xref: /dflybsd-src/sys/netinet/tcp_input.c (revision 48d201a5a8c1dab4aa7166b0812594c101fc43c3)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
85  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.36 2004/08/14 06:41:33 hsu Exp $
86  */
87 
88 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
89 #include "opt_inet6.h"
90 #include "opt_ipsec.h"
91 #include "opt_tcpdebug.h"
92 #include "opt_tcp_input.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/sysctl.h>
98 #include <sys/malloc.h>
99 #include <sys/mbuf.h>
100 #include <sys/proc.h>		/* for proc0 declaration */
101 #include <sys/protosw.h>
102 #include <sys/socket.h>
103 #include <sys/socketvar.h>
104 #include <sys/syslog.h>
105 #include <sys/in_cksum.h>
106 
107 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
108 #include <machine/stdarg.h>
109 
110 #include <net/if.h>
111 #include <net/route.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/ip.h>
116 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
117 #include <netinet/in_var.h>
118 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
119 #include <netinet/in_pcb.h>
120 #include <netinet/ip_var.h>
121 #include <netinet/ip6.h>
122 #include <netinet/icmp6.h>
123 #include <netinet6/nd6.h>
124 #include <netinet6/ip6_var.h>
125 #include <netinet6/in6_pcb.h>
126 #include <netinet/tcp.h>
127 #include <netinet/tcp_fsm.h>
128 #include <netinet/tcp_seq.h>
129 #include <netinet/tcp_timer.h>
130 #include <netinet/tcp_var.h>
131 #include <netinet6/tcp6_var.h>
132 #include <netinet/tcpip.h>
133 
134 #ifdef TCPDEBUG
135 #include <netinet/tcp_debug.h>
136 
137 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
138 struct tcphdr tcp_savetcp;
139 #endif
140 
141 #ifdef FAST_IPSEC
142 #include <netipsec/ipsec.h>
143 #include <netipsec/ipsec6.h>
144 #endif
145 
146 #ifdef IPSEC
147 #include <netinet6/ipsec.h>
148 #include <netinet6/ipsec6.h>
149 #include <netproto/key/key.h>
150 #endif
151 
152 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
153 
154 static const int tcprexmtthresh = 3;
155 tcp_cc	tcp_ccgen;
156 static int log_in_vain = 0;
157 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
158     &log_in_vain, 0, "Log all incoming TCP connections");
159 
160 static int blackhole = 0;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
162     &blackhole, 0, "Do not send RST when dropping refused connections");
163 
164 int tcp_delack_enabled = 1;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
166     &tcp_delack_enabled, 0,
167     "Delay ACK to try and piggyback it onto a data packet");
168 
169 #ifdef TCP_DROP_SYNFIN
170 static int drop_synfin = 0;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
172     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
173 #endif
174 
175 static int tcp_do_limitedtransmit = 1;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
177     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
178 
179 static int tcp_do_early_retransmit = 0;
180 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
181     &tcp_do_early_retransmit, 0, "Early retransmit");
182 
183 static int tcp_do_rfc3390 = 1;
184 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
185     &tcp_do_rfc3390, 0,
186     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
187 
188 static int tcp_do_eifel_detect = 1;
189 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
190     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
191 
192 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
193     "TCP Segment Reassembly Queue");
194 
195 int tcp_reass_maxseg = 0;
196 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
197     &tcp_reass_maxseg, 0,
198     "Global maximum number of TCP Segments in Reassembly Queue");
199 
200 int tcp_reass_qsize = 0;
201 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
202     &tcp_reass_qsize, 0,
203     "Global number of TCP Segments currently in Reassembly Queue");
204 
205 static int tcp_reass_overflows = 0;
206 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
207     &tcp_reass_overflows, 0,
208     "Global number of TCP Segment Reassembly Queue Overflows");
209 
210 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
211 static void	 tcp_pulloutofband(struct socket *,
212 		     struct tcphdr *, struct mbuf *, int);
213 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
214 		     struct mbuf *);
215 static void	 tcp_xmit_timer(struct tcpcb *, int);
216 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
217 
218 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
219 #ifdef INET6
220 #define ND6_HINT(tp) \
221 do { \
222 	if ((tp) && (tp)->t_inpcb && \
223 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
224 	    (tp)->t_inpcb->in6p_route.ro_rt) \
225 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
226 } while (0)
227 #else
228 #define ND6_HINT(tp)
229 #endif
230 
231 /*
232  * Indicate whether this ack should be delayed.  We can delay the ack if
233  *	- delayed acks are enabled and
234  *	- there is no delayed ack timer in progress and
235  *	- our last ack wasn't a 0-sized window.  We never want to delay
236  *	  the ack that opens up a 0-sized window.
237  */
238 #define DELAY_ACK(tp) \
239 	(tcp_delack_enabled && !callout_pending(tp->tt_delack) && \
240 	!(tp->t_flags & TF_RXWIN0SENT))
241 
242 static int
243 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
244 {
245 	struct tseg_qent *q;
246 	struct tseg_qent *p = NULL;
247 	struct tseg_qent *nq;
248 	struct tseg_qent *te;
249 	struct socket *so = tp->t_inpcb->inp_socket;
250 	int flags;
251 
252 	/*
253 	 * Call with th == NULL after become established to
254 	 * force pre-ESTABLISHED data up to user socket.
255 	 */
256 	if (th == NULL)
257 		goto present;
258 
259 	/*
260 	 * Limit the number of segments in the reassembly queue to prevent
261 	 * holding on to too many segments (and thus running out of mbufs).
262 	 * Make sure to let the missing segment through which caused this
263 	 * queue.  Always keep one global queue entry spare to be able to
264 	 * process the missing segment.
265 	 */
266 	if (th->th_seq != tp->rcv_nxt &&
267 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
268 		tcp_reass_overflows++;
269 		tcpstat.tcps_rcvmemdrop++;
270 		m_freem(m);
271 		return (0);
272 	}
273 
274 	/* Allocate a new queue entry. */
275 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
276 	       M_INTWAIT | M_NULLOK);
277 	if (te == NULL) {
278 		tcpstat.tcps_rcvmemdrop++;
279 		m_freem(m);
280 		return (0);
281 	}
282 	tcp_reass_qsize++;
283 
284 	/*
285 	 * Find a segment which begins after this one does.
286 	 */
287 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
288 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
289 			break;
290 		p = q;
291 	}
292 
293 	/*
294 	 * If there is a preceding segment, it may provide some of
295 	 * our data already.  If so, drop the data from the incoming
296 	 * segment.  If it provides all of our data, drop us.
297 	 */
298 	if (p != NULL) {
299 		int i;
300 		/* conversion to int (in i) handles seq wraparound */
301 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
302 		if (i > 0) {
303 			if (i >= *tlenp) {
304 				tcpstat.tcps_rcvduppack++;
305 				tcpstat.tcps_rcvdupbyte += *tlenp;
306 				m_freem(m);
307 				free(te, M_TSEGQ);
308 				tcp_reass_qsize--;
309 				/*
310 				 * Try to present any queued data
311 				 * at the left window edge to the user.
312 				 * This is needed after the 3-WHS
313 				 * completes.
314 				 */
315 				goto present;	/* ??? */
316 			}
317 			m_adj(m, i);
318 			*tlenp -= i;
319 			th->th_seq += i;
320 		}
321 	}
322 	tcpstat.tcps_rcvoopack++;
323 	tcpstat.tcps_rcvoobyte += *tlenp;
324 
325 	/*
326 	 * While we overlap succeeding segments trim them or,
327 	 * if they are completely covered, dequeue them.
328 	 */
329 	while (q) {
330 		int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
331 		if (i <= 0)
332 			break;
333 		if (i < q->tqe_len) {
334 			q->tqe_th->th_seq += i;
335 			q->tqe_len -= i;
336 			m_adj(q->tqe_m, i);
337 			break;
338 		}
339 
340 		nq = LIST_NEXT(q, tqe_q);
341 		LIST_REMOVE(q, tqe_q);
342 		m_freem(q->tqe_m);
343 		free(q, M_TSEGQ);
344 		tcp_reass_qsize--;
345 		q = nq;
346 	}
347 
348 	/* Insert the new segment queue entry into place. */
349 	te->tqe_m = m;
350 	te->tqe_th = th;
351 	te->tqe_len = *tlenp;
352 
353 	if (p == NULL) {
354 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
355 	} else {
356 		LIST_INSERT_AFTER(p, te, tqe_q);
357 	}
358 
359 present:
360 	/*
361 	 * Present data to user, advancing rcv_nxt through
362 	 * completed sequence space.
363 	 */
364 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
365 		return (0);
366 	q = LIST_FIRST(&tp->t_segq);
367 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
368 		return (0);
369 	do {
370 		tp->rcv_nxt += q->tqe_len;
371 		flags = q->tqe_th->th_flags & TH_FIN;
372 		nq = LIST_NEXT(q, tqe_q);
373 		LIST_REMOVE(q, tqe_q);
374 		if (so->so_state & SS_CANTRCVMORE)
375 			m_freem(q->tqe_m);
376 		else
377 			sbappend(&so->so_rcv, q->tqe_m);
378 		free(q, M_TSEGQ);
379 		tcp_reass_qsize--;
380 		q = nq;
381 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
382 	ND6_HINT(tp);
383 	sorwakeup(so);
384 	return (flags);
385 }
386 
387 /*
388  * TCP input routine, follows pages 65-76 of the
389  * protocol specification dated September, 1981 very closely.
390  */
391 #ifdef INET6
392 int
393 tcp6_input(struct mbuf **mp, int *offp, int proto)
394 {
395 	struct mbuf *m = *mp;
396 	struct in6_ifaddr *ia6;
397 
398 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
399 
400 	/*
401 	 * draft-itojun-ipv6-tcp-to-anycast
402 	 * better place to put this in?
403 	 */
404 	ia6 = ip6_getdstifaddr(m);
405 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
406 		struct ip6_hdr *ip6;
407 
408 		ip6 = mtod(m, struct ip6_hdr *);
409 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
410 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
411 		return (IPPROTO_DONE);
412 	}
413 
414 	tcp_input(m, *offp, proto);
415 	return (IPPROTO_DONE);
416 }
417 #endif
418 
419 void
420 tcp_input(struct mbuf *m, ...)
421 {
422 	__va_list ap;
423 	int off0, proto;
424 	struct tcphdr *th;
425 	struct ip *ip = NULL;
426 	struct ipovly *ipov;
427 	struct inpcb *inp = NULL;
428 	u_char *optp = NULL;
429 	int optlen = 0;
430 	int len, tlen, off;
431 	int drop_hdrlen;
432 	struct tcpcb *tp = NULL;
433 	int thflags;
434 	struct socket *so = 0;
435 	int todrop, acked;
436 	boolean_t ourfinisacked, needoutput = FALSE;
437 	u_long tiwin;
438 	int recvwin;
439 	struct tcpopt to;		/* options in this segment */
440 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
441 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
442 	struct sockaddr_in *next_hop = NULL;
443 	int rstreason; /* For badport_bandlim accounting purposes */
444 	int cpu;
445 	struct ip6_hdr *ip6 = NULL;
446 #ifdef INET6
447 	boolean_t isipv6;
448 #else
449 	const boolean_t isipv6 = FALSE;
450 #endif
451 #ifdef TCPDEBUG
452 	short ostate = 0;
453 #endif
454 
455 	__va_start(ap, m);
456 	off0 = __va_arg(ap, int);
457 	proto = __va_arg(ap, int);
458 	__va_end(ap);
459 
460 	tcpstat.tcps_rcvtotal++;
461 
462 	/* Grab info from and strip MT_TAG mbufs prepended to the chain. */
463 	while  (m->m_type == MT_TAG) {
464 		if (m->_m_tag_id == PACKET_TAG_IPFORWARD)
465 			next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
466 		m = m->m_next;
467 	}
468 
469 #ifdef INET6
470 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
471 #endif
472 
473 	if (isipv6) {
474 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
475 		ip6 = mtod(m, struct ip6_hdr *);
476 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
477 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
478 			tcpstat.tcps_rcvbadsum++;
479 			goto drop;
480 		}
481 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
482 
483 		/*
484 		 * Be proactive about unspecified IPv6 address in source.
485 		 * As we use all-zero to indicate unbounded/unconnected pcb,
486 		 * unspecified IPv6 address can be used to confuse us.
487 		 *
488 		 * Note that packets with unspecified IPv6 destination is
489 		 * already dropped in ip6_input.
490 		 */
491 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
492 			/* XXX stat */
493 			goto drop;
494 		}
495 	} else {
496 		/*
497 		 * Get IP and TCP header together in first mbuf.
