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
471 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
472 		("segment not coalesced"));
473 	if (so->so_state & SS_CANTRCVMORE) {
474 		m_freem(q->tqe_m);
475 	} else {
476 		lwkt_gettoken(&so->so_rcv.ssb_token);
477 		ssb_appendstream(&so->so_rcv, q->tqe_m);
478 		lwkt_reltoken(&so->so_rcv.ssb_token);
479 	}
480 	kfree(q, M_TSEGQ);
481 	atomic_add_int(&tcp_reass_qsize, -1);
482 	ND6_HINT(tp);
483 	sorwakeup(so);
484 	return (flags);
485 }
486 
487 /*
488  * TCP input routine, follows pages 65-76 of the
489  * protocol specification dated September, 1981 very closely.
490  */
491 #ifdef INET6
492 int
493 tcp6_input(struct mbuf **mp, int *offp, int proto)
494 {
495 	struct mbuf *m = *mp;
496 	struct in6_ifaddr *ia6;
497 
498 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
499 
500 	/*
501 	 * draft-itojun-ipv6-tcp-to-anycast
502 	 * better place to put this in?
503 	 */
504 	ia6 = ip6_getdstifaddr(m);
505 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
506 		struct ip6_hdr *ip6;
507 
508 		ip6 = mtod(m, struct ip6_hdr *);
509 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
510 			    offsetof(struct ip6_hdr, ip6_dst));
511 		return (IPPROTO_DONE);
512 	}
513 
514 	tcp_input(mp, offp, proto);
515 	return (IPPROTO_DONE);
516 }
517 #endif
518 
519 int
520 tcp_input(struct mbuf **mp, int *offp, int proto)
521 {
522 	int off0;
523 	struct tcphdr *th;
524 	struct ip *ip = NULL;
525 	struct ipovly *ipov;
526 	struct inpcb *inp = NULL;
527 	u_char *optp = NULL;
528 	int optlen = 0;
529 	int tlen, off;
530 	int len = 0;
531 	int drop_hdrlen;
532 	struct tcpcb *tp = NULL;
533 	int thflags;
534 	struct socket *so = 0;
535 	int todrop, acked;
536 	boolean_t ourfinisacked, needoutput = FALSE;
537 	u_long tiwin;
538 	int recvwin;
539 	struct tcpopt to;		/* options in this segment */
540 	struct sockaddr_in *next_hop = NULL;
541 	int rstreason; /* For badport_bandlim accounting purposes */
542 	int cpu;
543 	struct ip6_hdr *ip6 = NULL;
544 	struct mbuf *m;
545 #ifdef INET6
546 	boolean_t isipv6;
547 #else
548 	const boolean_t isipv6 = FALSE;
549 #endif
550 #ifdef TCPDEBUG
551 	short ostate = 0;
552 #endif
553 
554 	off0 = *offp;
555 	m = *mp;
556 	*mp = NULL;
557 
558 	tcpstat.tcps_rcvtotal++;
559 
560 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
561 		struct m_tag *mtag;
562 
563 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
564 		KKASSERT(mtag != NULL);
565 		next_hop = m_tag_data(mtag);
566 	}
567 
568 #ifdef INET6
569 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
570 #endif
571 
572 	if (isipv6) {
573 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
574 		ip6 = mtod(m, struct ip6_hdr *);
575 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
576 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
577 			tcpstat.tcps_rcvbadsum++;
578 			goto drop;
579 		}
580 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
581 
582 		/*
583 		 * Be proactive about unspecified IPv6 address in source.
584 		 * As we use all-zero to indicate unbounded/unconnected pcb,
585 		 * unspecified IPv6 address can be used to confuse us.
586 		 *
587 		 * Note that packets with unspecified IPv6 destination is
588 		 * already dropped in ip6_input.
589 		 */
590 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
591 			/* XXX stat */
592 			goto drop;
593 		}
594 	} else {
595 		/*
596 		 * Get IP and TCP header together in first mbuf.
597 		 * Note: IP leaves IP header in first mbuf.
598 		 */
599 		if (off0 > sizeof(struct ip)) {
600 			ip_stripoptions(m);
601 			off0 = sizeof(struct ip);
602 		}
603 		/* already checked and pulled up in ip_demux() */
604 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
605 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
606 		ip = mtod(m, struct ip *);
607 		ipov = (struct ipovly *)ip;
608 		th = (struct tcphdr *)((caddr_t)ip + off0);
609 		tlen = ip->ip_len;
610 
611 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
612 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
613 				th->th_sum = m->m_pkthdr.csum_data;
614 			else
615 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
616 						ip->ip_dst.s_addr,
617 						htonl(m->m_pkthdr.csum_data +
618 							ip->ip_len +
619 							IPPROTO_TCP));
620 			th->th_sum ^= 0xffff;
621 		} else {
622 			/*
623 			 * Checksum extended TCP header and data.
624 			 */
625 			len = sizeof(struct ip) + tlen;
626 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
627 			ipov->ih_len = (u_short)tlen;
628 			ipov->ih_len = htons(ipov->ih_len);
629 			th->th_sum = in_cksum(m, len);
630 		}
631 		if (th->th_sum) {
632 			tcpstat.tcps_rcvbadsum++;
633 			goto drop;
634 		}
635 #ifdef INET6
636 		/* Re-initialization for later version check */
637 		ip->ip_v = IPVERSION;
638 #endif
639 	}
640 
641 	/*
642 	 * Check that TCP offset makes sense,
643 	 * pull out TCP options and adjust length.		XXX
644 	 */
645 	off = th->th_off << 2;
646 	/* already checked and pulled up in ip_demux() */
647 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
648 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
649 	tlen -= off;	/* tlen is used instead of ti->ti_len */
650 	if (off > sizeof(struct tcphdr)) {
651 		if (isipv6) {
652 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
653 			ip6 = mtod(m, struct ip6_hdr *);
654 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
655 		} else {
656 			/* already pulled up in ip_demux() */
657 			KASSERT(m->m_len >= sizeof(struct ip) + off,
658 			    ("TCP header and options not in one mbuf: "
659 			     "m_len %d, off %d", m->m_len, off));
660 		}
661 		optlen = off - sizeof(struct tcphdr);
662 		optp = (u_char *)(th + 1);
663 	}
664 	thflags = th->th_flags;
665 
666 #ifdef TCP_DROP_SYNFIN
667 	/*
668 	 * If the drop_synfin option is enabled, drop all packets with
669 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
670 	 * identifying the TCP/IP stack.
671 	 *
672 	 * This is a violation of the TCP specification.
673 	 */
674 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
675 		goto drop;
676 #endif
677 
678 	/*
679 	 * Convert TCP protocol specific fields to host format.
680 	 */
681 	th->th_seq = ntohl(th->th_seq);
682 	th->th_ack = ntohl(th->th_ack);
683 	th->th_win = ntohs(th->th_win);
684 	th->th_urp = ntohs(th->th_urp);
685 
686 	/*
687 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
688 	 * until after ip6_savecontrol() is called and before other functions
689 	 * which don't want those proto headers.
690 	 * Because ip6_savecontrol() is going to parse the mbuf to
691 	 * search for data to be passed up to user-land, it wants mbuf
692 	 * parameters to be unchanged.
693 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
694 	 * latest version of the advanced API (20020110).
695 	 */
696 	drop_hdrlen = off0 + off;
697 
698 	/*
699 	 * Locate pcb for segment.
700 	 */
701 findpcb:
702 	/* IPFIREWALL_FORWARD section */
703 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
704 		/*
705 		 * Transparently forwarded. Pretend to be the destination.
706 		 * already got one like this?
707 		 */
708 		cpu = mycpu->gd_cpuid;
709 		inp = in_pcblookup_hash(&tcbinfo[cpu],
710 					ip->ip_src, th->th_sport,
711 					ip->ip_dst, th->th_dport,
712 					0, m->m_pkthdr.rcvif);
713 		if (!inp) {
714 			/*
715 			 * It's new.  Try to find the ambushing socket.
716 			 */
717 
718 			/*
719 			 * The rest of the ipfw code stores the port in
720 			 * host order.  XXX
721 			 * (The IP address is still in network order.)
722 			 */
723 			in_port_t dport = next_hop->sin_port ?
724 						htons(next_hop->sin_port) :
725 						th->th_dport;
726 
727 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
728 					  next_hop->sin_addr.s_addr, dport);
729 			inp = in_pcblookup_hash(&tcbinfo[cpu],
730 						ip->ip_src, th->th_sport,
731 						next_hop->sin_addr, dport,
732 						1, m->m_pkthdr.rcvif);
733 		}
734 	} else {
735 		if (isipv6) {
736 			inp = in6_pcblookup_hash(&tcbinfo[0],
737 						 &ip6->ip6_src, th->th_sport,
738 						 &ip6->ip6_dst, th->th_dport,
739 						 1, m->m_pkthdr.rcvif);
740 		} else {
741 			cpu = mycpu->gd_cpuid;
742 			inp = in_pcblookup_hash(&tcbinfo[cpu],
743 						ip->ip_src, th->th_sport,
744 						ip->ip_dst, th->th_dport,
745 						1, m->m_pkthdr.rcvif);
746 		}
747 	}
748 
749 	/*
750 	 * If the state is CLOSED (i.e., TCB does not exist) then
751 	 * all data in the incoming segment is discarded.
752 	 * If the TCB exists but is in CLOSED state, it is embryonic,
753 	 * but should either do a listen or a connect soon.
754 	 */
755 	if (inp == NULL) {
756 		if (log_in_vain) {
757 #ifdef INET6
758 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
759 #else
760 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
761 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
762 #endif
763 			if (isipv6) {
764 				strcpy(dbuf, "[");
765 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
766 				strcat(dbuf, "]");
767 				strcpy(sbuf, "[");
768 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
769 				strcat(sbuf, "]");
770 			} else {
771 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
772 				strcpy(sbuf, inet_ntoa(ip->ip_src));
773 			}
774 			switch (log_in_vain) {
775 			case 1:
776 				if (!(thflags & TH_SYN))
777 					break;
778 			case 2:
779 				log(LOG_INFO,
780 				    "Connection attempt to TCP %s:%d "
781 				    "from %s:%d flags:0x%02x\n",
782 				    dbuf, ntohs(th->th_dport), sbuf,
783 				    ntohs(th->th_sport), thflags);
784 				break;
785 			default:
786 				break;
787 			}
788 		}
789 		if (blackhole) {
790 			switch (blackhole) {
791 			case 1:
792 				if (thflags & TH_SYN)
793 					goto drop;
794 				break;
795 			case 2:
796 				goto drop;
797 			default:
798 				goto drop;
799 			}
800 		}
801 		rstreason = BANDLIM_RST_CLOSEDPORT;
802 		goto dropwithreset;
803 	}
804 
805 #ifdef IPSEC
806 	if (isipv6) {
807 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
808 			ipsec6stat.in_polvio++;
809 			goto drop;
810 		}
811 	} else {
812 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
813 			ipsecstat.in_polvio++;
814 			goto drop;
815 		}
816 	}
817 #endif
818 #ifdef FAST_IPSEC
819 	if (isipv6) {
820 		if (ipsec6_in_reject(m, inp))
821 			goto drop;
822 	} else {
823 		if (ipsec4_in_reject(m, inp))
824 			goto drop;
825 	}
826 #endif
827 	/* Check the minimum TTL for socket. */
828 #ifdef INET6
829 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
830 		goto drop;
831 #endif
832 
833 	tp = intotcpcb(inp);
834 	if (tp == NULL) {
835 		rstreason = BANDLIM_RST_CLOSEDPORT;
836 		goto dropwithreset;
837 	}
838 	if (tp->t_state <= TCPS_CLOSED)
839 		goto drop;
840 
841 	/* Unscale the window into a 32-bit value. */
842 	if (!(thflags & TH_SYN))
843 		tiwin = th->th_win << tp->snd_scale;
844 	else
845 		tiwin = th->th_win;
846 
847 	so = inp->inp_socket;
848 
849 #ifdef TCPDEBUG
850 	if (so->so_options & SO_DEBUG) {
851 		ostate = tp->t_state;
852 		if (isipv6)
853 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
854 		else
855 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
856 		tcp_savetcp = *th;
857 	}
858 #endif
859 
860 	bzero(&to, sizeof to);
861 
862 	if (so->so_options & SO_ACCEPTCONN) {
863 		struct in_conninfo inc;
864 
865 #ifdef INET6
866 		inc.inc_isipv6 = (isipv6 == TRUE);
867 #endif
868 		if (isipv6) {
869 			inc.inc6_faddr = ip6->ip6_src;
870 			inc.inc6_laddr = ip6->ip6_dst;
871 			inc.inc6_route.ro_rt = NULL;		/* XXX */
872 		} else {
873 			inc.inc_faddr = ip->ip_src;
874 			inc.inc_laddr = ip->ip_dst;
875 			inc.inc_route.ro_rt = NULL;		/* XXX */
876 		}
877 		inc.inc_fport = th->th_sport;
878 		inc.inc_lport = th->th_dport;
879 
880 		/*
881 		 * If the state is LISTEN then ignore segment if it contains
882 		 * a RST.  If the segment contains an ACK then it is bad and
883 		 * send a RST.  If it does not contain a SYN then it is not
884 		 * interesting; drop it.
