xref: /dflybsd-src/sys/netinet/tcp_input.c (revision 56006bc89a9ac0796d957ae2ebe8823d77bf2a3b)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  */
69 
70 #include "opt_inet.h"
71 #include "opt_inet6.h"
72 #include "opt_ipsec.h"
73 #include "opt_tcpdebug.h"
74 #include "opt_tcp_input.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/sysctl.h>
80 #include <sys/malloc.h>
81 #include <sys/mbuf.h>
82 #include <sys/proc.h>		/* for proc0 declaration */
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/syslog.h>
87 #include <sys/in_cksum.h>
88 
89 #include <sys/socketvar2.h>
90 
91 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
92 #include <machine/stdarg.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
101 #include <netinet/in_var.h>
102 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_pcb.h>
104 #include <netinet/ip_var.h>
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 
122 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
123 struct tcphdr tcp_savetcp;
124 #endif
125 
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #include <netproto/ipsec/ipsec6.h>
129 #endif
130 
131 #ifdef IPSEC
132 #include <netinet6/ipsec.h>
133 #include <netinet6/ipsec6.h>
134 #include <netproto/key/key.h>
135 #endif
136 
137 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
138 
139 static int log_in_vain = 0;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
141     &log_in_vain, 0, "Log all incoming TCP connections");
142 
143 static int blackhole = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
145     &blackhole, 0, "Do not send RST when dropping refused connections");
146 
147 int tcp_delack_enabled = 1;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
149     &tcp_delack_enabled, 0,
150     "Delay ACK to try and piggyback it onto a data packet");
151 
152 #ifdef TCP_DROP_SYNFIN
153 static int drop_synfin = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
155     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
156 #endif
157 
158 static int tcp_do_limitedtransmit = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
160     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
161 
162 static int tcp_do_early_retransmit = 1;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
164     &tcp_do_early_retransmit, 0, "Early retransmit");
165 
166 int tcp_aggregate_acks = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
168     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
169 
170 static int tcp_do_eifel_detect = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
172     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
173 
174 static int tcp_do_abc = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
176     &tcp_do_abc, 0,
177     "TCP Appropriate Byte Counting (RFC 3465)");
178 
179 /*
180  * Define as tunable for easy testing with SACK on and off.
181  * Warning:  do not change setting in the middle of an existing active TCP flow,
182  *   else strange things might happen to that flow.
183  */
184 int tcp_do_sack = 1;
185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
186     &tcp_do_sack, 0, "Enable SACK Algorithms");
187 
188 int tcp_do_smartsack = 1;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
190     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
191 
192 int tcp_do_rescuesack = 1;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rescuesack, CTLFLAG_RW,
194     &tcp_do_rescuesack, 0, "Rescue retransmission for SACK");
195 
196 int tcp_aggressive_rescuesack = 1;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rescuesack_agg, CTLFLAG_RW,
198     &tcp_aggressive_rescuesack, 0, "Aggressive rescue retransmission for SACK");
199 
200 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
201     "TCP Segment Reassembly Queue");
202 
203 int tcp_reass_maxseg = 0;
204 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
205     &tcp_reass_maxseg, 0,
206     "Global maximum number of TCP Segments in Reassembly Queue");
207 
208 int tcp_reass_qsize = 0;
209 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
210     &tcp_reass_qsize, 0,
211     "Global number of TCP Segments currently in Reassembly Queue");
212 
213 static int tcp_reass_overflows = 0;
214 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
215     &tcp_reass_overflows, 0,
216     "Global number of TCP Segment Reassembly Queue Overflows");
217 
218 int tcp_do_autorcvbuf = 1;
219 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
220     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
221 
222 int tcp_autorcvbuf_inc = 16*1024;
223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
224     &tcp_autorcvbuf_inc, 0,
225     "Incrementor step size of automatic receive buffer");
226 
227 int tcp_autorcvbuf_max = 2*1024*1024;
228 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
229     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
230 
231 int tcp_sosend_agglim = 2;
232 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_agglim, CTLFLAG_RW,
233     &tcp_sosend_agglim, 0, "TCP sosend mbuf aggregation limit");
234 
235 int tcp_sosend_async = 1;
236 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosend_async, CTLFLAG_RW,
237     &tcp_sosend_async, 0, "TCP asynchronized pru_send");
238 
239 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t,
240 		    tcp_seq);
241 static void	 tcp_pulloutofband(struct socket *,
242 		     struct tcphdr *, struct mbuf *, int);
243 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
244 		     struct mbuf *);
245 static void	 tcp_xmit_timer(struct tcpcb *, int, tcp_seq);
246 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
247 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
248 static int	 tcp_rmx_msl(const struct tcpcb *);
249 static void	 tcp_established(struct tcpcb *);
250 
251 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
252 #ifdef INET6
253 #define ND6_HINT(tp) \
254 do { \
255 	if ((tp) && (tp)->t_inpcb && \
256 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
257 	    (tp)->t_inpcb->in6p_route.ro_rt) \
258 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
259 } while (0)
260 #else
261 #define ND6_HINT(tp)
262 #endif
263 
264 /*
265  * Indicate whether this ack should be delayed.  We can delay the ack if
266  *	- delayed acks are enabled and
267  *	- there is no delayed ack timer in progress and
268  *	- our last ack wasn't a 0-sized window.  We never want to delay
269  *	  the ack that opens up a 0-sized window.
270  */
271 #define DELAY_ACK(tp) \
272 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
273 	!(tp->t_flags & TF_RXWIN0SENT))
274 
275 #define acceptable_window_update(tp, th, tiwin)				\
276     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
277      (tp->snd_wl1 == th->th_seq &&					\
278       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
279        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
280 
281 static int
282 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
283 {
284 	struct tseg_qent *q;
285 	struct tseg_qent *p = NULL;
286 	struct tseg_qent *te;
287 	struct socket *so = tp->t_inpcb->inp_socket;
288 	int flags;
289 
290 	/*
291 	 * Call with th == NULL after become established to
292 	 * force pre-ESTABLISHED data up to user socket.
293 	 */
294 	if (th == NULL)
295 		goto present;
296 
297 	/*
298 	 * Limit the number of segments in the reassembly queue to prevent
299 	 * holding on to too many segments (and thus running out of mbufs).
300 	 * Make sure to let the missing segment through which caused this
301 	 * queue.  Always keep one global queue entry spare to be able to
302 	 * process the missing segment.
303 	 */
304 	if (th->th_seq != tp->rcv_nxt &&
305 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
306 		tcp_reass_overflows++;
307 		tcpstat.tcps_rcvmemdrop++;
308 		m_freem(m);
309 		/* no SACK block to report */
310 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
311 		return (0);
312 	}
313 
314 	/* Allocate a new queue entry. */
315 	te = kmalloc(sizeof(struct tseg_qent), M_TSEGQ, M_INTWAIT | M_NULLOK);
316 	if (te == NULL) {
317 		tcpstat.tcps_rcvmemdrop++;
318 		m_freem(m);
319 		/* no SACK block to report */
320 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
321 		return (0);
322 	}
323 	atomic_add_int(&tcp_reass_qsize, 1);
324 
325 	/*
326 	 * Find a segment which begins after this one does.
327 	 */
328 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
329 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
330 			break;
331 		p = q;
332 	}
333 
334 	/*
335 	 * If there is a preceding segment, it may provide some of
336 	 * our data already.  If so, drop the data from the incoming
337 	 * segment.  If it provides all of our data, drop us.
338 	 */
339 	if (p != NULL) {
340 		tcp_seq_diff_t i;
341 
342 		/* conversion to int (in i) handles seq wraparound */
343 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
344 		if (i > 0) {		/* overlaps preceding segment */
345 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
346 			/* enclosing block starts w/ preceding segment */
347 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
348 			if (i >= *tlenp) {
349 				/* preceding encloses incoming segment */
350 				tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
351 				    p->tqe_th->th_seq + p->tqe_len,
352 				    p->tqe_th->th_flags);
353 				tcpstat.tcps_rcvduppack++;
354 				tcpstat.tcps_rcvdupbyte += *tlenp;
355 				m_freem(m);
356 				kfree(te, M_TSEGQ);
357 				atomic_add_int(&tcp_reass_qsize, -1);
358 				/*
359 				 * Try to present any queued data
360 				 * at the left window edge to the user.
361 				 * This is needed after the 3-WHS
362 				 * completes.
363 				 */
364 				goto present;	/* ??? */
365 			}
366 			m_adj(m, i);
367 			*tlenp -= i;
368 			th->th_seq += i;
369 			/* incoming segment end is enclosing block end */
370 			tp->encloseblk.rblk_end = TCP_SACK_BLKEND(
371 			    th->th_seq + *tlenp, th->th_flags);
372 			/* trim end of reported D-SACK block */
373 			tp->reportblk.rblk_end = th->th_seq;
374 		}
375 	}
376 	tcpstat.tcps_rcvoopack++;
377 	tcpstat.tcps_rcvoobyte += *tlenp;
378 
379 	/*
380 	 * While we overlap succeeding segments trim them or,
381 	 * if they are completely covered, dequeue them.
382 	 */
383 	while (q) {
384 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
385 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
386 		tcp_seq qend_sack = TCP_SACK_BLKEND(qend, q->tqe_th->th_flags);
387 		struct tseg_qent *nq;
388 
389 		if (i <= 0)
390 			break;
391 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
392 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
393 			tp->encloseblk = tp->reportblk;
394 			/* report trailing duplicate D-SACK segment */
395 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
396 		}
397 		if ((tp->t_flags & TF_ENCLOSESEG) &&
398 		    SEQ_GT(qend_sack, tp->encloseblk.rblk_end)) {
399 			/* extend enclosing block if one exists */
400 			tp->encloseblk.rblk_end = qend_sack;
401 		}
402 		if (i < q->tqe_len) {
403 			q->tqe_th->th_seq += i;
404 			q->tqe_len -= i;
405 			m_adj(q->tqe_m, i);
406 			break;
407 		}
408 
409 		nq = LIST_NEXT(q, tqe_q);
410 		LIST_REMOVE(q, tqe_q);
411 		m_freem(q->tqe_m);
412 		kfree(q, M_TSEGQ);
413 		atomic_add_int(&tcp_reass_qsize, -1);
414 		q = nq;
415 	}
416 
417 	/* Insert the new segment queue entry into place. */
418 	te->tqe_m = m;
419 	te->tqe_th = th;
420 	te->tqe_len = *tlenp;
421 
422 	/* check if can coalesce with following segment */
423 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
424 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
425 		tcp_seq tend_sack = TCP_SACK_BLKEND(tend, te->tqe_th->th_flags);
426 
427 		te->tqe_len += q->tqe_len;
428 		if (q->tqe_th->th_flags & TH_FIN)
429 			te->tqe_th->th_flags |= TH_FIN;
430 		m_cat(te->tqe_m, q->tqe_m);
431 		tp->encloseblk.rblk_end = tend_sack;
432 		/*
433 		 * When not reporting a duplicate segment, use
434 		 * the larger enclosing block as the SACK block.
435 		 */
436 		if (!(tp->t_flags & TF_DUPSEG))
437 			tp->reportblk.rblk_end = tend_sack;
438 		LIST_REMOVE(q, tqe_q);
439 		kfree(q, M_TSEGQ);
440 		atomic_add_int(&tcp_reass_qsize, -1);
441 	}
442 
443 	if (p == NULL) {
444 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
445 	} else {
446 		/* check if can coalesce with preceding segment */
447 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
448 			p->tqe_len += te->tqe_len;
449 			m_cat(p->tqe_m, te->tqe_m);
450 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
451 			/*
452 			 * When not reporting a duplicate segment, use
453 			 * the larger enclosing block as the SACK block.
454 			 */
455 			if (!(tp->t_flags & TF_DUPSEG))
456 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
457 			kfree(te, M_TSEGQ);
458 			atomic_add_int(&tcp_reass_qsize, -1);
459 		} else {
460 			LIST_INSERT_AFTER(p, te, tqe_q);
461 		}
462 	}
463 
464 present:
465 	/*
466 	 * Present data to user, advancing rcv_nxt through
467 	 * completed sequence space.
468 	 */
469 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
470 		return (0);
471 	q = LIST_FIRST(&tp->t_segq);
472 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
473 		return (0);
474 	tp->rcv_nxt += q->tqe_len;
475 	if (!(tp->t_flags & TF_DUPSEG))	{
476 		/* no SACK block to report since ACK advanced */
477 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
478 	}
479 	/* no enclosing block to report since ACK advanced */
480 	tp->t_flags &= ~TF_ENCLOSESEG;
481 	flags = q->tqe_th->th_flags & TH_FIN;
482 	LIST_REMOVE(q, tqe_q);
483 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
484 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
485 		("segment not coalesced"));
486 	if (so->so_state & SS_CANTRCVMORE) {
487 		m_freem(q->tqe_m);
488 	} else {
489 		lwkt_gettoken(&so->so_rcv.ssb_token);
490 		ssb_appendstream(&so->so_rcv, q->tqe_m);
491 		lwkt_reltoken(&so->so_rcv.ssb_token);
492 	}
493 	kfree(q, M_TSEGQ);
494 	atomic_add_int(&tcp_reass_qsize, -1);
495 	ND6_HINT(tp);
496 	sorwakeup(so);
497 	return (flags);
498 }
499 
500 /*
501  * TCP input routine, follows pages 65-76 of the
502  * protocol specification dated September, 1981 very closely.
503  */
504 #ifdef INET6
505 int
506 tcp6_input(struct mbuf **mp, int *offp, int proto)
507 {
508 	struct mbuf *m = *mp;
509 	struct in6_ifaddr *ia6;
510 
511 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
512 
513 	/*
514 	 * draft-itojun-ipv6-tcp-to-anycast
515 	 * better place to put this in?