498 		 * Note: IP leaves IP header in first mbuf.
499 		 */
500 		if (off0 > sizeof(struct ip)) {
501 			ip_stripoptions(m);
502 			off0 = sizeof(struct ip);
503 		}
504 		/* already checked and pulled up in ip_demux() */
505 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
506 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
507 		ip = mtod(m, struct ip *);
508 		ipov = (struct ipovly *)ip;
509 		th = (struct tcphdr *)((caddr_t)ip + off0);
510 		tlen = ip->ip_len;
511 
512 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
513 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
514 				th->th_sum = m->m_pkthdr.csum_data;
515 			else
516 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
517 						ip->ip_dst.s_addr,
518 						htonl(m->m_pkthdr.csum_data +
519 							ip->ip_len +
520 							IPPROTO_TCP));
521 			th->th_sum ^= 0xffff;
522 		} else {
523 			/*
524 			 * Checksum extended TCP header and data.
525 			 */
526 			len = sizeof(struct ip) + tlen;
527 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
528 			ipov->ih_len = (u_short)tlen;
529 			ipov->ih_len = htons(ipov->ih_len);
530 			th->th_sum = in_cksum(m, len);
531 		}
532 		if (th->th_sum) {
533 			tcpstat.tcps_rcvbadsum++;
534 			goto drop;
535 		}
536 #ifdef INET6
537 		/* Re-initialization for later version check */
538 		ip->ip_v = IPVERSION;
539 #endif
540 	}
541 
542 	/*
543 	 * Check that TCP offset makes sense,
544 	 * pull out TCP options and adjust length.		XXX
545 	 */
546 	off = th->th_off << 2;
547 	/* already checked and pulled up in ip_demux() */
548 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
549 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
550 	tlen -= off;	/* tlen is used instead of ti->ti_len */
551 	if (off > sizeof(struct tcphdr)) {
552 		if (isipv6) {
553 			IP6_EXTHDR_CHECK(m, off0, off, );
554 			ip6 = mtod(m, struct ip6_hdr *);
555 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
556 		} else {
557 			/* already pulled up in ip_demux() */
558 			KASSERT(m->m_len >= sizeof(struct ip) + off,
559 			    ("TCP header and options not in one mbuf: "
560 			     "m_len %d, off %d", m->m_len, off));
561 		}
562 		optlen = off - sizeof(struct tcphdr);
563 		optp = (u_char *)(th + 1);
564 	}
565 	thflags = th->th_flags;
566 
567 #ifdef TCP_DROP_SYNFIN
568 	/*
569 	 * If the drop_synfin option is enabled, drop all packets with
570 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
571 	 * identifying the TCP/IP stack.
572 	 *
573 	 * This is a violation of the TCP specification.
574 	 */
575 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
576 		goto drop;
577 #endif
578 
579 	/*
580 	 * Convert TCP protocol specific fields to host format.
581 	 */
582 	th->th_seq = ntohl(th->th_seq);
583 	th->th_ack = ntohl(th->th_ack);
584 	th->th_win = ntohs(th->th_win);
585 	th->th_urp = ntohs(th->th_urp);
586 
587 	/*
588 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
589 	 * until after ip6_savecontrol() is called and before other functions
590 	 * which don't want those proto headers.
591 	 * Because ip6_savecontrol() is going to parse the mbuf to
592 	 * search for data to be passed up to user-land, it wants mbuf
593 	 * parameters to be unchanged.
594 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
595 	 * latest version of the advanced API (20020110).
596 	 */
597 	drop_hdrlen = off0 + off;
598 
599 	/*
600 	 * Locate pcb for segment.
601 	 */
602 findpcb:
603 	/* IPFIREWALL_FORWARD section */
604 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
605 		/*
606 		 * Transparently forwarded. Pretend to be the destination.
607 		 * already got one like this?
608 		 */
609 		cpu = mycpu->gd_cpuid;
610 		inp = in_pcblookup_hash(&tcbinfo[cpu],
611 					ip->ip_src, th->th_sport,
612 					ip->ip_dst, th->th_dport,
613 					0, m->m_pkthdr.rcvif);
614 		if (!inp) {
615 			/*
616 			 * It's new.  Try to find the ambushing socket.
617 			 */
618 
619 			/*
620 			 * The rest of the ipfw code stores the port in
621 			 * host order.  XXX
622 			 * (The IP address is still in network order.)
623 			 */
624 			in_port_t dport = next_hop->sin_port ?
625 						htons(next_hop->sin_port) :
626 						th->th_dport;
627 
628 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
629 					  next_hop->sin_addr.s_addr, dport);
630 			inp = in_pcblookup_hash(&tcbinfo[cpu],
631 						ip->ip_src, th->th_sport,
632 						next_hop->sin_addr, dport,
633 						1, m->m_pkthdr.rcvif);
634 		}
635 	} else {
636 		if (isipv6) {
637 			inp = in6_pcblookup_hash(&tcbinfo[0],
638 						 &ip6->ip6_src, th->th_sport,
639 						 &ip6->ip6_dst, th->th_dport,
640 						 1, m->m_pkthdr.rcvif);
641 		} else {
642 			cpu = mycpu->gd_cpuid;
643 			inp = in_pcblookup_hash(&tcbinfo[cpu],
644 						ip->ip_src, th->th_sport,
645 						ip->ip_dst, th->th_dport,
646 						1, m->m_pkthdr.rcvif);
647 		}
648 	}
649 
650 	/*
651 	 * If the state is CLOSED (i.e., TCB does not exist) then
652 	 * all data in the incoming segment is discarded.
653 	 * If the TCB exists but is in CLOSED state, it is embryonic,
654 	 * but should either do a listen or a connect soon.
655 	 */
656 	if (inp == NULL) {
657 		if (log_in_vain) {
658 #ifdef INET6
659 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
660 #else
661 			char dbuf[4 * sizeof "123"], sbuf[4 * sizeof "123"];
662 #endif
663 			if (isipv6) {
664 				strcpy(dbuf, "[");
665 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
666 				strcat(dbuf, "]");
667 				strcpy(sbuf, "[");
668 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
669 				strcat(sbuf, "]");
670 			} else {
671 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
672 				strcpy(sbuf, inet_ntoa(ip->ip_src));
673 			}
674 			switch (log_in_vain) {
675 			case 1:
676 				if (!(thflags & TH_SYN))
677 					break;
678 			case 2:
679 				log(LOG_INFO,
680 				    "Connection attempt to TCP %s:%d "
681 				    "from %s:%d flags:0x%02x\n",
682 				    dbuf, ntohs(th->th_dport), sbuf,
683 				    ntohs(th->th_sport), thflags);
684 				break;
685 			default:
686 				break;
687 			}
688 		}
689 		if (blackhole) {
690 			switch (blackhole) {
691 			case 1:
692 				if (thflags & TH_SYN)
693 					goto drop;
694 				break;
695 			case 2:
696 				goto drop;
697 			default:
698 				goto drop;
699 			}
700 		}
701 		rstreason = BANDLIM_RST_CLOSEDPORT;
702 		goto dropwithreset;
703 	}
704 
705 #ifdef IPSEC
706 	if (isipv6) {
707 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
708 			ipsec6stat.in_polvio++;
709 			goto drop;
710 		}
711 	} else {
712 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
713 			ipsecstat.in_polvio++;
714 			goto drop;
715 		}
716 	}
717 #endif
718 #ifdef FAST_IPSEC
719 	if (isipv6) {
720 		if (ipsec6_in_reject(m, inp))
721 			goto drop;
722 	} else {
723 		if (ipsec4_in_reject(m, inp))
724 			goto drop;
725 	}
726 #endif
727 
728 	tp = intotcpcb(inp);
729 	if (tp == NULL) {
730 		rstreason = BANDLIM_RST_CLOSEDPORT;
731 		goto dropwithreset;
732 	}
733 	if (tp->t_state <= TCPS_CLOSED)
734 		goto drop;
735 
736 	/* Unscale the window into a 32-bit value. */
737 	if (!(thflags & TH_SYN))
738 		tiwin = th->th_win << tp->snd_scale;
739 	else
740 		tiwin = th->th_win;
741 
742 	so = inp->inp_socket;
743 
744 #ifdef TCPDEBUG
745 	if (so->so_options & SO_DEBUG) {
746 		ostate = tp->t_state;
747 		if (isipv6)
748 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
749 		else
750 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
751 		tcp_savetcp = *th;
752 	}
753 #endif
754 
755 	bzero(&to, sizeof(to));
756 
757 	if (so->so_options & SO_ACCEPTCONN) {
758 		struct in_conninfo inc;
759 
760 #ifdef INET6
761 		inc.inc_isipv6 = (isipv6 == TRUE);
762 #endif
763 		if (isipv6) {
764 			inc.inc6_faddr = ip6->ip6_src;
765 			inc.inc6_laddr = ip6->ip6_dst;
766 			inc.inc6_route.ro_rt = NULL;		/* XXX */
767 		} else {
768 			inc.inc_faddr = ip->ip_src;
769 			inc.inc_laddr = ip->ip_dst;
770 			inc.inc_route.ro_rt = NULL;		/* XXX */
771 		}
772 		inc.inc_fport = th->th_sport;
773 		inc.inc_lport = th->th_dport;
774 
775 		/*
776 		 * If the state is LISTEN then ignore segment if it contains
777 		 * a RST.  If the segment contains an ACK then it is bad and
778 		 * send a RST.  If it does not contain a SYN then it is not
779 		 * interesting; drop it.
780 		 *
781 		 * If the state is SYN_RECEIVED (syncache) and seg contains
782 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
783 		 * contains a RST, check the sequence number to see if it
784 		 * is a valid reset segment.
785 		 */
786 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
787 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
788 				if (!syncache_expand(&inc, th, &so, m)) {
789 					/*
790 					 * No syncache entry, or ACK was not
791 					 * for our SYN/ACK.  Send a RST.
792 					 */
793 					tcpstat.tcps_badsyn++;
794 					rstreason = BANDLIM_RST_OPENPORT;
795 					goto dropwithreset;
796 				}
797 				if (so == NULL)
798 					/*
799 					 * Could not complete 3-way handshake,
800 					 * connection is being closed down, and
801 					 * syncache will free mbuf.
802 					 */
803 					return;
804 				/*
805 				 * Socket is created in state SYN_RECEIVED.
806 				 * Continue processing segment.
807 				 */
808 				inp = sotoinpcb(so);
809 				tp = intotcpcb(inp);
810 				/*
811 				 * This is what would have happened in
812 				 * tcp_output() when the SYN,ACK was sent.
813 				 */
814 				tp->snd_up = tp->snd_una;
815 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
816 				tp->last_ack_sent = tp->rcv_nxt;
817 /*
818  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
819  * until the _second_ ACK is received:
820  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
821  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
822  *	  move to ESTAB, set snd_wnd to tiwin.
823  */
824 				tp->snd_wnd = tiwin;	/* unscaled */
825 				goto after_listen;
826 			}
827 			if (thflags & TH_RST) {
828 				syncache_chkrst(&inc, th);
829 				goto drop;
830 			}
831 			if (thflags & TH_ACK) {
832 				syncache_badack(&inc);
833 				tcpstat.tcps_badsyn++;
834 				rstreason = BANDLIM_RST_OPENPORT;
835 				goto dropwithreset;
836 			}
837 			goto drop;
838 		}
839 
840 		/*
841 		 * Segment's flags are (SYN) or (SYN | FIN).
842 		 */
843 #ifdef INET6
844 		/*
845 		 * If deprecated address is forbidden,
846 		 * we do not accept SYN to deprecated interface
847 		 * address to prevent any new inbound connection from
848 		 * getting established.
849 		 * When we do not accept SYN, we send a TCP RST,
850 		 * with deprecated source address (instead of dropping
851 		 * it).  We compromise it as it is much better for peer
852 		 * to send a RST, and RST will be the final packet
853 		 * for the exchange.
854 		 *
855 		 * If we do not forbid deprecated addresses, we accept
856 		 * the SYN packet.  RFC2462 does not suggest dropping
857 		 * SYN in this case.
858 		 * If we decipher RFC2462 5.5.4, it says like this:
859 		 * 1. use of deprecated addr with existing
860 		 *    communication is okay - "SHOULD continue to be
861 		 *    used"
862 		 * 2. use of it with new communication:
863 		 *   (2a) "SHOULD NOT be used if alternate address
864 		 *	  with sufficient scope is available"
865 		 *   (2b) nothing mentioned otherwise.
866 		 * Here we fall into (2b) case as we have no choice in
867 		 * our source address selection - we must obey the peer.
