xref: /dflybsd-src/sys/netinet/tcp_input.c (revision 23c32883e759b0ea42fdaff39e661bd1a12e3b9f)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
84  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
85  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.54 2005/03/09 06:57:29 hsu Exp $
86  */
87 
88 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
89 #include "opt_inet6.h"
90 #include "opt_ipsec.h"
91 #include "opt_tcpdebug.h"
92 #include "opt_tcp_input.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/sysctl.h>
98 #include <sys/malloc.h>
99 #include <sys/mbuf.h>
100 #include <sys/proc.h>		/* for proc0 declaration */
101 #include <sys/protosw.h>
102 #include <sys/socket.h>
103 #include <sys/socketvar.h>
104 #include <sys/syslog.h>
105 #include <sys/in_cksum.h>
106 
107 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
108 #include <machine/stdarg.h>
109 
110 #include <net/if.h>
111 #include <net/route.h>
112 
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/ip.h>
116 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
117 #include <netinet/in_var.h>
118 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
119 #include <netinet/in_pcb.h>
120 #include <netinet/ip_var.h>
121 #include <netinet/ip6.h>
122 #include <netinet/icmp6.h>
123 #include <netinet6/nd6.h>
124 #include <netinet6/ip6_var.h>
125 #include <netinet6/in6_pcb.h>
126 #include <netinet/tcp.h>
127 #include <netinet/tcp_fsm.h>
128 #include <netinet/tcp_seq.h>
129 #include <netinet/tcp_timer.h>
130 #include <netinet/tcp_var.h>
131 #include <netinet6/tcp6_var.h>
132 #include <netinet/tcpip.h>
133 
134 #ifdef TCPDEBUG
135 #include <netinet/tcp_debug.h>
136 
137 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
138 struct tcphdr tcp_savetcp;
139 #endif
140 
141 #ifdef FAST_IPSEC
142 #include <netproto/ipsec/ipsec.h>
143 #include <netproto/ipsec/ipsec6.h>
144 #endif
145 
146 #ifdef IPSEC
147 #include <netinet6/ipsec.h>
148 #include <netinet6/ipsec6.h>
149 #include <netproto/key/key.h>
150 #endif
151 
152 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
153 
154 tcp_cc	tcp_ccgen;
155 static int log_in_vain = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
157     &log_in_vain, 0, "Log all incoming TCP connections");
158 
159 static int blackhole = 0;
160 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
161     &blackhole, 0, "Do not send RST when dropping refused connections");
162 
163 int tcp_delack_enabled = 1;
164 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
165     &tcp_delack_enabled, 0,
166     "Delay ACK to try and piggyback it onto a data packet");
167 
168 #ifdef TCP_DROP_SYNFIN
169 static int drop_synfin = 0;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
171     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
172 #endif
173 
174 static int tcp_do_limitedtransmit = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
176     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
177 
178 static int tcp_do_early_retransmit = 1;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
180     &tcp_do_early_retransmit, 0, "Early retransmit");
181 
182 static int tcp_do_rfc3390 = 1;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
184     &tcp_do_rfc3390, 0,
185     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
186 
187 static int tcp_do_eifel_detect = 1;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
189     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
190 
191 /*
192  * Define as tunable for easy testing with SACK on and off.
193  * Warning:  do not change setting in the middle of an existing active TCP flow,
194  *   else strange things might happen to that flow.
195  */
196 int tcp_do_sack = 1;
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
198     &tcp_do_sack, 0, "Enable SACK Algorithms");
199 
200 int tcp_do_smartsack = 1;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
202     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
203 
204 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
205     "TCP Segment Reassembly Queue");
206 
207 int tcp_reass_maxseg = 0;
208 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
209     &tcp_reass_maxseg, 0,
210     "Global maximum number of TCP Segments in Reassembly Queue");
211 
212 int tcp_reass_qsize = 0;
213 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
214     &tcp_reass_qsize, 0,
215     "Global number of TCP Segments currently in Reassembly Queue");
216 
217 static int tcp_reass_overflows = 0;
218 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
219     &tcp_reass_overflows, 0,
220     "Global number of TCP Segment Reassembly Queue Overflows");
221 
222 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
223 static void	 tcp_pulloutofband(struct socket *,
224 		     struct tcphdr *, struct mbuf *, int);
225 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
226 		     struct mbuf *);
227 static void	 tcp_xmit_timer(struct tcpcb *, int);
228 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
229 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
230 
231 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
232 #ifdef INET6
233 #define ND6_HINT(tp) \
234 do { \
235 	if ((tp) && (tp)->t_inpcb && \
236 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
237 	    (tp)->t_inpcb->in6p_route.ro_rt) \
238 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
239 } while (0)
240 #else
241 #define ND6_HINT(tp)
242 #endif
243 
244 /*
245  * Indicate whether this ack should be delayed.  We can delay the ack if
246  *	- delayed acks are enabled and
247  *	- there is no delayed ack timer in progress and
248  *	- our last ack wasn't a 0-sized window.  We never want to delay
249  *	  the ack that opens up a 0-sized window.
250  */
251 #define DELAY_ACK(tp) \
252 	(tcp_delack_enabled && !callout_pending(tp->tt_delack) && \
253 	!(tp->t_flags & TF_RXWIN0SENT))
254 
255 #define acceptable_window_update(tp, th, tiwin)				\
256     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
257      (tp->snd_wl1 == th->th_seq &&					\
258       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
259        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
260 
261 static int
262 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
263 {
264 	struct tseg_qent *q;
265 	struct tseg_qent *p = NULL;
266 	struct tseg_qent *te;
267 	struct socket *so = tp->t_inpcb->inp_socket;
268 	int flags;
269 
270 	/*
271 	 * Call with th == NULL after become established to
272 	 * force pre-ESTABLISHED data up to user socket.
273 	 */
274 	if (th == NULL)
275 		goto present;
276 
277 	/*
278 	 * Limit the number of segments in the reassembly queue to prevent
279 	 * holding on to too many segments (and thus running out of mbufs).
280 	 * Make sure to let the missing segment through which caused this
281 	 * queue.  Always keep one global queue entry spare to be able to
282 	 * process the missing segment.
283 	 */
284 	if (th->th_seq != tp->rcv_nxt &&
285 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
286 		tcp_reass_overflows++;
287 		tcpstat.tcps_rcvmemdrop++;
288 		m_freem(m);
289 		/* no SACK block to report */
290 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
291 		return (0);
292 	}
293 
294 	/* Allocate a new queue entry. */
295 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
296 	       M_INTWAIT | M_NULLOK);
297 	if (te == NULL) {
298 		tcpstat.tcps_rcvmemdrop++;
299 		m_freem(m);
300 		/* no SACK block to report */
301 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
302 		return (0);
303 	}
304 	tcp_reass_qsize++;
305 
306 	/*
307 	 * Find a segment which begins after this one does.
308 	 */
309 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
310 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
311 			break;
312 		p = q;
313 	}
314 
315 	/*
316 	 * If there is a preceding segment, it may provide some of
317 	 * our data already.  If so, drop the data from the incoming
318 	 * segment.  If it provides all of our data, drop us.
319 	 */
320 	if (p != NULL) {
321 		tcp_seq_diff_t i;
322 
323 		/* conversion to int (in i) handles seq wraparound */
324 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
325 		if (i > 0) {		/* overlaps preceding segment */
326 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
327 			/* enclosing block starts w/ preceding segment */
328 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
329 			if (i >= *tlenp) {
330 				/* preceding encloses incoming segment */
331 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
332 				    p->tqe_len;
333 				tcpstat.tcps_rcvduppack++;
334 				tcpstat.tcps_rcvdupbyte += *tlenp;
335 				m_freem(m);
336 				free(te, M_TSEGQ);
337 				tcp_reass_qsize--;
338 				/*
339 				 * Try to present any queued data
340 				 * at the left window edge to the user.
341 				 * This is needed after the 3-WHS
342 				 * completes.
343 				 */
344 				goto present;	/* ??? */
345 			}
346 			m_adj(m, i);
347 			*tlenp -= i;
348 			th->th_seq += i;
349 			/* incoming segment end is enclosing block end */
350 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
351 			    ((th->th_flags & TH_FIN) != 0);
352 			/* trim end of reported D-SACK block */
353 			tp->reportblk.rblk_end = th->th_seq;
354 		}
355 	}
356 	tcpstat.tcps_rcvoopack++;
357 	tcpstat.tcps_rcvoobyte += *tlenp;
358 
359 	/*
360 	 * While we overlap succeeding segments trim them or,
361 	 * if they are completely covered, dequeue them.
362 	 */
363 	while (q) {
364 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
365 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
366 		struct tseg_qent *nq;
367 
368 		if (i <= 0)
369 			break;
370 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
371 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
372 			tp->encloseblk = tp->reportblk;
373 			/* report trailing duplicate D-SACK segment */
374 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
375 		}
376 		if ((tp->t_flags & TF_ENCLOSESEG) &&
377 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
378 			/* extend enclosing block if one exists */
379 			tp->encloseblk.rblk_end = qend;
380 		}
381 		if (i < q->tqe_len) {
382 			q->tqe_th->th_seq += i;
383 			q->tqe_len -= i;
384 			m_adj(q->tqe_m, i);
385 			break;
386 		}
387 
388 		nq = LIST_NEXT(q, tqe_q);
389 		LIST_REMOVE(q, tqe_q);
390 		m_freem(q->tqe_m);
391 		free(q, M_TSEGQ);
392 		tcp_reass_qsize--;
393 		q = nq;
394 	}
395 
396 	/* Insert the new segment queue entry into place. */
397 	te->tqe_m = m;
398 	te->tqe_th = th;
399 	te->tqe_len = *tlenp;
400 
401 	/* check if can coalesce with following segment */
402 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
403 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
404 
405 		te->tqe_len += q->tqe_len;
406 		if (q->tqe_th->th_flags & TH_FIN)
407 			te->tqe_th->th_flags |= TH_FIN;
408 		m_cat(te->tqe_m, q->tqe_m);
409 		tp->encloseblk.rblk_end = tend;
410 		/*
411 		 * When not reporting a duplicate segment, use
412 		 * the larger enclosing block as the SACK block.
413 		 */
414 		if (!(tp->t_flags & TF_DUPSEG))
415 			tp->reportblk.rblk_end = tend;
416 		LIST_REMOVE(q, tqe_q);
417 		free(q, M_TSEGQ);
418 		tcp_reass_qsize--;
419 	}
420 
421 	if (p == NULL) {
422 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
423 	} else {
424 		/* check if can coalesce with preceding segment */
425 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
426 			p->tqe_len += te->tqe_len;
427 			m_cat(p->tqe_m, te->tqe_m);
428 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
429 			/*
430 			 * When not reporting a duplicate segment, use
431 			 * the larger enclosing block as the SACK block.