516 	 */
517 	ia6 = ip6_getdstifaddr(m);
518 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
519 		struct ip6_hdr *ip6;
520 
521 		ip6 = mtod(m, struct ip6_hdr *);
522 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
523 			    offsetof(struct ip6_hdr, ip6_dst));
524 		return (IPPROTO_DONE);
525 	}
526 
527 	tcp_input(mp, offp, proto);
528 	return (IPPROTO_DONE);
529 }
530 #endif
531 
532 int
533 tcp_input(struct mbuf **mp, int *offp, int proto)
534 {
535 	int off0;
536 	struct tcphdr *th;
537 	struct ip *ip = NULL;
538 	struct ipovly *ipov;
539 	struct inpcb *inp = NULL;
540 	u_char *optp = NULL;
541 	int optlen = 0;
542 	int tlen, off;
543 	int len = 0;
544 	int drop_hdrlen;
545 	struct tcpcb *tp = NULL;
546 	int thflags;
547 	struct socket *so = NULL;
548 	int todrop, acked;
549 	boolean_t ourfinisacked, needoutput = FALSE;
550 	u_long tiwin;
551 	int recvwin;
552 	struct tcpopt to;		/* options in this segment */
553 	struct sockaddr_in *next_hop = NULL;
554 	int rstreason; /* For badport_bandlim accounting purposes */
555 	int cpu;
556 	struct ip6_hdr *ip6 = NULL;
557 	struct mbuf *m;
558 #ifdef INET6
559 	boolean_t isipv6;
560 #else
561 	const boolean_t isipv6 = FALSE;
562 #endif
563 #ifdef TCPDEBUG
564 	short ostate = 0;
565 #endif
566 
567 	off0 = *offp;
568 	m = *mp;
569 	*mp = NULL;
570 
571 	tcpstat.tcps_rcvtotal++;
572 
573 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
574 		struct m_tag *mtag;
575 
576 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
577 		KKASSERT(mtag != NULL);
578 		next_hop = m_tag_data(mtag);
579 	}
580 
581 #ifdef INET6
582 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
583 #endif
584 
585 	if (isipv6) {
586 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
587 		ip6 = mtod(m, struct ip6_hdr *);
588 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
589 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
590 			tcpstat.tcps_rcvbadsum++;
591 			goto drop;
592 		}
593 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
594 
595 		/*
596 		 * Be proactive about unspecified IPv6 address in source.
597 		 * As we use all-zero to indicate unbounded/unconnected pcb,
598 		 * unspecified IPv6 address can be used to confuse us.
599 		 *
600 		 * Note that packets with unspecified IPv6 destination is
601 		 * already dropped in ip6_input.
602 		 */
603 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
604 			/* XXX stat */
605 			goto drop;
606 		}
607 	} else {
608 		/*
609 		 * Get IP and TCP header together in first mbuf.
610 		 * Note: IP leaves IP header in first mbuf.
611 		 */
612 		if (off0 > sizeof(struct ip)) {
613 			ip_stripoptions(m);
614 			off0 = sizeof(struct ip);
615 		}
616 		/* already checked and pulled up in ip_demux() */
617 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
618 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
619 		ip = mtod(m, struct ip *);
620 		ipov = (struct ipovly *)ip;
621 		th = (struct tcphdr *)((caddr_t)ip + off0);
622 		tlen = ip->ip_len;
623 
624 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
625 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
626 				th->th_sum = m->m_pkthdr.csum_data;
627 			else
628 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
629 						ip->ip_dst.s_addr,
630 						htonl(m->m_pkthdr.csum_data +
631 							ip->ip_len +
632 							IPPROTO_TCP));
633 			th->th_sum ^= 0xffff;
634 		} else {
635 			/*
636 			 * Checksum extended TCP header and data.
637 			 */
638 			len = sizeof(struct ip) + tlen;
639 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
640 			ipov->ih_len = (u_short)tlen;
641 			ipov->ih_len = htons(ipov->ih_len);
642 			th->th_sum = in_cksum(m, len);
643 		}
644 		if (th->th_sum) {
645 			tcpstat.tcps_rcvbadsum++;
646 			goto drop;
647 		}
648 #ifdef INET6
649 		/* Re-initialization for later version check */
650 		ip->ip_v = IPVERSION;
651 #endif
652 	}
653 
654 	/*
655 	 * Check that TCP offset makes sense,
656 	 * pull out TCP options and adjust length.		XXX
657 	 */
658 	off = th->th_off << 2;
659 	/* already checked and pulled up in ip_demux() */
660 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
661 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
662 	tlen -= off;	/* tlen is used instead of ti->ti_len */
663 	if (off > sizeof(struct tcphdr)) {
664 		if (isipv6) {
665 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
666 			ip6 = mtod(m, struct ip6_hdr *);
667 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
668 		} else {
669 			/* already pulled up in ip_demux() */
670 			KASSERT(m->m_len >= sizeof(struct ip) + off,
671 			    ("TCP header and options not in one mbuf: "
672 			     "m_len %d, off %d", m->m_len, off));
673 		}
674 		optlen = off - sizeof(struct tcphdr);
675 		optp = (u_char *)(th + 1);
676 	}
677 	thflags = th->th_flags;
678 
679 #ifdef TCP_DROP_SYNFIN
680 	/*
681 	 * If the drop_synfin option is enabled, drop all packets with
682 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
683 	 * identifying the TCP/IP stack.
684 	 *
685 	 * This is a violation of the TCP specification.
686 	 */
687 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
688 		goto drop;
689 #endif
690 
691 	/*
692 	 * Convert TCP protocol specific fields to host format.
693 	 */
694 	th->th_seq = ntohl(th->th_seq);
695 	th->th_ack = ntohl(th->th_ack);
696 	th->th_win = ntohs(th->th_win);
697 	th->th_urp = ntohs(th->th_urp);
698 
699 	/*
700 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
701 	 * until after ip6_savecontrol() is called and before other functions
702 	 * which don't want those proto headers.
703 	 * Because ip6_savecontrol() is going to parse the mbuf to
704 	 * search for data to be passed up to user-land, it wants mbuf
705 	 * parameters to be unchanged.
706 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
707 	 * latest version of the advanced API (20020110).
708 	 */
709 	drop_hdrlen = off0 + off;
710 
711 	/*
712 	 * Locate pcb for segment.
713 	 */
714 findpcb:
715 	/* IPFIREWALL_FORWARD section */
716 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
717 		/*
718 		 * Transparently forwarded. Pretend to be the destination.
719 		 * already got one like this?
720 		 */
721 		cpu = mycpu->gd_cpuid;
722 		inp = in_pcblookup_hash(&tcbinfo[cpu],
723 					ip->ip_src, th->th_sport,
724 					ip->ip_dst, th->th_dport,
725 					0, m->m_pkthdr.rcvif);
726 		if (!inp) {
727 			/*
728 			 * It's new.  Try to find the ambushing socket.
729 			 */
730 
731 			/*
732 			 * The rest of the ipfw code stores the port in
733 			 * host order.  XXX
734 			 * (The IP address is still in network order.)
735 			 */
736 			in_port_t dport = next_hop->sin_port ?
737 						htons(next_hop->sin_port) :
738 						th->th_dport;
739 
740 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
741 					  next_hop->sin_addr.s_addr, dport);
742 			inp = in_pcblookup_hash(&tcbinfo[cpu],
743 						ip->ip_src, th->th_sport,
744 						next_hop->sin_addr, dport,
745 						1, m->m_pkthdr.rcvif);
746 		}
747 	} else {
748 		if (isipv6) {
749 			inp = in6_pcblookup_hash(&tcbinfo[0],
750 						 &ip6->ip6_src, th->th_sport,
751 						 &ip6->ip6_dst, th->th_dport,
752 						 1, m->m_pkthdr.rcvif);
753 		} else {
754 			cpu = mycpu->gd_cpuid;
755 			inp = in_pcblookup_hash(&tcbinfo[cpu],
756 						ip->ip_src, th->th_sport,
757 						ip->ip_dst, th->th_dport,
758 						1, m->m_pkthdr.rcvif);
759 		}
760 	}
761 
762 	/*
763 	 * If the state is CLOSED (i.e., TCB does not exist) then
764 	 * all data in the incoming segment is discarded.
765 	 * If the TCB exists but is in CLOSED state, it is embryonic,
766 	 * but should either do a listen or a connect soon.
767 	 */
768 	if (inp == NULL) {
769 		if (log_in_vain) {
770 #ifdef INET6
771 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
772 #else
773 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
774 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
775 #endif
776 			if (isipv6) {
777 				strcpy(dbuf, "[");
778 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
779 				strcat(dbuf, "]");
780 				strcpy(sbuf, "[");
781 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
782 				strcat(sbuf, "]");
783 			} else {
784 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
785 				strcpy(sbuf, inet_ntoa(ip->ip_src));
786 			}
787 			switch (log_in_vain) {
788 			case 1:
789 				if (!(thflags & TH_SYN))
790 					break;
791 			case 2:
792 				log(LOG_INFO,
793 				    "Connection attempt to TCP %s:%d "
794 				    "from %s:%d flags:0x%02x\n",
795 				    dbuf, ntohs(th->th_dport), sbuf,
796 				    ntohs(th->th_sport), thflags);
797 				break;
798 			default:
799 				break;
800 			}
801 		}
802 		if (blackhole) {
803 			switch (blackhole) {
804 			case 1:
805 				if (thflags & TH_SYN)
806 					goto drop;
807 				break;
808 			case 2:
809 				goto drop;
810 			default:
811 				goto drop;
812 			}
813 		}
814 		rstreason = BANDLIM_RST_CLOSEDPORT;
815 		goto dropwithreset;
816 	}
817 
818 #ifdef IPSEC
819 	if (isipv6) {
820 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
821 			ipsec6stat.in_polvio++;
822 			goto drop;
823 		}
824 	} else {
825 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
826 			ipsecstat.in_polvio++;
827 			goto drop;
828 		}
829 	}
830 #endif
831 #ifdef FAST_IPSEC
832 	if (isipv6) {
833 		if (ipsec6_in_reject(m, inp))
834 			goto drop;
835 	} else {
836 		if (ipsec4_in_reject(m, inp))
837 			goto drop;
838 	}
839 #endif
840 	/* Check the minimum TTL for socket. */
841 #ifdef INET6
842 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
843 		goto drop;
844 #endif
845 
846 	tp = intotcpcb(inp);
847 	if (tp == NULL) {
848 		rstreason = BANDLIM_RST_CLOSEDPORT;
849 		goto dropwithreset;
850 	}
851 	if (tp->t_state <= TCPS_CLOSED)
852 		goto drop;
853 
854 	so = inp->inp_socket;
855 
856 #ifdef TCPDEBUG
857 	if (so->so_options & SO_DEBUG) {
858 		ostate = tp->t_state;
859 		if (isipv6)
860 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
861 		else
862 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
863 		tcp_savetcp = *th;
864 	}
865 #endif
866 
867 	bzero(&to, sizeof to);
868 
869 	if (so->so_options & SO_ACCEPTCONN) {
870 		struct in_conninfo inc;
871 
872 #ifdef INET6
873 		inc.inc_isipv6 = (isipv6 == TRUE);
874 #endif
875 		if (isipv6) {
876 			inc.inc6_faddr = ip6->ip6_src;
877 			inc.inc6_laddr = ip6->ip6_dst;
878 			inc.inc6_route.ro_rt = NULL;		/* XXX */
879 		} else {
880 			inc.inc_faddr = ip->ip_src;
881 			inc.inc_laddr = ip->ip_dst;
882 			inc.inc_route.ro_rt = NULL;		/* XXX */
883 		}
884 		inc.inc_fport = th->th_sport;
885 		inc.inc_lport = th->th_dport;
886 
887 		/*
888 		 * If the state is LISTEN then ignore segment if it contains
889 		 * a RST.  If the segment contains an ACK then it is bad and
890 		 * send a RST.  If it does not contain a SYN then it is not
891 		 * interesting; drop it.
892 		 *
893 		 * If the state is SYN_RECEIVED (syncache) and seg contains
894 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
895 		 * contains a RST, check the sequence number to see if it
896 		 * is a valid reset segment.
897 		 */
898 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
899 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
900 				if (!syncache_expand(&inc, th, &so, m)) {
901 					/*
902 					 * No syncache entry, or ACK was not
903 					 * for our SYN/ACK.  Send a RST.
904 					 */
905 					tcpstat.tcps_badsyn++;
906 					rstreason = BANDLIM_RST_OPENPORT;
907 					goto dropwithreset;
908 				}
909 
910 				/*
911 				 * Could not complete 3-way handshake,
912 				 * connection is being closed down, and
913 				 * syncache will free mbuf.
914 				 */
915 				if (so == NULL)
916 					return(IPPROTO_DONE);
917 
918 				/*
919 				 * We must be in the correct protocol thread
920 				 * for this connection.
921 				 */
922 				KKASSERT(so->so_port == &curthread->td_msgport);
923 
924 				/*
925 				 * Socket is created in state SYN_RECEIVED.
926 				 * Continue processing segment.
927 				 */
928 				inp = so->so_pcb;
929 				tp = intotcpcb(inp);
930 				/*
931 				 * This is what would have happened in
932 				 * tcp_output() when the SYN,ACK was sent.
933 				 */
934 				tp->snd_up = tp->snd_una;
935 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
936 				tp->last_ack_sent = tp->rcv_nxt;
937 
938 				goto after_listen;
939 			}
940 			if (thflags & TH_RST) {
941 				syncache_chkrst(&inc, th);
942 				goto drop;
943 			}
944 			if (thflags & TH_ACK) {
945 				syncache_badack(&inc);
946 				tcpstat.tcps_badsyn++;
947 				rstreason = BANDLIM_RST_OPENPORT;
948 				goto dropwithreset;
949 			}
950 			goto drop;
951 		}
952 
953 		/*
954 		 * Segment's flags are (SYN) or (SYN | FIN).
955 		 */
956 #ifdef INET6
957 		/*
958 		 * If deprecated address is forbidden,
959 		 * we do not accept SYN to deprecated interface
960 		 * address to prevent any new inbound connection from
961 		 * getting established.
962 		 * When we do not accept SYN, we send a TCP RST,
963 		 * with deprecated source address (instead of dropping
964 		 * it).  We compromise it as it is much better for peer
965 		 * to send a RST, and RST will be the final packet
966 		 * for the exchange.
967 		 *
968 		 * If we do not forbid deprecated addresses, we accept
969 		 * the SYN packet.  RFC2462 does not suggest dropping
970 		 * SYN in this case.
971 		 * If we decipher RFC2462 5.5.4, it says like this:
972 		 * 1. use of deprecated addr with existing
973 		 *    communication is okay - "SHOULD continue to be
974 		 *    used"
975 		 * 2. use of it with new communication:
976 		 *   (2a) "SHOULD NOT be used if alternate address
977 		 *	  with sufficient scope is available"
978 		 *   (2b) nothing mentioned otherwise.
979 		 * Here we fall into (2b) case as we have no choice in
980 		 * our source address selection - we must obey the peer.
981 		 *
982 		 * The wording in RFC2462 is confusing, and there are
983 		 * multiple description text for deprecated address
984 		 * handling - worse, they are not exactly the same.
985 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
986 		 */
987 		if (isipv6 && !ip6_use_deprecated) {
988 			struct in6_ifaddr *ia6;
989 
990 			if ((ia6 = ip6_getdstifaddr(m)) &&
991 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
992 				tp = NULL;
993 				rstreason = BANDLIM_RST_OPENPORT;
994 				goto dropwithreset;
995 			}
996 		}
997 #endif
998 		/*
999 		 * If it is from this socket, drop it, it must be forged.
1000 		 * Don't bother responding if the destination was a broadcast.