868 		 *
869 		 * The wording in RFC2462 is confusing, and there are
870 		 * multiple description text for deprecated address
871 		 * handling - worse, they are not exactly the same.
872 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
873 		 */
874 		if (isipv6 && !ip6_use_deprecated) {
875 			struct in6_ifaddr *ia6;
876 
877 			if ((ia6 = ip6_getdstifaddr(m)) &&
878 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
879 				tp = NULL;
880 				rstreason = BANDLIM_RST_OPENPORT;
881 				goto dropwithreset;
882 			}
883 		}
884 #endif
885 		/*
886 		 * If it is from this socket, drop it, it must be forged.
887 		 * Don't bother responding if the destination was a broadcast.
888 		 */
889 		if (th->th_dport == th->th_sport) {
890 			if (isipv6) {
891 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
892 						       &ip6->ip6_src))
893 					goto drop;
894 			} else {
895 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
896 					goto drop;
897 			}
898 		}
899 		/*
900 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
901 		 *
902 		 * Note that it is quite possible to receive unicast
903 		 * link-layer packets with a broadcast IP address. Use
904 		 * in_broadcast() to find them.
905 		 */
906 		if (m->m_flags & (M_BCAST | M_MCAST))
907 			goto drop;
908 		if (isipv6) {
909 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
910 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
911 				goto drop;
912 		} else {
913 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
914 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
915 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
916 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
917 				goto drop;
918 		}
919 		/*
920 		 * SYN appears to be valid; create compressed TCP state
921 		 * for syncache, or perform t/tcp connection.
922 		 */
923 		if (so->so_qlen <= so->so_qlimit) {
924 			tcp_dooptions(&to, optp, optlen, TRUE);
925 			if (!syncache_add(&inc, &to, th, &so, m))
926 				goto drop;
927 			if (so == NULL)
928 				/*
929 				 * Entry added to syncache, mbuf used to
930 				 * send SYN,ACK packet.
931 				 */
932 				return;
933 			/*
934 			 * Segment passed TAO tests.
935 			 */
936 			inp = sotoinpcb(so);
937 			tp = intotcpcb(inp);
938 			tp->snd_wnd = tiwin;
939 			tp->t_starttime = ticks;
940 			tp->t_state = TCPS_ESTABLISHED;
941 
942 			/*
943 			 * If there is a FIN, or if there is data and the
944 			 * connection is local, then delay SYN,ACK(SYN) in
945 			 * the hope of piggy-backing it on a response
946 			 * segment.  Otherwise must send ACK now in case
947 			 * the other side is slow starting.
948 			 */
949 			if (DELAY_ACK(tp) &&
950 			    ((thflags & TH_FIN) ||
951 			     (tlen != 0 &&
952 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
953 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
954 				callout_reset(tp->tt_delack, tcp_delacktime,
955 						tcp_timer_delack, tp);
956 				tp->t_flags |= TF_NEEDSYN;
957 			} else
958 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
959 
960 			tcpstat.tcps_connects++;
961 			soisconnected(so);
962 			goto trimthenstep6;
963 		}
964 		goto drop;
965 	}
966 after_listen:
967 
968 	/* should not happen - syncache should pick up these connections */
969 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
970 
971 	/*
972 	 * Segment received on connection.
973 	 * Reset idle time and keep-alive timer.
974 	 */
975 	tp->t_rcvtime = ticks;
976 	if (TCPS_HAVEESTABLISHED(tp->t_state))
977 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
978 
979 	/*
980 	 * Process options.
981 	 * XXX this is tradtitional behavior, may need to be cleaned up.
982 	 */
983 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
984 	if (thflags & TH_SYN) {
985 		if (to.to_flags & TOF_SCALE) {
986 			tp->t_flags |= TF_RCVD_SCALE;
987 			tp->requested_s_scale = to.to_requested_s_scale;
988 		}
989 		if (to.to_flags & TOF_TS) {
990 			tp->t_flags |= TF_RCVD_TSTMP;
991 			tp->ts_recent = to.to_tsval;
992 			tp->ts_recent_age = ticks;
993 		}
994 		if (to.to_flags & (TOF_CC | TOF_CCNEW))
995 			tp->t_flags |= TF_RCVD_CC;
996 		if (to.to_flags & TOF_MSS)
997 			tcp_mss(tp, to.to_mss);
998 	}
999 
1000 	/*
1001 	 * Header prediction: check for the two common cases
1002 	 * of a uni-directional data xfer.  If the packet has
1003 	 * no control flags, is in-sequence, the window didn't
1004 	 * change and we're not retransmitting, it's a
1005 	 * candidate.  If the length is zero and the ack moved
1006 	 * forward, we're the sender side of the xfer.  Just
1007 	 * free the data acked & wake any higher level process
1008 	 * that was blocked waiting for space.  If the length
1009 	 * is non-zero and the ack didn't move, we're the
1010 	 * receiver side.  If we're getting packets in-order
1011 	 * (the reassembly queue is empty), add the data to
1012 	 * the socket buffer and note that we need a delayed ack.
1013 	 * Make sure that the hidden state-flags are also off.
1014 	 * Since we check for TCPS_ESTABLISHED above, it can only
1015 	 * be TH_NEEDSYN.
1016 	 */
1017 	if (tp->t_state == TCPS_ESTABLISHED &&
1018 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1019 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1020 	    (!(to.to_flags & TOF_TS) ||
1021 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1022 	    /*
1023 	     * Using the CC option is compulsory if once started:
1024 	     *   the segment is OK if no T/TCP was negotiated or
1025 	     *   if the segment has a CC option equal to CCrecv
1026 	     */
1027 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
1028 	     ((to.to_flags & TOF_CC) && to.to_cc == tp->cc_recv)) &&
1029 	    th->th_seq == tp->rcv_nxt &&
1030 	    tiwin && tiwin == tp->snd_wnd &&
1031 	    tp->snd_nxt == tp->snd_max) {
1032 
1033 		/*
1034 		 * If last ACK falls within this segment's sequence numbers,
1035 		 * record the timestamp.
1036 		 * NOTE that the test is modified according to the latest
1037 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1038 		 */
1039 		if ((to.to_flags & TOF_TS) &&
1040 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1041 			tp->ts_recent_age = ticks;
1042 			tp->ts_recent = to.to_tsval;
1043 		}
1044 
1045 		if (tlen == 0) {
1046 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1047 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1048 			    tp->snd_cwnd >= tp->snd_wnd &&
1049 			    !IN_FASTRECOVERY(tp)) {
1050 				/*
1051 				 * this is a pure ack for outstanding data.
1052 				 */
1053 				++tcpstat.tcps_predack;
1054 				/*
1055 				 * "bad retransmit" recovery
1056 				 *
1057 				 * If Eifel detection applies, then
1058 				 * it is deterministic, so use it
1059 				 * unconditionally over the old heuristic.
1060 				 * Otherwise, fall back to the old heuristic.
1061 				 */
1062 				if (tcp_do_eifel_detect &&
1063 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1064 				    (tp->t_flags & TF_FIRSTACCACK)) {
1065 					/* Eifel detection applicable. */
1066 					if (to.to_tsecr < tp->t_rexmtTS) {
1067 						tcp_revert_congestion_state(tp);
1068 						++tcpstat.tcps_eifeldetected;
1069 					}
1070 				} else if (tp->t_rxtshift == 1 &&
1071 					   ticks < tp->t_badrxtwin) {
1072 					tcp_revert_congestion_state(tp);
1073 					++tcpstat.tcps_rttdetected;
1074 				}
1075 				tp->t_flags &= ~(TF_FIRSTACCACK |
1076 						 TF_FASTREXMT | TF_EARLYREXMT);
1077 				/*
1078 				 * Recalculate the retransmit timer / rtt.
1079 				 *
1080 				 * Some machines (certain windows boxes)
1081 				 * send broken timestamp replies during the
1082 				 * SYN+ACK phase, ignore timestamps of 0.
1083 				 */
1084 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1085 					tcp_xmit_timer(tp,
1086 						       ticks - to.to_tsecr + 1);
1087 				} else if (tp->t_rtttime &&
1088 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1089 					tcp_xmit_timer(tp,
1090 						       ticks - tp->t_rtttime);
1091 				}
1092 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1093 				acked = th->th_ack - tp->snd_una;
1094 				tcpstat.tcps_rcvackpack++;
1095 				tcpstat.tcps_rcvackbyte += acked;
1096 				sbdrop(&so->so_snd, acked);
1097 				tp->snd_recover = th->th_ack - 1;
1098 				tp->snd_una = th->th_ack;
1099 				tp->t_dupacks = 0;
1100 				m_freem(m);
1101 				ND6_HINT(tp); /* some progress has been done */
1102 
1103 				/*
1104 				 * If all outstanding data are acked, stop
1105 				 * retransmit timer, otherwise restart timer
1106 				 * using current (possibly backed-off) value.
1107 				 * If process is waiting for space,
1108 				 * wakeup/selwakeup/signal.  If data
1109 				 * are ready to send, let tcp_output
1110 				 * decide between more output or persist.
1111 				 */
1112 				if (tp->snd_una == tp->snd_max)
1113 					callout_stop(tp->tt_rexmt);
1114 				else if (!callout_active(tp->tt_persist))
1115 					callout_reset(tp->tt_rexmt,
1116 						      tp->t_rxtcur,
1117 						      tcp_timer_rexmt, tp);
1118 
1119 				sowwakeup(so);
1120 				if (so->so_snd.sb_cc)
1121 					(void) tcp_output(tp);
1122 				return;
1123 			}
1124 		} else if (th->th_ack == tp->snd_una &&
1125 		    LIST_EMPTY(&tp->t_segq) &&
1126 		    tlen <= sbspace(&so->so_rcv)) {
1127 			/*
1128 			 * this is a pure, in-sequence data packet
1129 			 * with nothing on the reassembly queue and
1130 			 * we have enough buffer space to take it.
1131 			 */
1132 			++tcpstat.tcps_preddat;
1133 			tp->rcv_nxt += tlen;
1134 			tcpstat.tcps_rcvpack++;
1135 			tcpstat.tcps_rcvbyte += tlen;
1136 			ND6_HINT(tp);	/* some progress has been done */
1137 			/*
1138 			 * Add data to socket buffer.
1139 			 */
1140 			if (so->so_state & SS_CANTRCVMORE) {
1141 				m_freem(m);
1142 			} else {
1143 				m_adj(m, drop_hdrlen); /* delayed header drop */
1144 				sbappend(&so->so_rcv, m);
1145 			}
1146 			sorwakeup(so);
1147 
1148 			/*
1149 			 * This code is responsible for most of the ACKs
1150 			 * the TCP stack sends back after receiving a data
1151 			 * packet.  Note that the DELAY_ACK check fails if
1152 			 * the delack timer is already running, which results
1153 			 * in an ack being sent every other packet (which is
1154 			 * what we want).
1155 			 */
1156 			if (DELAY_ACK(tp)) {
1157 				callout_reset(tp->tt_delack, tcp_delacktime,
1158 				    tcp_timer_delack, tp);
1159 			} else {
1160 				tp->t_flags |= TF_ACKNOW;
1161 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1162 					tp->t_flags |= TF_ONOUTPUTQ;
1163 					tp->tt_cpu = mycpu->gd_cpuid;
1164 					TAILQ_INSERT_TAIL(
1165 					    &tcpcbackq[tp->tt_cpu],
1166 					    tp, t_outputq);
1167 				}
1168 			}
1169 			return;
1170 		}
1171 	}
1172 
1173 	/*
1174 	 * Calculate amount of space in receive window,
1175 	 * and then do TCP input processing.
1176 	 * Receive window is amount of space in rcv queue,
1177 	 * but not less than advertised window.
1178 	 */
1179 	recvwin = sbspace(&so->so_rcv);
1180 	if (recvwin < 0)
1181 		recvwin = 0;
1182 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1183 
1184 	switch (tp->t_state) {
1185 	/*
1186 	 * If the state is SYN_RECEIVED:
1187 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1188 	 */
1189 	case TCPS_SYN_RECEIVED:
1190 		if ((thflags & TH_ACK) &&
1191 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1192 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1193 				rstreason = BANDLIM_RST_OPENPORT;
1194 				goto dropwithreset;
1195 		}
1196 		break;
1197 
1198 	/*
1199 	 * If the state is SYN_SENT:
1200 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1201 	 *	if seg contains a RST, then drop the connection.
1202 	 *	if seg does not contain SYN, then drop it.