432 			 */
433 			if (!(tp->t_flags & TF_DUPSEG))
434 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
435 			free(te, M_TSEGQ);
436 			tcp_reass_qsize--;
437 		} else
438 			LIST_INSERT_AFTER(p, te, tqe_q);
439 	}
440 
441 present:
442 	/*
443 	 * Present data to user, advancing rcv_nxt through
444 	 * completed sequence space.
445 	 */
446 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
447 		return (0);
448 	q = LIST_FIRST(&tp->t_segq);
449 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
450 		return (0);
451 	tp->rcv_nxt += q->tqe_len;
452 	if (!(tp->t_flags & TF_DUPSEG))	{
453 		/* no SACK block to report since ACK advanced */
454 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
455 	}
456 	/* no enclosing block to report since ACK advanced */
457 	tp->t_flags &= ~TF_ENCLOSESEG;
458 	flags = q->tqe_th->th_flags & TH_FIN;
459 	LIST_REMOVE(q, tqe_q);
460 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
461 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
462 		("segment not coalesced"));
463 	if (so->so_state & SS_CANTRCVMORE)
464 		m_freem(q->tqe_m);
465 	else
466 		sbappendstream(&so->so_rcv, q->tqe_m);
467 	free(q, M_TSEGQ);
468 	tcp_reass_qsize--;
469 	ND6_HINT(tp);
470 	sorwakeup(so);
471 	return (flags);
472 }
473 
474 /*
475  * TCP input routine, follows pages 65-76 of the
476  * protocol specification dated September, 1981 very closely.
477  */
478 #ifdef INET6
479 int
480 tcp6_input(struct mbuf **mp, int *offp, int proto)
481 {
482 	struct mbuf *m = *mp;
483 	struct in6_ifaddr *ia6;
484 
485 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
486 
487 	/*
488 	 * draft-itojun-ipv6-tcp-to-anycast
489 	 * better place to put this in?
490 	 */
491 	ia6 = ip6_getdstifaddr(m);
492 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
493 		struct ip6_hdr *ip6;
494 
495 		ip6 = mtod(m, struct ip6_hdr *);
496 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
497 			    offsetof(struct ip6_hdr, ip6_dst));
498 		return (IPPROTO_DONE);
499 	}
500 
501 	tcp_input(m, *offp, proto);
502 	return (IPPROTO_DONE);
503 }
504 #endif
505 
506 void
507 tcp_input(struct mbuf *m, ...)
508 {
509 	__va_list ap;
510 	int off0, proto;
511 	struct tcphdr *th;
512 	struct ip *ip = NULL;
513 	struct ipovly *ipov;
514 	struct inpcb *inp = NULL;
515 	u_char *optp = NULL;
516 	int optlen = 0;
517 	int len, tlen, off;
518 	int drop_hdrlen;
519 	struct tcpcb *tp = NULL;
520 	int thflags;
521 	struct socket *so = 0;
522 	int todrop, acked;
523 	boolean_t ourfinisacked, needoutput = FALSE;
524 	u_long tiwin;
525 	int recvwin;
526 	struct tcpopt to;		/* options in this segment */
527 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
528 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
529 	struct sockaddr_in *next_hop = NULL;
530 	int rstreason; /* For badport_bandlim accounting purposes */
531 	int cpu;
532 	struct ip6_hdr *ip6 = NULL;
533 #ifdef INET6
534 	boolean_t isipv6;
535 #else
536 	const boolean_t isipv6 = FALSE;
537 #endif
538 #ifdef TCPDEBUG
539 	short ostate = 0;
540 #endif
541 
542 	__va_start(ap, m);
543 	off0 = __va_arg(ap, int);
544 	proto = __va_arg(ap, int);
545 	__va_end(ap);
546 
547 	tcpstat.tcps_rcvtotal++;
548 
549 	/* Grab info from and strip MT_TAG mbufs prepended to the chain. */
550 	while  (m->m_type == MT_TAG) {
551 		if (m->_m_tag_id == PACKET_TAG_IPFORWARD)
552 			next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
553 		m = m->m_next;
554 	}
555 
556 #ifdef INET6
557 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
558 #endif
559 
560 	if (isipv6) {
561 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
562 		ip6 = mtod(m, struct ip6_hdr *);
563 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
564 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
565 			tcpstat.tcps_rcvbadsum++;
566 			goto drop;
567 		}
568 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
569 
570 		/*
571 		 * Be proactive about unspecified IPv6 address in source.
572 		 * As we use all-zero to indicate unbounded/unconnected pcb,
573 		 * unspecified IPv6 address can be used to confuse us.
574 		 *
575 		 * Note that packets with unspecified IPv6 destination is
576 		 * already dropped in ip6_input.
577 		 */
578 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
579 			/* XXX stat */
580 			goto drop;
581 		}
582 	} else {
583 		/*
584 		 * Get IP and TCP header together in first mbuf.
585 		 * Note: IP leaves IP header in first mbuf.
586 		 */
587 		if (off0 > sizeof(struct ip)) {
588 			ip_stripoptions(m);
589 			off0 = sizeof(struct ip);
590 		}
591 		/* already checked and pulled up in ip_demux() */
592 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
593 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
594 		ip = mtod(m, struct ip *);
595 		ipov = (struct ipovly *)ip;
596 		th = (struct tcphdr *)((caddr_t)ip + off0);
597 		tlen = ip->ip_len;
598 
599 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
600 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
601 				th->th_sum = m->m_pkthdr.csum_data;
602 			else
603 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
604 						ip->ip_dst.s_addr,
605 						htonl(m->m_pkthdr.csum_data +
606 							ip->ip_len +
607 							IPPROTO_TCP));
608 			th->th_sum ^= 0xffff;
609 		} else {
610 			/*
611 			 * Checksum extended TCP header and data.
612 			 */
613 			len = sizeof(struct ip) + tlen;
614 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
615 			ipov->ih_len = (u_short)tlen;
616 			ipov->ih_len = htons(ipov->ih_len);
617 			th->th_sum = in_cksum(m, len);
618 		}
619 		if (th->th_sum) {
620 			tcpstat.tcps_rcvbadsum++;
621 			goto drop;
622 		}
623 #ifdef INET6
624 		/* Re-initialization for later version check */
625 		ip->ip_v = IPVERSION;
626 #endif
627 	}
628 
629 	/*
630 	 * Check that TCP offset makes sense,
631 	 * pull out TCP options and adjust length.		XXX
632 	 */
633 	off = th->th_off << 2;
634 	/* already checked and pulled up in ip_demux() */
635 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
636 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
637 	tlen -= off;	/* tlen is used instead of ti->ti_len */
638 	if (off > sizeof(struct tcphdr)) {
639 		if (isipv6) {
640 			IP6_EXTHDR_CHECK(m, off0, off, );
641 			ip6 = mtod(m, struct ip6_hdr *);
642 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
643 		} else {
644 			/* already pulled up in ip_demux() */
645 			KASSERT(m->m_len >= sizeof(struct ip) + off,
646 			    ("TCP header and options not in one mbuf: "
647 			     "m_len %d, off %d", m->m_len, off));
648 		}
649 		optlen = off - sizeof(struct tcphdr);
650 		optp = (u_char *)(th + 1);
651 	}
652 	thflags = th->th_flags;
653 
654 #ifdef TCP_DROP_SYNFIN
655 	/*
656 	 * If the drop_synfin option is enabled, drop all packets with
657 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
658 	 * identifying the TCP/IP stack.
659 	 *
660 	 * This is a violation of the TCP specification.
661 	 */
662 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
663 		goto drop;
664 #endif
665 
666 	/*
667 	 * Convert TCP protocol specific fields to host format.
668 	 */
669 	th->th_seq = ntohl(th->th_seq);
670 	th->th_ack = ntohl(th->th_ack);
671 	th->th_win = ntohs(th->th_win);
672 	th->th_urp = ntohs(th->th_urp);
673 
674 	/*
675 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
676 	 * until after ip6_savecontrol() is called and before other functions
677 	 * which don't want those proto headers.
678 	 * Because ip6_savecontrol() is going to parse the mbuf to
679 	 * search for data to be passed up to user-land, it wants mbuf
680 	 * parameters to be unchanged.
681 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
682 	 * latest version of the advanced API (20020110).
683 	 */
684 	drop_hdrlen = off0 + off;
685 
686 	/*
687 	 * Locate pcb for segment.
688 	 */
689 findpcb:
690 	/* IPFIREWALL_FORWARD section */
691 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
692 		/*
693 		 * Transparently forwarded. Pretend to be the destination.
694 		 * already got one like this?
695 		 */
696 		cpu = mycpu->gd_cpuid;
697 		inp = in_pcblookup_hash(&tcbinfo[cpu],
698 					ip->ip_src, th->th_sport,
699 					ip->ip_dst, th->th_dport,
700 					0, m->m_pkthdr.rcvif);
701 		if (!inp) {
702 			/*
703 			 * It's new.  Try to find the ambushing socket.
704 			 */
705 
706 			/*
707 			 * The rest of the ipfw code stores the port in
708 			 * host order.  XXX
709 			 * (The IP address is still in network order.)
710 			 */
711 			in_port_t dport = next_hop->sin_port ?
712 						htons(next_hop->sin_port) :
713 						th->th_dport;
714 
715 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
716 					  next_hop->sin_addr.s_addr, dport);
717 			inp = in_pcblookup_hash(&tcbinfo[cpu],
718 						ip->ip_src, th->th_sport,
719 						next_hop->sin_addr, dport,
720 						1, m->m_pkthdr.rcvif);
721 		}
722 	} else {
723 		if (isipv6) {
724 			inp = in6_pcblookup_hash(&tcbinfo[0],
725 						 &ip6->ip6_src, th->th_sport,
726 						 &ip6->ip6_dst, th->th_dport,
727 						 1, m->m_pkthdr.rcvif);
728 		} else {
729 			cpu = mycpu->gd_cpuid;
730 			inp = in_pcblookup_hash(&tcbinfo[cpu],
731 						ip->ip_src, th->th_sport,
732 						ip->ip_dst, th->th_dport,
733 						1, m->m_pkthdr.rcvif);
734 		}
735 	}
736 
737 	/*
738 	 * If the state is CLOSED (i.e., TCB does not exist) then
739 	 * all data in the incoming segment is discarded.
740 	 * If the TCB exists but is in CLOSED state, it is embryonic,
741 	 * but should either do a listen or a connect soon.