1001 		 */
1002 		if (th->th_dport == th->th_sport) {
1003 			if (isipv6) {
1004 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1005 						       &ip6->ip6_src))
1006 					goto drop;
1007 			} else {
1008 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1009 					goto drop;
1010 			}
1011 		}
1012 		/*
1013 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1014 		 *
1015 		 * Note that it is quite possible to receive unicast
1016 		 * link-layer packets with a broadcast IP address. Use
1017 		 * in_broadcast() to find them.
1018 		 */
1019 		if (m->m_flags & (M_BCAST | M_MCAST))
1020 			goto drop;
1021 		if (isipv6) {
1022 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1023 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1024 				goto drop;
1025 		} else {
1026 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1027 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1028 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1029 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1030 				goto drop;
1031 		}
1032 		/*
1033 		 * SYN appears to be valid; create compressed TCP state
1034 		 * for syncache, or perform t/tcp connection.
1035 		 */
1036 		if (so->so_qlen <= so->so_qlimit) {
1037 			tcp_dooptions(&to, optp, optlen, TRUE, th->th_ack);
1038 			if (!syncache_add(&inc, &to, th, so, m))
1039 				goto drop;
1040 
1041 			/*
1042 			 * Entry added to syncache, mbuf used to
1043 			 * send SYN,ACK packet.
1044 			 */
1045 			return(IPPROTO_DONE);
1046 		}
1047 		goto drop;
1048 	}
1049 
1050 after_listen:
1051 	/*
1052 	 * Should not happen - syncache should pick up these connections.
1053 	 *
1054 	 * Once we are past handling listen sockets we must be in the
1055 	 * correct protocol processing thread.
1056 	 */
1057 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1058 	KKASSERT(so->so_port == &curthread->td_msgport);
1059 
1060 	/* Unscale the window into a 32-bit value. */
1061 	if (!(thflags & TH_SYN))
1062 		tiwin = th->th_win << tp->snd_scale;
1063 	else
1064 		tiwin = th->th_win;
1065 
1066 	/*
1067 	 * This is the second part of the MSS DoS prevention code (after
1068 	 * minmss on the sending side) and it deals with too many too small
1069 	 * tcp packets in a too short timeframe (1 second).
1070 	 *
1071 	 * XXX Removed.  This code was crap.  It does not scale to network
1072 	 *     speed, and default values break NFS.  Gone.
1073 	 */
1074 	/* REMOVED */
1075 
1076 	/*
1077 	 * Segment received on connection.
1078 	 *
1079 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1080 	 * then a second has elapsed.
1081 	 */
1082 	if ((int)(ticks - tp->t_rcvtime) > hz)
1083 		tcp_timer_keep_activity(tp, thflags);
1084 
1085 	/*
1086 	 * Process options.
1087 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1088 	 */
1089 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0, th->th_ack);
1090 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1091 		if ((to.to_flags & TOF_SCALE) && (tp->t_flags & TF_REQ_SCALE)) {
1092 			tp->t_flags |= TF_RCVD_SCALE;
1093 			tp->snd_scale = to.to_requested_s_scale;
1094 		}
1095 
1096 		/*
1097 		 * Initial send window; will be updated upon next ACK
1098 		 */
1099 		tp->snd_wnd = th->th_win;
1100 
1101 		if (to.to_flags & TOF_TS) {
1102 			tp->t_flags |= TF_RCVD_TSTMP;
1103 			tp->ts_recent = to.to_tsval;
1104 			tp->ts_recent_age = ticks;
1105 		}
1106 		if (!(to.to_flags & TOF_MSS))
1107 			to.to_mss = 0;
1108 		tcp_mss(tp, to.to_mss);
1109 		/*
1110 		 * Only set the TF_SACK_PERMITTED per-connection flag
1111 		 * if we got a SACK_PERMITTED option from the other side
1112 		 * and the global tcp_do_sack variable is true.
1113 		 */
1114 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1115 			tp->t_flags |= TF_SACK_PERMITTED;
1116 	}
1117 
1118 	/*
1119 	 * Header prediction: check for the two common cases
1120 	 * of a uni-directional data xfer.  If the packet has
1121 	 * no control flags, is in-sequence, the window didn't
1122 	 * change and we're not retransmitting, it's a
1123 	 * candidate.  If the length is zero and the ack moved
1124 	 * forward, we're the sender side of the xfer.  Just
1125 	 * free the data acked & wake any higher level process
1126 	 * that was blocked waiting for space.  If the length
1127 	 * is non-zero and the ack didn't move, we're the
1128 	 * receiver side.  If we're getting packets in-order
1129 	 * (the reassembly queue is empty), add the data to
1130 	 * the socket buffer and note that we need a delayed ack.
1131 	 * Make sure that the hidden state-flags are also off.
1132 	 * Since we check for TCPS_ESTABLISHED above, it can only
1133 	 * be TH_NEEDSYN.
1134 	 */
1135 	if (tp->t_state == TCPS_ESTABLISHED &&
1136 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1137 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1138 	    (!(to.to_flags & TOF_TS) ||
1139 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1140 	    th->th_seq == tp->rcv_nxt &&
1141 	    tp->snd_nxt == tp->snd_max) {
1142 
1143 		/*
1144 		 * If last ACK falls within this segment's sequence numbers,
1145 		 * record the timestamp.
1146 		 * NOTE that the test is modified according to the latest
1147 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1148 		 */
1149 		if ((to.to_flags & TOF_TS) &&
1150 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1151 			tp->ts_recent_age = ticks;
1152 			tp->ts_recent = to.to_tsval;
1153 		}
1154 
1155 		if (tlen == 0) {
1156 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1157 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1158 			    tp->snd_cwnd >= tp->snd_wnd &&
1159 			    !IN_FASTRECOVERY(tp)) {
1160 				/*
1161 				 * This is a pure ack for outstanding data.
1162 				 */
1163 				++tcpstat.tcps_predack;
1164 				/*
1165 				 * "bad retransmit" recovery
1166 				 *
1167 				 * If Eifel detection applies, then
1168 				 * it is deterministic, so use it
1169 				 * unconditionally over the old heuristic.
1170 				 * Otherwise, fall back to the old heuristic.
1171 				 */
1172 				if (tcp_do_eifel_detect &&
1173 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1174 				    (tp->t_flags & TF_FIRSTACCACK)) {
1175 					/* Eifel detection applicable. */
1176 					if (to.to_tsecr < tp->t_rexmtTS) {
1177 						tcp_revert_congestion_state(tp);
1178 						++tcpstat.tcps_eifeldetected;
1179 						if (tp->t_rxtshift != 1 ||
1180 						    ticks >= tp->t_badrxtwin)
1181 							++tcpstat.tcps_rttcantdetect;
1182 					}
1183 				} else if (tp->t_rxtshift == 1 &&
1184 					   ticks < tp->t_badrxtwin) {
1185 					tcp_revert_congestion_state(tp);
1186 					++tcpstat.tcps_rttdetected;
1187 				}
1188 				tp->t_flags &= ~(TF_FIRSTACCACK |
1189 						 TF_FASTREXMT | TF_EARLYREXMT);
1190 				/*
1191 				 * Recalculate the retransmit timer / rtt.
1192 				 *
1193 				 * Some machines (certain windows boxes)
1194 				 * send broken timestamp replies during the
1195 				 * SYN+ACK phase, ignore timestamps of 0.
1196 				 */
1197 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1198 					tcp_xmit_timer(tp,
1199 					    ticks - to.to_tsecr + 1,
1200 					    th->th_ack);
1201 				} else if (tp->t_rtttime &&
1202 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1203 					tcp_xmit_timer(tp,
1204 					    ticks - tp->t_rtttime,
1205 					    th->th_ack);
1206 				}
1207 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1208 				acked = th->th_ack - tp->snd_una;
1209 				tcpstat.tcps_rcvackpack++;
1210 				tcpstat.tcps_rcvackbyte += acked;
1211 				sbdrop(&so->so_snd.sb, acked);
1212 				tp->snd_recover = th->th_ack - 1;
1213 				tp->snd_una = th->th_ack;
1214 				tp->t_dupacks = 0;
1215 				/*
1216 				 * Update window information.
1217 				 */
1218 				if (tiwin != tp->snd_wnd &&
1219 				    acceptable_window_update(tp, th, tiwin)) {
1220 					/* keep track of pure window updates */
1221 					if (tp->snd_wl2 == th->th_ack &&
1222 					    tiwin > tp->snd_wnd)
1223 						tcpstat.tcps_rcvwinupd++;
1224 					tp->snd_wnd = tiwin;
1225 					tp->snd_wl1 = th->th_seq;
1226 					tp->snd_wl2 = th->th_ack;
1227 					if (tp->snd_wnd > tp->max_sndwnd)
1228 						tp->max_sndwnd = tp->snd_wnd;
1229 				}
1230 				m_freem(m);
1231 				ND6_HINT(tp); /* some progress has been done */
1232 				/*
1233 				 * If all outstanding data are acked, stop
1234 				 * retransmit timer, otherwise restart timer
1235 				 * using current (possibly backed-off) value.
1236 				 * If process is waiting for space,
1237 				 * wakeup/selwakeup/signal.  If data
1238 				 * are ready to send, let tcp_output
1239 				 * decide between more output or persist.
1240 				 */
1241 				if (tp->snd_una == tp->snd_max) {
1242 					tcp_callout_stop(tp, tp->tt_rexmt);
1243 				} else if (!tcp_callout_active(tp,
1244 					    tp->tt_persist)) {
1245 					tcp_callout_reset(tp, tp->tt_rexmt,
1246 					    tp->t_rxtcur, tcp_timer_rexmt);
1247 				}
1248 				sowwakeup(so);
1249 				if (so->so_snd.ssb_cc > 0)
1250 					tcp_output(tp);
1251 				return(IPPROTO_DONE);
1252 			}
1253 		} else if (tiwin == tp->snd_wnd &&
1254 		    th->th_ack == tp->snd_una &&
1255 		    LIST_EMPTY(&tp->t_segq) &&
1256 		    tlen <= ssb_space(&so->so_rcv)) {
1257 			u_long newsize = 0;	/* automatic sockbuf scaling */
1258 			/*
1259 			 * This is a pure, in-sequence data packet
1260 			 * with nothing on the reassembly queue and
1261 			 * we have enough buffer space to take it.
1262 			 */
1263 			++tcpstat.tcps_preddat;
1264 			tp->rcv_nxt += tlen;
1265 			tcpstat.tcps_rcvpack++;
1266 			tcpstat.tcps_rcvbyte += tlen;
1267 			ND6_HINT(tp);	/* some progress has been done */
1268 		/*
1269 		 * Automatic sizing of receive socket buffer.  Often the send
1270 		 * buffer size is not optimally adjusted to the actual network
1271 		 * conditions at hand (delay bandwidth product).  Setting the
1272 		 * buffer size too small limits throughput on links with high
1273 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1274 		 *
1275 		 * On the receive side the socket buffer memory is only rarely
1276 		 * used to any significant extent.  This allows us to be much
1277 		 * more aggressive in scaling the receive socket buffer.  For
1278 		 * the case that the buffer space is actually used to a large
1279 		 * extent and we run out of kernel memory we can simply drop
1280 		 * the new segments; TCP on the sender will just retransmit it
1281 		 * later.  Setting the buffer size too big may only consume too
1282 		 * much kernel memory if the application doesn't read() from
1283 		 * the socket or packet loss or reordering makes use of the
1284 		 * reassembly queue.
1285 		 *
1286 		 * The criteria to step up the receive buffer one notch are:
1287 		 *  1. the number of bytes received during the time it takes
1288 		 *     one timestamp to be reflected back to us (the RTT);
1289 		 *  2. received bytes per RTT is within seven eighth of the
1290 		 *     current socket buffer size;
1291 		 *  3. receive buffer size has not hit maximal automatic size;
1292 		 *
1293 		 * This algorithm does one step per RTT at most and only if
1294 		 * we receive a bulk stream w/o packet losses or reorderings.
1295 		 * Shrinking the buffer during idle times is not necessary as
1296 		 * it doesn't consume any memory when idle.
1297 		 *
1298 		 * TODO: Only step up if the application is actually serving
1299 		 * the buffer to better manage the socket buffer resources.
1300 		 */
1301 			if (tcp_do_autorcvbuf &&
1302 			    to.to_tsecr &&
1303 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1304 				if (to.to_tsecr > tp->rfbuf_ts &&
1305 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1306 					if (tp->rfbuf_cnt >
1307 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1308 					    so->so_rcv.ssb_hiwat <
1309 					    tcp_autorcvbuf_max) {
1310 						newsize =
1311 						    ulmin(so->so_rcv.ssb_hiwat +
1312 							  tcp_autorcvbuf_inc,
1313 							  tcp_autorcvbuf_max);
1314 					}
1315 					/* Start over with next RTT. */
1316 					tp->rfbuf_ts = 0;
1317 					tp->rfbuf_cnt = 0;
1318 				} else
1319 					tp->rfbuf_cnt += tlen;	/* add up */
1320 			}
1321 			/*
1322 			 * Add data to socket buffer.
1323 			 */
1324 			if (so->so_state & SS_CANTRCVMORE) {
1325 				m_freem(m);
1326 			} else {
1327 				/*
1328 				 * Set new socket buffer size, give up when
1329 				 * limit is reached.
1330 				 *
1331 				 * Adjusting the size can mess up ACK
1332 				 * sequencing when pure window updates are
1333 				 * being avoided (which is the default),
1334 				 * so force an ack.
1335 				 */
1336 				lwkt_gettoken(&so->so_rcv.ssb_token);
1337 				if (newsize) {
1338 					tp->t_flags |= TF_RXRESIZED;
1339 					if (!ssb_reserve(&so->so_rcv, newsize,
1340 							 so, NULL)) {
1341 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1342 					}
1343 					if (newsize >=
1344 					    (TCP_MAXWIN << tp->rcv_scale)) {
1345 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1346 					}
1347 				}
1348 				m_adj(m, drop_hdrlen); /* delayed header drop */
1349 				ssb_appendstream(&so->so_rcv, m);
1350 				lwkt_reltoken(&so->so_rcv.ssb_token);
1351 			}
1352 			sorwakeup(so);
1353 			/*
1354 			 * This code is responsible for most of the ACKs
1355 			 * the TCP stack sends back after receiving a data
1356 			 * packet.  Note that the DELAY_ACK check fails if
1357 			 * the delack timer is already running, which results
1358 			 * in an ack being sent every other packet (which is
1359 			 * what we want).
1360 			 *
1361 			 * We then further aggregate acks by not actually
1362 			 * sending one until the protocol thread has completed
1363 			 * processing the current backlog of packets.  This
1364 			 * does not delay the ack any further, but allows us
1365 			 * to take advantage of the packet aggregation that
1366 			 * high speed NICs do (usually blocks of 8-10 packets)
1367 			 * to send a single ack rather then four or five acks,
1368 			 * greatly reducing the ack rate, the return channel
1369 			 * bandwidth, and the protocol overhead on both ends.