1203 	 * Otherwise this is an acceptable SYN segment
1204 	 *	initialize tp->rcv_nxt and tp->irs
1205 	 *	if seg contains ack then advance tp->snd_una
1206 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1207 	 *	arrange for segment to be acked (eventually)
1208 	 *	continue processing rest of data/controls, beginning with URG
1209 	 */
1210 	case TCPS_SYN_SENT:
1211 		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1212 			taop = &tao_noncached;
1213 			bzero(taop, sizeof(*taop));
1214 		}
1215 
1216 		if ((thflags & TH_ACK) &&
1217 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1218 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1219 			/*
1220 			 * If we have a cached CCsent for the remote host,
1221 			 * hence we haven't just crashed and restarted,
1222 			 * do not send a RST.  This may be a retransmission
1223 			 * from the other side after our earlier ACK was lost.
1224 			 * Our new SYN, when it arrives, will serve as the
1225 			 * needed ACK.
1226 			 */
1227 			if (taop->tao_ccsent != 0)
1228 				goto drop;
1229 			else {
1230 				rstreason = BANDLIM_UNLIMITED;
1231 				goto dropwithreset;
1232 			}
1233 		}
1234 		if (thflags & TH_RST) {
1235 			if (thflags & TH_ACK)
1236 				tp = tcp_drop(tp, ECONNREFUSED);
1237 			goto drop;
1238 		}
1239 		if (!(thflags & TH_SYN))
1240 			goto drop;
1241 		tp->snd_wnd = th->th_win;	/* initial send window */
1242 		tp->cc_recv = to.to_cc;		/* foreign CC */
1243 
1244 		tp->irs = th->th_seq;
1245 		tcp_rcvseqinit(tp);
1246 		if (thflags & TH_ACK) {
1247 			/*
1248 			 * Our SYN was acked.  If segment contains CC.ECHO
1249 			 * option, check it to make sure this segment really
1250 			 * matches our SYN.  If not, just drop it as old
1251 			 * duplicate, but send an RST if we're still playing
1252 			 * by the old rules.  If no CC.ECHO option, make sure
1253 			 * we don't get fooled into using T/TCP.
1254 			 */
1255 			if (to.to_flags & TOF_CCECHO) {
1256 				if (tp->cc_send != to.to_ccecho) {
1257 					if (taop->tao_ccsent != 0)
1258 						goto drop;
1259 					else {
1260 						rstreason = BANDLIM_UNLIMITED;
1261 						goto dropwithreset;
1262 					}
1263 				}
1264 			} else
1265 				tp->t_flags &= ~TF_RCVD_CC;
1266 			tcpstat.tcps_connects++;
1267 			soisconnected(so);
1268 			/* Do window scaling on this connection? */
1269 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1270 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1271 				tp->snd_scale = tp->requested_s_scale;
1272 				tp->rcv_scale = tp->request_r_scale;
1273 			}
1274 			/* Segment is acceptable, update cache if undefined. */
1275 			if (taop->tao_ccsent == 0)
1276 				taop->tao_ccsent = to.to_ccecho;
1277 
1278 			tp->rcv_adv += tp->rcv_wnd;
1279 			tp->snd_una++;		/* SYN is acked */
1280 			/*
1281 			 * If there's data, delay ACK; if there's also a FIN
1282 			 * ACKNOW will be turned on later.
1283 			 */
1284 			if (DELAY_ACK(tp) && tlen != 0)
1285 				callout_reset(tp->tt_delack, tcp_delacktime,
1286 				    tcp_timer_delack, tp);
1287 			else
1288 				tp->t_flags |= TF_ACKNOW;
1289 			/*
1290 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1291 			 * Transitions:
1292 			 *	SYN_SENT  --> ESTABLISHED
1293 			 *	SYN_SENT* --> FIN_WAIT_1
1294 			 */
1295 			tp->t_starttime = ticks;
1296 			if (tp->t_flags & TF_NEEDFIN) {
1297 				tp->t_state = TCPS_FIN_WAIT_1;
1298 				tp->t_flags &= ~TF_NEEDFIN;
1299 				thflags &= ~TH_SYN;
1300 			} else {
1301 				tp->t_state = TCPS_ESTABLISHED;
1302 				callout_reset(tp->tt_keep, tcp_keepidle,
1303 					      tcp_timer_keep, tp);
1304 			}
1305 		} else {
1306 			/*
1307 			 * Received initial SYN in SYN-SENT[*] state =>
1308 			 * simultaneous open.  If segment contains CC option
1309 			 * and there is a cached CC, apply TAO test.
1310 			 * If it succeeds, connection is * half-synchronized.
1311 			 * Otherwise, do 3-way handshake:
1312 			 *	  SYN-SENT -> SYN-RECEIVED
1313 			 *	  SYN-SENT* -> SYN-RECEIVED*
1314 			 * If there was no CC option, clear cached CC value.
1315 			 */
1316 			tp->t_flags |= TF_ACKNOW;
1317 			callout_stop(tp->tt_rexmt);
1318 			if (to.to_flags & TOF_CC) {
1319 				if (taop->tao_cc != 0 &&
1320 				    CC_GT(to.to_cc, taop->tao_cc)) {
1321 					/*
1322 					 * update cache and make transition:
1323 					 *	  SYN-SENT -> ESTABLISHED*
1324 					 *	  SYN-SENT* -> FIN-WAIT-1*
1325 					 */
1326 					taop->tao_cc = to.to_cc;
1327 					tp->t_starttime = ticks;
1328 					if (tp->t_flags & TF_NEEDFIN) {
1329 						tp->t_state = TCPS_FIN_WAIT_1;
1330 						tp->t_flags &= ~TF_NEEDFIN;
1331 					} else {
1332 						tp->t_state = TCPS_ESTABLISHED;
1333 						callout_reset(tp->tt_keep,
1334 							      tcp_keepidle,
1335 							      tcp_timer_keep,
1336 							      tp);
1337 					}
1338 					tp->t_flags |= TF_NEEDSYN;
1339 				} else
1340 					tp->t_state = TCPS_SYN_RECEIVED;
1341 			} else {
1342 				/* CC.NEW or no option => invalidate cache */
1343 				taop->tao_cc = 0;
1344 				tp->t_state = TCPS_SYN_RECEIVED;
1345 			}
1346 		}
1347 
1348 trimthenstep6:
1349 		/*
1350 		 * Advance th->th_seq to correspond to first data byte.
1351 		 * If data, trim to stay within window,
1352 		 * dropping FIN if necessary.
1353 		 */
1354 		th->th_seq++;
1355 		if (tlen > tp->rcv_wnd) {
1356 			todrop = tlen - tp->rcv_wnd;
1357 			m_adj(m, -todrop);
1358 			tlen = tp->rcv_wnd;
1359 			thflags &= ~TH_FIN;
1360 			tcpstat.tcps_rcvpackafterwin++;
1361 			tcpstat.tcps_rcvbyteafterwin += todrop;
1362 		}
1363 		tp->snd_wl1 = th->th_seq - 1;
1364 		tp->rcv_up = th->th_seq;
1365 		/*
1366 		 * Client side of transaction: already sent SYN and data.
1367 		 * If the remote host used T/TCP to validate the SYN,
1368 		 * our data will be ACK'd; if so, enter normal data segment
1369 		 * processing in the middle of step 5, ack processing.
1370 		 * Otherwise, goto step 6.
1371 		 */
1372 		if (thflags & TH_ACK)
1373 			goto process_ACK;
1374 
1375 		goto step6;
1376 
1377 	/*
1378 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1379 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1380 	 *		if state == TIME_WAIT and connection duration > MSL,
1381 	 *		    drop packet and send RST;
1382 	 *
1383 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1384 	 *		    ack the FIN (and data) in retransmission queue.
1385 	 *		    Complete close and delete TCPCB.  Then reprocess
1386 	 *		    segment, hoping to find new TCPCB in LISTEN state;
1387 	 *
1388 	 *		else must be old SYN; drop it.
1389 	 *	else do normal processing.
1390 	 */
1391 	case TCPS_LAST_ACK:
1392 	case TCPS_CLOSING:
1393 	case TCPS_TIME_WAIT:
1394 		if ((thflags & TH_SYN) &&
1395 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1396 			if (tp->t_state == TCPS_TIME_WAIT &&
1397 					(ticks - tp->t_starttime) > tcp_msl) {
1398 				rstreason = BANDLIM_UNLIMITED;
1399 				goto dropwithreset;
1400 			}
1401 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1402 				tp = tcp_close(tp);
1403 				goto findpcb;
1404 			}
1405 			else
1406 				goto drop;
1407 		}
1408 		break;  /* continue normal processing */
1409 	}
1410 
1411 	/*
1412 	 * States other than LISTEN or SYN_SENT.
1413 	 * First check the RST flag and sequence number since reset segments
1414 	 * are exempt from the timestamp and connection count tests.  This
1415 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1416 	 * below which allowed reset segments in half the sequence space
1417 	 * to fall though and be processed (which gives forged reset
1418 	 * segments with a random sequence number a 50 percent chance of
1419 	 * killing a connection).
1420 	 * Then check timestamp, if present.
1421 	 * Then check the connection count, if present.
1422 	 * Then check that at least some bytes of segment are within
1423 	 * receive window.  If segment begins before rcv_nxt,
1424 	 * drop leading data (and SYN); if nothing left, just ack.
1425 	 *
1426 	 *
1427 	 * If the RST bit is set, check the sequence number to see
1428 	 * if this is a valid reset segment.
1429 	 * RFC 793 page 37:
1430 	 *   In all states except SYN-SENT, all reset (RST) segments
1431 	 *   are validated by checking their SEQ-fields.  A reset is
1432 	 *   valid if its sequence number is in the window.
1433 	 * Note: this does not take into account delayed ACKs, so
1434 	 *   we should test against last_ack_sent instead of rcv_nxt.
1435 	 *   The sequence number in the reset segment is normally an
1436 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1437 	 *   send a reset with the sequence number at the rightmost edge
1438 	 *   of our receive window, and we have to handle this case.
1439 	 * If we have multiple segments in flight, the intial reset
1440 	 * segment sequence numbers will be to the left of last_ack_sent,
1441 	 * but they will eventually catch up.
1442 	 * In any case, it never made sense to trim reset segments to
1443 	 * fit the receive window since RFC 1122 says:
1444 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1445 	 *
1446 	 *    A TCP SHOULD allow a received RST segment to include data.
1447 	 *
1448 	 *    DISCUSSION
1449 	 *	   It has been suggested that a RST segment could contain
1450 	 *	   ASCII text that encoded and explained the cause of the
1451 	 *	   RST.	 No standard has yet been established for such
1452 	 *	   data.
1453 	 *
1454 	 * If the reset segment passes the sequence number test examine
1455 	 * the state:
1456 	 *    SYN_RECEIVED STATE:
1457 	 *	If passive open, return to LISTEN state.
1458 	 *	If active open, inform user that connection was refused.
1459 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1460 	 *	Inform user that connection was reset, and close tcb.
1461 	 *    CLOSING, LAST_ACK STATES:
1462 	 *	Close the tcb.
1463 	 *    TIME_WAIT STATE:
1464 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1465 	 *	RFC 1337.
1466 	 */
1467 	if (thflags & TH_RST) {
1468 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1469 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1470 			switch (tp->t_state) {
1471 
1472 			case TCPS_SYN_RECEIVED:
1473 				so->so_error = ECONNREFUSED;
1474 				goto close;
1475 
1476 			case TCPS_ESTABLISHED:
1477 			case TCPS_FIN_WAIT_1:
1478 			case TCPS_FIN_WAIT_2:
1479 			case TCPS_CLOSE_WAIT:
1480 				so->so_error = ECONNRESET;
1481 			close:
1482 				tp->t_state = TCPS_CLOSED;
1483 				tcpstat.tcps_drops++;
1484 				tp = tcp_close(tp);
1485 				break;
1486 
1487 			case TCPS_CLOSING:
1488 			case TCPS_LAST_ACK:
1489 				tp = tcp_close(tp);
1490 				break;
1491 
1492 			case TCPS_TIME_WAIT:
1493 				break;
1494 			}
1495 		}
1496 		goto drop;
1497 	}
1498 
1499 	/*
1500 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1501 	 * and it's less than ts_recent, drop it.
1502 	 */
1503 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1504 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1505 
1506 		/* Check to see if ts_recent is over 24 days old.  */
1507 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1508 			/*
1509 			 * Invalidate ts_recent.  If this segment updates
1510 			 * ts_recent, the age will be reset later and ts_recent
1511 			 * will get a valid value.  If it does not, setting
1512 			 * ts_recent to zero will at least satisfy the
1513 			 * requirement that zero be placed in the timestamp
1514 			 * echo reply when ts_recent isn't valid.  The
1515 			 * age isn't reset until we get a valid ts_recent
1516 			 * because we don't want out-of-order segments to be
1517 			 * dropped when ts_recent is old.