885 		 *
886 		 * If the state is SYN_RECEIVED (syncache) and seg contains
887 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
888 		 * contains a RST, check the sequence number to see if it
889 		 * is a valid reset segment.
890 		 */
891 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
892 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
893 				if (!syncache_expand(&inc, th, &so, m)) {
894 					/*
895 					 * No syncache entry, or ACK was not
896 					 * for our SYN/ACK.  Send a RST.
897 					 */
898 					tcpstat.tcps_badsyn++;
899 					rstreason = BANDLIM_RST_OPENPORT;
900 					goto dropwithreset;
901 				}
902 
903 				/*
904 				 * Could not complete 3-way handshake,
905 				 * connection is being closed down, and
906 				 * syncache will free mbuf.
907 				 */
908 				if (so == NULL)
909 					return(IPPROTO_DONE);
910 
911 				/*
912 				 * We must be in the correct protocol thread
913 				 * for this connection.
914 				 */
915 				KKASSERT(so->so_port == &curthread->td_msgport);
916 
917 				/*
918 				 * Socket is created in state SYN_RECEIVED.
919 				 * Continue processing segment.
920 				 */
921 				inp = so->so_pcb;
922 				tp = intotcpcb(inp);
923 				/*
924 				 * This is what would have happened in
925 				 * tcp_output() when the SYN,ACK was sent.
926 				 */
927 				tp->snd_up = tp->snd_una;
928 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
929 				tp->last_ack_sent = tp->rcv_nxt;
930 /*
931  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
932  * until the _second_ ACK is received:
933  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
934  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
935  *	  move to ESTAB, set snd_wnd to tiwin.
936  */
937 				tp->snd_wnd = tiwin;	/* unscaled */
938 				goto after_listen;
939 			}
940 			if (thflags & TH_RST) {
941 				syncache_chkrst(&inc, th);
942 				goto drop;
943 			}
944 			if (thflags & TH_ACK) {
945 				syncache_badack(&inc);
946 				tcpstat.tcps_badsyn++;
947 				rstreason = BANDLIM_RST_OPENPORT;
948 				goto dropwithreset;
949 			}
950 			goto drop;
951 		}
952 
953 		/*
954 		 * Segment's flags are (SYN) or (SYN | FIN).
955 		 */
956 #ifdef INET6
957 		/*
958 		 * If deprecated address is forbidden,
959 		 * we do not accept SYN to deprecated interface
960 		 * address to prevent any new inbound connection from
961 		 * getting established.
962 		 * When we do not accept SYN, we send a TCP RST,
963 		 * with deprecated source address (instead of dropping
964 		 * it).  We compromise it as it is much better for peer
965 		 * to send a RST, and RST will be the final packet
966 		 * for the exchange.
967 		 *
968 		 * If we do not forbid deprecated addresses, we accept
969 		 * the SYN packet.  RFC2462 does not suggest dropping
970 		 * SYN in this case.
971 		 * If we decipher RFC2462 5.5.4, it says like this:
972 		 * 1. use of deprecated addr with existing
973 		 *    communication is okay - "SHOULD continue to be
974 		 *    used"
975 		 * 2. use of it with new communication:
976 		 *   (2a) "SHOULD NOT be used if alternate address
977 		 *	  with sufficient scope is available"
978 		 *   (2b) nothing mentioned otherwise.
979 		 * Here we fall into (2b) case as we have no choice in
980 		 * our source address selection - we must obey the peer.
981 		 *
982 		 * The wording in RFC2462 is confusing, and there are
983 		 * multiple description text for deprecated address
984 		 * handling - worse, they are not exactly the same.
985 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
986 		 */
987 		if (isipv6 && !ip6_use_deprecated) {
988 			struct in6_ifaddr *ia6;
989 
990 			if ((ia6 = ip6_getdstifaddr(m)) &&
991 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
992 				tp = NULL;
993 				rstreason = BANDLIM_RST_OPENPORT;
994 				goto dropwithreset;
995 			}
996 		}
997 #endif
998 		/*
999 		 * If it is from this socket, drop it, it must be forged.
1000 		 * Don't bother responding if the destination was a broadcast.
1001 		 */
1002 		if (th->th_dport == th->th_sport) {
1003 			if (isipv6) {
1004 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1005 						       &ip6->ip6_src))
1006 					goto drop;
1007 			} else {
1008 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1009 					goto drop;
1010 			}
1011 		}
1012 		/*
1013 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1014 		 *
1015 		 * Note that it is quite possible to receive unicast
1016 		 * link-layer packets with a broadcast IP address. Use
1017 		 * in_broadcast() to find them.
1018 		 */
1019 		if (m->m_flags & (M_BCAST | M_MCAST))
1020 			goto drop;
1021 		if (isipv6) {
1022 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1023 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1024 				goto drop;
1025 		} else {
1026 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1027 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1028 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1029 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1030 				goto drop;
1031 		}
1032 		/*
1033 		 * SYN appears to be valid; create compressed TCP state
1034 		 * for syncache, or perform t/tcp connection.
1035 		 */
1036 		if (so->so_qlen <= so->so_qlimit) {
1037 			tcp_dooptions(&to, optp, optlen, TRUE);
1038 			if (!syncache_add(&inc, &to, th, &so, m))
1039 				goto drop;
1040 
1041 			/*
1042 			 * Entry added to syncache, mbuf used to
1043 			 * send SYN,ACK packet.
1044 			 */
1045 			if (so == NULL)
1046 				return(IPPROTO_DONE);
1047 
1048 			/*
1049 			 * We must be in the correct protocol thread for
1050 			 * this connection.
1051 			 */
1052 			KKASSERT(so->so_port == &curthread->td_msgport);
1053 
1054 			inp = so->so_pcb;
1055 			tp = intotcpcb(inp);
1056 			tp->snd_wnd = tiwin;
1057 			tp->t_starttime = ticks;
1058 			tp->t_state = TCPS_ESTABLISHED;
1059 
1060 			/*
1061 			 * If there is a FIN, or if there is data and the
1062 			 * connection is local, then delay SYN,ACK(SYN) in
1063 			 * the hope of piggy-backing it on a response
1064 			 * segment.  Otherwise must send ACK now in case
1065 			 * the other side is slow starting.
1066 			 */
1067 			if (DELAY_ACK(tp) &&
1068 			    ((thflags & TH_FIN) ||
1069 			     (tlen != 0 &&
1070 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1071 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1072 				tcp_callout_reset(tp, tp->tt_delack,
1073 				    tcp_delacktime, tcp_timer_delack);
1074 				tp->t_flags |= TF_NEEDSYN;
1075 			} else {
1076 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1077 			}
1078 
1079 			tcpstat.tcps_connects++;
1080 			soisconnected(so);
1081 			goto trimthenstep6;
1082 		}
1083 		goto drop;
1084 	}
1085 
1086 after_listen:
1087 	/*
1088 	 * Should not happen - syncache should pick up these connections.
1089 	 *
1090 	 * Once we are past handling listen sockets we must be in the
1091 	 * correct protocol processing thread.
1092 	 */
1093 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1094 	KKASSERT(so->so_port == &curthread->td_msgport);
1095 
1096 	/*
1097 	 * This is the second part of the MSS DoS prevention code (after
1098 	 * minmss on the sending side) and it deals with too many too small
1099 	 * tcp packets in a too short timeframe (1 second).
1100 	 *
1101 	 * XXX Removed.  This code was crap.  It does not scale to network
1102 	 *     speed, and default values break NFS.  Gone.
1103 	 */
1104 	/* REMOVED */
1105 
1106 	/*
1107 	 * Segment received on connection.
1108 	 *
1109 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1110 	 * then a second has elapsed.  Only update t_rcvtime for non-SYN
1111 	 * packets.
1112 	 *
1113 	 * Handle the case where one side thinks the connection is established
1114 	 * but the other side has, say, rebooted without cleaning out the
1115 	 * connection.   The SYNs could be construed as an attack and wind
1116 	 * up ignored, but in case it isn't an attack we can validate the
1117 	 * connection by forcing a keepalive.
1118 	 */
1119 	if (TCPS_HAVEESTABLISHED(tp->t_state) && (ticks - tp->t_rcvtime) > hz) {
1120 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
1121 			tp->t_flags |= TF_KEEPALIVE;
1122 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
1123 					  tcp_timer_keep);
1124 		} else {
1125 			tp->t_rcvtime = ticks;
1126 			tp->t_flags &= ~TF_KEEPALIVE;
1127 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1128 					  tcp_timer_keep);
1129 		}
1130 	}
1131 
1132 	/*
1133 	 * Process options.
1134 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1135 	 */
1136 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1137 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1138 		if (to.to_flags & TOF_SCALE) {
1139 			tp->t_flags |= TF_RCVD_SCALE;
1140 			tp->requested_s_scale = to.to_requested_s_scale;
1141 		}
1142 		if (to.to_flags & TOF_TS) {
1143 			tp->t_flags |= TF_RCVD_TSTMP;
1144 			tp->ts_recent = to.to_tsval;
1145 			tp->ts_recent_age = ticks;
1146 		}
1147 		if (to.to_flags & TOF_MSS)
1148 			tcp_mss(tp, to.to_mss);
1149 		/*
1150 		 * Only set the TF_SACK_PERMITTED per-connection flag
1151 		 * if we got a SACK_PERMITTED option from the other side
1152 		 * and the global tcp_do_sack variable is true.
1153 		 */
1154 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1155 			tp->t_flags |= TF_SACK_PERMITTED;
1156 	}
1157 
1158 	/*
1159 	 * Header prediction: check for the two common cases
1160 	 * of a uni-directional data xfer.  If the packet has
1161 	 * no control flags, is in-sequence, the window didn't
1162 	 * change and we're not retransmitting, it's a
1163 	 * candidate.  If the length is zero and the ack moved
1164 	 * forward, we're the sender side of the xfer.  Just
1165 	 * free the data acked & wake any higher level process
1166 	 * that was blocked waiting for space.  If the length
1167 	 * is non-zero and the ack didn't move, we're the
1168 	 * receiver side.  If we're getting packets in-order
1169 	 * (the reassembly queue is empty), add the data to
1170 	 * the socket buffer and note that we need a delayed ack.
1171 	 * Make sure that the hidden state-flags are also off.
1172 	 * Since we check for TCPS_ESTABLISHED above, it can only
1173 	 * be TH_NEEDSYN.
1174 	 */
1175 	if (tp->t_state == TCPS_ESTABLISHED &&
1176 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1177 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1178 	    (!(to.to_flags & TOF_TS) ||
1179 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1180 	    th->th_seq == tp->rcv_nxt &&
1181 	    tp->snd_nxt == tp->snd_max) {
1182 
1183 		/*
1184 		 * If last ACK falls within this segment's sequence numbers,
1185 		 * record the timestamp.
1186 		 * NOTE that the test is modified according to the latest
1187 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1188 		 */
1189 		if ((to.to_flags & TOF_TS) &&
1190 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1191 			tp->ts_recent_age = ticks;
1192 			tp->ts_recent = to.to_tsval;
1193 		}
1194 
1195 		if (tlen == 0) {
1196 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1197 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1198 			    tp->snd_cwnd >= tp->snd_wnd &&
1199 			    !IN_FASTRECOVERY(tp)) {
1200 				/*
1201 				 * This is a pure ack for outstanding data.
1202 				 */
1203 				++tcpstat.tcps_predack;
1204 				/*
1205 				 * "bad retransmit" recovery
1206 				 *
1207 				 * If Eifel detection applies, then
1208 				 * it is deterministic, so use it
1209 				 * unconditionally over the old heuristic.