1370 			 *
1371 			 * Since this also has the effect of slowing down
1372 			 * the exponential slow-start ramp-up, systems with
1373 			 * very large bandwidth-delay products might want
1374 			 * to turn the feature off.
1375 			 */
1376 			if (DELAY_ACK(tp)) {
1377 				tcp_callout_reset(tp, tp->tt_delack,
1378 				    tcp_delacktime, tcp_timer_delack);
1379 			} else if (tcp_aggregate_acks) {
1380 				tp->t_flags |= TF_ACKNOW;
1381 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1382 					tp->t_flags |= TF_ONOUTPUTQ;
1383 					tp->tt_cpu = mycpu->gd_cpuid;
1384 					TAILQ_INSERT_TAIL(
1385 					    &tcpcbackq[tp->tt_cpu],
1386 					    tp, t_outputq);
1387 				}
1388 			} else {
1389 				tp->t_flags |= TF_ACKNOW;
1390 				tcp_output(tp);
1391 			}
1392 			return(IPPROTO_DONE);
1393 		}
1394 	}
1395 
1396 	/*
1397 	 * Calculate amount of space in receive window,
1398 	 * and then do TCP input processing.
1399 	 * Receive window is amount of space in rcv queue,
1400 	 * but not less than advertised window.
1401 	 */
1402 	recvwin = ssb_space(&so->so_rcv);
1403 	if (recvwin < 0)
1404 		recvwin = 0;
1405 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1406 
1407 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1408 	tp->rfbuf_ts = 0;
1409 	tp->rfbuf_cnt = 0;
1410 
1411 	switch (tp->t_state) {
1412 	/*
1413 	 * If the state is SYN_RECEIVED:
1414 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1415 	 */
1416 	case TCPS_SYN_RECEIVED:
1417 		if ((thflags & TH_ACK) &&
1418 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1419 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1420 				rstreason = BANDLIM_RST_OPENPORT;
1421 				goto dropwithreset;
1422 		}
1423 		break;
1424 
1425 	/*
1426 	 * If the state is SYN_SENT:
1427 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1428 	 *	if seg contains a RST, then drop the connection.
1429 	 *	if seg does not contain SYN, then drop it.
1430 	 * Otherwise this is an acceptable SYN segment
1431 	 *	initialize tp->rcv_nxt and tp->irs
1432 	 *	if seg contains ack then advance tp->snd_una
1433 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1434 	 *	arrange for segment to be acked (eventually)
1435 	 *	continue processing rest of data/controls, beginning with URG
1436 	 */
1437 	case TCPS_SYN_SENT:
1438 		if ((thflags & TH_ACK) &&
1439 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1440 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1441 			rstreason = BANDLIM_UNLIMITED;
1442 			goto dropwithreset;
1443 		}
1444 		if (thflags & TH_RST) {
1445 			if (thflags & TH_ACK)
1446 				tp = tcp_drop(tp, ECONNREFUSED);
1447 			goto drop;
1448 		}
1449 		if (!(thflags & TH_SYN))
1450 			goto drop;
1451 
1452 		tp->irs = th->th_seq;
1453 		tcp_rcvseqinit(tp);
1454 		if (thflags & TH_ACK) {
1455 			/* Our SYN was acked. */
1456 			tcpstat.tcps_connects++;
1457 			soisconnected(so);
1458 			/* Do window scaling on this connection? */
1459 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1460 			    (TF_RCVD_SCALE | TF_REQ_SCALE))
1461 				tp->rcv_scale = tp->request_r_scale;
1462 			tp->rcv_adv += tp->rcv_wnd;
1463 			tp->snd_una++;		/* SYN is acked */
1464 			tcp_callout_stop(tp, tp->tt_rexmt);
1465 			/*
1466 			 * If there's data, delay ACK; if there's also a FIN
1467 			 * ACKNOW will be turned on later.
1468 			 */
1469 			if (DELAY_ACK(tp) && tlen != 0) {
1470 				tcp_callout_reset(tp, tp->tt_delack,
1471 				    tcp_delacktime, tcp_timer_delack);
1472 			} else {
1473 				tp->t_flags |= TF_ACKNOW;
1474 			}
1475 			/*
1476 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1477 			 * Transitions:
1478 			 *	SYN_SENT  --> ESTABLISHED
1479 			 *	SYN_SENT* --> FIN_WAIT_1
1480 			 */
1481 			tp->t_starttime = ticks;
1482 			if (tp->t_flags & TF_NEEDFIN) {
1483 				tp->t_state = TCPS_FIN_WAIT_1;
1484 				tp->t_flags &= ~TF_NEEDFIN;
1485 				thflags &= ~TH_SYN;
1486 			} else {
1487 				tcp_established(tp);
1488 			}
1489 		} else {
1490 			/*
1491 			 * Received initial SYN in SYN-SENT[*] state =>
1492 			 * simultaneous open.
1493 			 * Do 3-way handshake:
1494 			 *	  SYN-SENT -> SYN-RECEIVED
1495 			 *	  SYN-SENT* -> SYN-RECEIVED*
1496 			 */
1497 			tp->t_flags |= TF_ACKNOW;
1498 			tcp_callout_stop(tp, tp->tt_rexmt);
1499 			tp->t_state = TCPS_SYN_RECEIVED;
1500 		}
1501 
1502 		/*
1503 		 * Advance th->th_seq to correspond to first data byte.
1504 		 * If data, trim to stay within window,
1505 		 * dropping FIN if necessary.
1506 		 */
1507 		th->th_seq++;
1508 		if (tlen > tp->rcv_wnd) {
1509 			todrop = tlen - tp->rcv_wnd;
1510 			m_adj(m, -todrop);
1511 			tlen = tp->rcv_wnd;
1512 			thflags &= ~TH_FIN;
1513 			tcpstat.tcps_rcvpackafterwin++;
1514 			tcpstat.tcps_rcvbyteafterwin += todrop;
1515 		}
1516 		tp->snd_wl1 = th->th_seq - 1;
1517 		tp->rcv_up = th->th_seq;
1518 		/*
1519 		 * Client side of transaction: already sent SYN and data.
1520 		 * If the remote host used T/TCP to validate the SYN,
1521 		 * our data will be ACK'd; if so, enter normal data segment
1522 		 * processing in the middle of step 5, ack processing.
1523 		 * Otherwise, goto step 6.
1524 		 */
1525 		if (thflags & TH_ACK)
1526 			goto process_ACK;
1527 
1528 		goto step6;
1529 
1530 	/*
1531 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1532 	 *	do normal processing (we no longer bother with T/TCP).
1533 	 */
1534 	case TCPS_LAST_ACK:
1535 	case TCPS_CLOSING:
1536 	case TCPS_TIME_WAIT:
1537 		break;  /* continue normal processing */
1538 	}
1539 
1540 	/*
1541 	 * States other than LISTEN or SYN_SENT.
1542 	 * First check the RST flag and sequence number since reset segments
1543 	 * are exempt from the timestamp and connection count tests.  This
1544 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1545 	 * below which allowed reset segments in half the sequence space
1546 	 * to fall though and be processed (which gives forged reset
1547 	 * segments with a random sequence number a 50 percent chance of
1548 	 * killing a connection).
1549 	 * Then check timestamp, if present.
1550 	 * Then check the connection count, if present.
1551 	 * Then check that at least some bytes of segment are within
1552 	 * receive window.  If segment begins before rcv_nxt,
1553 	 * drop leading data (and SYN); if nothing left, just ack.
1554 	 *
1555 	 *
1556 	 * If the RST bit is set, check the sequence number to see
1557 	 * if this is a valid reset segment.
1558 	 * RFC 793 page 37:
1559 	 *   In all states except SYN-SENT, all reset (RST) segments
1560 	 *   are validated by checking their SEQ-fields.  A reset is
1561 	 *   valid if its sequence number is in the window.
1562 	 * Note: this does not take into account delayed ACKs, so
1563 	 *   we should test against last_ack_sent instead of rcv_nxt.
1564 	 *   The sequence number in the reset segment is normally an
1565 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1566 	 *   send a reset with the sequence number at the rightmost edge
1567 	 *   of our receive window, and we have to handle this case.
1568 	 * If we have multiple segments in flight, the intial reset
1569 	 * segment sequence numbers will be to the left of last_ack_sent,
1570 	 * but they will eventually catch up.
1571 	 * In any case, it never made sense to trim reset segments to
1572 	 * fit the receive window since RFC 1122 says:
1573 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1574 	 *
1575 	 *    A TCP SHOULD allow a received RST segment to include data.
1576 	 *
1577 	 *    DISCUSSION
1578 	 *	   It has been suggested that a RST segment could contain
1579 	 *	   ASCII text that encoded and explained the cause of the
1580 	 *	   RST.  No standard has yet been established for such
1581 	 *	   data.
1582 	 *
1583 	 * If the reset segment passes the sequence number test examine
1584 	 * the state:
1585 	 *    SYN_RECEIVED STATE:
1586 	 *	If passive open, return to LISTEN state.
1587 	 *	If active open, inform user that connection was refused.
1588 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1589 	 *	Inform user that connection was reset, and close tcb.
1590 	 *    CLOSING, LAST_ACK STATES:
1591 	 *	Close the tcb.
1592 	 *    TIME_WAIT STATE:
1593 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1594 	 *	RFC 1337.
1595 	 */
1596 	if (thflags & TH_RST) {
1597 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1598 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1599 			switch (tp->t_state) {
1600 
1601 			case TCPS_SYN_RECEIVED:
1602 				so->so_error = ECONNREFUSED;
1603 				goto close;
1604 
1605 			case TCPS_ESTABLISHED:
1606 			case TCPS_FIN_WAIT_1:
1607 			case TCPS_FIN_WAIT_2:
1608 			case TCPS_CLOSE_WAIT:
1609 				so->so_error = ECONNRESET;
1610 			close:
1611 				tp->t_state = TCPS_CLOSED;
1612 				tcpstat.tcps_drops++;
1613 				tp = tcp_close(tp);
1614 				break;
1615 
1616 			case TCPS_CLOSING:
1617 			case TCPS_LAST_ACK:
1618 				tp = tcp_close(tp);
1619 				break;
1620 
1621 			case TCPS_TIME_WAIT:
1622 				break;
1623 			}
1624 		}
1625 		goto drop;
1626 	}
1627 
1628 	/*
1629 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1630 	 * and it's less than ts_recent, drop it.
1631 	 */
1632 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1633 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1634 
1635 		/* Check to see if ts_recent is over 24 days old.  */
1636 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1637 			/*
1638 			 * Invalidate ts_recent.  If this segment updates
1639 			 * ts_recent, the age will be reset later and ts_recent
1640 			 * will get a valid value.  If it does not, setting
1641 			 * ts_recent to zero will at least satisfy the
1642 			 * requirement that zero be placed in the timestamp
1643 			 * echo reply when ts_recent isn't valid.  The
1644 			 * age isn't reset until we get a valid ts_recent
1645 			 * because we don't want out-of-order segments to be
1646 			 * dropped when ts_recent is old.
1647 			 */
1648 			tp->ts_recent = 0;
1649 		} else {
1650 			tcpstat.tcps_rcvduppack++;
1651 			tcpstat.tcps_rcvdupbyte += tlen;
1652 			tcpstat.tcps_pawsdrop++;
1653 			if (tlen)
1654 				goto dropafterack;
1655 			goto drop;
1656 		}
1657 	}
1658 
1659 	/*
1660 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1661 	 * this connection before trimming the data to fit the receive
1662 	 * window.  Check the sequence number versus IRS since we know
1663 	 * the sequence numbers haven't wrapped.  This is a partial fix
1664 	 * for the "LAND" DoS attack.
1665 	 */
1666 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1667 		rstreason = BANDLIM_RST_OPENPORT;
1668 		goto dropwithreset;
1669 	}
1670 
1671 	todrop = tp->rcv_nxt - th->th_seq;
1672 	if (todrop > 0) {
1673 		if (TCP_DO_SACK(tp)) {
1674 			/* Report duplicate segment at head of packet. */
1675 			tp->reportblk.rblk_start = th->th_seq;
1676 			tp->reportblk.rblk_end = TCP_SACK_BLKEND(
1677 			    th->th_seq + tlen, thflags);
1678 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1679 				tp->reportblk.rblk_end = tp->rcv_nxt;
1680 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1681 		}
1682 		if (thflags & TH_SYN) {
1683 			thflags &= ~TH_SYN;
1684 			th->th_seq++;
1685 			if (th->th_urp > 1)
1686 				th->th_urp--;
1687 			else
1688 				thflags &= ~TH_URG;
1689 			todrop--;
1690 		}
1691 		/*
1692 		 * Following if statement from Stevens, vol. 2, p. 960.
1693 		 */
1694 		if (todrop > tlen ||
1695 		    (todrop == tlen && !(thflags & TH_FIN))) {
1696 			/*
1697 			 * Any valid FIN must be to the left of the window.
1698 			 * At this point the FIN must be a duplicate or out
1699 			 * of sequence; drop it.
1700 			 */
1701 			thflags &= ~TH_FIN;
1702 
1703 			/*
1704 			 * Send an ACK to resynchronize and drop any data.
1705 			 * But keep on processing for RST or ACK.
1706 			 */
1707 			tp->t_flags |= TF_ACKNOW;
1708 			todrop = tlen;
1709 			tcpstat.tcps_rcvduppack++;
1710 			tcpstat.tcps_rcvdupbyte += todrop;
1711 		} else {
1712 			tcpstat.tcps_rcvpartduppack++;
1713 			tcpstat.tcps_rcvpartdupbyte += todrop;
1714 		}
1715 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1716 		th->th_seq += todrop;
1717 		tlen -= todrop;
1718 		if (th->th_urp > todrop)
1719 			th->th_urp -= todrop;
1720 		else {
1721 			thflags &= ~TH_URG;
1722 			th->th_urp = 0;
1723 		}
1724 	}
1725 
1726 	/*
1727 	 * If new data are received on a connection after the
1728 	 * user processes are gone, then RST the other end.
1729 	 */
1730 	if ((so->so_state & SS_NOFDREF) &&
1731 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1732 		tp = tcp_close(tp);
1733 		tcpstat.tcps_rcvafterclose++;
1734 		rstreason = BANDLIM_UNLIMITED;
1735 		goto dropwithreset;
1736 	}
1737 
1738 	/*
1739 	 * If segment ends after window, drop trailing data
1740 	 * (and PUSH and FIN); if nothing left, just ACK.
1741 	 */
1742 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1743 	if (todrop > 0) {
1744 		tcpstat.tcps_rcvpackafterwin++;
1745 		if (todrop >= tlen) {
1746 			tcpstat.tcps_rcvbyteafterwin += tlen;
1747 			/*
1748 			 * If a new connection request is received
1749 			 * while in TIME_WAIT, drop the old connection
1750 			 * and start over if the sequence numbers
1751 			 * are above the previous ones.