1518 			 */
1519 			tp->ts_recent = 0;
1520 		} else {
1521 			tcpstat.tcps_rcvduppack++;
1522 			tcpstat.tcps_rcvdupbyte += tlen;
1523 			tcpstat.tcps_pawsdrop++;
1524 			if (tlen)
1525 				goto dropafterack;
1526 			goto drop;
1527 		}
1528 	}
1529 
1530 	/*
1531 	 * T/TCP mechanism
1532 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1533 	 *   or if its CC is wrong then drop the segment.
1534 	 *   RST segments do not have to comply with this.
1535 	 */
1536 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1537 	    (!(to.to_flags & TOF_CC) || tp->cc_recv != to.to_cc))
1538 		goto dropafterack;
1539 
1540 	/*
1541 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1542 	 * this connection before trimming the data to fit the receive
1543 	 * window.  Check the sequence number versus IRS since we know
1544 	 * the sequence numbers haven't wrapped.  This is a partial fix
1545 	 * for the "LAND" DoS attack.
1546 	 */
1547 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1548 		rstreason = BANDLIM_RST_OPENPORT;
1549 		goto dropwithreset;
1550 	}
1551 
1552 	todrop = tp->rcv_nxt - th->th_seq;
1553 	if (todrop > 0) {
1554 		if (thflags & TH_SYN) {
1555 			thflags &= ~TH_SYN;
1556 			th->th_seq++;
1557 			if (th->th_urp > 1)
1558 				th->th_urp--;
1559 			else
1560 				thflags &= ~TH_URG;
1561 			todrop--;
1562 		}
1563 		/*
1564 		 * Following if statement from Stevens, vol. 2, p. 960.
1565 		 */
1566 		if (todrop > tlen ||
1567 		    (todrop == tlen && !(thflags & TH_FIN))) {
1568 			/*
1569 			 * Any valid FIN must be to the left of the window.
1570 			 * At this point the FIN must be a duplicate or out
1571 			 * of sequence; drop it.
1572 			 */
1573 			thflags &= ~TH_FIN;
1574 
1575 			/*
1576 			 * Send an ACK to resynchronize and drop any data.
1577 			 * But keep on processing for RST or ACK.
1578 			 */
1579 			tp->t_flags |= TF_ACKNOW;
1580 			todrop = tlen;
1581 			tcpstat.tcps_rcvduppack++;
1582 			tcpstat.tcps_rcvdupbyte += todrop;
1583 		} else {
1584 			tcpstat.tcps_rcvpartduppack++;
1585 			tcpstat.tcps_rcvpartdupbyte += todrop;
1586 		}
1587 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1588 		th->th_seq += todrop;
1589 		tlen -= todrop;
1590 		if (th->th_urp > todrop)
1591 			th->th_urp -= todrop;
1592 		else {
1593 			thflags &= ~TH_URG;
1594 			th->th_urp = 0;
1595 		}
1596 	}
1597 
1598 	/*
1599 	 * If new data are received on a connection after the
1600 	 * user processes are gone, then RST the other end.
1601 	 */
1602 	if ((so->so_state & SS_NOFDREF) &&
1603 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1604 		tp = tcp_close(tp);
1605 		tcpstat.tcps_rcvafterclose++;
1606 		rstreason = BANDLIM_UNLIMITED;
1607 		goto dropwithreset;
1608 	}
1609 
1610 	/*
1611 	 * If segment ends after window, drop trailing data
1612 	 * (and PUSH and FIN); if nothing left, just ACK.
1613 	 */
1614 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1615 	if (todrop > 0) {
1616 		tcpstat.tcps_rcvpackafterwin++;
1617 		if (todrop >= tlen) {
1618 			tcpstat.tcps_rcvbyteafterwin += tlen;
1619 			/*
1620 			 * If a new connection request is received
1621 			 * while in TIME_WAIT, drop the old connection
1622 			 * and start over if the sequence numbers
1623 			 * are above the previous ones.
1624 			 */
1625 			if (thflags & TH_SYN &&
1626 			    tp->t_state == TCPS_TIME_WAIT &&
1627 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1628 				tp = tcp_close(tp);
1629 				goto findpcb;
1630 			}
1631 			/*
1632 			 * If window is closed can only take segments at
1633 			 * window edge, and have to drop data and PUSH from
1634 			 * incoming segments.  Continue processing, but
1635 			 * remember to ack.  Otherwise, drop segment
1636 			 * and ack.
1637 			 */
1638 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1639 				tp->t_flags |= TF_ACKNOW;
1640 				tcpstat.tcps_rcvwinprobe++;
1641 			} else
1642 				goto dropafterack;
1643 		} else
1644 			tcpstat.tcps_rcvbyteafterwin += todrop;
1645 		m_adj(m, -todrop);
1646 		tlen -= todrop;
1647 		thflags &= ~(TH_PUSH | TH_FIN);
1648 	}
1649 
1650 	/*
1651 	 * If last ACK falls within this segment's sequence numbers,
1652 	 * record its timestamp.
1653 	 * NOTE that the test is modified according to the latest
1654 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1655 	 */
1656 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1657 		tp->ts_recent_age = ticks;
1658 		tp->ts_recent = to.to_tsval;
1659 	}
1660 
1661 	/*
1662 	 * If a SYN is in the window, then this is an
1663 	 * error and we send an RST and drop the connection.
1664 	 */
1665 	if (thflags & TH_SYN) {
1666 		tp = tcp_drop(tp, ECONNRESET);
1667 		rstreason = BANDLIM_UNLIMITED;
1668 		goto dropwithreset;
1669 	}
1670 
1671 	/*
1672 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1673 	 * flag is on (half-synchronized state), then queue data for
1674 	 * later processing; else drop segment and return.
1675 	 */
1676 	if (!(thflags & TH_ACK)) {
1677 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1678 		    (tp->t_flags & TF_NEEDSYN))
1679 			goto step6;
1680 		else
1681 			goto drop;
1682 	}
1683 
1684 	/*
1685 	 * Ack processing.
1686 	 */
1687 	switch (tp->t_state) {
1688 	/*
1689 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1690 	 * ESTABLISHED state and continue processing.
1691 	 * The ACK was checked above.
1692 	 */
1693 	case TCPS_SYN_RECEIVED:
1694 
1695 		tcpstat.tcps_connects++;
1696 		soisconnected(so);
1697 		/* Do window scaling? */
1698 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1699 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1700 			tp->snd_scale = tp->requested_s_scale;
1701 			tp->rcv_scale = tp->request_r_scale;
1702 		}
1703 		/*
1704 		 * Upon successful completion of 3-way handshake,
1705 		 * update cache.CC if it was undefined, pass any queued
1706 		 * data to the user, and advance state appropriately.
1707 		 */
1708 		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1709 		    taop->tao_cc == 0)
1710 			taop->tao_cc = tp->cc_recv;
1711 
1712 		/*
1713 		 * Make transitions:
1714 		 *      SYN-RECEIVED  -> ESTABLISHED
1715 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1716 		 */
1717 		tp->t_starttime = ticks;
1718 		if (tp->t_flags & TF_NEEDFIN) {
1719 			tp->t_state = TCPS_FIN_WAIT_1;
1720 			tp->t_flags &= ~TF_NEEDFIN;
1721 		} else {
1722 			tp->t_state = TCPS_ESTABLISHED;
1723 			callout_reset(tp->tt_keep, tcp_keepidle,
1724 				      tcp_timer_keep, tp);
1725 		}
1726 		/*
1727 		 * If segment contains data or ACK, will call tcp_reass()
1728 		 * later; if not, do so now to pass queued data to user.
1729 		 */
1730 		if (tlen == 0 && !(thflags & TH_FIN))
1731 			(void) tcp_reass(tp, NULL, NULL, NULL);
1732 		/* fall into ... */
1733 
1734 	/*
1735 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1736 	 * ACKs.  If the ack is in the range
1737 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1738 	 * then advance tp->snd_una to th->th_ack and drop
1739 	 * data from the retransmission queue.  If this ACK reflects
1740 	 * more up to date window information we update our window information.
1741 	 */
1742 	case TCPS_ESTABLISHED:
1743 	case TCPS_FIN_WAIT_1:
1744 	case TCPS_FIN_WAIT_2:
1745 	case TCPS_CLOSE_WAIT:
1746 	case TCPS_CLOSING:
1747 	case TCPS_LAST_ACK:
1748 	case TCPS_TIME_WAIT:
1749 
1750 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1751 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1752 				tp->t_dupacks = 0;
1753 				break;
1754 			}
1755 			tcpstat.tcps_rcvdupack++;
1756 			/*
1757 			 * If we have outstanding data (other than
1758 			 * a window probe), this is a completely
1759 			 * duplicate ack (ie, window info didn't
1760 			 * change), the ack is the biggest we've
1761 			 * seen and we've seen exactly our rexmt
1762 			 * threshhold of them, assume a packet
1763 			 * has been dropped and retransmit it.
1764 			 * Kludge snd_nxt & the congestion
1765 			 * window so we send only this one
1766 			 * packet.
1767 			 *
1768 			 * We know we're losing at the current
1769 			 * window size so do congestion avoidance
1770 			 * (set ssthresh to half the current window
1771 			 * and pull our congestion window back to
1772 			 * the new ssthresh).
1773 			 *
1774 			 * Dup acks mean that packets have left the
1775 			 * network (they're now cached at the receiver)
1776 			 * so bump cwnd by the amount in the receiver
1777 			 * to keep a constant cwnd packets in the
1778 			 * network.
1779 			 */
1780 			if (!callout_active(tp->tt_rexmt) ||
1781 			    th->th_ack != tp->snd_una) {
1782 				tp->t_dupacks = 0;
1783 				break;
1784 			}
1785 			if (IN_FASTRECOVERY(tp)) {
1786 				tp->snd_cwnd += tp->t_maxseg;
1787 				(void) tcp_output(tp);
1788 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1789 				tcp_seq onxt;
1790 				u_int win;
1791 
1792 				if (SEQ_LEQ(th->th_ack, tp->snd_recover)) {
1793 					tp->t_dupacks = 0;
1794 					break;
1795 				}
1796 fastretransmit:
1797 				if (tcp_do_eifel_detect &&
1798 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1799 					tcp_save_congestion_state(tp);
1800 					tp->t_flags |= TF_FASTREXMT;
1801 				}
1802 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1803 				    tp->t_maxseg;
1804 				if (win < 2)
1805 					win = 2;
1806 				tp->snd_ssthresh = win * tp->t_maxseg;
1807 				ENTER_FASTRECOVERY(tp);
1808 				tp->snd_recover = tp->snd_max;
1809 				callout_stop(tp->tt_rexmt);
1810 				tp->t_rtttime = 0;
1811 				onxt = tp->snd_nxt;
1812 				tp->snd_nxt = th->th_ack;
1813 				tp->snd_cwnd = tp->t_maxseg;
1814 				(void) tcp_output(tp);
1815 				++tcpstat.tcps_sndfastrexmit;
1816 				KASSERT(tp->snd_limited <= 2,
1817 				    ("tp->snd_limited too big"));
1818 				tp->snd_cwnd = tp->snd_ssthresh +
1819 				    (tp->t_maxseg *
1820 				     (tp->t_dupacks - tp->snd_limited));
1821 				if (SEQ_GT(onxt, tp->snd_nxt))
1822 					tp->snd_nxt = onxt;
1823 			} else if (tcp_do_limitedtransmit) {
1824 				u_long oldcwnd = tp->snd_cwnd;
1825 				tcp_seq oldsndmax = tp->snd_max;
1826 				/* outstanding data */
1827 				uint32_t ownd = tp->snd_max - tp->snd_una;
1828 				u_int sent;
1829 
1830 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
1831 
1832 				KASSERT(tp->t_dupacks == 1 ||
1833 					tp->t_dupacks == 2,
1834 				    ("dupacks not 1 or 2"));
1835 				if (tp->t_dupacks == 1)
1836 					tp->snd_limited = 0;
1837 				tp->snd_cwnd = ownd +
1838 				    (tp->t_dupacks - tp->snd_limited) *
1839 				    tp->t_maxseg;
1840 				(void) tcp_output(tp);
1841 				tp->snd_cwnd = oldcwnd;
1842 				sent = tp->snd_max - oldsndmax;
1843 				if (sent > tp->t_maxseg) {
1844 					KASSERT((tp->t_dupacks == 2 &&
1845 						 tp->snd_limited == 0) ||
1846 						(sent == tp->t_maxseg + 1 &&
1847 						 tp->t_flags & TF_SENTFIN),
1848 					    ("sent too much"));
1849 					KASSERT(sent <= tp->t_maxseg * 2,
1850 					    ("sent too many segments"));
1851 					tp->snd_limited = 2;
1852 					tcpstat.tcps_sndlimited += 2;
1853 				} else if (sent > 0) {
1854 					++tp->snd_limited;
1855 					++tcpstat.tcps_sndlimited;
1856 				} else if (tcp_do_early_retransmit &&
1857 				    (tcp_do_eifel_detect &&
1858 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
1859 				    tp->t_dupacks + 1 >=
1860 				      iceildiv(ownd, tp->t_maxseg)) {
1861 					++tcpstat.tcps_sndearlyrexmit;
1862 					tp->t_flags |= TF_EARLYREXMT;
1863 					goto fastretransmit;
1864 				}
1865 			}
1866 			goto drop;
1867 		}
1868 
1869 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1870 
1871 		/*
1872 		 * If the congestion window was inflated to account
1873 		 * for the other side's cached packets, retract it.