742 	 */
743 	if (inp == NULL) {
744 		if (log_in_vain) {
745 #ifdef INET6
746 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
747 #else
748 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
749 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
750 #endif
751 			if (isipv6) {
752 				strcpy(dbuf, "[");
753 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
754 				strcat(dbuf, "]");
755 				strcpy(sbuf, "[");
756 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
757 				strcat(sbuf, "]");
758 			} else {
759 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
760 				strcpy(sbuf, inet_ntoa(ip->ip_src));
761 			}
762 			switch (log_in_vain) {
763 			case 1:
764 				if (!(thflags & TH_SYN))
765 					break;
766 			case 2:
767 				log(LOG_INFO,
768 				    "Connection attempt to TCP %s:%d "
769 				    "from %s:%d flags:0x%02x\n",
770 				    dbuf, ntohs(th->th_dport), sbuf,
771 				    ntohs(th->th_sport), thflags);
772 				break;
773 			default:
774 				break;
775 			}
776 		}
777 		if (blackhole) {
778 			switch (blackhole) {
779 			case 1:
780 				if (thflags & TH_SYN)
781 					goto drop;
782 				break;
783 			case 2:
784 				goto drop;
785 			default:
786 				goto drop;
787 			}
788 		}
789 		rstreason = BANDLIM_RST_CLOSEDPORT;
790 		goto dropwithreset;
791 	}
792 
793 #ifdef IPSEC
794 	if (isipv6) {
795 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
796 			ipsec6stat.in_polvio++;
797 			goto drop;
798 		}
799 	} else {
800 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
801 			ipsecstat.in_polvio++;
802 			goto drop;
803 		}
804 	}
805 #endif
806 #ifdef FAST_IPSEC
807 	if (isipv6) {
808 		if (ipsec6_in_reject(m, inp))
809 			goto drop;
810 	} else {
811 		if (ipsec4_in_reject(m, inp))
812 			goto drop;
813 	}
814 #endif
815 
816 	tp = intotcpcb(inp);
817 	if (tp == NULL) {
818 		rstreason = BANDLIM_RST_CLOSEDPORT;
819 		goto dropwithreset;
820 	}
821 	if (tp->t_state <= TCPS_CLOSED)
822 		goto drop;
823 
824 	/* Unscale the window into a 32-bit value. */
825 	if (!(thflags & TH_SYN))
826 		tiwin = th->th_win << tp->snd_scale;
827 	else
828 		tiwin = th->th_win;
829 
830 	so = inp->inp_socket;
831 
832 #ifdef TCPDEBUG
833 	if (so->so_options & SO_DEBUG) {
834 		ostate = tp->t_state;
835 		if (isipv6)
836 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
837 		else
838 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
839 		tcp_savetcp = *th;
840 	}
841 #endif
842 
843 	bzero(&to, sizeof to);
844 
845 	if (so->so_options & SO_ACCEPTCONN) {
846 		struct in_conninfo inc;
847 
848 #ifdef INET6
849 		inc.inc_isipv6 = (isipv6 == TRUE);
850 #endif
851 		if (isipv6) {
852 			inc.inc6_faddr = ip6->ip6_src;
853 			inc.inc6_laddr = ip6->ip6_dst;
854 			inc.inc6_route.ro_rt = NULL;		/* XXX */
855 		} else {
856 			inc.inc_faddr = ip->ip_src;
857 			inc.inc_laddr = ip->ip_dst;
858 			inc.inc_route.ro_rt = NULL;		/* XXX */
859 		}
860 		inc.inc_fport = th->th_sport;
861 		inc.inc_lport = th->th_dport;
862 
863 		/*
864 		 * If the state is LISTEN then ignore segment if it contains
865 		 * a RST.  If the segment contains an ACK then it is bad and
866 		 * send a RST.  If it does not contain a SYN then it is not
867 		 * interesting; drop it.
868 		 *
869 		 * If the state is SYN_RECEIVED (syncache) and seg contains
870 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
871 		 * contains a RST, check the sequence number to see if it
872 		 * is a valid reset segment.
873 		 */
874 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
875 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
876 				if (!syncache_expand(&inc, th, &so, m)) {
877 					/*
878 					 * No syncache entry, or ACK was not
879 					 * for our SYN/ACK.  Send a RST.
880 					 */
881 					tcpstat.tcps_badsyn++;
882 					rstreason = BANDLIM_RST_OPENPORT;
883 					goto dropwithreset;
884 				}
885 				if (so == NULL)
886 					/*
887 					 * Could not complete 3-way handshake,
888 					 * connection is being closed down, and
889 					 * syncache will free mbuf.
890 					 */
891 					return;
892 				/*
893 				 * Socket is created in state SYN_RECEIVED.
894 				 * Continue processing segment.
895 				 */
896 				inp = so->so_pcb;
897 				tp = intotcpcb(inp);
898 				/*
899 				 * This is what would have happened in
900 				 * tcp_output() when the SYN,ACK was sent.
901 				 */
902 				tp->snd_up = tp->snd_una;
903 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
904 				tp->last_ack_sent = tp->rcv_nxt;
905 /*
906  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
907  * until the _second_ ACK is received:
908  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
909  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
910  *	  move to ESTAB, set snd_wnd to tiwin.
911  */
912 				tp->snd_wnd = tiwin;	/* unscaled */
913 				goto after_listen;
914 			}
915 			if (thflags & TH_RST) {
916 				syncache_chkrst(&inc, th);
917 				goto drop;
918 			}
919 			if (thflags & TH_ACK) {
920 				syncache_badack(&inc);
921 				tcpstat.tcps_badsyn++;
922 				rstreason = BANDLIM_RST_OPENPORT;
923 				goto dropwithreset;
924 			}
925 			goto drop;
926 		}
927 
928 		/*
929 		 * Segment's flags are (SYN) or (SYN | FIN).
930 		 */
931 #ifdef INET6
932 		/*
933 		 * If deprecated address is forbidden,
934 		 * we do not accept SYN to deprecated interface
935 		 * address to prevent any new inbound connection from
936 		 * getting established.
937 		 * When we do not accept SYN, we send a TCP RST,
938 		 * with deprecated source address (instead of dropping
939 		 * it).  We compromise it as it is much better for peer
940 		 * to send a RST, and RST will be the final packet
941 		 * for the exchange.
942 		 *
943 		 * If we do not forbid deprecated addresses, we accept
944 		 * the SYN packet.  RFC2462 does not suggest dropping
945 		 * SYN in this case.
946 		 * If we decipher RFC2462 5.5.4, it says like this:
947 		 * 1. use of deprecated addr with existing
948 		 *    communication is okay - "SHOULD continue to be
949 		 *    used"
950 		 * 2. use of it with new communication:
951 		 *   (2a) "SHOULD NOT be used if alternate address
952 		 *	  with sufficient scope is available"
953 		 *   (2b) nothing mentioned otherwise.
954 		 * Here we fall into (2b) case as we have no choice in
955 		 * our source address selection - we must obey the peer.
956 		 *
957 		 * The wording in RFC2462 is confusing, and there are
958 		 * multiple description text for deprecated address
959 		 * handling - worse, they are not exactly the same.
960 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
961 		 */
962 		if (isipv6 && !ip6_use_deprecated) {
963 			struct in6_ifaddr *ia6;
964 
965 			if ((ia6 = ip6_getdstifaddr(m)) &&
966 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
967 				tp = NULL;
968 				rstreason = BANDLIM_RST_OPENPORT;
969 				goto dropwithreset;
970 			}
971 		}
972 #endif
973 		/*
974 		 * If it is from this socket, drop it, it must be forged.
975 		 * Don't bother responding if the destination was a broadcast.
976 		 */
977 		if (th->th_dport == th->th_sport) {
978 			if (isipv6) {
979 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
980 						       &ip6->ip6_src))
981 					goto drop;
982 			} else {
983 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
984 					goto drop;
985 			}
986 		}
987 		/*
988 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
989 		 *
990 		 * Note that it is quite possible to receive unicast
991 		 * link-layer packets with a broadcast IP address. Use
992 		 * in_broadcast() to find them.
993 		 */
994 		if (m->m_flags & (M_BCAST | M_MCAST))
995 			goto drop;
996 		if (isipv6) {
997 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
998 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
999 				goto drop;
1000 		} else {
1001 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1002 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1003 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1004 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1005 				goto drop;
1006 		}
1007 		/*
1008 		 * SYN appears to be valid; create compressed TCP state
1009 		 * for syncache, or perform t/tcp connection.
1010 		 */
1011 		if (so->so_qlen <= so->so_qlimit) {
1012 			tcp_dooptions(&to, optp, optlen, TRUE);
1013 			if (!syncache_add(&inc, &to, th, &so, m))
1014 				goto drop;
1015 			if (so == NULL)
1016 				/*
1017 				 * Entry added to syncache, mbuf used to
1018 				 * send SYN,ACK packet.
1019 				 */
1020 				return;
1021 			/*
1022 			 * Segment passed TAO tests.
1023 			 */
1024 			inp = so->so_pcb;
1025 			tp = intotcpcb(inp);
1026 			tp->snd_wnd = tiwin;
1027 			tp->t_starttime = ticks;
1028 			tp->t_state = TCPS_ESTABLISHED;
1029 
1030 			/*
1031 			 * If there is a FIN, or if there is data and the
1032 			 * connection is local, then delay SYN,ACK(SYN) in
1033 			 * the hope of piggy-backing it on a response
1034 			 * segment.  Otherwise must send ACK now in case
1035 			 * the other side is slow starting.
1036 			 */
1037 			if (DELAY_ACK(tp) &&
1038 			    ((thflags & TH_FIN) ||
1039 			     (tlen != 0 &&
1040 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1041 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1042 				callout_reset(tp->tt_delack, tcp_delacktime,
1043 						tcp_timer_delack, tp);
1044 				tp->t_flags |= TF_NEEDSYN;
1045 			} else
1046 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1047 
1048 			tcpstat.tcps_connects++;
1049 			soisconnected(so);
1050 			goto trimthenstep6;
1051 		}
1052 		goto drop;
1053 	}
1054 after_listen:
1055 
1056 	/* should not happen - syncache should pick up these connections */
1057 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1058 
1059 	/*
1060 	 * Segment received on connection.
1061 	 * Reset idle time and keep-alive timer.
1062 	 */
1063 	tp->t_rcvtime = ticks;
1064 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1065 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
1066 
1067 	/*
1068 	 * Process options.
1069 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1070 	 */
1071 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1072 	if (thflags & TH_SYN) {
1073 		if (to.to_flags & TOF_SCALE) {
1074 			tp->t_flags |= TF_RCVD_SCALE;
1075 			tp->requested_s_scale = to.to_requested_s_scale;
1076 		}
1077 		if (to.to_flags & TOF_TS) {
1078 			tp->t_flags |= TF_RCVD_TSTMP;
1079 			tp->ts_recent = to.to_tsval;
1080 			tp->ts_recent_age = ticks;
1081 		}
1082 		if (to.to_flags & (TOF_CC | TOF_CCNEW))
1083 			tp->t_flags |= TF_RCVD_CC;
1084 		if (to.to_flags & TOF_MSS)
1085 			tcp_mss(tp, to.to_mss);
1086 		/*
1087 		 * Only set the TF_SACK_PERMITTED per-connection flag
1088 		 * if we got a SACK_PERMITTED option from the other side
1089 		 * and the global tcp_do_sack variable is true.