1210 				 * Otherwise, fall back to the old heuristic.
1211 				 */
1212 				if (tcp_do_eifel_detect &&
1213 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1214 				    (tp->t_flags & TF_FIRSTACCACK)) {
1215 					/* Eifel detection applicable. */
1216 					if (to.to_tsecr < tp->t_rexmtTS) {
1217 						tcp_revert_congestion_state(tp);
1218 						++tcpstat.tcps_eifeldetected;
1219 					}
1220 				} else if (tp->t_rxtshift == 1 &&
1221 					   ticks < tp->t_badrxtwin) {
1222 					tcp_revert_congestion_state(tp);
1223 					++tcpstat.tcps_rttdetected;
1224 				}
1225 				tp->t_flags &= ~(TF_FIRSTACCACK |
1226 						 TF_FASTREXMT | TF_EARLYREXMT);
1227 				/*
1228 				 * Recalculate the retransmit timer / rtt.
1229 				 *
1230 				 * Some machines (certain windows boxes)
1231 				 * send broken timestamp replies during the
1232 				 * SYN+ACK phase, ignore timestamps of 0.
1233 				 */
1234 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1235 					tcp_xmit_timer(tp,
1236 						       ticks - to.to_tsecr + 1);
1237 				} else if (tp->t_rtttime &&
1238 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1239 					tcp_xmit_timer(tp,
1240 						       ticks - tp->t_rtttime);
1241 				}
1242 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1243 				acked = th->th_ack - tp->snd_una;
1244 				tcpstat.tcps_rcvackpack++;
1245 				tcpstat.tcps_rcvackbyte += acked;
1246 				sbdrop(&so->so_snd.sb, acked);
1247 				tp->snd_recover = th->th_ack - 1;
1248 				tp->snd_una = th->th_ack;
1249 				tp->t_dupacks = 0;
1250 				/*
1251 				 * Update window information.
1252 				 */
1253 				if (tiwin != tp->snd_wnd &&
1254 				    acceptable_window_update(tp, th, tiwin)) {
1255 					/* keep track of pure window updates */
1256 					if (tp->snd_wl2 == th->th_ack &&
1257 					    tiwin > tp->snd_wnd)
1258 						tcpstat.tcps_rcvwinupd++;
1259 					tp->snd_wnd = tiwin;
1260 					tp->snd_wl1 = th->th_seq;
1261 					tp->snd_wl2 = th->th_ack;
1262 					if (tp->snd_wnd > tp->max_sndwnd)
1263 						tp->max_sndwnd = tp->snd_wnd;
1264 				}
1265 				m_freem(m);
1266 				ND6_HINT(tp); /* some progress has been done */
1267 				/*
1268 				 * If all outstanding data are acked, stop
1269 				 * retransmit timer, otherwise restart timer
1270 				 * using current (possibly backed-off) value.
1271 				 * If process is waiting for space,
1272 				 * wakeup/selwakeup/signal.  If data
1273 				 * are ready to send, let tcp_output
1274 				 * decide between more output or persist.
1275 				 */
1276 				if (tp->snd_una == tp->snd_max) {
1277 					tcp_callout_stop(tp, tp->tt_rexmt);
1278 				} else if (!tcp_callout_active(tp,
1279 					    tp->tt_persist)) {
1280 					tcp_callout_reset(tp, tp->tt_rexmt,
1281 					    tp->t_rxtcur, tcp_timer_rexmt);
1282 				}
1283 				sowwakeup(so);
1284 				if (so->so_snd.ssb_cc > 0)
1285 					tcp_output(tp);
1286 				return(IPPROTO_DONE);
1287 			}
1288 		} else if (tiwin == tp->snd_wnd &&
1289 		    th->th_ack == tp->snd_una &&
1290 		    LIST_EMPTY(&tp->t_segq) &&
1291 		    tlen <= ssb_space(&so->so_rcv)) {
1292 			u_long newsize = 0;	/* automatic sockbuf scaling */
1293 			/*
1294 			 * This is a pure, in-sequence data packet
1295 			 * with nothing on the reassembly queue and
1296 			 * we have enough buffer space to take it.
1297 			 */
1298 			++tcpstat.tcps_preddat;
1299 			tp->rcv_nxt += tlen;
1300 			tcpstat.tcps_rcvpack++;
1301 			tcpstat.tcps_rcvbyte += tlen;
1302 			ND6_HINT(tp);	/* some progress has been done */
1303 		/*
1304 		 * Automatic sizing of receive socket buffer.  Often the send
1305 		 * buffer size is not optimally adjusted to the actual network
1306 		 * conditions at hand (delay bandwidth product).  Setting the
1307 		 * buffer size too small limits throughput on links with high
1308 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1309 		 *
1310 		 * On the receive side the socket buffer memory is only rarely
1311 		 * used to any significant extent.  This allows us to be much
1312 		 * more aggressive in scaling the receive socket buffer.  For
1313 		 * the case that the buffer space is actually used to a large
1314 		 * extent and we run out of kernel memory we can simply drop
1315 		 * the new segments; TCP on the sender will just retransmit it
1316 		 * later.  Setting the buffer size too big may only consume too
1317 		 * much kernel memory if the application doesn't read() from
1318 		 * the socket or packet loss or reordering makes use of the
1319 		 * reassembly queue.
1320 		 *
1321 		 * The criteria to step up the receive buffer one notch are:
1322 		 *  1. the number of bytes received during the time it takes
1323 		 *     one timestamp to be reflected back to us (the RTT);
1324 		 *  2. received bytes per RTT is within seven eighth of the
1325 		 *     current socket buffer size;
1326 		 *  3. receive buffer size has not hit maximal automatic size;
1327 		 *
1328 		 * This algorithm does one step per RTT at most and only if
1329 		 * we receive a bulk stream w/o packet losses or reorderings.
1330 		 * Shrinking the buffer during idle times is not necessary as
1331 		 * it doesn't consume any memory when idle.
1332 		 *
1333 		 * TODO: Only step up if the application is actually serving
1334 		 * the buffer to better manage the socket buffer resources.
1335 		 */
1336 			if (tcp_do_autorcvbuf &&
1337 			    to.to_tsecr &&
1338 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1339 				if (to.to_tsecr > tp->rfbuf_ts &&
1340 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1341 					if (tp->rfbuf_cnt >
1342 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1343 					    so->so_rcv.ssb_hiwat <
1344 					    tcp_autorcvbuf_max) {
1345 						newsize =
1346 						    ulmin(so->so_rcv.ssb_hiwat +
1347 							  tcp_autorcvbuf_inc,
1348 							  tcp_autorcvbuf_max);
1349 					}
1350 					/* Start over with next RTT. */
1351 					tp->rfbuf_ts = 0;
1352 					tp->rfbuf_cnt = 0;
1353 				} else
1354 					tp->rfbuf_cnt += tlen;	/* add up */
1355 			}
1356 			/*
1357 			 * Add data to socket buffer.
1358 			 */
1359 			if (so->so_state & SS_CANTRCVMORE) {
1360 				m_freem(m);
1361 			} else {
1362 				/*
1363 				 * Set new socket buffer size, give up when
1364 				 * limit is reached.
1365 				 *
1366 				 * Adjusting the size can mess up ACK
1367 				 * sequencing when pure window updates are
1368 				 * being avoided (which is the default),
1369 				 * so force an ack.
1370 				 */
1371 				lwkt_gettoken(&so->so_rcv.ssb_token);
1372 				if (newsize) {
1373 					tp->t_flags |= TF_RXRESIZED;
1374 					if (!ssb_reserve(&so->so_rcv, newsize,
1375 							 so, NULL)) {
1376 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1377 					}
1378 					if (newsize >=
1379 					    (TCP_MAXWIN << tp->rcv_scale)) {
1380 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1381 					}
1382 				}
1383 				m_adj(m, drop_hdrlen); /* delayed header drop */
1384 				ssb_appendstream(&so->so_rcv, m);
1385 				lwkt_reltoken(&so->so_rcv.ssb_token);
1386 			}
1387 			sorwakeup(so);
1388 			/*
1389 			 * This code is responsible for most of the ACKs
1390 			 * the TCP stack sends back after receiving a data
1391 			 * packet.  Note that the DELAY_ACK check fails if
1392 			 * the delack timer is already running, which results
1393 			 * in an ack being sent every other packet (which is
1394 			 * what we want).
1395 			 *
1396 			 * We then further aggregate acks by not actually
1397 			 * sending one until the protocol thread has completed
1398 			 * processing the current backlog of packets.  This
1399 			 * does not delay the ack any further, but allows us
1400 			 * to take advantage of the packet aggregation that
1401 			 * high speed NICs do (usually blocks of 8-10 packets)
1402 			 * to send a single ack rather then four or five acks,
1403 			 * greatly reducing the ack rate, the return channel
1404 			 * bandwidth, and the protocol overhead on both ends.
1405 			 *
1406 			 * Since this also has the effect of slowing down
1407 			 * the exponential slow-start ramp-up, systems with
1408 			 * very large bandwidth-delay products might want
1409 			 * to turn the feature off.
1410 			 */
1411 			if (DELAY_ACK(tp)) {
1412 				tcp_callout_reset(tp, tp->tt_delack,
1413 				    tcp_delacktime, tcp_timer_delack);
1414 			} else if (tcp_aggregate_acks) {
1415 				tp->t_flags |= TF_ACKNOW;
1416 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1417 					tp->t_flags |= TF_ONOUTPUTQ;
1418 					tp->tt_cpu = mycpu->gd_cpuid;
1419 					TAILQ_INSERT_TAIL(
1420 					    &tcpcbackq[tp->tt_cpu],
1421 					    tp, t_outputq);
1422 				}
1423 			} else {
1424 				tp->t_flags |= TF_ACKNOW;
1425 				tcp_output(tp);
1426 			}
1427 			return(IPPROTO_DONE);
1428 		}
1429 	}
1430 
1431 	/*
1432 	 * Calculate amount of space in receive window,
1433 	 * and then do TCP input processing.
1434 	 * Receive window is amount of space in rcv queue,
1435 	 * but not less than advertised window.
1436 	 */
1437 	recvwin = ssb_space(&so->so_rcv);
1438 	if (recvwin < 0)
1439 		recvwin = 0;
1440 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1441 
1442 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1443 	tp->rfbuf_ts = 0;
1444 	tp->rfbuf_cnt = 0;
1445 
1446 	switch (tp->t_state) {
1447 	/*
1448 	 * If the state is SYN_RECEIVED:
1449 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1450 	 */
1451 	case TCPS_SYN_RECEIVED:
1452 		if ((thflags & TH_ACK) &&
1453 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1454 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1455 				rstreason = BANDLIM_RST_OPENPORT;
1456 				goto dropwithreset;
1457 		}
1458 		break;
1459 
1460 	/*
1461 	 * If the state is SYN_SENT:
1462 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1463 	 *	if seg contains a RST, then drop the connection.
1464 	 *	if seg does not contain SYN, then drop it.
1465 	 * Otherwise this is an acceptable SYN segment
1466 	 *	initialize tp->rcv_nxt and tp->irs
1467 	 *	if seg contains ack then advance tp->snd_una
1468 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1469 	 *	arrange for segment to be acked (eventually)
1470 	 *	continue processing rest of data/controls, beginning with URG
1471 	 */
1472 	case TCPS_SYN_SENT:
1473 		if ((thflags & TH_ACK) &&
1474 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1475 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1476 			rstreason = BANDLIM_UNLIMITED;
1477 			goto dropwithreset;
1478 		}
1479 		if (thflags & TH_RST) {
1480 			if (thflags & TH_ACK)
1481 				tp = tcp_drop(tp, ECONNREFUSED);
1482 			goto drop;
1483 		}
1484 		if (!(thflags & TH_SYN))
1485 			goto drop;
1486 		tp->snd_wnd = th->th_win;	/* initial send window */
1487 
1488 		tp->irs = th->th_seq;
1489 		tcp_rcvseqinit(tp);
1490 		if (thflags & TH_ACK) {
1491 			/* Our SYN was acked. */
1492 			tcpstat.tcps_connects++;
1493 			soisconnected(so);
1494 			/* Do window scaling on this connection? */
1495 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1496 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1497 				tp->snd_scale = tp->requested_s_scale;
1498 				tp->rcv_scale = tp->request_r_scale;
1499 			}
1500 			tp->rcv_adv += tp->rcv_wnd;
1501 			tp->snd_una++;		/* SYN is acked */
1502 			tcp_callout_stop(tp, tp->tt_rexmt);
1503 			/*
1504 			 * If there's data, delay ACK; if there's also a FIN
1505 			 * ACKNOW will be turned on later.