1874 		 */
1875 		if (IN_FASTRECOVERY(tp)) {
1876 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1877 				tcp_newreno_partial_ack(tp, th);
1878 			} else {
1879 				/*
1880 				 * Window inflation should have left us
1881 				 * with approximately snd_ssthresh
1882 				 * outstanding data.
1883 				 * But in case we would be inclined to
1884 				 * send a burst, better to do it via
1885 				 * the slow start mechanism.
1886 				 */
1887 				if (SEQ_GT(th->th_ack + tp->snd_ssthresh,
1888 					   tp->snd_max))
1889 					tp->snd_cwnd = tp->snd_max -
1890 					    th->th_ack + tp->t_maxseg;
1891 				else
1892 					tp->snd_cwnd = tp->snd_ssthresh;
1893 			}
1894 		}
1895 		tp->t_dupacks = 0;
1896 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1897 			/*
1898 			 * Detected optimistic ACK attack.
1899 			 * Force slow-start to de-synchronize attack.
1900 			 */
1901 			tp->snd_cwnd = tp->t_maxseg;
1902 
1903 			tcpstat.tcps_rcvacktoomuch++;
1904 			goto dropafterack;
1905 		}
1906 		/*
1907 		 * If we reach this point, ACK is not a duplicate,
1908 		 *     i.e., it ACKs something we sent.
1909 		 */
1910 		if (tp->t_flags & TF_NEEDSYN) {
1911 			/*
1912 			 * T/TCP: Connection was half-synchronized, and our
1913 			 * SYN has been ACK'd (so connection is now fully
1914 			 * synchronized).  Go to non-starred state,
1915 			 * increment snd_una for ACK of SYN, and check if
1916 			 * we can do window scaling.
1917 			 */
1918 			tp->t_flags &= ~TF_NEEDSYN;
1919 			tp->snd_una++;
1920 			/* Do window scaling? */
1921 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1922 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1923 				tp->snd_scale = tp->requested_s_scale;
1924 				tp->rcv_scale = tp->request_r_scale;
1925 			}
1926 		}
1927 
1928 process_ACK:
1929 		acked = th->th_ack - tp->snd_una;
1930 		tcpstat.tcps_rcvackpack++;
1931 		tcpstat.tcps_rcvackbyte += acked;
1932 
1933 		if (tcp_do_eifel_detect && acked > 0 &&
1934 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
1935 		    (tp->t_flags & TF_FIRSTACCACK)) {
1936 			/* Eifel detection applicable. */
1937 			if (to.to_tsecr < tp->t_rexmtTS) {
1938 				++tcpstat.tcps_eifeldetected;
1939 				tcp_revert_congestion_state(tp);
1940 				if (tp->t_rxtshift == 1 &&
1941 				    ticks >= tp->t_badrxtwin)
1942 					++tcpstat.tcps_rttcantdetect;
1943 			}
1944 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1945 			/*
1946 			 * If we just performed our first retransmit,
1947 			 * and the ACK arrives within our recovery window,
1948 			 * then it was a mistake to do the retransmit
1949 			 * in the first place.	Recover our original cwnd
1950 			 * and ssthresh, and proceed to transmit where we
1951 			 * left off.
1952 			 */
1953 			tcp_revert_congestion_state(tp);
1954 			++tcpstat.tcps_rttdetected;
1955 		}
1956 
1957 		/*
1958 		 * If we have a timestamp reply, update smoothed
1959 		 * round trip time.  If no timestamp is present but
1960 		 * transmit timer is running and timed sequence
1961 		 * number was acked, update smoothed round trip time.
1962 		 * Since we now have an rtt measurement, cancel the
1963 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1964 		 * Recompute the initial retransmit timer.
1965 		 *
1966 		 * Some machines (certain windows boxes) send broken
1967 		 * timestamp replies during the SYN+ACK phase, ignore
1968 		 * timestamps of 0.
1969 		 */
1970 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
1971 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1972 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1973 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1974 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
1975 
1976 		/*
1977 		 * If all outstanding data is acked, stop retransmit
1978 		 * timer and remember to restart (more output or persist).
1979 		 * If there is more data to be acked, restart retransmit
1980 		 * timer, using current (possibly backed-off) value.
1981 		 */
1982 		if (th->th_ack == tp->snd_max) {
1983 			callout_stop(tp->tt_rexmt);
1984 			needoutput = TRUE;
1985 		} else if (!callout_active(tp->tt_persist))
1986 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
1987 				      tcp_timer_rexmt, tp);
1988 
1989 		/*
1990 		 * If no data (only SYN) was ACK'd,
1991 		 *    skip rest of ACK processing.
1992 		 */
1993 		if (acked == 0)
1994 			goto step6;
1995 
1996 		/* Stop looking for an acceptable ACK since one was received. */
1997 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
1998 
1999 		/*
2000 		 * When new data is acked, open the congestion window.
2001 		 * If the window gives us less than ssthresh packets
2002 		 * in flight, open exponentially (maxseg per packet).
2003 		 * Otherwise open linearly: maxseg per window
2004 		 * (maxseg^2 / cwnd per packet).
2005 		 */
2006 		if (!IN_FASTRECOVERY(tp)) {
2007 			u_int cw = tp->snd_cwnd;
2008 			u_int incr = tp->t_maxseg;
2009 
2010 			if (cw > tp->snd_ssthresh)
2011 				incr = incr * incr / cw;
2012 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2013 		}
2014 		if (acked > so->so_snd.sb_cc) {
2015 			tp->snd_wnd -= so->so_snd.sb_cc;
2016 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2017 			ourfinisacked = TRUE;
2018 		} else {
2019 			sbdrop(&so->so_snd, acked);
2020 			tp->snd_wnd -= acked;
2021 			ourfinisacked = FALSE;
2022 		}
2023 		sowwakeup(so);
2024 		if (IN_FASTRECOVERY(tp)) {
2025 			if (SEQ_GEQ(th->th_ack, tp->snd_recover))
2026 				EXIT_FASTRECOVERY(tp);
2027 		} else {
2028 			tp->snd_recover = th->th_ack - 1;
2029 		}
2030 		tp->snd_una = th->th_ack;
2031 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2032 			tp->snd_nxt = tp->snd_una;
2033 
2034 		switch (tp->t_state) {
2035 		/*
2036 		 * In FIN_WAIT_1 STATE in addition to the processing
2037 		 * for the ESTABLISHED state if our FIN is now acknowledged
2038 		 * then enter FIN_WAIT_2.
2039 		 */
2040 		case TCPS_FIN_WAIT_1:
2041 			if (ourfinisacked) {
2042 				/*
2043 				 * If we can't receive any more
2044 				 * data, then closing user can proceed.
2045 				 * Starting the timer is contrary to the
2046 				 * specification, but if we don't get a FIN
2047 				 * we'll hang forever.
2048 				 */
2049 				if (so->so_state & SS_CANTRCVMORE) {
2050 					soisdisconnected(so);
2051 					callout_reset(tp->tt_2msl, tcp_maxidle,
2052 						      tcp_timer_2msl, tp);
2053 				}
2054 				tp->t_state = TCPS_FIN_WAIT_2;
2055 			}
2056 			break;
2057 
2058 		/*
2059 		 * In CLOSING STATE in addition to the processing for
2060 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2061 		 * then enter the TIME-WAIT state, otherwise ignore
2062 		 * the segment.
2063 		 */
2064 		case TCPS_CLOSING:
2065 			if (ourfinisacked) {
2066 				tp->t_state = TCPS_TIME_WAIT;
2067 				tcp_canceltimers(tp);
2068 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
2069 				if (tp->cc_recv != 0 &&
2070 				    (ticks - tp->t_starttime) < tcp_msl)
2071 					callout_reset(tp->tt_2msl,
2072 					    tp->t_rxtcur * TCPTV_TWTRUNC,
2073 					    tcp_timer_2msl, tp);
2074 				else
2075 					callout_reset(tp->tt_2msl, 2 * tcp_msl,
2076 					    tcp_timer_2msl, tp);
2077 				soisdisconnected(so);
2078 			}
2079 			break;
2080 
2081 		/*
2082 		 * In LAST_ACK, we may still be waiting for data to drain
2083 		 * and/or to be acked, as well as for the ack of our FIN.
2084 		 * If our FIN is now acknowledged, delete the TCB,
2085 		 * enter the closed state and return.
2086 		 */
2087 		case TCPS_LAST_ACK:
2088 			if (ourfinisacked) {
2089 				tp = tcp_close(tp);
2090 				goto drop;
2091 			}
2092 			break;
2093 
2094 		/*
2095 		 * In TIME_WAIT state the only thing that should arrive
2096 		 * is a retransmission of the remote FIN.  Acknowledge
2097 		 * it and restart the finack timer.
2098 		 */
2099 		case TCPS_TIME_WAIT:
2100 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2101 				      tcp_timer_2msl, tp);
2102 			goto dropafterack;
2103 		}
2104 	}
2105 
2106 step6:
2107 	/*
2108 	 * Update window information.
2109 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2110 	 */
2111 	if ((thflags & TH_ACK) &&
2112 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2113 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2114 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2115 		/* keep track of pure window updates */
2116 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2117 		    tiwin > tp->snd_wnd)
2118 			tcpstat.tcps_rcvwinupd++;
2119 		tp->snd_wnd = tiwin;
2120 		tp->snd_wl1 = th->th_seq;
2121 		tp->snd_wl2 = th->th_ack;
2122 		if (tp->snd_wnd > tp->max_sndwnd)
2123 			tp->max_sndwnd = tp->snd_wnd;
2124 		needoutput = TRUE;
2125 	}
2126 
2127 	/*
2128 	 * Process segments with URG.
2129 	 */
2130 	if ((thflags & TH_URG) && th->th_urp &&
2131 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2132 		/*
2133 		 * This is a kludge, but if we receive and accept
2134 		 * random urgent pointers, we'll crash in
2135 		 * soreceive.  It's hard to imagine someone
2136 		 * actually wanting to send this much urgent data.
2137 		 */
2138 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2139 			th->th_urp = 0;			/* XXX */
2140 			thflags &= ~TH_URG;		/* XXX */
2141 			goto dodata;			/* XXX */
2142 		}
2143 		/*
2144 		 * If this segment advances the known urgent pointer,
2145 		 * then mark the data stream.  This should not happen
2146 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2147 		 * a FIN has been received from the remote side.
2148 		 * In these states we ignore the URG.
2149 		 *
2150 		 * According to RFC961 (Assigned Protocols),
2151 		 * the urgent pointer points to the last octet
2152 		 * of urgent data.  We continue, however,
2153 		 * to consider it to indicate the first octet
2154 		 * of data past the urgent section as the original
2155 		 * spec states (in one of two places).
2156 		 */
2157 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2158 			tp->rcv_up = th->th_seq + th->th_urp;
2159 			so->so_oobmark = so->so_rcv.sb_cc +
2160 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2161 			if (so->so_oobmark == 0)
2162 				so->so_state |= SS_RCVATMARK;
2163 			sohasoutofband(so);
2164 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2165 		}
2166 		/*
2167 		 * Remove out of band data so doesn't get presented to user.
2168 		 * This can happen independent of advancing the URG pointer,
2169 		 * but if two URG's are pending at once, some out-of-band
2170 		 * data may creep in... ick.
2171 		 */
2172 		if (th->th_urp <= (u_long)tlen &&
2173 		    !(so->so_options & SO_OOBINLINE)) {
2174 			/* hdr drop is delayed */
2175 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2176 		}
2177 	} else {
2178 		/*
2179 		 * If no out of band data is expected,
2180 		 * pull receive urgent pointer along
2181 		 * with the receive window.