1090 		 */
1091 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1092 			tp->t_flags |= TF_SACK_PERMITTED;
1093 	}
1094 
1095 	/*
1096 	 * Header prediction: check for the two common cases
1097 	 * of a uni-directional data xfer.  If the packet has
1098 	 * no control flags, is in-sequence, the window didn't
1099 	 * change and we're not retransmitting, it's a
1100 	 * candidate.  If the length is zero and the ack moved
1101 	 * forward, we're the sender side of the xfer.  Just
1102 	 * free the data acked & wake any higher level process
1103 	 * that was blocked waiting for space.  If the length
1104 	 * is non-zero and the ack didn't move, we're the
1105 	 * receiver side.  If we're getting packets in-order
1106 	 * (the reassembly queue is empty), add the data to
1107 	 * the socket buffer and note that we need a delayed ack.
1108 	 * Make sure that the hidden state-flags are also off.
1109 	 * Since we check for TCPS_ESTABLISHED above, it can only
1110 	 * be TH_NEEDSYN.
1111 	 */
1112 	if (tp->t_state == TCPS_ESTABLISHED &&
1113 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1114 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1115 	    (!(to.to_flags & TOF_TS) ||
1116 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1117 	    /*
1118 	     * Using the CC option is compulsory if once started:
1119 	     *   the segment is OK if no T/TCP was negotiated or
1120 	     *   if the segment has a CC option equal to CCrecv
1121 	     */
1122 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
1123 	     ((to.to_flags & TOF_CC) && to.to_cc == tp->cc_recv)) &&
1124 	    th->th_seq == tp->rcv_nxt &&
1125 	    tp->snd_nxt == tp->snd_max) {
1126 
1127 		/*
1128 		 * If last ACK falls within this segment's sequence numbers,
1129 		 * record the timestamp.
1130 		 * NOTE that the test is modified according to the latest
1131 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1132 		 */
1133 		if ((to.to_flags & TOF_TS) &&
1134 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1135 			tp->ts_recent_age = ticks;
1136 			tp->ts_recent = to.to_tsval;
1137 		}
1138 
1139 		if (tlen == 0) {
1140 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1141 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1142 			    tp->snd_cwnd >= tp->snd_wnd &&
1143 			    !IN_FASTRECOVERY(tp)) {
1144 				/*
1145 				 * This is a pure ack for outstanding data.
1146 				 */
1147 				++tcpstat.tcps_predack;
1148 				/*
1149 				 * "bad retransmit" recovery
1150 				 *
1151 				 * If Eifel detection applies, then
1152 				 * it is deterministic, so use it
1153 				 * unconditionally over the old heuristic.
1154 				 * Otherwise, fall back to the old heuristic.
1155 				 */
1156 				if (tcp_do_eifel_detect &&
1157 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1158 				    (tp->t_flags & TF_FIRSTACCACK)) {
1159 					/* Eifel detection applicable. */
1160 					if (to.to_tsecr < tp->t_rexmtTS) {
1161 						tcp_revert_congestion_state(tp);
1162 						++tcpstat.tcps_eifeldetected;
1163 					}
1164 				} else if (tp->t_rxtshift == 1 &&
1165 					   ticks < tp->t_badrxtwin) {
1166 					tcp_revert_congestion_state(tp);
1167 					++tcpstat.tcps_rttdetected;
1168 				}
1169 				tp->t_flags &= ~(TF_FIRSTACCACK |
1170 						 TF_FASTREXMT | TF_EARLYREXMT);
1171 				/*
1172 				 * Recalculate the retransmit timer / rtt.
1173 				 *
1174 				 * Some machines (certain windows boxes)
1175 				 * send broken timestamp replies during the
1176 				 * SYN+ACK phase, ignore timestamps of 0.
1177 				 */
1178 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1179 					tcp_xmit_timer(tp,
1180 						       ticks - to.to_tsecr + 1);
1181 				} else if (tp->t_rtttime &&
1182 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1183 					tcp_xmit_timer(tp,
1184 						       ticks - tp->t_rtttime);
1185 				}
1186 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1187 				acked = th->th_ack - tp->snd_una;
1188 				tcpstat.tcps_rcvackpack++;
1189 				tcpstat.tcps_rcvackbyte += acked;
1190 				sbdrop(&so->so_snd, acked);
1191 				tp->snd_recover = th->th_ack - 1;
1192 				tp->snd_una = th->th_ack;
1193 				tp->t_dupacks = 0;
1194 				/*
1195 				 * Update window information.
1196 				 */
1197 				if (tiwin != tp->snd_wnd &&
1198 				    acceptable_window_update(tp, th, tiwin)) {
1199 					/* keep track of pure window updates */
1200 					if (tp->snd_wl2 == th->th_ack &&
1201 					    tiwin > tp->snd_wnd)
1202 						tcpstat.tcps_rcvwinupd++;
1203 					tp->snd_wnd = tiwin;
1204 					tp->snd_wl1 = th->th_seq;
1205 					tp->snd_wl2 = th->th_ack;
1206 					if (tp->snd_wnd > tp->max_sndwnd)
1207 						tp->max_sndwnd = tp->snd_wnd;
1208 				}
1209 				m_freem(m);
1210 				ND6_HINT(tp); /* some progress has been done */
1211 				/*
1212 				 * If all outstanding data are acked, stop
1213 				 * retransmit timer, otherwise restart timer
1214 				 * using current (possibly backed-off) value.
1215 				 * If process is waiting for space,
1216 				 * wakeup/selwakeup/signal.  If data
1217 				 * are ready to send, let tcp_output
1218 				 * decide between more output or persist.
1219 				 */
1220 				if (tp->snd_una == tp->snd_max)
1221 					callout_stop(tp->tt_rexmt);
1222 				else if (!callout_active(tp->tt_persist))
1223 					callout_reset(tp->tt_rexmt,
1224 						      tp->t_rxtcur,
1225 						      tcp_timer_rexmt, tp);
1226 				sowwakeup(so);
1227 				if (so->so_snd.sb_cc > 0)
1228 					tcp_output(tp);
1229 				return;
1230 			}
1231 		} else if (tiwin == tp->snd_wnd &&
1232 		    th->th_ack == tp->snd_una &&
1233 		    LIST_EMPTY(&tp->t_segq) &&
1234 		    tlen <= sbspace(&so->so_rcv)) {
1235 			/*
1236 			 * This is a pure, in-sequence data packet
1237 			 * with nothing on the reassembly queue and
1238 			 * we have enough buffer space to take it.
1239 			 */
1240 			++tcpstat.tcps_preddat;
1241 			tp->rcv_nxt += tlen;
1242 			tcpstat.tcps_rcvpack++;
1243 			tcpstat.tcps_rcvbyte += tlen;
1244 			ND6_HINT(tp);	/* some progress has been done */
1245 			/*
1246 			 * Add data to socket buffer.
1247 			 */
1248 			if (so->so_state & SS_CANTRCVMORE) {
1249 				m_freem(m);
1250 			} else {
1251 				m_adj(m, drop_hdrlen); /* delayed header drop */
1252 				sbappendstream(&so->so_rcv, m);
1253 			}
1254 			sorwakeup(so);
1255 			/*
1256 			 * This code is responsible for most of the ACKs
1257 			 * the TCP stack sends back after receiving a data
1258 			 * packet.  Note that the DELAY_ACK check fails if
1259 			 * the delack timer is already running, which results
1260 			 * in an ack being sent every other packet (which is
1261 			 * what we want).
1262 			 */
1263 			if (DELAY_ACK(tp)) {
1264 				callout_reset(tp->tt_delack, tcp_delacktime,
1265 				    tcp_timer_delack, tp);
1266 			} else {
1267 				tp->t_flags |= TF_ACKNOW;
1268 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1269 					tp->t_flags |= TF_ONOUTPUTQ;
1270 					tp->tt_cpu = mycpu->gd_cpuid;
1271 					TAILQ_INSERT_TAIL(
1272 					    &tcpcbackq[tp->tt_cpu],
1273 					    tp, t_outputq);
1274 				}
1275 			}
1276 			return;
1277 		}
1278 	}
1279 
1280 	/*
1281 	 * Calculate amount of space in receive window,
1282 	 * and then do TCP input processing.
1283 	 * Receive window is amount of space in rcv queue,
1284 	 * but not less than advertised window.
1285 	 */
1286 	recvwin = sbspace(&so->so_rcv);
1287 	if (recvwin < 0)
1288 		recvwin = 0;
1289 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1290 
1291 	switch (tp->t_state) {
1292 	/*
1293 	 * If the state is SYN_RECEIVED:
1294 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1295 	 */
1296 	case TCPS_SYN_RECEIVED:
1297 		if ((thflags & TH_ACK) &&
1298 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1299 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1300 				rstreason = BANDLIM_RST_OPENPORT;
1301 				goto dropwithreset;
1302 		}
1303 		break;
1304 
1305 	/*
1306 	 * If the state is SYN_SENT:
1307 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1308 	 *	if seg contains a RST, then drop the connection.
1309 	 *	if seg does not contain SYN, then drop it.
1310 	 * Otherwise this is an acceptable SYN segment
1311 	 *	initialize tp->rcv_nxt and tp->irs
1312 	 *	if seg contains ack then advance tp->snd_una
1313 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1314 	 *	arrange for segment to be acked (eventually)
1315 	 *	continue processing rest of data/controls, beginning with URG
1316 	 */
1317 	case TCPS_SYN_SENT:
1318 		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1319 			taop = &tao_noncached;
1320 			bzero(taop, sizeof *taop);
1321 		}
1322 
1323 		if ((thflags & TH_ACK) &&
1324 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1325 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1326 			/*
1327 			 * If we have a cached CCsent for the remote host,
1328 			 * hence we haven't just crashed and restarted,
1329 			 * do not send a RST.  This may be a retransmission
1330 			 * from the other side after our earlier ACK was lost.
1331 			 * Our new SYN, when it arrives, will serve as the
1332 			 * needed ACK.
1333 			 */
1334 			if (taop->tao_ccsent != 0)
1335 				goto drop;
1336 			else {
1337 				rstreason = BANDLIM_UNLIMITED;
1338 				goto dropwithreset;
1339 			}
1340 		}
1341 		if (thflags & TH_RST) {
1342 			if (thflags & TH_ACK)
1343 				tp = tcp_drop(tp, ECONNREFUSED);
1344 			goto drop;
1345 		}
1346 		if (!(thflags & TH_SYN))
1347 			goto drop;
1348 		tp->snd_wnd = th->th_win;	/* initial send window */
1349 		tp->cc_recv = to.to_cc;		/* foreign CC */
1350 
1351 		tp->irs = th->th_seq;
1352 		tcp_rcvseqinit(tp);
1353 		if (thflags & TH_ACK) {
1354 			/*
1355 			 * Our SYN was acked.  If segment contains CC.ECHO
1356 			 * option, check it to make sure this segment really
1357 			 * matches our SYN.  If not, just drop it as old
1358 			 * duplicate, but send an RST if we're still playing
1359 			 * by the old rules.  If no CC.ECHO option, make sure
1360 			 * we don't get fooled into using T/TCP.