1506 			 */
1507 			if (DELAY_ACK(tp) && tlen != 0) {
1508 				tcp_callout_reset(tp, tp->tt_delack,
1509 				    tcp_delacktime, tcp_timer_delack);
1510 			} else {
1511 				tp->t_flags |= TF_ACKNOW;
1512 			}
1513 			/*
1514 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1515 			 * Transitions:
1516 			 *	SYN_SENT  --> ESTABLISHED
1517 			 *	SYN_SENT* --> FIN_WAIT_1
1518 			 */
1519 			tp->t_starttime = ticks;
1520 			if (tp->t_flags & TF_NEEDFIN) {
1521 				tp->t_state = TCPS_FIN_WAIT_1;
1522 				tp->t_flags &= ~TF_NEEDFIN;
1523 				thflags &= ~TH_SYN;
1524 			} else {
1525 				tp->t_state = TCPS_ESTABLISHED;
1526 				tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1527 				    tcp_timer_keep);
1528 			}
1529 		} else {
1530 			/*
1531 			 * Received initial SYN in SYN-SENT[*] state =>
1532 			 * simultaneous open.
1533 			 * Do 3-way handshake:
1534 			 *	  SYN-SENT -> SYN-RECEIVED
1535 			 *	  SYN-SENT* -> SYN-RECEIVED*
1536 			 */
1537 			tp->t_flags |= TF_ACKNOW;
1538 			tcp_callout_stop(tp, tp->tt_rexmt);
1539 			tp->t_state = TCPS_SYN_RECEIVED;
1540 		}
1541 
1542 trimthenstep6:
1543 		/*
1544 		 * Advance th->th_seq to correspond to first data byte.
1545 		 * If data, trim to stay within window,
1546 		 * dropping FIN if necessary.
1547 		 */
1548 		th->th_seq++;
1549 		if (tlen > tp->rcv_wnd) {
1550 			todrop = tlen - tp->rcv_wnd;
1551 			m_adj(m, -todrop);
1552 			tlen = tp->rcv_wnd;
1553 			thflags &= ~TH_FIN;
1554 			tcpstat.tcps_rcvpackafterwin++;
1555 			tcpstat.tcps_rcvbyteafterwin += todrop;
1556 		}
1557 		tp->snd_wl1 = th->th_seq - 1;
1558 		tp->rcv_up = th->th_seq;
1559 		/*
1560 		 * Client side of transaction: already sent SYN and data.
1561 		 * If the remote host used T/TCP to validate the SYN,
1562 		 * our data will be ACK'd; if so, enter normal data segment
1563 		 * processing in the middle of step 5, ack processing.
1564 		 * Otherwise, goto step 6.
1565 		 */
1566 		if (thflags & TH_ACK)
1567 			goto process_ACK;
1568 
1569 		goto step6;
1570 
1571 	/*
1572 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1573 	 *	do normal processing (we no longer bother with T/TCP).
1574 	 */
1575 	case TCPS_LAST_ACK:
1576 	case TCPS_CLOSING:
1577 	case TCPS_TIME_WAIT:
1578 		break;  /* continue normal processing */
1579 	}
1580 
1581 	/*
1582 	 * States other than LISTEN or SYN_SENT.
1583 	 * First check the RST flag and sequence number since reset segments
1584 	 * are exempt from the timestamp and connection count tests.  This
1585 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1586 	 * below which allowed reset segments in half the sequence space
1587 	 * to fall though and be processed (which gives forged reset
1588 	 * segments with a random sequence number a 50 percent chance of
1589 	 * killing a connection).
1590 	 * Then check timestamp, if present.
1591 	 * Then check the connection count, if present.
1592 	 * Then check that at least some bytes of segment are within
1593 	 * receive window.  If segment begins before rcv_nxt,
1594 	 * drop leading data (and SYN); if nothing left, just ack.
1595 	 *
1596 	 *
1597 	 * If the RST bit is set, check the sequence number to see
1598 	 * if this is a valid reset segment.
1599 	 * RFC 793 page 37:
1600 	 *   In all states except SYN-SENT, all reset (RST) segments
1601 	 *   are validated by checking their SEQ-fields.  A reset is
1602 	 *   valid if its sequence number is in the window.
1603 	 * Note: this does not take into account delayed ACKs, so
1604 	 *   we should test against last_ack_sent instead of rcv_nxt.
1605 	 *   The sequence number in the reset segment is normally an
1606 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1607 	 *   send a reset with the sequence number at the rightmost edge
1608 	 *   of our receive window, and we have to handle this case.
1609 	 * If we have multiple segments in flight, the intial reset
1610 	 * segment sequence numbers will be to the left of last_ack_sent,
1611 	 * but they will eventually catch up.
1612 	 * In any case, it never made sense to trim reset segments to
1613 	 * fit the receive window since RFC 1122 says:
1614 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1615 	 *
1616 	 *    A TCP SHOULD allow a received RST segment to include data.
1617 	 *
1618 	 *    DISCUSSION
1619 	 *	   It has been suggested that a RST segment could contain
1620 	 *	   ASCII text that encoded and explained the cause of the
1621 	 *	   RST.  No standard has yet been established for such
1622 	 *	   data.
1623 	 *
1624 	 * If the reset segment passes the sequence number test examine
1625 	 * the state:
1626 	 *    SYN_RECEIVED STATE:
1627 	 *	If passive open, return to LISTEN state.
1628 	 *	If active open, inform user that connection was refused.
1629 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1630 	 *	Inform user that connection was reset, and close tcb.
1631 	 *    CLOSING, LAST_ACK STATES:
1632 	 *	Close the tcb.
1633 	 *    TIME_WAIT STATE:
1634 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1635 	 *	RFC 1337.
1636 	 */
1637 	if (thflags & TH_RST) {
1638 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1639 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1640 			switch (tp->t_state) {
1641 
1642 			case TCPS_SYN_RECEIVED:
1643 				so->so_error = ECONNREFUSED;
1644 				goto close;
1645 
1646 			case TCPS_ESTABLISHED:
1647 			case TCPS_FIN_WAIT_1:
1648 			case TCPS_FIN_WAIT_2:
1649 			case TCPS_CLOSE_WAIT:
1650 				so->so_error = ECONNRESET;
1651 			close:
1652 				tp->t_state = TCPS_CLOSED;
1653 				tcpstat.tcps_drops++;
1654 				tp = tcp_close(tp);
1655 				break;
1656 
1657 			case TCPS_CLOSING:
1658 			case TCPS_LAST_ACK:
1659 				tp = tcp_close(tp);
1660 				break;
1661 
1662 			case TCPS_TIME_WAIT:
1663 				break;
1664 			}
1665 		}
1666 		goto drop;
1667 	}
1668 
1669 	/*
1670 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1671 	 * and it's less than ts_recent, drop it.
1672 	 */
1673 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1674 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1675 
1676 		/* Check to see if ts_recent is over 24 days old.  */
1677 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1678 			/*
1679 			 * Invalidate ts_recent.  If this segment updates
1680 			 * ts_recent, the age will be reset later and ts_recent
1681 			 * will get a valid value.  If it does not, setting
1682 			 * ts_recent to zero will at least satisfy the
1683 			 * requirement that zero be placed in the timestamp
1684 			 * echo reply when ts_recent isn't valid.  The
1685 			 * age isn't reset until we get a valid ts_recent
1686 			 * because we don't want out-of-order segments to be
1687 			 * dropped when ts_recent is old.
1688 			 */
1689 			tp->ts_recent = 0;
1690 		} else {
1691 			tcpstat.tcps_rcvduppack++;
1692 			tcpstat.tcps_rcvdupbyte += tlen;
1693 			tcpstat.tcps_pawsdrop++;
1694 			if (tlen)
1695 				goto dropafterack;
1696 			goto drop;
1697 		}
1698 	}
1699 
1700 	/*
1701 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1702 	 * this connection before trimming the data to fit the receive
1703 	 * window.  Check the sequence number versus IRS since we know
1704 	 * the sequence numbers haven't wrapped.  This is a partial fix
1705 	 * for the "LAND" DoS attack.
1706 	 */
1707 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1708 		rstreason = BANDLIM_RST_OPENPORT;
1709 		goto dropwithreset;
1710 	}
1711 
1712 	todrop = tp->rcv_nxt - th->th_seq;
1713 	if (todrop > 0) {
1714 		if (TCP_DO_SACK(tp)) {
1715 			/* Report duplicate segment at head of packet. */
1716 			tp->reportblk.rblk_start = th->th_seq;
1717 			tp->reportblk.rblk_end = th->th_seq + tlen;
1718 			if (thflags & TH_FIN)
1719 				++tp->reportblk.rblk_end;
1720 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1721 				tp->reportblk.rblk_end = tp->rcv_nxt;
1722 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1723 		}
1724 		if (thflags & TH_SYN) {
1725 			thflags &= ~TH_SYN;
1726 			th->th_seq++;
1727 			if (th->th_urp > 1)
1728 				th->th_urp--;
1729 			else
1730 				thflags &= ~TH_URG;
1731 			todrop--;
1732 		}
1733 		/*
1734 		 * Following if statement from Stevens, vol. 2, p. 960.
1735 		 */
1736 		if (todrop > tlen ||
1737 		    (todrop == tlen && !(thflags & TH_FIN))) {
1738 			/*
1739 			 * Any valid FIN must be to the left of the window.
1740 			 * At this point the FIN must be a duplicate or out
1741 			 * of sequence; drop it.
1742 			 */
1743 			thflags &= ~TH_FIN;
1744 
1745 			/*
1746 			 * Send an ACK to resynchronize and drop any data.
1747 			 * But keep on processing for RST or ACK.
1748 			 */
1749 			tp->t_flags |= TF_ACKNOW;
1750 			todrop = tlen;
1751 			tcpstat.tcps_rcvduppack++;
1752 			tcpstat.tcps_rcvdupbyte += todrop;
1753 		} else {
1754 			tcpstat.tcps_rcvpartduppack++;
1755 			tcpstat.tcps_rcvpartdupbyte += todrop;
1756 		}
1757 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1758 		th->th_seq += todrop;
1759 		tlen -= todrop;
1760 		if (th->th_urp > todrop)
1761 			th->th_urp -= todrop;
1762 		else {
1763 			thflags &= ~TH_URG;
1764 			th->th_urp = 0;
1765 		}
1766 	}
1767 
1768 	/*
1769 	 * If new data are received on a connection after the
1770 	 * user processes are gone, then RST the other end.
1771 	 */
1772 	if ((so->so_state & SS_NOFDREF) &&
1773 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1774 		tp = tcp_close(tp);
1775 		tcpstat.tcps_rcvafterclose++;
1776 		rstreason = BANDLIM_UNLIMITED;
1777 		goto dropwithreset;
1778 	}
1779 
1780 	/*
1781 	 * If segment ends after window, drop trailing data
1782 	 * (and PUSH and FIN); if nothing left, just ACK.
1783 	 */
1784 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1785 	if (todrop > 0) {
1786 		tcpstat.tcps_rcvpackafterwin++;
1787 		if (todrop >= tlen) {
1788 			tcpstat.tcps_rcvbyteafterwin += tlen;
1789 			/*
1790 			 * If a new connection request is received
1791 			 * while in TIME_WAIT, drop the old connection
1792 			 * and start over if the sequence numbers
1793 			 * are above the previous ones.
1794 			 */
1795 			if (thflags & TH_SYN &&
1796 			    tp->t_state == TCPS_TIME_WAIT &&
1797 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1798 				tp = tcp_close(tp);
1799 				goto findpcb;
1800 			}
1801 			/*
1802 			 * If window is closed can only take segments at
1803 			 * window edge, and have to drop data and PUSH from
1804 			 * incoming segments.  Continue processing, but
1805 			 * remember to ack.  Otherwise, drop segment
1806 			 * and ack.