2182 		 */
2183 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2184 			tp->rcv_up = tp->rcv_nxt;
2185 	}
2186 
2187 dodata:							/* XXX */
2188 	/*
2189 	 * Process the segment text, merging it into the TCP sequencing queue,
2190 	 * and arranging for acknowledgment of receipt if necessary.
2191 	 * This process logically involves adjusting tp->rcv_wnd as data
2192 	 * is presented to the user (this happens in tcp_usrreq.c,
2193 	 * case PRU_RCVD).  If a FIN has already been received on this
2194 	 * connection then we just ignore the text.
2195 	 */
2196 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2197 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2198 		/*
2199 		 * Insert segment which includes th into TCP reassembly queue
2200 		 * with control block tp.  Set thflags to whether reassembly now
2201 		 * includes a segment with FIN.  This handles the common case
2202 		 * inline (segment is the next to be received on an established
2203 		 * connection, and the queue is empty), avoiding linkage into
2204 		 * and removal from the queue and repetition of various
2205 		 * conversions.
2206 		 * Set DELACK for segments received in order, but ack
2207 		 * immediately when segments are out of order (so
2208 		 * fast retransmit can work).
2209 		 */
2210 		if (th->th_seq == tp->rcv_nxt &&
2211 		    LIST_EMPTY(&tp->t_segq) &&
2212 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2213 			if (DELAY_ACK(tp))
2214 				callout_reset(tp->tt_delack, tcp_delacktime,
2215 					      tcp_timer_delack, tp);
2216 			else
2217 				tp->t_flags |= TF_ACKNOW;
2218 			tp->rcv_nxt += tlen;
2219 			thflags = th->th_flags & TH_FIN;
2220 			tcpstat.tcps_rcvpack++;
2221 			tcpstat.tcps_rcvbyte += tlen;
2222 			ND6_HINT(tp);
2223 			if (so->so_state & SS_CANTRCVMORE)
2224 				m_freem(m);
2225 			else
2226 				sbappend(&so->so_rcv, m);
2227 			sorwakeup(so);
2228 		} else {
2229 			thflags = tcp_reass(tp, th, &tlen, m);
2230 			tp->t_flags |= TF_ACKNOW;
2231 		}
2232 
2233 		/*
2234 		 * Note the amount of data that peer has sent into
2235 		 * our window, in order to estimate the sender's
2236 		 * buffer size.
2237 		 */
2238 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2239 	} else {
2240 		m_freem(m);
2241 		thflags &= ~TH_FIN;
2242 	}
2243 
2244 	/*
2245 	 * If FIN is received ACK the FIN and let the user know
2246 	 * that the connection is closing.
2247 	 */
2248 	if (thflags & TH_FIN) {
2249 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2250 			socantrcvmore(so);
2251 			/*
2252 			 * If connection is half-synchronized
2253 			 * (ie NEEDSYN flag on) then delay ACK,
2254 			 * so it may be piggybacked when SYN is sent.
2255 			 * Otherwise, since we received a FIN then no
2256 			 * more input can be expected, send ACK now.
2257 			 */
2258 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN))
2259 				callout_reset(tp->tt_delack, tcp_delacktime,
2260 				    tcp_timer_delack, tp);
2261 			else
2262 				tp->t_flags |= TF_ACKNOW;
2263 			tp->rcv_nxt++;
2264 		}
2265 
2266 		switch (tp->t_state) {
2267 		/*
2268 		 * In SYN_RECEIVED and ESTABLISHED STATES
2269 		 * enter the CLOSE_WAIT state.
2270 		 */
2271 		case TCPS_SYN_RECEIVED:
2272 			tp->t_starttime = ticks;
2273 			/*FALLTHROUGH*/
2274 		case TCPS_ESTABLISHED:
2275 			tp->t_state = TCPS_CLOSE_WAIT;
2276 			break;
2277 
2278 		/*
2279 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2280 		 * enter the CLOSING state.
2281 		 */
2282 		case TCPS_FIN_WAIT_1:
2283 			tp->t_state = TCPS_CLOSING;
2284 			break;
2285 
2286 		/*
2287 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2288 		 * starting the time-wait timer, turning off the other
2289 		 * standard timers.
2290 		 */
2291 		case TCPS_FIN_WAIT_2:
2292 			tp->t_state = TCPS_TIME_WAIT;
2293 			tcp_canceltimers(tp);
2294 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2295 			if (tp->cc_recv != 0 &&
2296 			    (ticks - tp->t_starttime) < tcp_msl) {
2297 				callout_reset(tp->tt_2msl,
2298 					      tp->t_rxtcur * TCPTV_TWTRUNC,
2299 					      tcp_timer_2msl, tp);
2300 				/* For transaction client, force ACK now. */
2301 				tp->t_flags |= TF_ACKNOW;
2302 			}
2303 			else
2304 				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2305 					      tcp_timer_2msl, tp);
2306 			soisdisconnected(so);
2307 			break;
2308 
2309 		/*
2310 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2311 		 */
2312 		case TCPS_TIME_WAIT:
2313 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2314 				      tcp_timer_2msl, tp);
2315 			break;
2316 		}
2317 	}
2318 
2319 #ifdef TCPDEBUG
2320 	if (so->so_options & SO_DEBUG)
2321 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2322 			  &tcp_savetcp, 0);
2323 #endif
2324 
2325 	/*
2326 	 * Return any desired output.
2327 	 */
2328 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2329 		(void) tcp_output(tp);
2330 	return;
2331 
2332 dropafterack:
2333 	/*
2334 	 * Generate an ACK dropping incoming segment if it occupies
2335 	 * sequence space, where the ACK reflects our state.
2336 	 *
2337 	 * We can now skip the test for the RST flag since all
2338 	 * paths to this code happen after packets containing
2339 	 * RST have been dropped.
2340 	 *
2341 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2342 	 * segment we received passes the SYN-RECEIVED ACK test.
2343 	 * If it fails send a RST.  This breaks the loop in the
2344 	 * "LAND" DoS attack, and also prevents an ACK storm
2345 	 * between two listening ports that have been sent forged
2346 	 * SYN segments, each with the source address of the other.
2347 	 */
2348 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2349 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2350 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2351 		rstreason = BANDLIM_RST_OPENPORT;
2352 		goto dropwithreset;
2353 	}
2354 #ifdef TCPDEBUG
2355 	if (so->so_options & SO_DEBUG)
2356 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2357 			  &tcp_savetcp, 0);
2358 #endif
2359 	m_freem(m);
2360 	tp->t_flags |= TF_ACKNOW;
2361 	(void) tcp_output(tp);
2362 	return;
2363 
2364 dropwithreset:
2365 	/*
2366 	 * Generate a RST, dropping incoming segment.
2367 	 * Make ACK acceptable to originator of segment.
2368 	 * Don't bother to respond if destination was broadcast/multicast.
2369 	 */
2370 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2371 		goto drop;
2372 	if (isipv6) {
2373 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2374 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2375 			goto drop;
2376 	} else {
2377 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2378 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2379 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2380 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2381 			goto drop;
2382 	}
2383 	/* IPv6 anycast check is done at tcp6_input() */
2384 
2385 	/*
2386 	 * Perform bandwidth limiting.
2387 	 */
2388 #ifdef ICMP_BANDLIM
2389 	if (badport_bandlim(rstreason) < 0)
2390 		goto drop;
2391 #endif
2392 
2393 #ifdef TCPDEBUG
2394 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2395 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2396 			  &tcp_savetcp, 0);
2397 #endif
2398 	if (thflags & TH_ACK)
2399 		/* mtod() below is safe as long as hdr dropping is delayed */
2400 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2401 			    TH_RST);
2402 	else {
2403 		if (thflags & TH_SYN)
2404 			tlen++;
2405 		/* mtod() below is safe as long as hdr dropping is delayed */
2406 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2407 			    (tcp_seq)0, TH_RST | TH_ACK);
2408 	}
2409 	return;
2410 
2411 drop:
2412 	/*
2413 	 * Drop space held by incoming segment and return.
2414 	 */
2415 #ifdef TCPDEBUG
2416 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2417 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2418 			  &tcp_savetcp, 0);
2419 #endif
2420 	m_freem(m);
2421 	return;
2422 }
2423 
2424 /*
2425  * Parse TCP options and place in tcpopt.
2426  */
2427 static void
2428 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2429 {
2430 	int opt, optlen;
2431 
2432 	to->to_flags = 0;
2433 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2434 		opt = cp[0];
2435 		if (opt == TCPOPT_EOL)
2436 			break;
2437 		if (opt == TCPOPT_NOP)
2438 			optlen = 1;
2439 		else {
2440 			if (cnt < 2)
2441 				break;
2442 			optlen = cp[1];
2443 			if (optlen < 2 || optlen > cnt)
2444 				break;
2445 		}
2446 		switch (opt) {
2447 		case TCPOPT_MAXSEG:
2448 			if (optlen != TCPOLEN_MAXSEG)
2449 				continue;
2450 			if (!is_syn)
2451 				continue;
2452 			to->to_flags |= TOF_MSS;
2453 			bcopy(cp + 2, &to->to_mss, sizeof(to->to_mss));
2454 			to->to_mss = ntohs(to->to_mss);
2455 			break;
2456 		case TCPOPT_WINDOW:
2457 			if (optlen != TCPOLEN_WINDOW)
2458 				continue;
2459 			if (!is_syn)
2460 				continue;
2461 			to->to_flags |= TOF_SCALE;
2462 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2463 			break;
2464 		case TCPOPT_TIMESTAMP:
2465 			if (optlen != TCPOLEN_TIMESTAMP)
2466 				continue;
2467 			to->to_flags |= TOF_TS;
2468 			bcopy(cp + 2, &to->to_tsval, sizeof(to->to_tsval));
2469 			to->to_tsval = ntohl(to->to_tsval);
2470 			bcopy(cp + 6, &to->to_tsecr, sizeof(to->to_tsecr));
2471 			to->to_tsecr = ntohl(to->to_tsecr);
2472 			break;
2473 		case TCPOPT_CC:
2474 			if (optlen != TCPOLEN_CC)
2475 				continue;
2476 			to->to_flags |= TOF_CC;
2477 			bcopy(cp + 2, &to->to_cc, sizeof(to->to_cc));
2478 			to->to_cc = ntohl(to->to_cc);
2479 			break;
2480 		case TCPOPT_CCNEW:
2481 			if (optlen != TCPOLEN_CC)
2482 				continue;
2483 			if (!is_syn)
2484 				continue;
2485 			to->to_flags |= TOF_CCNEW;
2486 			bcopy(cp + 2, &to->to_cc, sizeof(to->to_cc));
2487 			to->to_cc = ntohl(to->to_cc);
2488 			break;
2489 		case TCPOPT_CCECHO:
2490 			if (optlen != TCPOLEN_CC)
2491 				continue;
2492 			if (!is_syn)
2493 				continue;
2494 			to->to_flags |= TOF_CCECHO;
2495 			bcopy(cp + 2, &to->to_ccecho, sizeof(to->to_ccecho));
2496 			to->to_ccecho = ntohl(to->to_ccecho);
2497 			break;
2498 		default:
2499 			continue;
2500 		}
2501 	}
2502 }
2503 
2504 /*
2505  * Pull out of band byte out of a segment so
2506  * it doesn't appear in the user's data queue.
2507  * It is still reflected in the segment length for
2508  * sequencing purposes.
2509  * "off" is the delayed to be dropped hdrlen.
2510  */
2511 static void
2512 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2513 {
2514 	int cnt = off + th->th_urp - 1;
2515 
2516 	while (cnt >= 0) {
2517 		if (m->m_len > cnt) {
2518 			char *cp = mtod(m, caddr_t) + cnt;
2519 			struct tcpcb *tp = sototcpcb(so);
2520 
2521 			tp->t_iobc = *cp;
2522 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2523 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2524 			m->m_len--;
2525 			if (m->m_flags & M_PKTHDR)
2526 				m->m_pkthdr.len--;
2527 			return;
2528 		}
2529 		cnt -= m->m_len;
2530 		m = m->m_next;
2531 		if (m == 0)
2532 			break;
2533 	}
2534 	panic("tcp_pulloutofband");
2535 }
2536 
2537 /*
2538  * Collect new round-trip time estimate
2539  * and update averages and current timeout.
2540  */
2541 static void
2542 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2543 {
2544 	int delta;
2545 
2546 	tcpstat.tcps_rttupdated++;
2547 	tp->t_rttupdated++;
2548 	if (tp->t_srtt != 0) {
2549 		/*
2550 		 * srtt is stored as fixed point with 5 bits after the
2551 		 * binary point (i.e., scaled by 8).  The following magic
2552 		 * is equivalent to the smoothing algorithm in rfc793 with
2553 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2554 		 * point).  Adjust rtt to origin 0.