1361 			 */
1362 			if (to.to_flags & TOF_CCECHO) {
1363 				if (tp->cc_send != to.to_ccecho) {
1364 					if (taop->tao_ccsent != 0)
1365 						goto drop;
1366 					else {
1367 						rstreason = BANDLIM_UNLIMITED;
1368 						goto dropwithreset;
1369 					}
1370 				}
1371 			} else
1372 				tp->t_flags &= ~TF_RCVD_CC;
1373 			tcpstat.tcps_connects++;
1374 			soisconnected(so);
1375 			/* Do window scaling on this connection? */
1376 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1377 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1378 				tp->snd_scale = tp->requested_s_scale;
1379 				tp->rcv_scale = tp->request_r_scale;
1380 			}
1381 			/* Segment is acceptable, update cache if undefined. */
1382 			if (taop->tao_ccsent == 0)
1383 				taop->tao_ccsent = to.to_ccecho;
1384 
1385 			tp->rcv_adv += tp->rcv_wnd;
1386 			tp->snd_una++;		/* SYN is acked */
1387 			callout_stop(tp->tt_rexmt);
1388 			/*
1389 			 * If there's data, delay ACK; if there's also a FIN
1390 			 * ACKNOW will be turned on later.
1391 			 */
1392 			if (DELAY_ACK(tp) && tlen != 0)
1393 				callout_reset(tp->tt_delack, tcp_delacktime,
1394 				    tcp_timer_delack, tp);
1395 			else
1396 				tp->t_flags |= TF_ACKNOW;
1397 			/*
1398 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1399 			 * Transitions:
1400 			 *	SYN_SENT  --> ESTABLISHED
1401 			 *	SYN_SENT* --> FIN_WAIT_1
1402 			 */
1403 			tp->t_starttime = ticks;
1404 			if (tp->t_flags & TF_NEEDFIN) {
1405 				tp->t_state = TCPS_FIN_WAIT_1;
1406 				tp->t_flags &= ~TF_NEEDFIN;
1407 				thflags &= ~TH_SYN;
1408 			} else {
1409 				tp->t_state = TCPS_ESTABLISHED;
1410 				callout_reset(tp->tt_keep, tcp_keepidle,
1411 					      tcp_timer_keep, tp);
1412 			}
1413 		} else {
1414 			/*
1415 			 * Received initial SYN in SYN-SENT[*] state =>
1416 			 * simultaneous open.  If segment contains CC option
1417 			 * and there is a cached CC, apply TAO test.
1418 			 * If it succeeds, connection is * half-synchronized.
1419 			 * Otherwise, do 3-way handshake:
1420 			 *	  SYN-SENT -> SYN-RECEIVED
1421 			 *	  SYN-SENT* -> SYN-RECEIVED*
1422 			 * If there was no CC option, clear cached CC value.
1423 			 */
1424 			tp->t_flags |= TF_ACKNOW;
1425 			callout_stop(tp->tt_rexmt);
1426 			if (to.to_flags & TOF_CC) {
1427 				if (taop->tao_cc != 0 &&
1428 				    CC_GT(to.to_cc, taop->tao_cc)) {
1429 					/*
1430 					 * update cache and make transition:
1431 					 *	  SYN-SENT -> ESTABLISHED*
1432 					 *	  SYN-SENT* -> FIN-WAIT-1*
1433 					 */
1434 					taop->tao_cc = to.to_cc;
1435 					tp->t_starttime = ticks;
1436 					if (tp->t_flags & TF_NEEDFIN) {
1437 						tp->t_state = TCPS_FIN_WAIT_1;
1438 						tp->t_flags &= ~TF_NEEDFIN;
1439 					} else {
1440 						tp->t_state = TCPS_ESTABLISHED;
1441 						callout_reset(tp->tt_keep,
1442 							      tcp_keepidle,
1443 							      tcp_timer_keep,
1444 							      tp);
1445 					}
1446 					tp->t_flags |= TF_NEEDSYN;
1447 				} else
1448 					tp->t_state = TCPS_SYN_RECEIVED;
1449 			} else {
1450 				/* CC.NEW or no option => invalidate cache */
1451 				taop->tao_cc = 0;
1452 				tp->t_state = TCPS_SYN_RECEIVED;
1453 			}
1454 		}
1455 
1456 trimthenstep6:
1457 		/*
1458 		 * Advance th->th_seq to correspond to first data byte.
1459 		 * If data, trim to stay within window,
1460 		 * dropping FIN if necessary.
1461 		 */
1462 		th->th_seq++;
1463 		if (tlen > tp->rcv_wnd) {
1464 			todrop = tlen - tp->rcv_wnd;
1465 			m_adj(m, -todrop);
1466 			tlen = tp->rcv_wnd;
1467 			thflags &= ~TH_FIN;
1468 			tcpstat.tcps_rcvpackafterwin++;
1469 			tcpstat.tcps_rcvbyteafterwin += todrop;
1470 		}
1471 		tp->snd_wl1 = th->th_seq - 1;
1472 		tp->rcv_up = th->th_seq;
1473 		/*
1474 		 * Client side of transaction: already sent SYN and data.
1475 		 * If the remote host used T/TCP to validate the SYN,
1476 		 * our data will be ACK'd; if so, enter normal data segment
1477 		 * processing in the middle of step 5, ack processing.
1478 		 * Otherwise, goto step 6.
1479 		 */
1480 		if (thflags & TH_ACK)
1481 			goto process_ACK;
1482 
1483 		goto step6;
1484 
1485 	/*
1486 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1487 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1488 	 *		if state == TIME_WAIT and connection duration > MSL,
1489 	 *		    drop packet and send RST;
1490 	 *
1491 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1492 	 *		    ack the FIN (and data) in retransmission queue.
1493 	 *		    Complete close and delete TCPCB.  Then reprocess
1494 	 *		    segment, hoping to find new TCPCB in LISTEN state;
1495 	 *
1496 	 *		else must be old SYN; drop it.
1497 	 *	else do normal processing.
1498 	 */
1499 	case TCPS_LAST_ACK:
1500 	case TCPS_CLOSING:
1501 	case TCPS_TIME_WAIT:
1502 		if ((thflags & TH_SYN) &&
1503 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1504 			if (tp->t_state == TCPS_TIME_WAIT &&
1505 					(ticks - tp->t_starttime) > tcp_msl) {
1506 				rstreason = BANDLIM_UNLIMITED;
1507 				goto dropwithreset;
1508 			}
1509 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1510 				tp = tcp_close(tp);
1511 				goto findpcb;
1512 			}
1513 			else
1514 				goto drop;
1515 		}
1516 		break;  /* continue normal processing */
1517 	}
1518 
1519 	/*
1520 	 * States other than LISTEN or SYN_SENT.
1521 	 * First check the RST flag and sequence number since reset segments
1522 	 * are exempt from the timestamp and connection count tests.  This
1523 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1524 	 * below which allowed reset segments in half the sequence space
1525 	 * to fall though and be processed (which gives forged reset
1526 	 * segments with a random sequence number a 50 percent chance of
1527 	 * killing a connection).
1528 	 * Then check timestamp, if present.
1529 	 * Then check the connection count, if present.
1530 	 * Then check that at least some bytes of segment are within
1531 	 * receive window.  If segment begins before rcv_nxt,
1532 	 * drop leading data (and SYN); if nothing left, just ack.
1533 	 *
1534 	 *
1535 	 * If the RST bit is set, check the sequence number to see
1536 	 * if this is a valid reset segment.
1537 	 * RFC 793 page 37:
1538 	 *   In all states except SYN-SENT, all reset (RST) segments
1539 	 *   are validated by checking their SEQ-fields.  A reset is
1540 	 *   valid if its sequence number is in the window.
1541 	 * Note: this does not take into account delayed ACKs, so
1542 	 *   we should test against last_ack_sent instead of rcv_nxt.
1543 	 *   The sequence number in the reset segment is normally an
1544 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1545 	 *   send a reset with the sequence number at the rightmost edge
1546 	 *   of our receive window, and we have to handle this case.
1547 	 * If we have multiple segments in flight, the intial reset
1548 	 * segment sequence numbers will be to the left of last_ack_sent,
1549 	 * but they will eventually catch up.
1550 	 * In any case, it never made sense to trim reset segments to
1551 	 * fit the receive window since RFC 1122 says:
1552 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1553 	 *
1554 	 *    A TCP SHOULD allow a received RST segment to include data.
1555 	 *
1556 	 *    DISCUSSION
1557 	 *	   It has been suggested that a RST segment could contain
1558 	 *	   ASCII text that encoded and explained the cause of the
1559 	 *	   RST.  No standard has yet been established for such
1560 	 *	   data.
1561 	 *
1562 	 * If the reset segment passes the sequence number test examine
1563 	 * the state:
1564 	 *    SYN_RECEIVED STATE:
1565 	 *	If passive open, return to LISTEN state.
1566 	 *	If active open, inform user that connection was refused.
1567 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1568 	 *	Inform user that connection was reset, and close tcb.
1569 	 *    CLOSING, LAST_ACK STATES:
1570 	 *	Close the tcb.
1571 	 *    TIME_WAIT STATE:
1572 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1573 	 *	RFC 1337.
1574 	 */
1575 	if (thflags & TH_RST) {
1576 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1577 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1578 			switch (tp->t_state) {
1579 
1580 			case TCPS_SYN_RECEIVED:
1581 				so->so_error = ECONNREFUSED;
1582 				goto close;
1583 
1584 			case TCPS_ESTABLISHED:
1585 			case TCPS_FIN_WAIT_1:
1586 			case TCPS_FIN_WAIT_2:
1587 			case TCPS_CLOSE_WAIT:
1588 				so->so_error = ECONNRESET;
1589 			close:
1590 				tp->t_state = TCPS_CLOSED;
1591 				tcpstat.tcps_drops++;
1592 				tp = tcp_close(tp);
1593 				break;
1594 
1595 			case TCPS_CLOSING:
1596 			case TCPS_LAST_ACK:
1597 				tp = tcp_close(tp);
1598 				break;
1599 
1600 			case TCPS_TIME_WAIT:
1601 				break;
1602 			}
1603 		}
1604 		goto drop;
1605 	}
1606 
1607 	/*
1608 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1609 	 * and it's less than ts_recent, drop it.