1807 			 */
1808 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1809 				tp->t_flags |= TF_ACKNOW;
1810 				tcpstat.tcps_rcvwinprobe++;
1811 			} else
1812 				goto dropafterack;
1813 		} else
1814 			tcpstat.tcps_rcvbyteafterwin += todrop;
1815 		m_adj(m, -todrop);
1816 		tlen -= todrop;
1817 		thflags &= ~(TH_PUSH | TH_FIN);
1818 	}
1819 
1820 	/*
1821 	 * If last ACK falls within this segment's sequence numbers,
1822 	 * record its timestamp.
1823 	 * NOTE:
1824 	 * 1) That the test incorporates suggestions from the latest
1825 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1826 	 * 2) That updating only on newer timestamps interferes with
1827 	 *    our earlier PAWS tests, so this check should be solely
1828 	 *    predicated on the sequence space of this segment.
1829 	 * 3) That we modify the segment boundary check to be
1830 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1831 	 *    instead of RFC1323's
1832 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1833 	 *    This modified check allows us to overcome RFC1323's
1834 	 *    limitations as described in Stevens TCP/IP Illustrated
1835 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1836 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1837 	 */
1838 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1839 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1840 					+ ((thflags & TH_SYN) != 0)
1841 					+ ((thflags & TH_FIN) != 0)))) {
1842 		tp->ts_recent_age = ticks;
1843 		tp->ts_recent = to.to_tsval;
1844 	}
1845 
1846 	/*
1847 	 * If a SYN is in the window, then this is an
1848 	 * error and we send an RST and drop the connection.
1849 	 */
1850 	if (thflags & TH_SYN) {
1851 		tp = tcp_drop(tp, ECONNRESET);
1852 		rstreason = BANDLIM_UNLIMITED;
1853 		goto dropwithreset;
1854 	}
1855 
1856 	/*
1857 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1858 	 * flag is on (half-synchronized state), then queue data for
1859 	 * later processing; else drop segment and return.
1860 	 */
1861 	if (!(thflags & TH_ACK)) {
1862 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1863 		    (tp->t_flags & TF_NEEDSYN))
1864 			goto step6;
1865 		else
1866 			goto drop;
1867 	}
1868 
1869 	/*
1870 	 * Ack processing.
1871 	 */
1872 	switch (tp->t_state) {
1873 	/*
1874 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1875 	 * ESTABLISHED state and continue processing.
1876 	 * The ACK was checked above.
1877 	 */
1878 	case TCPS_SYN_RECEIVED:
1879 
1880 		tcpstat.tcps_connects++;
1881 		soisconnected(so);
1882 		/* Do window scaling? */
1883 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1884 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1885 			tp->snd_scale = tp->requested_s_scale;
1886 			tp->rcv_scale = tp->request_r_scale;
1887 		}
1888 		/*
1889 		 * Make transitions:
1890 		 *      SYN-RECEIVED  -> ESTABLISHED
1891 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1892 		 */
1893 		tp->t_starttime = ticks;
1894 		if (tp->t_flags & TF_NEEDFIN) {
1895 			tp->t_state = TCPS_FIN_WAIT_1;
1896 			tp->t_flags &= ~TF_NEEDFIN;
1897 		} else {
1898 			tp->t_state = TCPS_ESTABLISHED;
1899 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1900 			    tcp_timer_keep);
1901 		}
1902 		/*
1903 		 * If segment contains data or ACK, will call tcp_reass()
1904 		 * later; if not, do so now to pass queued data to user.
1905 		 */
1906 		if (tlen == 0 && !(thflags & TH_FIN))
1907 			tcp_reass(tp, NULL, NULL, NULL);
1908 		/* fall into ... */
1909 
1910 	/*
1911 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1912 	 * ACKs.  If the ack is in the range
1913 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1914 	 * then advance tp->snd_una to th->th_ack and drop
1915 	 * data from the retransmission queue.  If this ACK reflects
1916 	 * more up to date window information we update our window information.
1917 	 */
1918 	case TCPS_ESTABLISHED:
1919 	case TCPS_FIN_WAIT_1:
1920 	case TCPS_FIN_WAIT_2:
1921 	case TCPS_CLOSE_WAIT:
1922 	case TCPS_CLOSING:
1923 	case TCPS_LAST_ACK:
1924 	case TCPS_TIME_WAIT:
1925 
1926 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1927 			if (TCP_DO_SACK(tp))
1928 				tcp_sack_update_scoreboard(tp, &to);
1929 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1930 				tp->t_dupacks = 0;
1931 				break;
1932 			}
1933 			tcpstat.tcps_rcvdupack++;
1934 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1935 			    th->th_ack != tp->snd_una) {
1936 				tp->t_dupacks = 0;
1937 				break;
1938 			}
1939 			/*
1940 			 * We have outstanding data (other than
1941 			 * a window probe), this is a completely
1942 			 * duplicate ack (ie, window info didn't
1943 			 * change), the ack is the biggest we've
1944 			 * seen and we've seen exactly our rexmt
1945 			 * threshhold of them, so assume a packet
1946 			 * has been dropped and retransmit it.
1947 			 * Kludge snd_nxt & the congestion
1948 			 * window so we send only this one
1949 			 * packet.
1950 			 */
1951 			if (IN_FASTRECOVERY(tp)) {
1952 				if (TCP_DO_SACK(tp)) {
1953 					/* No artifical cwnd inflation. */
1954 					tcp_sack_rexmt(tp, th);
1955 				} else {
1956 					/*
1957 					 * Dup acks mean that packets
1958 					 * have left the network
1959 					 * (they're now cached at the
1960 					 * receiver) so bump cwnd by
1961 					 * the amount in the receiver
1962 					 * to keep a constant cwnd
1963 					 * packets in the network.
1964 					 */
1965 					tp->snd_cwnd += tp->t_maxseg;
1966 					tcp_output(tp);
1967 				}
1968 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1969 				tp->t_dupacks = 0;
1970 				break;
1971 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1972 				tcp_seq old_snd_nxt;
1973 				u_int win;
1974 
1975 fastretransmit:
1976 				if (tcp_do_eifel_detect &&
1977 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1978 					tcp_save_congestion_state(tp);
1979 					tp->t_flags |= TF_FASTREXMT;
1980 				}
1981 				/*
1982 				 * We know we're losing at the current
1983 				 * window size, so do congestion avoidance:
1984 				 * set ssthresh to half the current window
1985 				 * and pull our congestion window back to the
1986 				 * new ssthresh.
1987 				 */
1988 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1989 				    tp->t_maxseg;
1990 				if (win < 2)
1991 					win = 2;
1992 				tp->snd_ssthresh = win * tp->t_maxseg;
1993 				ENTER_FASTRECOVERY(tp);
1994 				tp->snd_recover = tp->snd_max;
1995 				tcp_callout_stop(tp, tp->tt_rexmt);
1996 				tp->t_rtttime = 0;
1997 				old_snd_nxt = tp->snd_nxt;
1998 				tp->snd_nxt = th->th_ack;
1999 				tp->snd_cwnd = tp->t_maxseg;
2000 				tcp_output(tp);
2001 				++tcpstat.tcps_sndfastrexmit;
2002 				tp->snd_cwnd = tp->snd_ssthresh;
2003 				tp->rexmt_high = tp->snd_nxt;
2004 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
2005 					tp->snd_nxt = old_snd_nxt;
2006 				KASSERT(tp->snd_limited <= 2,
2007 				    ("tp->snd_limited too big"));
2008 				if (TCP_DO_SACK(tp))
2009 					tcp_sack_rexmt(tp, th);
2010 				else
2011 					tp->snd_cwnd += tp->t_maxseg *
2012 					    (tp->t_dupacks - tp->snd_limited);
2013 			} else if (tcp_do_limitedtransmit) {
2014 				u_long oldcwnd = tp->snd_cwnd;
2015 				tcp_seq oldsndmax = tp->snd_max;
2016 				tcp_seq oldsndnxt = tp->snd_nxt;
2017 				/* outstanding data */
2018 				uint32_t ownd = tp->snd_max - tp->snd_una;
2019 				u_int sent;
2020 
2021 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
2022 
2023 				KASSERT(tp->t_dupacks == 1 ||
2024 					tp->t_dupacks == 2,
2025 				    ("dupacks not 1 or 2"));
2026 				if (tp->t_dupacks == 1)
2027 					tp->snd_limited = 0;
2028 				tp->snd_nxt = tp->snd_max;
2029 				tp->snd_cwnd = ownd +
2030 				    (tp->t_dupacks - tp->snd_limited) *
2031 				    tp->t_maxseg;
2032 				tcp_output(tp);
2033 
2034 				/*
2035 				 * Other acks may have been processed,
2036 				 * snd_nxt cannot be reset to a value less
2037 				 * then snd_una.
2038 				 */
2039 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2040 				    if (SEQ_GT(oldsndnxt, tp->snd_una))
2041 					tp->snd_nxt = oldsndnxt;
2042 				    else
2043 					tp->snd_nxt = tp->snd_una;
2044 				}
2045 				tp->snd_cwnd = oldcwnd;
2046 				sent = tp->snd_max - oldsndmax;
2047 				if (sent > tp->t_maxseg) {
2048 					KASSERT((tp->t_dupacks == 2 &&
2049 						 tp->snd_limited == 0) ||
2050 						(sent == tp->t_maxseg + 1 &&
2051 						 tp->t_flags & TF_SENTFIN),
2052 					    ("sent too much"));
2053 					KASSERT(sent <= tp->t_maxseg * 2,
2054 					    ("sent too many segments"));
2055 					tp->snd_limited = 2;
2056 					tcpstat.tcps_sndlimited += 2;
2057 				} else if (sent > 0) {
2058 					++tp->snd_limited;
2059 					++tcpstat.tcps_sndlimited;
2060 				} else if (tcp_do_early_retransmit &&
2061 				    (tcp_do_eifel_detect &&
2062 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2063 				    ownd < 4 * tp->t_maxseg &&
2064 				    tp->t_dupacks + 1 >=
2065 				      iceildiv(ownd, tp->t_maxseg) &&
2066 				    (!TCP_DO_SACK(tp) ||
2067 				     ownd <= tp->t_maxseg ||
2068 				     tcp_sack_has_sacked(&tp->scb,
2069 							ownd - tp->t_maxseg))) {
2070 					++tcpstat.tcps_sndearlyrexmit;
2071 					tp->t_flags |= TF_EARLYREXMT;
2072 					goto fastretransmit;
2073 				}
2074 			}
2075 			goto drop;
2076 		}
2077 
2078 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2079 		tp->t_dupacks = 0;
2080 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2081 			/*
2082 			 * Detected optimistic ACK attack.
2083 			 * Force slow-start to de-synchronize attack.
2084 			 */
2085 			tp->snd_cwnd = tp->t_maxseg;
2086 			tp->snd_wacked = 0;
2087 
2088 			tcpstat.tcps_rcvacktoomuch++;
2089 			goto dropafterack;
2090 		}
2091 		/*
2092 		 * If we reach this point, ACK is not a duplicate,
2093 		 *     i.e., it ACKs something we sent.
2094 		 */
2095 		if (tp->t_flags & TF_NEEDSYN) {
2096 			/*
2097 			 * T/TCP: Connection was half-synchronized, and our
2098 			 * SYN has been ACK'd (so connection is now fully
2099 			 * synchronized).  Go to non-starred state,
2100 			 * increment snd_una for ACK of SYN, and check if
2101 			 * we can do window scaling.
2102 			 */
2103 			tp->t_flags &= ~TF_NEEDSYN;
2104 			tp->snd_una++;
2105 			/* Do window scaling? */
2106 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2107 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2108 				tp->snd_scale = tp->requested_s_scale;
2109 				tp->rcv_scale = tp->request_r_scale;
2110 			}
2111 		}
2112 
2113 process_ACK:
2114 		acked = th->th_ack - tp->snd_una;
2115 		tcpstat.tcps_rcvackpack++;
2116 		tcpstat.tcps_rcvackbyte += acked;
2117 
2118 		if (tcp_do_eifel_detect && acked > 0 &&
2119 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2120 		    (tp->t_flags & TF_FIRSTACCACK)) {
2121 			/* Eifel detection applicable. */
2122 			if (to.to_tsecr < tp->t_rexmtTS) {
2123 				++tcpstat.tcps_eifeldetected;
2124 				tcp_revert_congestion_state(tp);
2125 				if (tp->t_rxtshift == 1 &&
2126 				    ticks >= tp->t_badrxtwin)
2127 					++tcpstat.tcps_rttcantdetect;
2128 			}
2129 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2130 			/*
2131 			 * If we just performed our first retransmit,
2132 			 * and the ACK arrives within our recovery window,
2133 			 * then it was a mistake to do the retransmit
2134 			 * in the first place.  Recover our original cwnd
2135 			 * and ssthresh, and proceed to transmit where we
2136 			 * left off.