1752 			 */
1753 			if (thflags & TH_SYN &&
1754 			    tp->t_state == TCPS_TIME_WAIT &&
1755 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1756 				tp = tcp_close(tp);
1757 				goto findpcb;
1758 			}
1759 			/*
1760 			 * If window is closed can only take segments at
1761 			 * window edge, and have to drop data and PUSH from
1762 			 * incoming segments.  Continue processing, but
1763 			 * remember to ack.  Otherwise, drop segment
1764 			 * and ack.
1765 			 */
1766 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1767 				tp->t_flags |= TF_ACKNOW;
1768 				tcpstat.tcps_rcvwinprobe++;
1769 			} else
1770 				goto dropafterack;
1771 		} else
1772 			tcpstat.tcps_rcvbyteafterwin += todrop;
1773 		m_adj(m, -todrop);
1774 		tlen -= todrop;
1775 		thflags &= ~(TH_PUSH | TH_FIN);
1776 	}
1777 
1778 	/*
1779 	 * If last ACK falls within this segment's sequence numbers,
1780 	 * record its timestamp.
1781 	 * NOTE:
1782 	 * 1) That the test incorporates suggestions from the latest
1783 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1784 	 * 2) That updating only on newer timestamps interferes with
1785 	 *    our earlier PAWS tests, so this check should be solely
1786 	 *    predicated on the sequence space of this segment.
1787 	 * 3) That we modify the segment boundary check to be
1788 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1789 	 *    instead of RFC1323's
1790 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1791 	 *    This modified check allows us to overcome RFC1323's
1792 	 *    limitations as described in Stevens TCP/IP Illustrated
1793 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1794 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1795 	 */
1796 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1797 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1798 					+ ((thflags & TH_SYN) != 0)
1799 					+ ((thflags & TH_FIN) != 0)))) {
1800 		tp->ts_recent_age = ticks;
1801 		tp->ts_recent = to.to_tsval;
1802 	}
1803 
1804 	/*
1805 	 * If a SYN is in the window, then this is an
1806 	 * error and we send an RST and drop the connection.
1807 	 */
1808 	if (thflags & TH_SYN) {
1809 		tp = tcp_drop(tp, ECONNRESET);
1810 		rstreason = BANDLIM_UNLIMITED;
1811 		goto dropwithreset;
1812 	}
1813 
1814 	/*
1815 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1816 	 * flag is on (half-synchronized state), then queue data for
1817 	 * later processing; else drop segment and return.
1818 	 */
1819 	if (!(thflags & TH_ACK)) {
1820 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1821 		    (tp->t_flags & TF_NEEDSYN))
1822 			goto step6;
1823 		else
1824 			goto drop;
1825 	}
1826 
1827 	/*
1828 	 * Ack processing.
1829 	 */
1830 	switch (tp->t_state) {
1831 	/*
1832 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1833 	 * ESTABLISHED state and continue processing.
1834 	 * The ACK was checked above.
1835 	 */
1836 	case TCPS_SYN_RECEIVED:
1837 
1838 		tcpstat.tcps_connects++;
1839 		soisconnected(so);
1840 		/* Do window scaling? */
1841 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1842 		    (TF_RCVD_SCALE | TF_REQ_SCALE))
1843 			tp->rcv_scale = tp->request_r_scale;
1844 		/*
1845 		 * Make transitions:
1846 		 *      SYN-RECEIVED  -> ESTABLISHED
1847 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1848 		 */
1849 		tp->t_starttime = ticks;
1850 		if (tp->t_flags & TF_NEEDFIN) {
1851 			tp->t_state = TCPS_FIN_WAIT_1;
1852 			tp->t_flags &= ~TF_NEEDFIN;
1853 		} else {
1854 			tcp_established(tp);
1855 		}
1856 		/*
1857 		 * If segment contains data or ACK, will call tcp_reass()
1858 		 * later; if not, do so now to pass queued data to user.
1859 		 */
1860 		if (tlen == 0 && !(thflags & TH_FIN))
1861 			tcp_reass(tp, NULL, NULL, NULL);
1862 		/* fall into ... */
1863 
1864 	/*
1865 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1866 	 * ACKs.  If the ack is in the range
1867 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1868 	 * then advance tp->snd_una to th->th_ack and drop
1869 	 * data from the retransmission queue.  If this ACK reflects
1870 	 * more up to date window information we update our window information.
1871 	 */
1872 	case TCPS_ESTABLISHED:
1873 	case TCPS_FIN_WAIT_1:
1874 	case TCPS_FIN_WAIT_2:
1875 	case TCPS_CLOSE_WAIT:
1876 	case TCPS_CLOSING:
1877 	case TCPS_LAST_ACK:
1878 	case TCPS_TIME_WAIT:
1879 
1880 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1881 			if (TCP_DO_SACK(tp))
1882 				tcp_sack_update_scoreboard(tp, &to);
1883 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1884 				tp->t_dupacks = 0;
1885 				break;
1886 			}
1887 			tcpstat.tcps_rcvdupack++;
1888 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1889 			    th->th_ack != tp->snd_una) {
1890 				tp->t_dupacks = 0;
1891 				break;
1892 			}
1893 			/*
1894 			 * We have outstanding data (other than
1895 			 * a window probe), this is a completely
1896 			 * duplicate ack (ie, window info didn't
1897 			 * change), the ack is the biggest we've
1898 			 * seen and we've seen exactly our rexmt
1899 			 * threshhold of them, so assume a packet
1900 			 * has been dropped and retransmit it.
1901 			 * Kludge snd_nxt & the congestion
1902 			 * window so we send only this one
1903 			 * packet.
1904 			 */
1905 			if (IN_FASTRECOVERY(tp)) {
1906 				if (TCP_DO_SACK(tp)) {
1907 					/* No artifical cwnd inflation. */
1908 					tcp_sack_rexmt(tp, th);
1909 				} else {
1910 					/*
1911 					 * Dup acks mean that packets
1912 					 * have left the network
1913 					 * (they're now cached at the
1914 					 * receiver) so bump cwnd by
1915 					 * the amount in the receiver
1916 					 * to keep a constant cwnd
1917 					 * packets in the network.
1918 					 */
1919 					tp->snd_cwnd += tp->t_maxseg;
1920 					tcp_output(tp);
1921 				}
1922 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1923 				tp->t_dupacks = 0;
1924 				break;
1925 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1926 				tcp_seq old_snd_nxt;
1927 				u_int win;
1928 
1929 fastretransmit:
1930 				if (tcp_do_eifel_detect &&
1931 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1932 					tcp_save_congestion_state(tp);
1933 					tp->t_flags |= TF_FASTREXMT;
1934 				}
1935 				/*
1936 				 * We know we're losing at the current
1937 				 * window size, so do congestion avoidance:
1938 				 * set ssthresh to half the current window
1939 				 * and pull our congestion window back to the
1940 				 * new ssthresh.
1941 				 */
1942 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1943 				    tp->t_maxseg;
1944 				if (win < 2)
1945 					win = 2;
1946 				tp->snd_ssthresh = win * tp->t_maxseg;
1947 				ENTER_FASTRECOVERY(tp);
1948 				tp->snd_recover = tp->snd_max;
1949 				tcp_callout_stop(tp, tp->tt_rexmt);
1950 				tp->t_rtttime = 0;
1951 				old_snd_nxt = tp->snd_nxt;
1952 				tp->snd_nxt = th->th_ack;
1953 				tp->snd_cwnd = tp->t_maxseg;
1954 				tcp_output(tp);
1955 				++tcpstat.tcps_sndfastrexmit;
1956 				tp->snd_cwnd = tp->snd_ssthresh;
1957 				tp->rexmt_high = tp->snd_nxt;
1958 				tp->t_flags &= ~TF_SACKRESCUED;
1959 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1960 					tp->snd_nxt = old_snd_nxt;
1961 				KASSERT(tp->snd_limited <= 2,
1962 				    ("tp->snd_limited too big"));
1963 				if (TCP_DO_SACK(tp))
1964 					tcp_sack_rexmt(tp, th);
1965 				else
1966 					tp->snd_cwnd += tp->t_maxseg *
1967 					    (tp->t_dupacks - tp->snd_limited);
1968 			} else if (tcp_do_limitedtransmit) {
1969 				u_long oldcwnd = tp->snd_cwnd;
1970 				tcp_seq oldsndmax = tp->snd_max;
1971 				tcp_seq oldsndnxt = tp->snd_nxt;
1972 				/* outstanding data */
1973 				uint32_t ownd = tp->snd_max - tp->snd_una;
1974 				u_int sent;
1975 
1976 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
1977 
1978 				KASSERT(tp->t_dupacks == 1 ||
1979 					tp->t_dupacks == 2,
1980 				    ("dupacks not 1 or 2"));
1981 				if (tp->t_dupacks == 1)
1982 					tp->snd_limited = 0;
1983 				tp->snd_nxt = tp->snd_max;
1984 				tp->snd_cwnd = ownd +
1985 				    (tp->t_dupacks - tp->snd_limited) *
1986 				    tp->t_maxseg;
1987 				tcp_output(tp);
1988 
1989 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
1990 					KASSERT(SEQ_GEQ(oldsndnxt, tp->snd_una),
1991 					    ("snd_una moved in other threads"));
1992 					tp->snd_nxt = oldsndnxt;
1993 				}
1994 				tp->snd_cwnd = oldcwnd;
1995 
1996 				if (TCP_DO_SACK(tp) &&
1997 				    (to.to_flags &
1998 				     (TOF_DSACK | TOF_SACK_REDUNDANT)) ==
1999 				     (TOF_DSACK | TOF_SACK_REDUNDANT)) {
2000 					/*
2001 					 * If the ACK carries DSACK and other
2002 					 * SACK blocks carry information that
2003 					 * we have already known, don't count
2004 					 * this ACK as duplicate ACK and, in
2005 					 * particular, don't start early
2006 					 * retransmit.  It usually happens
2007 					 * after spurious retransmit.
2008 					 */
2009 					KASSERT(tp->t_dupacks > 0,
2010 					    ("invalid dupacks %d",
2011 					     tp->t_dupacks));
2012 					tp->t_dupacks--;
2013 					goto drop;
2014 				}
2015 
2016 				sent = tp->snd_max - oldsndmax;
2017 				if (sent > tp->t_maxseg) {
2018 					KASSERT((tp->t_dupacks == 2 &&
2019 						 tp->snd_limited == 0) ||
2020 						(sent == tp->t_maxseg + 1 &&
2021 						 tp->t_flags & TF_SENTFIN),
2022 					    ("sent too much"));
2023 					KASSERT(sent <= tp->t_maxseg * 2,
2024 					    ("sent too many segments"));
2025 					tp->snd_limited = 2;
2026 					tcpstat.tcps_sndlimited += 2;
2027 				} else if (sent > 0) {
2028 					++tp->snd_limited;
2029 					++tcpstat.tcps_sndlimited;
2030 				} else if (tcp_do_early_retransmit &&
2031 				    (tcp_do_eifel_detect &&
2032 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2033 				    ownd < 4 * tp->t_maxseg &&
2034 				    tp->t_dupacks + 1 >=
2035 				      iceildiv(ownd, tp->t_maxseg) &&
2036 				    (!TCP_DO_SACK(tp) ||
2037 				     ownd <= tp->t_maxseg ||
2038 				     tcp_sack_has_sacked(&tp->scb,
2039 							ownd - tp->t_maxseg))) {
2040 					++tcpstat.tcps_sndearlyrexmit;
2041 					tp->t_flags |= TF_EARLYREXMT;
2042 					goto fastretransmit;
2043 				}
2044 			}
2045 			goto drop;
2046 		}
2047 
2048 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2049 		tp->t_dupacks = 0;
2050 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2051 			/*
2052 			 * Detected optimistic ACK attack.
2053 			 * Force slow-start to de-synchronize attack.
2054 			 */
2055 			tp->snd_cwnd = tp->t_maxseg;
2056 			tp->snd_wacked = 0;
2057 
2058 			tcpstat.tcps_rcvacktoomuch++;
2059 			goto dropafterack;
2060 		}
2061 		/*
2062 		 * If we reach this point, ACK is not a duplicate,
2063 		 *     i.e., it ACKs something we sent.
2064 		 */
2065 		if (tp->t_flags & TF_NEEDSYN) {
2066 			/*
2067 			 * T/TCP: Connection was half-synchronized, and our
2068 			 * SYN has been ACK'd (so connection is now fully
2069 			 * synchronized).  Go to non-starred state,
2070 			 * increment snd_una for ACK of SYN, and check if
2071 			 * we can do window scaling.
2072 			 */
2073 			tp->t_flags &= ~TF_NEEDSYN;
2074 			tp->snd_una++;
2075 			/* Do window scaling? */
2076 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2077 			    (TF_RCVD_SCALE | TF_REQ_SCALE))
2078 				tp->rcv_scale = tp->request_r_scale;
2079 		}
2080 
2081 process_ACK:
2082 		acked = th->th_ack - tp->snd_una;
2083 		tcpstat.tcps_rcvackpack++;
2084 		tcpstat.tcps_rcvackbyte += acked;
2085 
2086 		if (tcp_do_eifel_detect && acked > 0 &&
2087 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2088 		    (tp->t_flags & TF_FIRSTACCACK)) {
2089 			/* Eifel detection applicable. */
2090 			if (to.to_tsecr < tp->t_rexmtTS) {
2091 				++tcpstat.tcps_eifeldetected;
2092 				tcp_revert_congestion_state(tp);
2093 				if (tp->t_rxtshift != 1 ||
2094 				    ticks >= tp->t_badrxtwin)
2095 					++tcpstat.tcps_rttcantdetect;
2096 			}
2097 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2098 			/*
2099 			 * If we just performed our first retransmit,
2100 			 * and the ACK arrives within our recovery window,
2101 			 * then it was a mistake to do the retransmit
2102 			 * in the first place.  Recover our original cwnd
2103 			 * and ssthresh, and proceed to transmit where we
2104 			 * left off.
2105 			 */
2106 			tcp_revert_congestion_state(tp);
2107 			++tcpstat.tcps_rttdetected;
2108 		}
2109 
2110 		/*
2111 		 * If we have a timestamp reply, update smoothed
2112 		 * round trip time.  If no timestamp is present but
2113 		 * transmit timer is running and timed sequence
2114 		 * number was acked, update smoothed round trip time.
2115 		 * Since we now have an rtt measurement, cancel the
2116 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2117 		 * Recompute the initial retransmit timer.
2118 		 *
2119 		 * Some machines (certain windows boxes) send broken
2120 		 * timestamp replies during the SYN+ACK phase, ignore
2121 		 * timestamps of 0.