1610 	 */
1611 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1612 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1613 
1614 		/* Check to see if ts_recent is over 24 days old.  */
1615 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1616 			/*
1617 			 * Invalidate ts_recent.  If this segment updates
1618 			 * ts_recent, the age will be reset later and ts_recent
1619 			 * will get a valid value.  If it does not, setting
1620 			 * ts_recent to zero will at least satisfy the
1621 			 * requirement that zero be placed in the timestamp
1622 			 * echo reply when ts_recent isn't valid.  The
1623 			 * age isn't reset until we get a valid ts_recent
1624 			 * because we don't want out-of-order segments to be
1625 			 * dropped when ts_recent is old.
1626 			 */
1627 			tp->ts_recent = 0;
1628 		} else {
1629 			tcpstat.tcps_rcvduppack++;
1630 			tcpstat.tcps_rcvdupbyte += tlen;
1631 			tcpstat.tcps_pawsdrop++;
1632 			if (tlen)
1633 				goto dropafterack;
1634 			goto drop;
1635 		}
1636 	}
1637 
1638 	/*
1639 	 * T/TCP mechanism
1640 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1641 	 *   or if its CC is wrong then drop the segment.
1642 	 *   RST segments do not have to comply with this.
1643 	 */
1644 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1645 	    (!(to.to_flags & TOF_CC) || tp->cc_recv != to.to_cc))
1646 		goto dropafterack;
1647 
1648 	/*
1649 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1650 	 * this connection before trimming the data to fit the receive
1651 	 * window.  Check the sequence number versus IRS since we know
1652 	 * the sequence numbers haven't wrapped.  This is a partial fix
1653 	 * for the "LAND" DoS attack.
1654 	 */
1655 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1656 		rstreason = BANDLIM_RST_OPENPORT;
1657 		goto dropwithreset;
1658 	}
1659 
1660 	todrop = tp->rcv_nxt - th->th_seq;
1661 	if (todrop > 0) {
1662 		if (TCP_DO_SACK(tp)) {
1663 			/* Report duplicate segment at head of packet. */
1664 			tp->reportblk.rblk_start = th->th_seq;
1665 			tp->reportblk.rblk_end = th->th_seq + tlen;
1666 			if (thflags & TH_FIN)
1667 				++tp->reportblk.rblk_end;
1668 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1669 				tp->reportblk.rblk_end = tp->rcv_nxt;
1670 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1671 		}
1672 		if (thflags & TH_SYN) {
1673 			thflags &= ~TH_SYN;
1674 			th->th_seq++;
1675 			if (th->th_urp > 1)
1676 				th->th_urp--;
1677 			else
1678 				thflags &= ~TH_URG;
1679 			todrop--;
1680 		}
1681 		/*
1682 		 * Following if statement from Stevens, vol. 2, p. 960.
1683 		 */
1684 		if (todrop > tlen ||
1685 		    (todrop == tlen && !(thflags & TH_FIN))) {
1686 			/*
1687 			 * Any valid FIN must be to the left of the window.
1688 			 * At this point the FIN must be a duplicate or out
1689 			 * of sequence; drop it.
1690 			 */
1691 			thflags &= ~TH_FIN;
1692 
1693 			/*
1694 			 * Send an ACK to resynchronize and drop any data.
1695 			 * But keep on processing for RST or ACK.
1696 			 */
1697 			tp->t_flags |= TF_ACKNOW;
1698 			todrop = tlen;
1699 			tcpstat.tcps_rcvduppack++;
1700 			tcpstat.tcps_rcvdupbyte += todrop;
1701 		} else {
1702 			tcpstat.tcps_rcvpartduppack++;
1703 			tcpstat.tcps_rcvpartdupbyte += todrop;
1704 		}
1705 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1706 		th->th_seq += todrop;
1707 		tlen -= todrop;
1708 		if (th->th_urp > todrop)
1709 			th->th_urp -= todrop;
1710 		else {
1711 			thflags &= ~TH_URG;
1712 			th->th_urp = 0;
1713 		}
1714 	}
1715 
1716 	/*
1717 	 * If new data are received on a connection after the
1718 	 * user processes are gone, then RST the other end.
1719 	 */
1720 	if ((so->so_state & SS_NOFDREF) &&
1721 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1722 		tp = tcp_close(tp);
1723 		tcpstat.tcps_rcvafterclose++;
1724 		rstreason = BANDLIM_UNLIMITED;
1725 		goto dropwithreset;
1726 	}
1727 
1728 	/*
1729 	 * If segment ends after window, drop trailing data
1730 	 * (and PUSH and FIN); if nothing left, just ACK.
1731 	 */
1732 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1733 	if (todrop > 0) {
1734 		tcpstat.tcps_rcvpackafterwin++;
1735 		if (todrop >= tlen) {
1736 			tcpstat.tcps_rcvbyteafterwin += tlen;
1737 			/*
1738 			 * If a new connection request is received
1739 			 * while in TIME_WAIT, drop the old connection
1740 			 * and start over if the sequence numbers
1741 			 * are above the previous ones.
1742 			 */
1743 			if (thflags & TH_SYN &&
1744 			    tp->t_state == TCPS_TIME_WAIT &&
1745 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1746 				tp = tcp_close(tp);
1747 				goto findpcb;
1748 			}
1749 			/*
1750 			 * If window is closed can only take segments at
1751 			 * window edge, and have to drop data and PUSH from
1752 			 * incoming segments.  Continue processing, but
1753 			 * remember to ack.  Otherwise, drop segment
1754 			 * and ack.
1755 			 */
1756 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1757 				tp->t_flags |= TF_ACKNOW;
1758 				tcpstat.tcps_rcvwinprobe++;
1759 			} else
1760 				goto dropafterack;
1761 		} else
1762 			tcpstat.tcps_rcvbyteafterwin += todrop;
1763 		m_adj(m, -todrop);
1764 		tlen -= todrop;
1765 		thflags &= ~(TH_PUSH | TH_FIN);
1766 	}
1767 
1768 	/*
1769 	 * If last ACK falls within this segment's sequence numbers,
1770 	 * record its timestamp.
1771 	 * NOTE that the test is modified according to the latest
1772 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1773 	 */
1774 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1775 		tp->ts_recent_age = ticks;
1776 		tp->ts_recent = to.to_tsval;
1777 	}
1778 
1779 	/*
1780 	 * If a SYN is in the window, then this is an
1781 	 * error and we send an RST and drop the connection.
1782 	 */
1783 	if (thflags & TH_SYN) {
1784 		tp = tcp_drop(tp, ECONNRESET);
1785 		rstreason = BANDLIM_UNLIMITED;
1786 		goto dropwithreset;
1787 	}
1788 
1789 	/*
1790 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1791 	 * flag is on (half-synchronized state), then queue data for
1792 	 * later processing; else drop segment and return.
1793 	 */
1794 	if (!(thflags & TH_ACK)) {
1795 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1796 		    (tp->t_flags & TF_NEEDSYN))
1797 			goto step6;
1798 		else
1799 			goto drop;
1800 	}
1801 
1802 	/*
1803 	 * Ack processing.
1804 	 */
1805 	switch (tp->t_state) {
1806 	/*
1807 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1808 	 * ESTABLISHED state and continue processing.
1809 	 * The ACK was checked above.
1810 	 */
1811 	case TCPS_SYN_RECEIVED:
1812 
1813 		tcpstat.tcps_connects++;
1814 		soisconnected(so);
1815 		/* Do window scaling? */
1816 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1817 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1818 			tp->snd_scale = tp->requested_s_scale;
1819 			tp->rcv_scale = tp->request_r_scale;
1820 		}
1821 		/*
1822 		 * Upon successful completion of 3-way handshake,
1823 		 * update cache.CC if it was undefined, pass any queued
1824 		 * data to the user, and advance state appropriately.
1825 		 */
1826 		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1827 		    taop->tao_cc == 0)
1828 			taop->tao_cc = tp->cc_recv;
1829 
1830 		/*
1831 		 * Make transitions:
1832 		 *      SYN-RECEIVED  -> ESTABLISHED
1833 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1834 		 */
1835 		tp->t_starttime = ticks;
1836 		if (tp->t_flags & TF_NEEDFIN) {
1837 			tp->t_state = TCPS_FIN_WAIT_1;
1838 			tp->t_flags &= ~TF_NEEDFIN;
1839 		} else {
1840 			tp->t_state = TCPS_ESTABLISHED;
1841 			callout_reset(tp->tt_keep, tcp_keepidle,
1842 				      tcp_timer_keep, tp);
1843 		}
1844 		/*
1845 		 * If segment contains data or ACK, will call tcp_reass()
1846 		 * later; if not, do so now to pass queued data to user.
1847 		 */
1848 		if (tlen == 0 && !(thflags & TH_FIN))
1849 			tcp_reass(tp, NULL, NULL, NULL);
1850 		/* fall into ... */
1851 
1852 	/*
1853 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1854 	 * ACKs.  If the ack is in the range
1855 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1856 	 * then advance tp->snd_una to th->th_ack and drop
1857 	 * data from the retransmission queue.  If this ACK reflects
1858 	 * more up to date window information we update our window information.
1859 	 */
1860 	case TCPS_ESTABLISHED:
1861 	case TCPS_FIN_WAIT_1:
1862 	case TCPS_FIN_WAIT_2:
1863 	case TCPS_CLOSE_WAIT:
1864 	case TCPS_CLOSING:
1865 	case TCPS_LAST_ACK:
1866 	case TCPS_TIME_WAIT:
1867 
1868 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1869 			if (TCP_DO_SACK(tp))
1870 				tcp_sack_update_scoreboard(tp, &to);
1871 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1872 				tp->t_dupacks = 0;
1873 				break;
1874 			}
1875 			tcpstat.tcps_rcvdupack++;
1876 			if (!callout_active(tp->tt_rexmt) ||
1877 			    th->th_ack != tp->snd_una) {
1878 				tp->t_dupacks = 0;
1879 				break;
1880 			}
1881 			/*
1882 			 * We have outstanding data (other than
1883 			 * a window probe), this is a completely
1884 			 * duplicate ack (ie, window info didn't
1885 			 * change), the ack is the biggest we've
1886 			 * seen and we've seen exactly our rexmt
1887 			 * threshhold of them, so assume a packet
1888 			 * has been dropped and retransmit it.
1889 			 * Kludge snd_nxt & the congestion
1890 			 * window so we send only this one
1891 			 * packet.
1892 			 */
1893 			if (IN_FASTRECOVERY(tp)) {
1894 				if (TCP_DO_SACK(tp)) {
1895 					/* No artifical cwnd inflation. */
1896 					tcp_sack_rexmt(tp, th);
1897 				} else {
1898 					/*
1899 					 * Dup acks mean that packets
1900 					 * have left the network
1901 					 * (they're now cached at the
1902 					 * receiver) so bump cwnd by
1903 					 * the amount in the receiver
1904 					 * to keep a constant cwnd
1905 					 * packets in the network.