2137 			 */
2138 			tcp_revert_congestion_state(tp);
2139 			++tcpstat.tcps_rttdetected;
2140 		}
2141 
2142 		/*
2143 		 * If we have a timestamp reply, update smoothed
2144 		 * round trip time.  If no timestamp is present but
2145 		 * transmit timer is running and timed sequence
2146 		 * number was acked, update smoothed round trip time.
2147 		 * Since we now have an rtt measurement, cancel the
2148 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2149 		 * Recompute the initial retransmit timer.
2150 		 *
2151 		 * Some machines (certain windows boxes) send broken
2152 		 * timestamp replies during the SYN+ACK phase, ignore
2153 		 * timestamps of 0.
2154 		 */
2155 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2156 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2157 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2158 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2159 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2160 
2161 		/*
2162 		 * If no data (only SYN) was ACK'd,
2163 		 *    skip rest of ACK processing.
2164 		 */
2165 		if (acked == 0)
2166 			goto step6;
2167 
2168 		/* Stop looking for an acceptable ACK since one was received. */
2169 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2170 
2171 		if (acked > so->so_snd.ssb_cc) {
2172 			tp->snd_wnd -= so->so_snd.ssb_cc;
2173 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2174 			ourfinisacked = TRUE;
2175 		} else {
2176 			sbdrop(&so->so_snd.sb, acked);
2177 			tp->snd_wnd -= acked;
2178 			ourfinisacked = FALSE;
2179 		}
2180 		sowwakeup(so);
2181 
2182 		/*
2183 		 * Update window information.
2184 		 * Don't look at window if no ACK:
2185 		 * TAC's send garbage on first SYN.
2186 		 */
2187 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2188 		    (tp->snd_wl1 == th->th_seq &&
2189 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2190 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2191 			/* keep track of pure window updates */
2192 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2193 			    tiwin > tp->snd_wnd)
2194 				tcpstat.tcps_rcvwinupd++;
2195 			tp->snd_wnd = tiwin;
2196 			tp->snd_wl1 = th->th_seq;
2197 			tp->snd_wl2 = th->th_ack;
2198 			if (tp->snd_wnd > tp->max_sndwnd)
2199 				tp->max_sndwnd = tp->snd_wnd;
2200 			needoutput = TRUE;
2201 		}
2202 
2203 		tp->snd_una = th->th_ack;
2204 		if (TCP_DO_SACK(tp))
2205 			tcp_sack_update_scoreboard(tp, &to);
2206 		if (IN_FASTRECOVERY(tp)) {
2207 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2208 				EXIT_FASTRECOVERY(tp);
2209 				needoutput = TRUE;
2210 				/*
2211 				 * If the congestion window was inflated
2212 				 * to account for the other side's
2213 				 * cached packets, retract it.
2214 				 */
2215 				if (!TCP_DO_SACK(tp))
2216 					tp->snd_cwnd = tp->snd_ssthresh;
2217 
2218 				/*
2219 				 * Window inflation should have left us
2220 				 * with approximately snd_ssthresh outstanding
2221 				 * data.  But, in case we would be inclined
2222 				 * to send a burst, better do it using
2223 				 * slow start.
2224 				 */
2225 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2226 					   tp->snd_max + 2 * tp->t_maxseg))
2227 					tp->snd_cwnd =
2228 					    (tp->snd_max - tp->snd_una) +
2229 					    2 * tp->t_maxseg;
2230 
2231 				tp->snd_wacked = 0;
2232 			} else {
2233 				if (TCP_DO_SACK(tp)) {
2234 					tp->snd_max_rexmt = tp->snd_max;
2235 					tcp_sack_rexmt(tp, th);
2236 				} else {
2237 					tcp_newreno_partial_ack(tp, th, acked);
2238 				}
2239 				needoutput = FALSE;
2240 			}
2241 		} else {
2242 			/*
2243 			 * Open the congestion window.  When in slow-start,
2244 			 * open exponentially: maxseg per packet.  Otherwise,
2245 			 * open linearly: maxseg per window.
2246 			 */
2247 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2248 				u_int abc_sslimit =
2249 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2250 				     tp->t_maxseg : 2 * tp->t_maxseg);
2251 
2252 				/* slow-start */
2253 				tp->snd_cwnd += tcp_do_abc ?
2254 				    min(acked, abc_sslimit) : tp->t_maxseg;
2255 			} else {
2256 				/* linear increase */
2257 				tp->snd_wacked += tcp_do_abc ? acked :
2258 				    tp->t_maxseg;
2259 				if (tp->snd_wacked >= tp->snd_cwnd) {
2260 					tp->snd_wacked -= tp->snd_cwnd;
2261 					tp->snd_cwnd += tp->t_maxseg;
2262 				}
2263 			}
2264 			tp->snd_cwnd = min(tp->snd_cwnd,
2265 					   TCP_MAXWIN << tp->snd_scale);
2266 			tp->snd_recover = th->th_ack - 1;
2267 		}
2268 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2269 			tp->snd_nxt = tp->snd_una;
2270 
2271 		/*
2272 		 * If all outstanding data is acked, stop retransmit
2273 		 * timer and remember to restart (more output or persist).
2274 		 * If there is more data to be acked, restart retransmit
2275 		 * timer, using current (possibly backed-off) value.
2276 		 */
2277 		if (th->th_ack == tp->snd_max) {
2278 			tcp_callout_stop(tp, tp->tt_rexmt);
2279 			needoutput = TRUE;
2280 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2281 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2282 			    tcp_timer_rexmt);
2283 		}
2284 
2285 		switch (tp->t_state) {
2286 		/*
2287 		 * In FIN_WAIT_1 STATE in addition to the processing
2288 		 * for the ESTABLISHED state if our FIN is now acknowledged
2289 		 * then enter FIN_WAIT_2.
2290 		 */
2291 		case TCPS_FIN_WAIT_1:
2292 			if (ourfinisacked) {
2293 				/*
2294 				 * If we can't receive any more
2295 				 * data, then closing user can proceed.
2296 				 * Starting the timer is contrary to the
2297 				 * specification, but if we don't get a FIN
2298 				 * we'll hang forever.
2299 				 */
2300 				if (so->so_state & SS_CANTRCVMORE) {
2301 					soisdisconnected(so);
2302 					tcp_callout_reset(tp, tp->tt_2msl,
2303 					    tcp_maxidle, tcp_timer_2msl);
2304 				}
2305 				tp->t_state = TCPS_FIN_WAIT_2;
2306 			}
2307 			break;
2308 
2309 		/*
2310 		 * In CLOSING STATE in addition to the processing for
2311 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2312 		 * then enter the TIME-WAIT state, otherwise ignore
2313 		 * the segment.
2314 		 */
2315 		case TCPS_CLOSING:
2316 			if (ourfinisacked) {
2317 				tp->t_state = TCPS_TIME_WAIT;
2318 				tcp_canceltimers(tp);
2319 				tcp_callout_reset(tp, tp->tt_2msl,
2320 					    2 * tcp_msl, tcp_timer_2msl);
2321 				soisdisconnected(so);
2322 			}
2323 			break;
2324 
2325 		/*
2326 		 * In LAST_ACK, we may still be waiting for data to drain
2327 		 * and/or to be acked, as well as for the ack of our FIN.
2328 		 * If our FIN is now acknowledged, delete the TCB,
2329 		 * enter the closed state and return.
2330 		 */
2331 		case TCPS_LAST_ACK:
2332 			if (ourfinisacked) {
2333 				tp = tcp_close(tp);
2334 				goto drop;
2335 			}
2336 			break;
2337 
2338 		/*
2339 		 * In TIME_WAIT state the only thing that should arrive
2340 		 * is a retransmission of the remote FIN.  Acknowledge
2341 		 * it and restart the finack timer.
2342 		 */
2343 		case TCPS_TIME_WAIT:
2344 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2345 			    tcp_timer_2msl);
2346 			goto dropafterack;
2347 		}
2348 	}
2349 
2350 step6:
2351 	/*
2352 	 * Update window information.
2353 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2354 	 */
2355 	if ((thflags & TH_ACK) &&
2356 	    acceptable_window_update(tp, th, tiwin)) {
2357 		/* keep track of pure window updates */
2358 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2359 		    tiwin > tp->snd_wnd)
2360 			tcpstat.tcps_rcvwinupd++;
2361 		tp->snd_wnd = tiwin;
2362 		tp->snd_wl1 = th->th_seq;
2363 		tp->snd_wl2 = th->th_ack;
2364 		if (tp->snd_wnd > tp->max_sndwnd)
2365 			tp->max_sndwnd = tp->snd_wnd;
2366 		needoutput = TRUE;
2367 	}
2368 
2369 	/*
2370 	 * Process segments with URG.
2371 	 */
2372 	if ((thflags & TH_URG) && th->th_urp &&
2373 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2374 		/*
2375 		 * This is a kludge, but if we receive and accept
2376 		 * random urgent pointers, we'll crash in
2377 		 * soreceive.  It's hard to imagine someone
2378 		 * actually wanting to send this much urgent data.
2379 		 */
2380 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2381 			th->th_urp = 0;			/* XXX */
2382 			thflags &= ~TH_URG;		/* XXX */
2383 			goto dodata;			/* XXX */
2384 		}
2385 		/*
2386 		 * If this segment advances the known urgent pointer,
2387 		 * then mark the data stream.  This should not happen
2388 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2389 		 * a FIN has been received from the remote side.
2390 		 * In these states we ignore the URG.
2391 		 *
2392 		 * According to RFC961 (Assigned Protocols),
2393 		 * the urgent pointer points to the last octet
2394 		 * of urgent data.  We continue, however,
2395 		 * to consider it to indicate the first octet
2396 		 * of data past the urgent section as the original
2397 		 * spec states (in one of two places).
2398 		 */
2399 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2400 			tp->rcv_up = th->th_seq + th->th_urp;
2401 			so->so_oobmark = so->so_rcv.ssb_cc +
2402 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2403 			if (so->so_oobmark == 0)
2404 				sosetstate(so, SS_RCVATMARK);
2405 			sohasoutofband(so);
2406 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2407 		}
2408 		/*
2409 		 * Remove out of band data so doesn't get presented to user.
2410 		 * This can happen independent of advancing the URG pointer,
2411 		 * but if two URG's are pending at once, some out-of-band
2412 		 * data may creep in... ick.
2413 		 */
2414 		if (th->th_urp <= (u_long)tlen &&
2415 		    !(so->so_options & SO_OOBINLINE)) {
2416 			/* hdr drop is delayed */
2417 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2418 		}
2419 	} else {
2420 		/*
2421 		 * If no out of band data is expected,
2422 		 * pull receive urgent pointer along
2423 		 * with the receive window.
2424 		 */
2425 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2426 			tp->rcv_up = tp->rcv_nxt;
2427 	}
2428 
2429 dodata:							/* XXX */
2430 	/*
2431 	 * Process the segment text, merging it into the TCP sequencing queue,
2432 	 * and arranging for acknowledgment of receipt if necessary.
2433 	 * This process logically involves adjusting tp->rcv_wnd as data
2434 	 * is presented to the user (this happens in tcp_usrreq.c,
2435 	 * case PRU_RCVD).  If a FIN has already been received on this
2436 	 * connection then we just ignore the text.
2437 	 */
2438 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2439 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2440 		/*
2441 		 * Insert segment which includes th into TCP reassembly queue
2442 		 * with control block tp.  Set thflags to whether reassembly now
2443 		 * includes a segment with FIN.  This handles the common case
2444 		 * inline (segment is the next to be received on an established
2445 		 * connection, and the queue is empty), avoiding linkage into
2446 		 * and removal from the queue and repetition of various
2447 		 * conversions.
2448 		 * Set DELACK for segments received in order, but ack
2449 		 * immediately when segments are out of order (so
2450 		 * fast retransmit can work).