2122 		 */
2123 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2124 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1, th->th_ack);
2125 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2126 			tcp_xmit_timer(tp, ticks - tp->t_rtttime, th->th_ack);
2127 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2128 
2129 		/*
2130 		 * If no data (only SYN) was ACK'd,
2131 		 *    skip rest of ACK processing.
2132 		 */
2133 		if (acked == 0)
2134 			goto step6;
2135 
2136 		/* Stop looking for an acceptable ACK since one was received. */
2137 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2138 
2139 		if (acked > so->so_snd.ssb_cc) {
2140 			tp->snd_wnd -= so->so_snd.ssb_cc;
2141 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2142 			ourfinisacked = TRUE;
2143 		} else {
2144 			sbdrop(&so->so_snd.sb, acked);
2145 			tp->snd_wnd -= acked;
2146 			ourfinisacked = FALSE;
2147 		}
2148 		sowwakeup(so);
2149 
2150 		/*
2151 		 * Update window information.
2152 		 */
2153 		if (acceptable_window_update(tp, th, tiwin)) {
2154 			/* keep track of pure window updates */
2155 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2156 			    tiwin > tp->snd_wnd)
2157 				tcpstat.tcps_rcvwinupd++;
2158 			tp->snd_wnd = tiwin;
2159 			tp->snd_wl1 = th->th_seq;
2160 			tp->snd_wl2 = th->th_ack;
2161 			if (tp->snd_wnd > tp->max_sndwnd)
2162 				tp->max_sndwnd = tp->snd_wnd;
2163 			needoutput = TRUE;
2164 		}
2165 
2166 		tp->snd_una = th->th_ack;
2167 		if (TCP_DO_SACK(tp))
2168 			tcp_sack_update_scoreboard(tp, &to);
2169 		if (IN_FASTRECOVERY(tp)) {
2170 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2171 				EXIT_FASTRECOVERY(tp);
2172 				needoutput = TRUE;
2173 				/*
2174 				 * If the congestion window was inflated
2175 				 * to account for the other side's
2176 				 * cached packets, retract it.
2177 				 */
2178 				if (!TCP_DO_SACK(tp))
2179 					tp->snd_cwnd = tp->snd_ssthresh;
2180 
2181 				/*
2182 				 * Window inflation should have left us
2183 				 * with approximately snd_ssthresh outstanding
2184 				 * data.  But, in case we would be inclined
2185 				 * to send a burst, better do it using
2186 				 * slow start.
2187 				 */
2188 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2189 					   tp->snd_max + 2 * tp->t_maxseg))
2190 					tp->snd_cwnd =
2191 					    (tp->snd_max - tp->snd_una) +
2192 					    2 * tp->t_maxseg;
2193 
2194 				tp->snd_wacked = 0;
2195 			} else {
2196 				if (TCP_DO_SACK(tp)) {
2197 					tp->snd_max_rexmt = tp->snd_max;
2198 					tcp_sack_rexmt(tp, th);
2199 				} else {
2200 					tcp_newreno_partial_ack(tp, th, acked);
2201 				}
2202 				needoutput = FALSE;
2203 			}
2204 		} else {
2205 			/*
2206 			 * Open the congestion window.  When in slow-start,
2207 			 * open exponentially: maxseg per packet.  Otherwise,
2208 			 * open linearly: maxseg per window.
2209 			 */
2210 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2211 				u_int abc_sslimit =
2212 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2213 				     tp->t_maxseg : 2 * tp->t_maxseg);
2214 
2215 				/* slow-start */
2216 				tp->snd_cwnd += tcp_do_abc ?
2217 				    min(acked, abc_sslimit) : tp->t_maxseg;
2218 			} else {
2219 				/* linear increase */
2220 				tp->snd_wacked += tcp_do_abc ? acked :
2221 				    tp->t_maxseg;
2222 				if (tp->snd_wacked >= tp->snd_cwnd) {
2223 					tp->snd_wacked -= tp->snd_cwnd;
2224 					tp->snd_cwnd += tp->t_maxseg;
2225 				}
2226 			}
2227 			tp->snd_cwnd = min(tp->snd_cwnd,
2228 					   TCP_MAXWIN << tp->snd_scale);
2229 			tp->snd_recover = th->th_ack - 1;
2230 		}
2231 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2232 			tp->snd_nxt = tp->snd_una;
2233 
2234 		/*
2235 		 * If all outstanding data is acked, stop retransmit
2236 		 * timer and remember to restart (more output or persist).
2237 		 * If there is more data to be acked, restart retransmit
2238 		 * timer, using current (possibly backed-off) value.
2239 		 */
2240 		if (th->th_ack == tp->snd_max) {
2241 			tcp_callout_stop(tp, tp->tt_rexmt);
2242 			needoutput = TRUE;
2243 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2244 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2245 			    tcp_timer_rexmt);
2246 		}
2247 
2248 		switch (tp->t_state) {
2249 		/*
2250 		 * In FIN_WAIT_1 STATE in addition to the processing
2251 		 * for the ESTABLISHED state if our FIN is now acknowledged
2252 		 * then enter FIN_WAIT_2.
2253 		 */
2254 		case TCPS_FIN_WAIT_1:
2255 			if (ourfinisacked) {
2256 				/*
2257 				 * If we can't receive any more
2258 				 * data, then closing user can proceed.
2259 				 * Starting the timer is contrary to the
2260 				 * specification, but if we don't get a FIN
2261 				 * we'll hang forever.
2262 				 */
2263 				if (so->so_state & SS_CANTRCVMORE) {
2264 					soisdisconnected(so);
2265 					tcp_callout_reset(tp, tp->tt_2msl,
2266 					    tp->t_maxidle, tcp_timer_2msl);
2267 				}
2268 				tp->t_state = TCPS_FIN_WAIT_2;
2269 			}
2270 			break;
2271 
2272 		/*
2273 		 * In CLOSING STATE in addition to the processing for
2274 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2275 		 * then enter the TIME-WAIT state, otherwise ignore
2276 		 * the segment.
2277 		 */
2278 		case TCPS_CLOSING:
2279 			if (ourfinisacked) {
2280 				tp->t_state = TCPS_TIME_WAIT;
2281 				tcp_canceltimers(tp);
2282 				tcp_callout_reset(tp, tp->tt_2msl,
2283 					    2 * tcp_rmx_msl(tp),
2284 					    tcp_timer_2msl);
2285 				soisdisconnected(so);
2286 			}
2287 			break;
2288 
2289 		/*
2290 		 * In LAST_ACK, we may still be waiting for data to drain
2291 		 * and/or to be acked, as well as for the ack of our FIN.
2292 		 * If our FIN is now acknowledged, delete the TCB,
2293 		 * enter the closed state and return.
2294 		 */
2295 		case TCPS_LAST_ACK:
2296 			if (ourfinisacked) {
2297 				tp = tcp_close(tp);
2298 				goto drop;
2299 			}
2300 			break;
2301 
2302 		/*
2303 		 * In TIME_WAIT state the only thing that should arrive
2304 		 * is a retransmission of the remote FIN.  Acknowledge
2305 		 * it and restart the finack timer.
2306 		 */
2307 		case TCPS_TIME_WAIT:
2308 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2309 			    tcp_timer_2msl);
2310 			goto dropafterack;
2311 		}
2312 	}
2313 
2314 step6:
2315 	/*
2316 	 * Update window information.
2317 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2318 	 */
2319 	if ((thflags & TH_ACK) &&
2320 	    acceptable_window_update(tp, th, tiwin)) {
2321 		/* keep track of pure window updates */
2322 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2323 		    tiwin > tp->snd_wnd)
2324 			tcpstat.tcps_rcvwinupd++;
2325 		tp->snd_wnd = tiwin;
2326 		tp->snd_wl1 = th->th_seq;
2327 		tp->snd_wl2 = th->th_ack;
2328 		if (tp->snd_wnd > tp->max_sndwnd)
2329 			tp->max_sndwnd = tp->snd_wnd;
2330 		needoutput = TRUE;
2331 	}
2332 
2333 	/*
2334 	 * Process segments with URG.
2335 	 */
2336 	if ((thflags & TH_URG) && th->th_urp &&
2337 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2338 		/*
2339 		 * This is a kludge, but if we receive and accept
2340 		 * random urgent pointers, we'll crash in
2341 		 * soreceive.  It's hard to imagine someone
2342 		 * actually wanting to send this much urgent data.
2343 		 */
2344 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2345 			th->th_urp = 0;			/* XXX */
2346 			thflags &= ~TH_URG;		/* XXX */
2347 			goto dodata;			/* XXX */
2348 		}
2349 		/*
2350 		 * If this segment advances the known urgent pointer,
2351 		 * then mark the data stream.  This should not happen
2352 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2353 		 * a FIN has been received from the remote side.
2354 		 * In these states we ignore the URG.
2355 		 *
2356 		 * According to RFC961 (Assigned Protocols),
2357 		 * the urgent pointer points to the last octet
2358 		 * of urgent data.  We continue, however,
2359 		 * to consider it to indicate the first octet
2360 		 * of data past the urgent section as the original
2361 		 * spec states (in one of two places).
2362 		 */
2363 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2364 			tp->rcv_up = th->th_seq + th->th_urp;
2365 			so->so_oobmark = so->so_rcv.ssb_cc +
2366 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2367 			if (so->so_oobmark == 0)
2368 				sosetstate(so, SS_RCVATMARK);
2369 			sohasoutofband(so);
2370 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2371 		}
2372 		/*
2373 		 * Remove out of band data so doesn't get presented to user.
2374 		 * This can happen independent of advancing the URG pointer,
2375 		 * but if two URG's are pending at once, some out-of-band
2376 		 * data may creep in... ick.
2377 		 */
2378 		if (th->th_urp <= (u_long)tlen &&
2379 		    !(so->so_options & SO_OOBINLINE)) {
2380 			/* hdr drop is delayed */
2381 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2382 		}
2383 	} else {
2384 		/*
2385 		 * If no out of band data is expected,
2386 		 * pull receive urgent pointer along
2387 		 * with the receive window.
2388 		 */
2389 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2390 			tp->rcv_up = tp->rcv_nxt;
2391 	}
2392 
2393 dodata:							/* XXX */
2394 	/*
2395 	 * Process the segment text, merging it into the TCP sequencing queue,
2396 	 * and arranging for acknowledgment of receipt if necessary.
2397 	 * This process logically involves adjusting tp->rcv_wnd as data
2398 	 * is presented to the user (this happens in tcp_usrreq.c,
2399 	 * case PRU_RCVD).  If a FIN has already been received on this
2400 	 * connection then we just ignore the text.
2401 	 */
2402 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2403 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2404 		/*
2405 		 * Insert segment which includes th into TCP reassembly queue
2406 		 * with control block tp.  Set thflags to whether reassembly now
2407 		 * includes a segment with FIN.  This handles the common case
2408 		 * inline (segment is the next to be received on an established
2409 		 * connection, and the queue is empty), avoiding linkage into
2410 		 * and removal from the queue and repetition of various
2411 		 * conversions.
2412 		 * Set DELACK for segments received in order, but ack
2413 		 * immediately when segments are out of order (so
2414 		 * fast retransmit can work).
2415 		 */
2416 		if (th->th_seq == tp->rcv_nxt &&
2417 		    LIST_EMPTY(&tp->t_segq) &&
2418 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2419 			if (DELAY_ACK(tp)) {
2420 				tcp_callout_reset(tp, tp->tt_delack,
2421 				    tcp_delacktime, tcp_timer_delack);
2422 			} else {
2423 				tp->t_flags |= TF_ACKNOW;
2424 			}
2425 			tp->rcv_nxt += tlen;
2426 			thflags = th->th_flags & TH_FIN;
2427 			tcpstat.tcps_rcvpack++;
2428 			tcpstat.tcps_rcvbyte += tlen;
2429 			ND6_HINT(tp);
2430 			if (so->so_state & SS_CANTRCVMORE) {
2431 				m_freem(m);
2432 			} else {
2433 				lwkt_gettoken(&so->so_rcv.ssb_token);
2434 				ssb_appendstream(&so->so_rcv, m);
2435 				lwkt_reltoken(&so->so_rcv.ssb_token);
2436 			}
2437 			sorwakeup(so);
2438 		} else {
2439 			if (!(tp->t_flags & TF_DUPSEG)) {
2440 				/* Initialize SACK report block. */
2441 				tp->reportblk.rblk_start = th->th_seq;
2442 				tp->reportblk.rblk_end = TCP_SACK_BLKEND(
2443 				    th->th_seq + tlen, thflags);
2444 			}
2445 			thflags = tcp_reass(tp, th, &tlen, m);
2446 			tp->t_flags |= TF_ACKNOW;
2447 		}
2448 
2449 		/*
2450 		 * Note the amount of data that peer has sent into
2451 		 * our window, in order to estimate the sender's
2452 		 * buffer size.
2453 		 */
2454 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2455 	} else {
2456 		m_freem(m);
2457 		thflags &= ~TH_FIN;
2458 	}
2459 
2460 	/*
2461 	 * If FIN is received ACK the FIN and let the user know
2462 	 * that the connection is closing.
2463 	 */
2464 	if (thflags & TH_FIN) {
2465 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2466 			socantrcvmore(so);
2467 			/*
2468 			 * If connection is half-synchronized
2469 			 * (ie NEEDSYN flag on) then delay ACK,
2470 			 * so it may be piggybacked when SYN is sent.
2471 			 * Otherwise, since we received a FIN then no
2472 			 * more input can be expected, send ACK now.
2473 			 */
2474 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2475 				tcp_callout_reset(tp, tp->tt_delack,
2476 				    tcp_delacktime, tcp_timer_delack);
2477 			} else {
2478 				tp->t_flags |= TF_ACKNOW;
2479 			}
2480 			tp->rcv_nxt++;
2481 		}
2482 
2483 		switch (tp->t_state) {
2484 		/*
2485 		 * In SYN_RECEIVED and ESTABLISHED STATES
2486 		 * enter the CLOSE_WAIT state.
2487 		 */
2488 		case TCPS_SYN_RECEIVED:
2489 			tp->t_starttime = ticks;
2490 			/*FALLTHROUGH*/
2491 		case TCPS_ESTABLISHED:
2492 			tp->t_state = TCPS_CLOSE_WAIT;
2493 			break;
2494 
2495 		/*
2496 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2497 		 * enter the CLOSING state.
2498 		 */
2499 		case TCPS_FIN_WAIT_1:
2500 			tp->t_state = TCPS_CLOSING;
2501 			break;
2502 
2503 		/*
2504 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2505 		 * starting the time-wait timer, turning off the other
2506 		 * standard timers.