1906 					 */
1907 					tp->snd_cwnd += tp->t_maxseg;
1908 					tcp_output(tp);
1909 				}
1910 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1911 				tp->t_dupacks = 0;
1912 				break;
1913 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1914 				tcp_seq old_snd_nxt;
1915 				u_int win;
1916 
1917 fastretransmit:
1918 				if (tcp_do_eifel_detect &&
1919 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1920 					tcp_save_congestion_state(tp);
1921 					tp->t_flags |= TF_FASTREXMT;
1922 				}
1923 				/*
1924 				 * We know we're losing at the current
1925 				 * window size, so do congestion avoidance:
1926 				 * set ssthresh to half the current window
1927 				 * and pull our congestion window back to the
1928 				 * new ssthresh.
1929 				 */
1930 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1931 				    tp->t_maxseg;
1932 				if (win < 2)
1933 					win = 2;
1934 				tp->snd_ssthresh = win * tp->t_maxseg;
1935 				ENTER_FASTRECOVERY(tp);
1936 				tp->snd_recover = tp->snd_max;
1937 				callout_stop(tp->tt_rexmt);
1938 				tp->t_rtttime = 0;
1939 				old_snd_nxt = tp->snd_nxt;
1940 				tp->snd_nxt = th->th_ack;
1941 				tp->snd_cwnd = tp->t_maxseg;
1942 				tcp_output(tp);
1943 				++tcpstat.tcps_sndfastrexmit;
1944 				tp->snd_cwnd = tp->snd_ssthresh;
1945 				tp->rexmt_high = tp->snd_nxt;
1946 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1947 					tp->snd_nxt = old_snd_nxt;
1948 				KASSERT(tp->snd_limited <= 2,
1949 				    ("tp->snd_limited too big"));
1950 				if (TCP_DO_SACK(tp))
1951 					tcp_sack_rexmt(tp, th);
1952 				else
1953 					tp->snd_cwnd += tp->t_maxseg *
1954 					    (tp->t_dupacks - tp->snd_limited);
1955 			} else if (tcp_do_limitedtransmit) {
1956 				u_long oldcwnd = tp->snd_cwnd;
1957 				tcp_seq oldsndmax = tp->snd_max;
1958 				/* outstanding data */
1959 				uint32_t ownd = tp->snd_max - tp->snd_una;
1960 				u_int sent;
1961 
1962 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
1963 
1964 				KASSERT(tp->t_dupacks == 1 ||
1965 					tp->t_dupacks == 2,
1966 				    ("dupacks not 1 or 2"));
1967 				if (tp->t_dupacks == 1)
1968 					tp->snd_limited = 0;
1969 				tp->snd_cwnd = ownd +
1970 				    (tp->t_dupacks - tp->snd_limited) *
1971 				    tp->t_maxseg;
1972 				tcp_output(tp);
1973 				tp->snd_cwnd = oldcwnd;
1974 				sent = tp->snd_max - oldsndmax;
1975 				if (sent > tp->t_maxseg) {
1976 					KASSERT((tp->t_dupacks == 2 &&
1977 						 tp->snd_limited == 0) ||
1978 						(sent == tp->t_maxseg + 1 &&
1979 						 tp->t_flags & TF_SENTFIN),
1980 					    ("sent too much"));
1981 					KASSERT(sent <= tp->t_maxseg * 2,
1982 					    ("sent too many segments"));
1983 					tp->snd_limited = 2;
1984 					tcpstat.tcps_sndlimited += 2;
1985 				} else if (sent > 0) {
1986 					++tp->snd_limited;
1987 					++tcpstat.tcps_sndlimited;
1988 				} else if (tcp_do_early_retransmit &&
1989 				    (tcp_do_eifel_detect &&
1990 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
1991 				    ownd < 4 * tp->t_maxseg &&
1992 				    tp->t_dupacks + 1 >=
1993 				      iceildiv(ownd, tp->t_maxseg) &&
1994 				    (!TCP_DO_SACK(tp) ||
1995 				     ownd <= tp->t_maxseg ||
1996 				     tcp_sack_has_sacked(&tp->scb,
1997 							ownd - tp->t_maxseg))) {
1998 					++tcpstat.tcps_sndearlyrexmit;
1999 					tp->t_flags |= TF_EARLYREXMT;
2000 					goto fastretransmit;
2001 				}
2002 			}
2003 			goto drop;
2004 		}
2005 
2006 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2007 		tp->t_dupacks = 0;
2008 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2009 			/*
2010 			 * Detected optimistic ACK attack.
2011 			 * Force slow-start to de-synchronize attack.
2012 			 */
2013 			tp->snd_cwnd = tp->t_maxseg;
2014 
2015 			tcpstat.tcps_rcvacktoomuch++;
2016 			goto dropafterack;
2017 		}
2018 		/*
2019 		 * If we reach this point, ACK is not a duplicate,
2020 		 *     i.e., it ACKs something we sent.
2021 		 */
2022 		if (tp->t_flags & TF_NEEDSYN) {
2023 			/*
2024 			 * T/TCP: Connection was half-synchronized, and our
2025 			 * SYN has been ACK'd (so connection is now fully
2026 			 * synchronized).  Go to non-starred state,
2027 			 * increment snd_una for ACK of SYN, and check if
2028 			 * we can do window scaling.
2029 			 */
2030 			tp->t_flags &= ~TF_NEEDSYN;
2031 			tp->snd_una++;
2032 			/* Do window scaling? */
2033 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2034 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2035 				tp->snd_scale = tp->requested_s_scale;
2036 				tp->rcv_scale = tp->request_r_scale;
2037 			}
2038 		}
2039 
2040 process_ACK:
2041 		acked = th->th_ack - tp->snd_una;
2042 		tcpstat.tcps_rcvackpack++;
2043 		tcpstat.tcps_rcvackbyte += acked;
2044 
2045 		if (tcp_do_eifel_detect && acked > 0 &&
2046 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2047 		    (tp->t_flags & TF_FIRSTACCACK)) {
2048 			/* Eifel detection applicable. */
2049 			if (to.to_tsecr < tp->t_rexmtTS) {
2050 				++tcpstat.tcps_eifeldetected;
2051 				tcp_revert_congestion_state(tp);
2052 				if (tp->t_rxtshift == 1 &&
2053 				    ticks >= tp->t_badrxtwin)
2054 					++tcpstat.tcps_rttcantdetect;
2055 			}
2056 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2057 			/*
2058 			 * If we just performed our first retransmit,
2059 			 * and the ACK arrives within our recovery window,
2060 			 * then it was a mistake to do the retransmit
2061 			 * in the first place.  Recover our original cwnd
2062 			 * and ssthresh, and proceed to transmit where we
2063 			 * left off.
2064 			 */
2065 			tcp_revert_congestion_state(tp);
2066 			++tcpstat.tcps_rttdetected;
2067 		}
2068 
2069 		/*
2070 		 * If we have a timestamp reply, update smoothed
2071 		 * round trip time.  If no timestamp is present but
2072 		 * transmit timer is running and timed sequence
2073 		 * number was acked, update smoothed round trip time.
2074 		 * Since we now have an rtt measurement, cancel the
2075 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2076 		 * Recompute the initial retransmit timer.
2077 		 *
2078 		 * Some machines (certain windows boxes) send broken
2079 		 * timestamp replies during the SYN+ACK phase, ignore
2080 		 * timestamps of 0.
2081 		 */
2082 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2083 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2084 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2085 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2086 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2087 
2088 		/*
2089 		 * If no data (only SYN) was ACK'd,
2090 		 *    skip rest of ACK processing.
2091 		 */
2092 		if (acked == 0)
2093 			goto step6;
2094 
2095 		/* Stop looking for an acceptable ACK since one was received. */
2096 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2097 
2098 		if (acked > so->so_snd.sb_cc) {
2099 			tp->snd_wnd -= so->so_snd.sb_cc;
2100 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2101 			ourfinisacked = TRUE;
2102 		} else {
2103 			sbdrop(&so->so_snd, acked);
2104 			tp->snd_wnd -= acked;
2105 			ourfinisacked = FALSE;
2106 		}
2107 		sowwakeup(so);
2108 
2109 		/*
2110 		 * Update window information.
2111 		 * Don't look at window if no ACK:
2112 		 * TAC's send garbage on first SYN.
2113 		 */
2114 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2115 		    (tp->snd_wl1 == th->th_seq &&
2116 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2117 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2118 			/* keep track of pure window updates */
2119 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2120 			    tiwin > tp->snd_wnd)
2121 				tcpstat.tcps_rcvwinupd++;
2122 			tp->snd_wnd = tiwin;
2123 			tp->snd_wl1 = th->th_seq;
2124 			tp->snd_wl2 = th->th_ack;
2125 			if (tp->snd_wnd > tp->max_sndwnd)
2126 				tp->max_sndwnd = tp->snd_wnd;
2127 			needoutput = TRUE;
2128 		}
2129 
2130 		tp->snd_una = th->th_ack;
2131 		if (TCP_DO_SACK(tp))
2132 			tcp_sack_update_scoreboard(tp, &to);
2133 		if (IN_FASTRECOVERY(tp)) {
2134 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2135 				EXIT_FASTRECOVERY(tp);
2136 				needoutput = TRUE;
2137 				/*
2138 				 * If the congestion window was inflated
2139 				 * to account for the other side's
2140 				 * cached packets, retract it.
2141 				 *
2142 				 * Window inflation should have left us
2143 				 * with approximately snd_ssthresh outstanding
2144 				 * data.  But, in case we would be inclined
2145 				 * to send a burst, better do it using
2146 				 * slow start.
2147 				 */
2148 				if (!TCP_DO_SACK(tp))
2149 					tp->snd_cwnd = tp->snd_ssthresh;
2150 
2151 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2152 					   tp->snd_max + 2 * tp->t_maxseg))
2153 					tp->snd_cwnd =
2154 					    (tp->snd_max - tp->snd_una) +
2155 					    2 * tp->t_maxseg;
2156 			} else {
2157 				if (TCP_DO_SACK(tp)) {
2158 					tp->snd_max_rexmt = tp->snd_max;
2159 					tcp_sack_rexmt(tp, th);
2160 				} else {
2161 					tcp_newreno_partial_ack(tp, th, acked);
2162 				}
2163 				needoutput = FALSE;
2164 			}
2165 		} else {
2166 			/*
2167 			 * When new data is acked, open the congestion window.
2168 			 * If the window gives us less than ssthresh packets
2169 			 * in flight, open exponentially (maxseg per packet).
2170 			 * Otherwise open linearly: maxseg per window
2171 			 * (maxseg^2 / cwnd per packet).