2451 		 */
2452 		if (th->th_seq == tp->rcv_nxt &&
2453 		    LIST_EMPTY(&tp->t_segq) &&
2454 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2455 			if (DELAY_ACK(tp)) {
2456 				tcp_callout_reset(tp, tp->tt_delack,
2457 				    tcp_delacktime, tcp_timer_delack);
2458 			} else {
2459 				tp->t_flags |= TF_ACKNOW;
2460 			}
2461 			tp->rcv_nxt += tlen;
2462 			thflags = th->th_flags & TH_FIN;
2463 			tcpstat.tcps_rcvpack++;
2464 			tcpstat.tcps_rcvbyte += tlen;
2465 			ND6_HINT(tp);
2466 			if (so->so_state & SS_CANTRCVMORE) {
2467 				m_freem(m);
2468 			} else {
2469 				lwkt_gettoken(&so->so_rcv.ssb_token);
2470 				ssb_appendstream(&so->so_rcv, m);
2471 				lwkt_reltoken(&so->so_rcv.ssb_token);
2472 			}
2473 			sorwakeup(so);
2474 		} else {
2475 			if (!(tp->t_flags & TF_DUPSEG)) {
2476 				/* Initialize SACK report block. */
2477 				tp->reportblk.rblk_start = th->th_seq;
2478 				tp->reportblk.rblk_end = th->th_seq + tlen +
2479 				    ((thflags & TH_FIN) != 0);
2480 			}
2481 			thflags = tcp_reass(tp, th, &tlen, m);
2482 			tp->t_flags |= TF_ACKNOW;
2483 		}
2484 
2485 		/*
2486 		 * Note the amount of data that peer has sent into
2487 		 * our window, in order to estimate the sender's
2488 		 * buffer size.
2489 		 */
2490 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2491 	} else {
2492 		m_freem(m);
2493 		thflags &= ~TH_FIN;
2494 	}
2495 
2496 	/*
2497 	 * If FIN is received ACK the FIN and let the user know
2498 	 * that the connection is closing.
2499 	 */
2500 	if (thflags & TH_FIN) {
2501 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2502 			socantrcvmore(so);
2503 			/*
2504 			 * If connection is half-synchronized
2505 			 * (ie NEEDSYN flag on) then delay ACK,
2506 			 * so it may be piggybacked when SYN is sent.
2507 			 * Otherwise, since we received a FIN then no
2508 			 * more input can be expected, send ACK now.
2509 			 */
2510 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2511 				tcp_callout_reset(tp, tp->tt_delack,
2512 				    tcp_delacktime, tcp_timer_delack);
2513 			} else {
2514 				tp->t_flags |= TF_ACKNOW;
2515 			}
2516 			tp->rcv_nxt++;
2517 		}
2518 
2519 		switch (tp->t_state) {
2520 		/*
2521 		 * In SYN_RECEIVED and ESTABLISHED STATES
2522 		 * enter the CLOSE_WAIT state.
2523 		 */
2524 		case TCPS_SYN_RECEIVED:
2525 			tp->t_starttime = ticks;
2526 			/*FALLTHROUGH*/
2527 		case TCPS_ESTABLISHED:
2528 			tp->t_state = TCPS_CLOSE_WAIT;
2529 			break;
2530 
2531 		/*
2532 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2533 		 * enter the CLOSING state.
2534 		 */
2535 		case TCPS_FIN_WAIT_1:
2536 			tp->t_state = TCPS_CLOSING;
2537 			break;
2538 
2539 		/*
2540 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2541 		 * starting the time-wait timer, turning off the other
2542 		 * standard timers.
2543 		 */
2544 		case TCPS_FIN_WAIT_2:
2545 			tp->t_state = TCPS_TIME_WAIT;
2546 			tcp_canceltimers(tp);
2547 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2548 				    tcp_timer_2msl);
2549 			soisdisconnected(so);
2550 			break;
2551 
2552 		/*
2553 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2554 		 */
2555 		case TCPS_TIME_WAIT:
2556 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2557 			    tcp_timer_2msl);
2558 			break;
2559 		}
2560 	}
2561 
2562 #ifdef TCPDEBUG
2563 	if (so->so_options & SO_DEBUG)
2564 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2565 #endif
2566 
2567 	/*
2568 	 * Return any desired output.
2569 	 */
2570 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2571 		tcp_output(tp);
2572 	return(IPPROTO_DONE);
2573 
2574 dropafterack:
2575 	/*
2576 	 * Generate an ACK dropping incoming segment if it occupies
2577 	 * sequence space, where the ACK reflects our state.
2578 	 *
2579 	 * We can now skip the test for the RST flag since all
2580 	 * paths to this code happen after packets containing
2581 	 * RST have been dropped.
2582 	 *
2583 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2584 	 * segment we received passes the SYN-RECEIVED ACK test.
2585 	 * If it fails send a RST.  This breaks the loop in the
2586 	 * "LAND" DoS attack, and also prevents an ACK storm
2587 	 * between two listening ports that have been sent forged
2588 	 * SYN segments, each with the source address of the other.
2589 	 */
2590 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2591 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2592 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2593 		rstreason = BANDLIM_RST_OPENPORT;
2594 		goto dropwithreset;
2595 	}
2596 #ifdef TCPDEBUG
2597 	if (so->so_options & SO_DEBUG)
2598 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2599 #endif
2600 	m_freem(m);
2601 	tp->t_flags |= TF_ACKNOW;
2602 	tcp_output(tp);
2603 	return(IPPROTO_DONE);
2604 
2605 dropwithreset:
2606 	/*
2607 	 * Generate a RST, dropping incoming segment.
2608 	 * Make ACK acceptable to originator of segment.
2609 	 * Don't bother to respond if destination was broadcast/multicast.
2610 	 */
2611 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2612 		goto drop;
2613 	if (isipv6) {
2614 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2615 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2616 			goto drop;
2617 	} else {
2618 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2619 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2620 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2621 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2622 			goto drop;
2623 	}
2624 	/* IPv6 anycast check is done at tcp6_input() */
2625 
2626 	/*
2627 	 * Perform bandwidth limiting.
2628 	 */
2629 #ifdef ICMP_BANDLIM
2630 	if (badport_bandlim(rstreason) < 0)
2631 		goto drop;
2632 #endif
2633 
2634 #ifdef TCPDEBUG
2635 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2636 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2637 #endif
2638 	if (thflags & TH_ACK)
2639 		/* mtod() below is safe as long as hdr dropping is delayed */
2640 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2641 			    TH_RST);
2642 	else {
2643 		if (thflags & TH_SYN)
2644 			tlen++;
2645 		/* mtod() below is safe as long as hdr dropping is delayed */
2646 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2647 			    (tcp_seq)0, TH_RST | TH_ACK);
2648 	}
2649 	return(IPPROTO_DONE);
2650 
2651 drop:
2652 	/*
2653 	 * Drop space held by incoming segment and return.
2654 	 */
2655 #ifdef TCPDEBUG
2656 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2657 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2658 #endif
2659 	m_freem(m);
2660 	return(IPPROTO_DONE);
2661 }
2662 
2663 /*
2664  * Parse TCP options and place in tcpopt.
2665  */
2666 static void
2667 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2668 {
2669 	int opt, optlen, i;
2670 
2671 	to->to_flags = 0;
2672 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2673 		opt = cp[0];
2674 		if (opt == TCPOPT_EOL)
2675 			break;
2676 		if (opt == TCPOPT_NOP)
2677 			optlen = 1;
2678 		else {
2679 			if (cnt < 2)
2680 				break;
2681 			optlen = cp[1];
2682 			if (optlen < 2 || optlen > cnt)
2683 				break;
2684 		}
2685 		switch (opt) {
2686 		case TCPOPT_MAXSEG:
2687 			if (optlen != TCPOLEN_MAXSEG)
2688 				continue;
2689 			if (!is_syn)
2690 				continue;
2691 			to->to_flags |= TOF_MSS;
2692 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2693 			to->to_mss = ntohs(to->to_mss);
2694 			break;
2695 		case TCPOPT_WINDOW:
2696 			if (optlen != TCPOLEN_WINDOW)
2697 				continue;
2698 			if (!is_syn)
2699 				continue;
2700 			to->to_flags |= TOF_SCALE;
2701 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2702 			break;
2703 		case TCPOPT_TIMESTAMP:
2704 			if (optlen != TCPOLEN_TIMESTAMP)
2705 				continue;
2706 			to->to_flags |= TOF_TS;
2707 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2708 			to->to_tsval = ntohl(to->to_tsval);
2709 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2710 			to->to_tsecr = ntohl(to->to_tsecr);
2711 			/*
2712 			 * If echoed timestamp is later than the current time,
2713 			 * fall back to non RFC1323 RTT calculation.
2714 			 */
2715 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2716 				to->to_tsecr = 0;
2717 			break;
2718 		case TCPOPT_SACK_PERMITTED:
2719 			if (optlen != TCPOLEN_SACK_PERMITTED)
2720 				continue;
2721 			if (!is_syn)
2722 				continue;
2723 			to->to_flags |= TOF_SACK_PERMITTED;
2724 			break;
2725 		case TCPOPT_SACK:
2726 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2727 				continue;
2728 			to->to_nsackblocks = (optlen - 2) / 8;
2729 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2730 			to->to_flags |= TOF_SACK;
2731 			for (i = 0; i < to->to_nsackblocks; i++) {
2732 				struct raw_sackblock *r = &to->to_sackblocks[i];
2733 
2734 				r->rblk_start = ntohl(r->rblk_start);
2735 				r->rblk_end = ntohl(r->rblk_end);
2736 			}
2737 			break;
2738 #ifdef TCP_SIGNATURE
2739 		/*
2740 		 * XXX In order to reply to a host which has set the
2741 		 * TCP_SIGNATURE option in its initial SYN, we have to
2742 		 * record the fact that the option was observed here
2743 		 * for the syncache code to perform the correct response.
2744 		 */
2745 		case TCPOPT_SIGNATURE:
2746 			if (optlen != TCPOLEN_SIGNATURE)
2747 				continue;
2748 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2749 			break;
2750 #endif /* TCP_SIGNATURE */
2751 		default:
2752 			continue;
2753 		}
2754 	}
2755 }
2756 
2757 /*
2758  * Pull out of band byte out of a segment so
2759  * it doesn't appear in the user's data queue.
2760  * It is still reflected in the segment length for
2761  * sequencing purposes.
2762  * "off" is the delayed to be dropped hdrlen.
2763  */
2764 static void
2765 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2766 {
2767 	int cnt = off + th->th_urp - 1;
2768 
2769 	while (cnt >= 0) {
2770 		if (m->m_len > cnt) {
2771 			char *cp = mtod(m, caddr_t) + cnt;
2772 			struct tcpcb *tp = sototcpcb(so);
2773 
2774 			tp->t_iobc = *cp;
2775 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2776 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2777 			m->m_len--;
2778 			if (m->m_flags & M_PKTHDR)
2779 				m->m_pkthdr.len--;
2780 			return;
2781 		}
2782 		cnt -= m->m_len;
2783 		m = m->m_next;
2784 		if (m == 0)
2785 			break;
2786 	}
2787 	panic("tcp_pulloutofband");
2788 }
2789 
2790 /*
2791  * Collect new round-trip time estimate
2792  * and update averages and current timeout.
2793  */
2794 static void
2795 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2796 {
2797 	int delta;
2798 
2799 	tcpstat.tcps_rttupdated++;
2800 	tp->t_rttupdated++;
2801 	if (tp->t_srtt != 0) {
2802 		/*
2803 		 * srtt is stored as fixed point with 5 bits after the
2804 		 * binary point (i.e., scaled by 8).  The following magic
2805 		 * is equivalent to the smoothing algorithm in rfc793 with
2806 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2807 		 * point).  Adjust rtt to origin 0.
2808 		 */
2809 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2810 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2811 
2812 		if ((tp->t_srtt += delta) <= 0)
2813 			tp->t_srtt = 1;
2814 
2815 		/*
2816 		 * We accumulate a smoothed rtt variance (actually, a
2817 		 * smoothed mean difference), then set the retransmit
2818 		 * timer to smoothed rtt + 4 times the smoothed variance.
2819 		 * rttvar is stored as fixed point with 4 bits after the
2820 		 * binary point (scaled by 16).  The following is
2821 		 * equivalent to rfc793 smoothing with an alpha of .75
2822 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2823 		 * rfc793's wired-in beta.
2824 		 */
2825 		if (delta < 0)
2826 			delta = -delta;
2827 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2828 		if ((tp->t_rttvar += delta) <= 0)
2829 			tp->t_rttvar = 1;
2830 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2831 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2832 	} else {
2833 		/*
2834 		 * No rtt measurement yet - use the unsmoothed rtt.