2507 		 */
2508 		case TCPS_FIN_WAIT_2:
2509 			tp->t_state = TCPS_TIME_WAIT;
2510 			tcp_canceltimers(tp);
2511 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2512 				    tcp_timer_2msl);
2513 			soisdisconnected(so);
2514 			break;
2515 
2516 		/*
2517 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2518 		 */
2519 		case TCPS_TIME_WAIT:
2520 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2521 			    tcp_timer_2msl);
2522 			break;
2523 		}
2524 	}
2525 
2526 #ifdef TCPDEBUG
2527 	if (so->so_options & SO_DEBUG)
2528 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2529 #endif
2530 
2531 	/*
2532 	 * Return any desired output.
2533 	 */
2534 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2535 		tcp_output(tp);
2536 	tcp_sack_report_cleanup(tp);
2537 	return(IPPROTO_DONE);
2538 
2539 dropafterack:
2540 	/*
2541 	 * Generate an ACK dropping incoming segment if it occupies
2542 	 * sequence space, where the ACK reflects our state.
2543 	 *
2544 	 * We can now skip the test for the RST flag since all
2545 	 * paths to this code happen after packets containing
2546 	 * RST have been dropped.
2547 	 *
2548 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2549 	 * segment we received passes the SYN-RECEIVED ACK test.
2550 	 * If it fails send a RST.  This breaks the loop in the
2551 	 * "LAND" DoS attack, and also prevents an ACK storm
2552 	 * between two listening ports that have been sent forged
2553 	 * SYN segments, each with the source address of the other.
2554 	 */
2555 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2556 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2557 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2558 		rstreason = BANDLIM_RST_OPENPORT;
2559 		goto dropwithreset;
2560 	}
2561 #ifdef TCPDEBUG
2562 	if (so->so_options & SO_DEBUG)
2563 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2564 #endif
2565 	m_freem(m);
2566 	tp->t_flags |= TF_ACKNOW;
2567 	tcp_output(tp);
2568 	tcp_sack_report_cleanup(tp);
2569 	return(IPPROTO_DONE);
2570 
2571 dropwithreset:
2572 	/*
2573 	 * Generate a RST, dropping incoming segment.
2574 	 * Make ACK acceptable to originator of segment.
2575 	 * Don't bother to respond if destination was broadcast/multicast.
2576 	 */
2577 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2578 		goto drop;
2579 	if (isipv6) {
2580 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2581 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2582 			goto drop;
2583 	} else {
2584 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2585 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2586 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2587 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2588 			goto drop;
2589 	}
2590 	/* IPv6 anycast check is done at tcp6_input() */
2591 
2592 	/*
2593 	 * Perform bandwidth limiting.
2594 	 */
2595 #ifdef ICMP_BANDLIM
2596 	if (badport_bandlim(rstreason) < 0)
2597 		goto drop;
2598 #endif
2599 
2600 #ifdef TCPDEBUG
2601 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2602 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2603 #endif
2604 	if (thflags & TH_ACK)
2605 		/* mtod() below is safe as long as hdr dropping is delayed */
2606 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2607 			    TH_RST);
2608 	else {
2609 		if (thflags & TH_SYN)
2610 			tlen++;
2611 		/* mtod() below is safe as long as hdr dropping is delayed */
2612 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2613 			    (tcp_seq)0, TH_RST | TH_ACK);
2614 	}
2615 	if (tp != NULL)
2616 		tcp_sack_report_cleanup(tp);
2617 	return(IPPROTO_DONE);
2618 
2619 drop:
2620 	/*
2621 	 * Drop space held by incoming segment and return.
2622 	 */
2623 #ifdef TCPDEBUG
2624 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2625 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2626 #endif
2627 	m_freem(m);
2628 	if (tp != NULL)
2629 		tcp_sack_report_cleanup(tp);
2630 	return(IPPROTO_DONE);
2631 }
2632 
2633 /*
2634  * Parse TCP options and place in tcpopt.
2635  */
2636 static void
2637 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn,
2638     tcp_seq ack)
2639 {
2640 	int opt, optlen, i;
2641 
2642 	to->to_flags = 0;
2643 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2644 		opt = cp[0];
2645 		if (opt == TCPOPT_EOL)
2646 			break;
2647 		if (opt == TCPOPT_NOP)
2648 			optlen = 1;
2649 		else {
2650 			if (cnt < 2)
2651 				break;
2652 			optlen = cp[1];
2653 			if (optlen < 2 || optlen > cnt)
2654 				break;
2655 		}
2656 		switch (opt) {
2657 		case TCPOPT_MAXSEG:
2658 			if (optlen != TCPOLEN_MAXSEG)
2659 				continue;
2660 			if (!is_syn)
2661 				continue;
2662 			to->to_flags |= TOF_MSS;
2663 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2664 			to->to_mss = ntohs(to->to_mss);
2665 			break;
2666 		case TCPOPT_WINDOW:
2667 			if (optlen != TCPOLEN_WINDOW)
2668 				continue;
2669 			if (!is_syn)
2670 				continue;
2671 			to->to_flags |= TOF_SCALE;
2672 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2673 			break;
2674 		case TCPOPT_TIMESTAMP:
2675 			if (optlen != TCPOLEN_TIMESTAMP)
2676 				continue;
2677 			to->to_flags |= TOF_TS;
2678 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2679 			to->to_tsval = ntohl(to->to_tsval);
2680 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2681 			to->to_tsecr = ntohl(to->to_tsecr);
2682 			/*
2683 			 * If echoed timestamp is later than the current time,
2684 			 * fall back to non RFC1323 RTT calculation.
2685 			 */
2686 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2687 				to->to_tsecr = 0;
2688 			break;
2689 		case TCPOPT_SACK_PERMITTED:
2690 			if (optlen != TCPOLEN_SACK_PERMITTED)
2691 				continue;
2692 			if (!is_syn)
2693 				continue;
2694 			to->to_flags |= TOF_SACK_PERMITTED;
2695 			break;
2696 		case TCPOPT_SACK:
2697 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2698 				continue;
2699 			to->to_nsackblocks = (optlen - 2) / 8;
2700 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2701 			to->to_flags |= TOF_SACK;
2702 			for (i = 0; i < to->to_nsackblocks; i++) {
2703 				struct raw_sackblock *r = &to->to_sackblocks[i];
2704 
2705 				r->rblk_start = ntohl(r->rblk_start);
2706 				r->rblk_end = ntohl(r->rblk_end);
2707 
2708 				if (SEQ_LEQ(r->rblk_end, r->rblk_start)) {
2709 					/*
2710 					 * Invalid SACK block; discard all
2711 					 * SACK blocks
2712 					 */
2713 					tcpstat.tcps_rcvbadsackopt++;
2714 					to->to_nsackblocks = 0;
2715 					to->to_sackblocks = NULL;
2716 					to->to_flags &= ~TOF_SACK;
2717 					break;
2718 				}
2719 			}
2720 			if ((to->to_flags & TOF_SACK) &&
2721 			    tcp_sack_ndsack_blocks(to->to_sackblocks,
2722 			    to->to_nsackblocks, ack))
2723 				to->to_flags |= TOF_DSACK;
2724 			break;
2725 #ifdef TCP_SIGNATURE
2726 		/*
2727 		 * XXX In order to reply to a host which has set the
2728 		 * TCP_SIGNATURE option in its initial SYN, we have to
2729 		 * record the fact that the option was observed here
2730 		 * for the syncache code to perform the correct response.
2731 		 */
2732 		case TCPOPT_SIGNATURE:
2733 			if (optlen != TCPOLEN_SIGNATURE)
2734 				continue;
2735 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2736 			break;
2737 #endif /* TCP_SIGNATURE */
2738 		default:
2739 			continue;
2740 		}
2741 	}
2742 }
2743 
2744 /*
2745  * Pull out of band byte out of a segment so
2746  * it doesn't appear in the user's data queue.
2747  * It is still reflected in the segment length for
2748  * sequencing purposes.
2749  * "off" is the delayed to be dropped hdrlen.
2750  */
2751 static void
2752 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2753 {
2754 	int cnt = off + th->th_urp - 1;
2755 
2756 	while (cnt >= 0) {
2757 		if (m->m_len > cnt) {
2758 			char *cp = mtod(m, caddr_t) + cnt;
2759 			struct tcpcb *tp = sototcpcb(so);
2760 
2761 			tp->t_iobc = *cp;
2762 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2763 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2764 			m->m_len--;
2765 			if (m->m_flags & M_PKTHDR)
2766 				m->m_pkthdr.len--;
2767 			return;
2768 		}
2769 		cnt -= m->m_len;
2770 		m = m->m_next;
2771 		if (m == NULL)
2772 			break;
2773 	}
2774 	panic("tcp_pulloutofband");
2775 }
2776 
2777 /*
2778  * Collect new round-trip time estimate
2779  * and update averages and current timeout.
2780  */
2781 static void
2782 tcp_xmit_timer(struct tcpcb *tp, int rtt, tcp_seq ack)
2783 {
2784 	int rebaserto = 0;
2785 
2786 	tcpstat.tcps_rttupdated++;
2787 	tp->t_rttupdated++;
2788 	if ((tp->t_flags & TF_REBASERTO) && SEQ_GT(ack, tp->snd_max_prev)) {
2789 #ifdef DEBUG_EIFEL_RESPONSE
2790 		kprintf("srtt/rttvar, prev %d/%d, cur %d/%d, ",
2791 		    tp->t_srtt_prev, tp->t_rttvar_prev,
2792 		    tp->t_srtt, tp->t_rttvar);
2793 #endif
2794 
2795 		tcpstat.tcps_eifelresponse++;
2796 		rebaserto = 1;
2797 		tp->t_flags &= ~TF_REBASERTO;
2798 		tp->t_srtt = max(tp->t_srtt_prev, (rtt << TCP_RTT_SHIFT));
2799 		tp->t_rttvar = max(tp->t_rttvar_prev,
2800 		    (rtt << (TCP_RTTVAR_SHIFT - 1)));
2801 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2802 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2803 
2804 #ifdef DEBUG_EIFEL_RESPONSE
2805 		kprintf("new %d/%d ", tp->t_srtt, tp->t_rttvar);
2806 #endif
2807 	} else if (tp->t_srtt != 0) {
2808 		int delta;
2809 
2810 		/*
2811 		 * srtt is stored as fixed point with 5 bits after the
2812 		 * binary point (i.e., scaled by 8).  The following magic
2813 		 * is equivalent to the smoothing algorithm in rfc793 with
2814 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2815 		 * point).  Adjust rtt to origin 0.
2816 		 */
2817 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2818 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2819 
2820 		if ((tp->t_srtt += delta) <= 0)
2821 			tp->t_srtt = 1;
2822 
2823 		/*
2824 		 * We accumulate a smoothed rtt variance (actually, a
2825 		 * smoothed mean difference), then set the retransmit
2826 		 * timer to smoothed rtt + 4 times the smoothed variance.
2827 		 * rttvar is stored as fixed point with 4 bits after the
2828 		 * binary point (scaled by 16).  The following is
2829 		 * equivalent to rfc793 smoothing with an alpha of .75
2830 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2831 		 * rfc793's wired-in beta.
2832 		 */
2833 		if (delta < 0)
2834 			delta = -delta;
2835 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2836 		if ((tp->t_rttvar += delta) <= 0)
2837 			tp->t_rttvar = 1;
2838 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2839 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2840 	} else {
2841 		/*
2842 		 * No rtt measurement yet - use the unsmoothed rtt.
2843 		 * Set the variance to half the rtt (so our first
2844 		 * retransmit happens at 3*rtt).
2845 		 */
2846 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2847 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2848 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2849 	}
2850 	tp->t_rtttime = 0;
2851 	tp->t_rxtshift = 0;
2852 
2853 #ifdef DEBUG_EIFEL_RESPONSE
2854 	if (rebaserto) {
2855 		kprintf("| rxtcur prev %d, old %d, ",
2856 		    tp->t_rxtcur_prev, tp->t_rxtcur);
2857 	}
2858 #endif
2859 
2860 	/*
2861 	 * the retransmit should happen at rtt + 4 * rttvar.
2862 	 * Because of the way we do the smoothing, srtt and rttvar
2863 	 * will each average +1/2 tick of bias.  When we compute
2864 	 * the retransmit timer, we want 1/2 tick of rounding and
2865 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2866 	 * firing of the timer.  The bias will give us exactly the
2867 	 * 1.5 tick we need.  But, because the bias is
2868 	 * statistical, we have to test that we don't drop below
2869 	 * the minimum feasible timer (which is 2 ticks).
2870 	 */
2871 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2872 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2873 
2874 	if (rebaserto) {
2875 		if (tp->t_rxtcur < tp->t_rxtcur_prev + tcp_eifel_rtoinc) {
2876 			/*
2877 			 * RFC4015 requires that the new RTO is at least
2878 			 * 2*G (tcp_eifel_rtoinc) greater then the RTO
2879 			 * (t_rxtcur_prev) when the spurious retransmit
2880 			 * timeout happens.
2881 			 *
2882 			 * The above condition could be true, if the SRTT
2883 			 * and RTTVAR used to calculate t_rxtcur_prev
2884 			 * resulted in a value less than t_rttmin.  So
2885 			 * simply increasing SRTT by tcp_eifel_rtoinc when
2886 			 * preparing for the Eifel response in
2887 			 * tcp_save_congestion_state() could not ensure
2888 			 * that the new RTO will be tcp_eifel_rtoinc greater
2889 			 * t_rxtcur_prev.
2890 			 */
2891 			tp->t_rxtcur = tp->t_rxtcur_prev + tcp_eifel_rtoinc;
2892 		}
2893 #ifdef DEBUG_EIFEL_RESPONSE
2894 		kprintf("new %d\n", tp->t_rxtcur);
2895 #endif
2896 	}
2897 
2898 	/*
2899 	 * We received an ack for a packet that wasn't retransmitted;
2900 	 * it is probably safe to discard any error indications we've
2901 	 * received recently.  This isn't quite right, but close enough
2902 	 * for now (a route might have failed after we sent a segment,
2903 	 * and the return path might not be symmetrical).
2904 	 */
2905 	tp->t_softerror = 0;
2906 }
2907 
2908 /*
2909  * Determine a reasonable value for maxseg size.
2910  * If the route is known, check route for mtu.
2911  * If none, use an mss that can be handled on the outgoing
2912  * interface without forcing IP to fragment; if bigger than
2913  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2914  * to utilize large mbufs.  If no route is found, route has no mtu,
2915  * or the destination isn't local, use a default, hopefully conservative
2916  * size (usually 512 or the default IP max size, but no more than the mtu
2917  * of the interface), as we can't discover anything about intervening
2918  * gateways or networks.  We also initialize the congestion/slow start
2919  * window to be a single segment if the destination isn't local.
2920  * While looking at the routing entry, we also initialize other path-dependent
2921  * parameters from pre-set or cached values in the routing entry.