2555 		 */
2556 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2557 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2558 
2559 		if ((tp->t_srtt += delta) <= 0)
2560 			tp->t_srtt = 1;
2561 
2562 		/*
2563 		 * We accumulate a smoothed rtt variance (actually, a
2564 		 * smoothed mean difference), then set the retransmit
2565 		 * timer to smoothed rtt + 4 times the smoothed variance.
2566 		 * rttvar is stored as fixed point with 4 bits after the
2567 		 * binary point (scaled by 16).  The following is
2568 		 * equivalent to rfc793 smoothing with an alpha of .75
2569 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2570 		 * rfc793's wired-in beta.
2571 		 */
2572 		if (delta < 0)
2573 			delta = -delta;
2574 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2575 		if ((tp->t_rttvar += delta) <= 0)
2576 			tp->t_rttvar = 1;
2577 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2578 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2579 	} else {
2580 		/*
2581 		 * No rtt measurement yet - use the unsmoothed rtt.
2582 		 * Set the variance to half the rtt (so our first
2583 		 * retransmit happens at 3*rtt).
2584 		 */
2585 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2586 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2587 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2588 	}
2589 	tp->t_rtttime = 0;
2590 	tp->t_rxtshift = 0;
2591 
2592 	/*
2593 	 * the retransmit should happen at rtt + 4 * rttvar.
2594 	 * Because of the way we do the smoothing, srtt and rttvar
2595 	 * will each average +1/2 tick of bias.  When we compute
2596 	 * the retransmit timer, we want 1/2 tick of rounding and
2597 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2598 	 * firing of the timer.  The bias will give us exactly the
2599 	 * 1.5 tick we need.  But, because the bias is
2600 	 * statistical, we have to test that we don't drop below
2601 	 * the minimum feasible timer (which is 2 ticks).
2602 	 */
2603 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2604 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2605 
2606 	/*
2607 	 * We received an ack for a packet that wasn't retransmitted;
2608 	 * it is probably safe to discard any error indications we've
2609 	 * received recently.  This isn't quite right, but close enough
2610 	 * for now (a route might have failed after we sent a segment,
2611 	 * and the return path might not be symmetrical).
2612 	 */
2613 	tp->t_softerror = 0;
2614 }
2615 
2616 /*
2617  * Determine a reasonable value for maxseg size.
2618  * If the route is known, check route for mtu.
2619  * If none, use an mss that can be handled on the outgoing
2620  * interface without forcing IP to fragment; if bigger than
2621  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2622  * to utilize large mbufs.  If no route is found, route has no mtu,
2623  * or the destination isn't local, use a default, hopefully conservative
2624  * size (usually 512 or the default IP max size, but no more than the mtu
2625  * of the interface), as we can't discover anything about intervening
2626  * gateways or networks.  We also initialize the congestion/slow start
2627  * window to be a single segment if the destination isn't local.
2628  * While looking at the routing entry, we also initialize other path-dependent
2629  * parameters from pre-set or cached values in the routing entry.
2630  *
2631  * Also take into account the space needed for options that we
2632  * send regularly.  Make maxseg shorter by that amount to assure
2633  * that we can send maxseg amount of data even when the options
2634  * are present.  Store the upper limit of the length of options plus
2635  * data in maxopd.
2636  *
2637  * NOTE that this routine is only called when we process an incoming
2638  * segment, for outgoing segments only tcp_mssopt is called.
2639  *
2640  * In case of T/TCP, we call this routine during implicit connection
2641  * setup as well (offer = -1), to initialize maxseg from the cached
2642  * MSS of our peer.
2643  */
2644 void
2645 tcp_mss(struct tcpcb *tp, int offer)
2646 {
2647 	struct rtentry *rt;
2648 	struct ifnet *ifp;
2649 	int rtt, mss;
2650 	u_long bufsize;
2651 	struct inpcb *inp = tp->t_inpcb;
2652 	struct socket *so;
2653 	struct rmxp_tao *taop;
2654 	int origoffer = offer;
2655 #ifdef INET6
2656 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2657 	size_t min_protoh = isipv6 ?
2658 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2659 			    sizeof(struct tcpiphdr);
2660 #else
2661 	const boolean_t isipv6 = FALSE;
2662 	const size_t min_protoh = sizeof(struct tcpiphdr);
2663 #endif
2664 
2665 	if (isipv6)
2666 		rt = tcp_rtlookup6(&inp->inp_inc);
2667 	else
2668 		rt = tcp_rtlookup(&inp->inp_inc);
2669 	if (rt == NULL) {
2670 		tp->t_maxopd = tp->t_maxseg =
2671 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2672 		return;
2673 	}
2674 	ifp = rt->rt_ifp;
2675 	so = inp->inp_socket;
2676 
2677 	taop = rmx_taop(rt->rt_rmx);
2678 	/*
2679 	 * Offer == -1 means that we didn't receive SYN yet,
2680 	 * use cached value in that case;
2681 	 */
2682 	if (offer == -1)
2683 		offer = taop->tao_mssopt;
2684 	/*
2685 	 * Offer == 0 means that there was no MSS on the SYN segment,
2686 	 * in this case we use tcp_mssdflt.
2687 	 */
2688 	if (offer == 0)
2689 		offer = (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2690 	else
2691 		/*
2692 		 * Sanity check: make sure that maxopd will be large
2693 		 * enough to allow some data on segments even is the
2694 		 * all the option space is used (40bytes).  Otherwise
2695 		 * funny things may happen in tcp_output.
2696 		 */
2697 		offer = max(offer, 64);
2698 	taop->tao_mssopt = offer;
2699 
2700 	/*
2701 	 * While we're here, check if there's an initial rtt
2702 	 * or rttvar.  Convert from the route-table units
2703 	 * to scaled multiples of the slow timeout timer.
2704 	 */
2705 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2706 		/*
2707 		 * XXX the lock bit for RTT indicates that the value
2708 		 * is also a minimum value; this is subject to time.
2709 		 */
2710 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2711 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2712 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2713 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2714 		tcpstat.tcps_usedrtt++;
2715 		if (rt->rt_rmx.rmx_rttvar) {
2716 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2717 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2718 			tcpstat.tcps_usedrttvar++;
2719 		} else {
2720 			/* default variation is +- 1 rtt */
2721 			tp->t_rttvar =
2722 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2723 		}
2724 		TCPT_RANGESET(tp->t_rxtcur,
2725 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2726 			      tp->t_rttmin, TCPTV_REXMTMAX);
2727 	}
2728 	/*
2729 	 * if there's an mtu associated with the route, use it
2730 	 * else, use the link mtu.
2731 	 */
2732 	if (rt->rt_rmx.rmx_mtu)
2733 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2734 	else {
2735 		if (isipv6) {
2736 			mss = nd_ifinfo[rt->rt_ifp->if_index].linkmtu -
2737 				min_protoh;
2738 			if (!in6_localaddr(&inp->in6p_faddr))
2739 				mss = min(mss, tcp_v6mssdflt);
2740 		} else {
2741 			mss = ifp->if_mtu - min_protoh;
2742 			if (!in_localaddr(inp->inp_faddr))
2743 				mss = min(mss, tcp_mssdflt);
2744 		}
2745 	}
2746 	mss = min(mss, offer);
2747 	/*
2748 	 * maxopd stores the maximum length of data AND options
2749 	 * in a segment; maxseg is the amount of data in a normal
2750 	 * segment.  We need to store this value (maxopd) apart
2751 	 * from maxseg, because now every segment carries options
2752 	 * and thus we normally have somewhat less data in segments.
2753 	 */
2754 	tp->t_maxopd = mss;
2755 
2756 	/*
2757 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2758 	 * were received yet.  In this case we just guess, otherwise
2759 	 * we do the same as before T/TCP.
2760 	 */
2761 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
2762 	    (origoffer == -1 ||
2763 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2764 		mss -= TCPOLEN_TSTAMP_APPA;
2765 	if ((tp->t_flags & (TF_REQ_CC | TF_NOOPT)) == TF_REQ_CC &&
2766 	    (origoffer == -1 ||
2767 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2768 		mss -= TCPOLEN_CC_APPA;
2769 
2770 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2771 		if (mss > MCLBYTES)
2772 			mss &= ~(MCLBYTES-1);
2773 #else
2774 		if (mss > MCLBYTES)
2775 			mss = mss / MCLBYTES * MCLBYTES;
2776 #endif
2777 	/*
2778 	 * If there's a pipesize, change the socket buffer
2779 	 * to that size.  Make the socket buffers an integral
2780 	 * number of mss units; if the mss is larger than
2781 	 * the socket buffer, decrease the mss.
2782 	 */
2783 #ifdef RTV_SPIPE
2784 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2785 #endif
2786 		bufsize = so->so_snd.sb_hiwat;
2787 	if (bufsize < mss)
2788 		mss = bufsize;
2789 	else {
2790 		bufsize = roundup(bufsize, mss);
2791 		if (bufsize > sb_max)
2792 			bufsize = sb_max;
2793 		if (bufsize > so->so_snd.sb_hiwat)
2794 			(void)sbreserve(&so->so_snd, bufsize, so, NULL);
2795 	}
2796 	tp->t_maxseg = mss;
2797 
2798 #ifdef RTV_RPIPE
2799 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2800 #endif
2801 		bufsize = so->so_rcv.sb_hiwat;
2802 	if (bufsize > mss) {
2803 		bufsize = roundup(bufsize, mss);
2804 		if (bufsize > sb_max)
2805 			bufsize = sb_max;
2806 		if (bufsize > so->so_rcv.sb_hiwat)
2807 			(void)sbreserve(&so->so_rcv, bufsize, so, NULL);
2808 	}
2809 
2810 	/*
2811 	 * Set the slow-start flight size depending on whether this
2812 	 * is a local network or not.
2813 	 */
2814 	if (tcp_do_rfc3390)
2815 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
2816 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2817 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
2818 		tp->snd_cwnd = mss * ss_fltsz_local;
2819 	else
2820 		tp->snd_cwnd = mss * ss_fltsz;
2821 
2822 	if (rt->rt_rmx.rmx_ssthresh) {
2823 		/*
2824 		 * There's some sort of gateway or interface
2825 		 * buffer limit on the path.  Use this to set
2826 		 * the slow start threshhold, but set the
2827 		 * threshold to no less than 2*mss.
2828 		 */
2829 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2830 		tcpstat.tcps_usedssthresh++;
2831 	}
2832 }
2833 
2834 /*
2835  * Determine the MSS option to send on an outgoing SYN.
2836  */
2837 int
2838 tcp_mssopt(struct tcpcb *tp)
2839 {
2840 	struct rtentry *rt;
2841 #ifdef INET6
2842 	boolean_t isipv6 =
2843 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2844 	int min_protoh = isipv6 ?
2845 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2846 			     sizeof(struct tcpiphdr);
2847 #else
2848 	const boolean_t isipv6 = FALSE;
2849 	const size_t min_protoh = sizeof(struct tcpiphdr);
2850 #endif
2851 
2852 	if (isipv6)
2853 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
2854 	else
2855 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
2856 	if (rt == NULL)
2857 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2858 
2859 	return (rt->rt_ifp->if_mtu - min_protoh);
2860 }
2861 
2862 /*
2863  * When a partial ack arrives, force the retransmission of the
2864  * next unacknowledged segment.  Do not clear tp->t_dupacks.
2865  * By setting snd_nxt to th_ack, this forces retransmission timer to
2866  * be started again.
2867  */
2868 static void
2869 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
2870 {
2871 	tcp_seq onxt = tp->snd_nxt;
2872 	u_long  ocwnd = tp->snd_cwnd;
2873 
2874 	callout_stop(tp->tt_rexmt);
2875 	tp->t_rtttime = 0;
2876 	tp->snd_nxt = th->th_ack;
2877 	/*
2878 	 * Set snd_cwnd to one segment beyond acknowledged offset
2879 	 * (tp->snd_una has not yet been updated when this function is called.)
2880 	 */
2881 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2882 	tp->t_flags |= TF_ACKNOW;
2883 	(void) tcp_output(tp);
2884 	tp->snd_cwnd = ocwnd;
2885 	if (SEQ_GT(onxt, tp->snd_nxt))
2886 		tp->snd_nxt = onxt;
2887 	/*
2888 	 * Partial window deflation.  Relies on fact that tp->snd_una
2889 	 * not updated yet.
2890 	 */
2891 	tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
2892 }
2893