2835 		 * Set the variance to half the rtt (so our first
2836 		 * retransmit happens at 3*rtt).
2837 		 */
2838 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2839 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2840 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2841 	}
2842 	tp->t_rtttime = 0;
2843 	tp->t_rxtshift = 0;
2844 
2845 	/*
2846 	 * the retransmit should happen at rtt + 4 * rttvar.
2847 	 * Because of the way we do the smoothing, srtt and rttvar
2848 	 * will each average +1/2 tick of bias.  When we compute
2849 	 * the retransmit timer, we want 1/2 tick of rounding and
2850 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2851 	 * firing of the timer.  The bias will give us exactly the
2852 	 * 1.5 tick we need.  But, because the bias is
2853 	 * statistical, we have to test that we don't drop below
2854 	 * the minimum feasible timer (which is 2 ticks).
2855 	 */
2856 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2857 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2858 
2859 	/*
2860 	 * We received an ack for a packet that wasn't retransmitted;
2861 	 * it is probably safe to discard any error indications we've
2862 	 * received recently.  This isn't quite right, but close enough
2863 	 * for now (a route might have failed after we sent a segment,
2864 	 * and the return path might not be symmetrical).
2865 	 */
2866 	tp->t_softerror = 0;
2867 }
2868 
2869 /*
2870  * Determine a reasonable value for maxseg size.
2871  * If the route is known, check route for mtu.
2872  * If none, use an mss that can be handled on the outgoing
2873  * interface without forcing IP to fragment; if bigger than
2874  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2875  * to utilize large mbufs.  If no route is found, route has no mtu,
2876  * or the destination isn't local, use a default, hopefully conservative
2877  * size (usually 512 or the default IP max size, but no more than the mtu
2878  * of the interface), as we can't discover anything about intervening
2879  * gateways or networks.  We also initialize the congestion/slow start
2880  * window to be a single segment if the destination isn't local.
2881  * While looking at the routing entry, we also initialize other path-dependent
2882  * parameters from pre-set or cached values in the routing entry.
2883  *
2884  * Also take into account the space needed for options that we
2885  * send regularly.  Make maxseg shorter by that amount to assure
2886  * that we can send maxseg amount of data even when the options
2887  * are present.  Store the upper limit of the length of options plus
2888  * data in maxopd.
2889  *
2890  * NOTE that this routine is only called when we process an incoming
2891  * segment, for outgoing segments only tcp_mssopt is called.
2892  */
2893 void
2894 tcp_mss(struct tcpcb *tp, int offer)
2895 {
2896 	struct rtentry *rt;
2897 	struct ifnet *ifp;
2898 	int rtt, mss;
2899 	u_long bufsize;
2900 	struct inpcb *inp = tp->t_inpcb;
2901 	struct socket *so;
2902 #ifdef INET6
2903 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2904 	size_t min_protoh = isipv6 ?
2905 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2906 			    sizeof(struct tcpiphdr);
2907 #else
2908 	const boolean_t isipv6 = FALSE;
2909 	const size_t min_protoh = sizeof(struct tcpiphdr);
2910 #endif
2911 
2912 	if (isipv6)
2913 		rt = tcp_rtlookup6(&inp->inp_inc);
2914 	else
2915 		rt = tcp_rtlookup(&inp->inp_inc);
2916 	if (rt == NULL) {
2917 		tp->t_maxopd = tp->t_maxseg =
2918 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2919 		return;
2920 	}
2921 	ifp = rt->rt_ifp;
2922 	so = inp->inp_socket;
2923 
2924 	/*
2925 	 * Offer == 0 means that there was no MSS on the SYN segment,
2926 	 * in this case we use either the interface mtu or tcp_mssdflt.
2927 	 *
2928 	 * An offer which is too large will be cut down later.
2929 	 */
2930 	if (offer == 0) {
2931 		if (isipv6) {
2932 			if (in6_localaddr(&inp->in6p_faddr)) {
2933 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2934 					min_protoh;
2935 			} else {
2936 				offer = tcp_v6mssdflt;
2937 			}
2938 		} else {
2939 			if (in_localaddr(inp->inp_faddr))
2940 				offer = ifp->if_mtu - min_protoh;
2941 			else
2942 				offer = tcp_mssdflt;
2943 		}
2944 	}
2945 
2946 	/*
2947 	 * Prevent DoS attack with too small MSS. Round up
2948 	 * to at least minmss.
2949 	 *
2950 	 * Sanity check: make sure that maxopd will be large
2951 	 * enough to allow some data on segments even is the
2952 	 * all the option space is used (40bytes).  Otherwise
2953 	 * funny things may happen in tcp_output.
2954 	 */
2955 	offer = max(offer, tcp_minmss);
2956 	offer = max(offer, 64);
2957 
2958 	rt->rt_rmx.rmx_mssopt = offer;
2959 
2960 	/*
2961 	 * While we're here, check if there's an initial rtt
2962 	 * or rttvar.  Convert from the route-table units
2963 	 * to scaled multiples of the slow timeout timer.
2964 	 */
2965 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2966 		/*
2967 		 * XXX the lock bit for RTT indicates that the value
2968 		 * is also a minimum value; this is subject to time.
2969 		 */
2970 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2971 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2972 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2973 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2974 		tcpstat.tcps_usedrtt++;
2975 		if (rt->rt_rmx.rmx_rttvar) {
2976 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2977 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2978 			tcpstat.tcps_usedrttvar++;
2979 		} else {
2980 			/* default variation is +- 1 rtt */
2981 			tp->t_rttvar =
2982 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2983 		}
2984 		TCPT_RANGESET(tp->t_rxtcur,
2985 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2986 			      tp->t_rttmin, TCPTV_REXMTMAX);
2987 	}
2988 
2989 	/*
2990 	 * if there's an mtu associated with the route, use it
2991 	 * else, use the link mtu.  Take the smaller of mss or offer
2992 	 * as our final mss.
2993 	 */
2994 	if (rt->rt_rmx.rmx_mtu) {
2995 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2996 	} else {
2997 		if (isipv6)
2998 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2999 		else
3000 			mss = ifp->if_mtu - min_protoh;
3001 	}
3002 	mss = min(mss, offer);
3003 
3004 	/*
3005 	 * maxopd stores the maximum length of data AND options
3006 	 * in a segment; maxseg is the amount of data in a normal
3007 	 * segment.  We need to store this value (maxopd) apart
3008 	 * from maxseg, because now every segment carries options
3009 	 * and thus we normally have somewhat less data in segments.
3010 	 */
3011 	tp->t_maxopd = mss;
3012 
3013 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3014 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3015 		mss -= TCPOLEN_TSTAMP_APPA;
3016 
3017 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3018 		if (mss > MCLBYTES)
3019 			mss &= ~(MCLBYTES-1);
3020 #else
3021 		if (mss > MCLBYTES)
3022 			mss = mss / MCLBYTES * MCLBYTES;
3023 #endif
3024 	/*
3025 	 * If there's a pipesize, change the socket buffer
3026 	 * to that size.  Make the socket buffers an integral
3027 	 * number of mss units; if the mss is larger than
3028 	 * the socket buffer, decrease the mss.
3029 	 */
3030 #ifdef RTV_SPIPE
3031 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3032 #endif
3033 		bufsize = so->so_snd.ssb_hiwat;
3034 	if (bufsize < mss)
3035 		mss = bufsize;
3036 	else {
3037 		bufsize = roundup(bufsize, mss);
3038 		if (bufsize > sb_max)
3039 			bufsize = sb_max;
3040 		if (bufsize > so->so_snd.ssb_hiwat)
3041 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3042 	}
3043 	tp->t_maxseg = mss;
3044 
3045 #ifdef RTV_RPIPE
3046 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3047 #endif
3048 		bufsize = so->so_rcv.ssb_hiwat;
3049 	if (bufsize > mss) {
3050 		bufsize = roundup(bufsize, mss);
3051 		if (bufsize > sb_max)
3052 			bufsize = sb_max;
3053 		if (bufsize > so->so_rcv.ssb_hiwat) {
3054 			lwkt_gettoken(&so->so_rcv.ssb_token);
3055 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3056 			lwkt_reltoken(&so->so_rcv.ssb_token);
3057 		}
3058 	}
3059 
3060 	/*
3061 	 * Set the slow-start flight size depending on whether this
3062 	 * is a local network or not.
3063 	 */
3064 	if (tcp_do_rfc3390)
3065 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3066 	else
3067 		tp->snd_cwnd = mss;
3068 
3069 	if (rt->rt_rmx.rmx_ssthresh) {
3070 		/*
3071 		 * There's some sort of gateway or interface
3072 		 * buffer limit on the path.  Use this to set
3073 		 * the slow start threshhold, but set the
3074 		 * threshold to no less than 2*mss.
3075 		 */
3076 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3077 		tcpstat.tcps_usedssthresh++;
3078 	}
3079 }
3080 
3081 /*
3082  * Determine the MSS option to send on an outgoing SYN.
3083  */
3084 int
3085 tcp_mssopt(struct tcpcb *tp)
3086 {
3087 	struct rtentry *rt;
3088 #ifdef INET6
3089 	boolean_t isipv6 =
3090 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3091 	int min_protoh = isipv6 ?
3092 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3093 			     sizeof(struct tcpiphdr);
3094 #else
3095 	const boolean_t isipv6 = FALSE;
3096 	const size_t min_protoh = sizeof(struct tcpiphdr);
3097 #endif
3098 
3099 	if (isipv6)
3100 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3101 	else
3102 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3103 	if (rt == NULL)
3104 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3105 
3106 	return (rt->rt_ifp->if_mtu - min_protoh);
3107 }
3108 
3109 /*
3110  * When a partial ack arrives, force the retransmission of the
3111  * next unacknowledged segment.  Do not exit Fast Recovery.
3112  *
3113  * Implement the Slow-but-Steady variant of NewReno by restarting the
3114  * the retransmission timer.  Turn it off here so it can be restarted
3115  * later in tcp_output().
3116  */
3117 static void
3118 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3119 {
3120 	tcp_seq old_snd_nxt = tp->snd_nxt;
3121 	u_long ocwnd = tp->snd_cwnd;
3122 
3123 	tcp_callout_stop(tp, tp->tt_rexmt);
3124 	tp->t_rtttime = 0;
3125 	tp->snd_nxt = th->th_ack;
3126 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3127 	tp->snd_cwnd = tp->t_maxseg;
3128 	tp->t_flags |= TF_ACKNOW;
3129 	tcp_output(tp);
3130 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3131 		tp->snd_nxt = old_snd_nxt;
3132 	/* partial window deflation */
3133 	if (ocwnd > acked)
3134 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3135 	else
3136 		tp->snd_cwnd = tp->t_maxseg;
3137 }
3138 
3139 /*
3140  * In contrast to the Slow-but-Steady NewReno variant,
3141  * we do not reset the retransmission timer for SACK retransmissions,
3142  * except when retransmitting snd_una.
3143  */
3144 static void
3145 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3146 {
3147 	uint32_t pipe, seglen;
3148 	tcp_seq nextrexmt;
3149 	boolean_t lostdup;
3150 	tcp_seq old_snd_nxt = tp->snd_nxt;
3151 	u_long ocwnd = tp->snd_cwnd;
3152 	int nseg = 0;		/* consecutive new segments */
3153 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3154 
3155 	tp->t_rtttime = 0;
3156 	pipe = tcp_sack_compute_pipe(tp);
3157 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3158 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3159 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3160 		uint32_t sent;
3161 		tcp_seq old_snd_max;
3162 		int error;
3163 
3164 		if (nextrexmt == tp->snd_max)
3165 			++nseg;
3166 		tp->snd_nxt = nextrexmt;
3167 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3168 		old_snd_max = tp->snd_max;
3169 		if (nextrexmt == tp->snd_una)
3170 			tcp_callout_stop(tp, tp->tt_rexmt);
3171 		error = tcp_output(tp);
3172 		if (error != 0)
3173 			break;
3174 		sent = tp->snd_nxt - nextrexmt;
3175 		if (sent <= 0)
3176 			break;
3177 		if (!lostdup)
3178 			pipe += sent;
3179 		tcpstat.tcps_sndsackpack++;
3180 		tcpstat.tcps_sndsackbyte += sent;
3181 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3182 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3183 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3184 	}
3185 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3186 		tp->snd_nxt = old_snd_nxt;
3187 	tp->snd_cwnd = ocwnd;
3188 }
3189