2922  *
2923  * Also take into account the space needed for options that we
2924  * send regularly.  Make maxseg shorter by that amount to assure
2925  * that we can send maxseg amount of data even when the options
2926  * are present.  Store the upper limit of the length of options plus
2927  * data in maxopd.
2928  *
2929  * NOTE that this routine is only called when we process an incoming
2930  * segment, for outgoing segments only tcp_mssopt is called.
2931  */
2932 void
2933 tcp_mss(struct tcpcb *tp, int offer)
2934 {
2935 	struct rtentry *rt;
2936 	struct ifnet *ifp;
2937 	int rtt, mss;
2938 	u_long bufsize;
2939 	struct inpcb *inp = tp->t_inpcb;
2940 	struct socket *so;
2941 #ifdef INET6
2942 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2943 	size_t min_protoh = isipv6 ?
2944 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2945 			    sizeof(struct tcpiphdr);
2946 #else
2947 	const boolean_t isipv6 = FALSE;
2948 	const size_t min_protoh = sizeof(struct tcpiphdr);
2949 #endif
2950 
2951 	if (isipv6)
2952 		rt = tcp_rtlookup6(&inp->inp_inc);
2953 	else
2954 		rt = tcp_rtlookup(&inp->inp_inc);
2955 	if (rt == NULL) {
2956 		tp->t_maxopd = tp->t_maxseg =
2957 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2958 		return;
2959 	}
2960 	ifp = rt->rt_ifp;
2961 	so = inp->inp_socket;
2962 
2963 	/*
2964 	 * Offer == 0 means that there was no MSS on the SYN segment,
2965 	 * in this case we use either the interface mtu or tcp_mssdflt.
2966 	 *
2967 	 * An offer which is too large will be cut down later.
2968 	 */
2969 	if (offer == 0) {
2970 		if (isipv6) {
2971 			if (in6_localaddr(&inp->in6p_faddr)) {
2972 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2973 					min_protoh;
2974 			} else {
2975 				offer = tcp_v6mssdflt;
2976 			}
2977 		} else {
2978 			if (in_localaddr(inp->inp_faddr))
2979 				offer = ifp->if_mtu - min_protoh;
2980 			else
2981 				offer = tcp_mssdflt;
2982 		}
2983 	}
2984 
2985 	/*
2986 	 * Prevent DoS attack with too small MSS. Round up
2987 	 * to at least minmss.
2988 	 *
2989 	 * Sanity check: make sure that maxopd will be large
2990 	 * enough to allow some data on segments even is the
2991 	 * all the option space is used (40bytes).  Otherwise
2992 	 * funny things may happen in tcp_output.
2993 	 */
2994 	offer = max(offer, tcp_minmss);
2995 	offer = max(offer, 64);
2996 
2997 	rt->rt_rmx.rmx_mssopt = offer;
2998 
2999 	/*
3000 	 * While we're here, check if there's an initial rtt
3001 	 * or rttvar.  Convert from the route-table units
3002 	 * to scaled multiples of the slow timeout timer.
3003 	 */
3004 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
3005 		/*
3006 		 * XXX the lock bit for RTT indicates that the value
3007 		 * is also a minimum value; this is subject to time.
3008 		 */
3009 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
3010 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
3011 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
3012 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3013 		tcpstat.tcps_usedrtt++;
3014 		if (rt->rt_rmx.rmx_rttvar) {
3015 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
3016 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
3017 			tcpstat.tcps_usedrttvar++;
3018 		} else {
3019 			/* default variation is +- 1 rtt */
3020 			tp->t_rttvar =
3021 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3022 		}
3023 		TCPT_RANGESET(tp->t_rxtcur,
3024 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3025 			      tp->t_rttmin, TCPTV_REXMTMAX);
3026 	}
3027 
3028 	/*
3029 	 * if there's an mtu associated with the route, use it
3030 	 * else, use the link mtu.  Take the smaller of mss or offer
3031 	 * as our final mss.
3032 	 */
3033 	if (rt->rt_rmx.rmx_mtu) {
3034 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
3035 	} else {
3036 		if (isipv6)
3037 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
3038 		else
3039 			mss = ifp->if_mtu - min_protoh;
3040 	}
3041 	mss = min(mss, offer);
3042 
3043 	/*
3044 	 * maxopd stores the maximum length of data AND options
3045 	 * in a segment; maxseg is the amount of data in a normal
3046 	 * segment.  We need to store this value (maxopd) apart
3047 	 * from maxseg, because now every segment carries options
3048 	 * and thus we normally have somewhat less data in segments.
3049 	 */
3050 	tp->t_maxopd = mss;
3051 
3052 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
3053 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3054 		mss -= TCPOLEN_TSTAMP_APPA;
3055 
3056 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3057 	if (mss > MCLBYTES)
3058 		mss &= ~(MCLBYTES-1);
3059 #else
3060 	if (mss > MCLBYTES)
3061 		mss = mss / MCLBYTES * MCLBYTES;
3062 #endif
3063 	/*
3064 	 * If there's a pipesize, change the socket buffer
3065 	 * to that size.  Make the socket buffers an integral
3066 	 * number of mss units; if the mss is larger than
3067 	 * the socket buffer, decrease the mss.
3068 	 */
3069 #ifdef RTV_SPIPE
3070 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3071 #endif
3072 		bufsize = so->so_snd.ssb_hiwat;
3073 	if (bufsize < mss)
3074 		mss = bufsize;
3075 	else {
3076 		bufsize = roundup(bufsize, mss);
3077 		if (bufsize > sb_max)
3078 			bufsize = sb_max;
3079 		if (bufsize > so->so_snd.ssb_hiwat)
3080 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3081 	}
3082 	tp->t_maxseg = mss;
3083 
3084 #ifdef RTV_RPIPE
3085 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3086 #endif
3087 		bufsize = so->so_rcv.ssb_hiwat;
3088 	if (bufsize > mss) {
3089 		bufsize = roundup(bufsize, mss);
3090 		if (bufsize > sb_max)
3091 			bufsize = sb_max;
3092 		if (bufsize > so->so_rcv.ssb_hiwat) {
3093 			lwkt_gettoken(&so->so_rcv.ssb_token);
3094 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3095 			lwkt_reltoken(&so->so_rcv.ssb_token);
3096 		}
3097 	}
3098 
3099 	/*
3100 	 * Set the slow-start flight size
3101 	 *
3102 	 * NOTE: t_maxseg must have been configured!
3103 	 */
3104 	tp->snd_cwnd = tcp_initial_window(tp);
3105 
3106 	if (rt->rt_rmx.rmx_ssthresh) {
3107 		/*
3108 		 * There's some sort of gateway or interface
3109 		 * buffer limit on the path.  Use this to set
3110 		 * the slow start threshhold, but set the
3111 		 * threshold to no less than 2*mss.
3112 		 */
3113 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3114 		tcpstat.tcps_usedssthresh++;
3115 	}
3116 }
3117 
3118 /*
3119  * Determine the MSS option to send on an outgoing SYN.
3120  */
3121 int
3122 tcp_mssopt(struct tcpcb *tp)
3123 {
3124 	struct rtentry *rt;
3125 #ifdef INET6
3126 	boolean_t isipv6 =
3127 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3128 	int min_protoh = isipv6 ?
3129 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3130 			     sizeof(struct tcpiphdr);
3131 #else
3132 	const boolean_t isipv6 = FALSE;
3133 	const size_t min_protoh = sizeof(struct tcpiphdr);
3134 #endif
3135 
3136 	if (isipv6)
3137 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3138 	else
3139 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3140 	if (rt == NULL)
3141 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3142 
3143 	return (rt->rt_ifp->if_mtu - min_protoh);
3144 }
3145 
3146 /*
3147  * When a partial ack arrives, force the retransmission of the
3148  * next unacknowledged segment.  Do not exit Fast Recovery.
3149  *
3150  * Implement the Slow-but-Steady variant of NewReno by restarting the
3151  * the retransmission timer.  Turn it off here so it can be restarted
3152  * later in tcp_output().
3153  */
3154 static void
3155 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3156 {
3157 	tcp_seq old_snd_nxt = tp->snd_nxt;
3158 	u_long ocwnd = tp->snd_cwnd;
3159 
3160 	tcp_callout_stop(tp, tp->tt_rexmt);
3161 	tp->t_rtttime = 0;
3162 	tp->snd_nxt = th->th_ack;
3163 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3164 	tp->snd_cwnd = tp->t_maxseg;
3165 	tp->t_flags |= TF_ACKNOW;
3166 	tcp_output(tp);
3167 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3168 		tp->snd_nxt = old_snd_nxt;
3169 	/* partial window deflation */
3170 	if (ocwnd > acked)
3171 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3172 	else
3173 		tp->snd_cwnd = tp->t_maxseg;
3174 }
3175 
3176 /*
3177  * In contrast to the Slow-but-Steady NewReno variant,
3178  * we do not reset the retransmission timer for SACK retransmissions,
3179  * except when retransmitting snd_una.
3180  */
3181 static void
3182 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3183 {
3184 	tcp_seq old_snd_nxt = tp->snd_nxt;
3185 	u_long ocwnd = tp->snd_cwnd;
3186 	uint32_t pipe;
3187 	int nseg = 0;		/* consecutive new segments */
3188 	int nseg_rexmt = 0;	/* retransmitted segments */
3189 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3190 
3191 	tp->t_rtttime = 0;
3192 	pipe = tcp_sack_compute_pipe(tp);
3193 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3194 	    (!tcp_do_smartsack || nseg < MAXBURST)) {
3195 		tcp_seq old_snd_max, old_rexmt_high, nextrexmt;
3196 		uint32_t sent, seglen;
3197 		boolean_t rescue;
3198 		int error;
3199 
3200 		old_rexmt_high = tp->rexmt_high;
3201 	    	if (!tcp_sack_nextseg(tp, &nextrexmt, &seglen, &rescue)) {
3202 			tp->rexmt_high = old_rexmt_high;
3203 			break;
3204 		}
3205 
3206 		/*
3207 		 * If the next tranmission is a rescue retranmission,
3208 		 * we check whether we have already sent some data
3209 		 * (either new segments or retransmitted segments)
3210 		 * into the the network or not.  Since the idea of rescue
3211 		 * retransmission is to sustain ACK clock, as long as
3212 		 * some segments are in the network, ACK clock will be
3213 		 * kept ticking.
3214 		 */
3215 		if (rescue && (nseg_rexmt > 0 || nseg > 0)) {
3216 			tp->rexmt_high = old_rexmt_high;
3217 			break;
3218 		}
3219 
3220 		if (nextrexmt == tp->snd_max)
3221 			++nseg;
3222 		else
3223 			++nseg_rexmt;
3224 		tp->snd_nxt = nextrexmt;
3225 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3226 		old_snd_max = tp->snd_max;
3227 		if (nextrexmt == tp->snd_una)
3228 			tcp_callout_stop(tp, tp->tt_rexmt);
3229 		error = tcp_output(tp);
3230 		if (error != 0) {
3231 			tp->rexmt_high = old_rexmt_high;
3232 			break;
3233 		}
3234 		sent = tp->snd_nxt - nextrexmt;
3235 		if (sent <= 0) {
3236 			tp->rexmt_high = old_rexmt_high;
3237 			break;
3238 		}
3239 		pipe += sent;
3240 		tcpstat.tcps_sndsackpack++;
3241 		tcpstat.tcps_sndsackbyte += sent;
3242 
3243 		if (rescue) {
3244 			tcpstat.tcps_sackrescue++;
3245 			tp->rexmt_rescue = tp->snd_nxt;
3246 			tp->t_flags |= TF_SACKRESCUED;
3247 			break;
3248 		}
3249 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3250 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt)) {
3251 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3252 			if ((tp->t_flags & TF_SACKRESCUED) &&
3253 			    SEQ_LT(tp->rexmt_rescue, tp->rexmt_high)) {
3254 				/* Drag RescueRxt along with HighRxt */
3255 				tp->rexmt_rescue = tp->rexmt_high;
3256 			}
3257 		}
3258 	}
3259 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3260 		tp->snd_nxt = old_snd_nxt;
3261 	tp->snd_cwnd = ocwnd;
3262 }
3263 
3264 /*
3265  * Reset idle time and keep-alive timer, typically called when a valid
3266  * tcp packet is received but may also be called when FASTKEEP is set
3267  * to prevent the previous long-timeout from calculating to a drop.
3268  *
3269  * Only update t_rcvtime for non-SYN packets.
3270  *
3271  * Handle the case where one side thinks the connection is established
3272  * but the other side has, say, rebooted without cleaning out the
3273  * connection.   The SYNs could be construed as an attack and wind
3274  * up ignored, but in case it isn't an attack we can validate the
3275  * connection by forcing a keepalive.
3276  */
3277 void
3278 tcp_timer_keep_activity(struct tcpcb *tp, int thflags)
3279 {
3280 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3281 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
3282 			tp->t_flags |= TF_KEEPALIVE;
3283 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
3284 					  tcp_timer_keep);
3285 		} else {
3286 			tp->t_rcvtime = ticks;
3287 			tp->t_flags &= ~TF_KEEPALIVE;
3288 			tcp_callout_reset(tp, tp->tt_keep,
3289 					  tp->t_keepidle,
3290 					  tcp_timer_keep);
3291 		}
3292 	}
3293 }
3294 
3295 static int
3296 tcp_rmx_msl(const struct tcpcb *tp)
3297 {
3298 	struct rtentry *rt;
3299 	struct inpcb *inp = tp->t_inpcb;
3300 	int msl;
3301 #ifdef INET6
3302 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3303 #else
3304 	const boolean_t isipv6 = FALSE;
3305 #endif
3306 
3307 	if (isipv6)
3308 		rt = tcp_rtlookup6(&inp->inp_inc);
3309 	else
3310 		rt = tcp_rtlookup(&inp->inp_inc);
3311 	if (rt == NULL || rt->rt_rmx.rmx_msl == 0)
3312 		return tcp_msl;
3313 
3314 	msl = (rt->rt_rmx.rmx_msl * hz) / 1000;
3315 	if (msl == 0)
3316 		msl = 1;
3317 
3318 	return msl;
3319 }
3320 
3321 static void
3322 tcp_established(struct tcpcb *tp)
3323 {
3324 	tp->t_state = TCPS_ESTABLISHED;
3325 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepidle, tcp_timer_keep);
3326 
3327 	if (tp->t_rxtsyn > 0) {
3328 		/*
3329 		 * RFC6298:
3330 		 * "If the timer expires awaiting the ACK of a SYN segment
3331 		 *  and the TCP implementation is using an RTO less than 3
3332 		 *  seconds, the RTO MUST be re-initialized to 3 seconds
3333 		 *  when data transmission begins"
3334 		 */
3335 		if (tp->t_rxtcur < TCPTV_RTOBASE3)
3336 			tp->t_rxtcur = TCPTV_RTOBASE3;
3337 	}
3338 }
3339