2172 			 */
2173 			u_int cw = tp->snd_cwnd;
2174 			u_int incr;
2175 
2176 			if (cw > tp->snd_ssthresh)
2177 				incr = tp->t_maxseg * tp->t_maxseg / cw;
2178 			else
2179 				incr = tp->t_maxseg;
2180 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2181 			tp->snd_recover = th->th_ack - 1;
2182 		}
2183 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2184 			tp->snd_nxt = tp->snd_una;
2185 
2186 		/*
2187 		 * If all outstanding data is acked, stop retransmit
2188 		 * timer and remember to restart (more output or persist).
2189 		 * If there is more data to be acked, restart retransmit
2190 		 * timer, using current (possibly backed-off) value.
2191 		 */
2192 		if (th->th_ack == tp->snd_max) {
2193 			callout_stop(tp->tt_rexmt);
2194 			needoutput = TRUE;
2195 		} else if (!callout_active(tp->tt_persist))
2196 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
2197 				      tcp_timer_rexmt, tp);
2198 
2199 		switch (tp->t_state) {
2200 		/*
2201 		 * In FIN_WAIT_1 STATE in addition to the processing
2202 		 * for the ESTABLISHED state if our FIN is now acknowledged
2203 		 * then enter FIN_WAIT_2.
2204 		 */
2205 		case TCPS_FIN_WAIT_1:
2206 			if (ourfinisacked) {
2207 				/*
2208 				 * If we can't receive any more
2209 				 * data, then closing user can proceed.
2210 				 * Starting the timer is contrary to the
2211 				 * specification, but if we don't get a FIN
2212 				 * we'll hang forever.
2213 				 */
2214 				if (so->so_state & SS_CANTRCVMORE) {
2215 					soisdisconnected(so);
2216 					callout_reset(tp->tt_2msl, tcp_maxidle,
2217 						      tcp_timer_2msl, tp);
2218 				}
2219 				tp->t_state = TCPS_FIN_WAIT_2;
2220 			}
2221 			break;
2222 
2223 		/*
2224 		 * In CLOSING STATE in addition to the processing for
2225 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2226 		 * then enter the TIME-WAIT state, otherwise ignore
2227 		 * the segment.
2228 		 */
2229 		case TCPS_CLOSING:
2230 			if (ourfinisacked) {
2231 				tp->t_state = TCPS_TIME_WAIT;
2232 				tcp_canceltimers(tp);
2233 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
2234 				if (tp->cc_recv != 0 &&
2235 				    (ticks - tp->t_starttime) < tcp_msl)
2236 					callout_reset(tp->tt_2msl,
2237 					    tp->t_rxtcur * TCPTV_TWTRUNC,
2238 					    tcp_timer_2msl, tp);
2239 				else
2240 					callout_reset(tp->tt_2msl, 2 * tcp_msl,
2241 					    tcp_timer_2msl, tp);
2242 				soisdisconnected(so);
2243 			}
2244 			break;
2245 
2246 		/*
2247 		 * In LAST_ACK, we may still be waiting for data to drain
2248 		 * and/or to be acked, as well as for the ack of our FIN.
2249 		 * If our FIN is now acknowledged, delete the TCB,
2250 		 * enter the closed state and return.
2251 		 */
2252 		case TCPS_LAST_ACK:
2253 			if (ourfinisacked) {
2254 				tp = tcp_close(tp);
2255 				goto drop;
2256 			}
2257 			break;
2258 
2259 		/*
2260 		 * In TIME_WAIT state the only thing that should arrive
2261 		 * is a retransmission of the remote FIN.  Acknowledge
2262 		 * it and restart the finack timer.
2263 		 */
2264 		case TCPS_TIME_WAIT:
2265 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2266 				      tcp_timer_2msl, tp);
2267 			goto dropafterack;
2268 		}
2269 	}
2270 
2271 step6:
2272 	/*
2273 	 * Update window information.
2274 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2275 	 */
2276 	if ((thflags & TH_ACK) &&
2277 	    acceptable_window_update(tp, th, tiwin)) {
2278 		/* keep track of pure window updates */
2279 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2280 		    tiwin > tp->snd_wnd)
2281 			tcpstat.tcps_rcvwinupd++;
2282 		tp->snd_wnd = tiwin;
2283 		tp->snd_wl1 = th->th_seq;
2284 		tp->snd_wl2 = th->th_ack;
2285 		if (tp->snd_wnd > tp->max_sndwnd)
2286 			tp->max_sndwnd = tp->snd_wnd;
2287 		needoutput = TRUE;
2288 	}
2289 
2290 	/*
2291 	 * Process segments with URG.
2292 	 */
2293 	if ((thflags & TH_URG) && th->th_urp &&
2294 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2295 		/*
2296 		 * This is a kludge, but if we receive and accept
2297 		 * random urgent pointers, we'll crash in
2298 		 * soreceive.  It's hard to imagine someone
2299 		 * actually wanting to send this much urgent data.
2300 		 */
2301 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2302 			th->th_urp = 0;			/* XXX */
2303 			thflags &= ~TH_URG;		/* XXX */
2304 			goto dodata;			/* XXX */
2305 		}
2306 		/*
2307 		 * If this segment advances the known urgent pointer,
2308 		 * then mark the data stream.  This should not happen
2309 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2310 		 * a FIN has been received from the remote side.
2311 		 * In these states we ignore the URG.
2312 		 *
2313 		 * According to RFC961 (Assigned Protocols),
2314 		 * the urgent pointer points to the last octet
2315 		 * of urgent data.  We continue, however,
2316 		 * to consider it to indicate the first octet
2317 		 * of data past the urgent section as the original
2318 		 * spec states (in one of two places).
2319 		 */
2320 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2321 			tp->rcv_up = th->th_seq + th->th_urp;
2322 			so->so_oobmark = so->so_rcv.sb_cc +
2323 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2324 			if (so->so_oobmark == 0)
2325 				so->so_state |= SS_RCVATMARK;
2326 			sohasoutofband(so);
2327 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2328 		}
2329 		/*
2330 		 * Remove out of band data so doesn't get presented to user.
2331 		 * This can happen independent of advancing the URG pointer,
2332 		 * but if two URG's are pending at once, some out-of-band
2333 		 * data may creep in... ick.
2334 		 */
2335 		if (th->th_urp <= (u_long)tlen &&
2336 		    !(so->so_options & SO_OOBINLINE)) {
2337 			/* hdr drop is delayed */
2338 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2339 		}
2340 	} else {
2341 		/*
2342 		 * If no out of band data is expected,
2343 		 * pull receive urgent pointer along
2344 		 * with the receive window.
2345 		 */
2346 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2347 			tp->rcv_up = tp->rcv_nxt;
2348 	}
2349 
2350 dodata:							/* XXX */
2351 	/*
2352 	 * Process the segment text, merging it into the TCP sequencing queue,
2353 	 * and arranging for acknowledgment of receipt if necessary.
2354 	 * This process logically involves adjusting tp->rcv_wnd as data
2355 	 * is presented to the user (this happens in tcp_usrreq.c,
2356 	 * case PRU_RCVD).  If a FIN has already been received on this
2357 	 * connection then we just ignore the text.
2358 	 */
2359 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2360 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2361 		/*
2362 		 * Insert segment which includes th into TCP reassembly queue
2363 		 * with control block tp.  Set thflags to whether reassembly now
2364 		 * includes a segment with FIN.  This handles the common case
2365 		 * inline (segment is the next to be received on an established
2366 		 * connection, and the queue is empty), avoiding linkage into
2367 		 * and removal from the queue and repetition of various
2368 		 * conversions.
2369 		 * Set DELACK for segments received in order, but ack
2370 		 * immediately when segments are out of order (so
2371 		 * fast retransmit can work).
2372 		 */
2373 		if (th->th_seq == tp->rcv_nxt &&
2374 		    LIST_EMPTY(&tp->t_segq) &&
2375 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2376 			if (DELAY_ACK(tp))
2377 				callout_reset(tp->tt_delack, tcp_delacktime,
2378 					      tcp_timer_delack, tp);
2379 			else
2380 				tp->t_flags |= TF_ACKNOW;
2381 			tp->rcv_nxt += tlen;
2382 			thflags = th->th_flags & TH_FIN;
2383 			tcpstat.tcps_rcvpack++;
2384 			tcpstat.tcps_rcvbyte += tlen;
2385 			ND6_HINT(tp);
2386 			if (so->so_state & SS_CANTRCVMORE)
2387 				m_freem(m);
2388 			else
2389 				sbappendstream(&so->so_rcv, m);
2390 			sorwakeup(so);
2391 		} else {
2392 			if (!(tp->t_flags & TF_DUPSEG)) {
2393 				/* Initialize SACK report block. */
2394 				tp->reportblk.rblk_start = th->th_seq;
2395 				tp->reportblk.rblk_end = th->th_seq + tlen +
2396 				    ((thflags & TH_FIN) != 0);
2397 			}
2398 			thflags = tcp_reass(tp, th, &tlen, m);
2399 			tp->t_flags |= TF_ACKNOW;
2400 		}
2401 
2402 		/*
2403 		 * Note the amount of data that peer has sent into
2404 		 * our window, in order to estimate the sender's
2405 		 * buffer size.
2406 		 */
2407 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2408 	} else {
2409 		m_freem(m);
2410 		thflags &= ~TH_FIN;
2411 	}
2412 
2413 	/*
2414 	 * If FIN is received ACK the FIN and let the user know
2415 	 * that the connection is closing.
2416 	 */
2417 	if (thflags & TH_FIN) {
2418 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2419 			socantrcvmore(so);
2420 			/*
2421 			 * If connection is half-synchronized
2422 			 * (ie NEEDSYN flag on) then delay ACK,
2423 			 * so it may be piggybacked when SYN is sent.
2424 			 * Otherwise, since we received a FIN then no
2425 			 * more input can be expected, send ACK now.
2426 			 */
2427 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN))
2428 				callout_reset(tp->tt_delack, tcp_delacktime,
2429 				    tcp_timer_delack, tp);
2430 			else
2431 				tp->t_flags |= TF_ACKNOW;
2432 			tp->rcv_nxt++;
2433 		}
2434 
2435 		switch (tp->t_state) {
2436 		/*
2437 		 * In SYN_RECEIVED and ESTABLISHED STATES
2438 		 * enter the CLOSE_WAIT state.
2439 		 */
2440 		case TCPS_SYN_RECEIVED:
2441 			tp->t_starttime = ticks;
2442 			/*FALLTHROUGH*/
2443 		case TCPS_ESTABLISHED:
2444 			tp->t_state = TCPS_CLOSE_WAIT;
2445 			break;
2446 
2447 		/*
2448 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2449 		 * enter the CLOSING state.
2450 		 */
2451 		case TCPS_FIN_WAIT_1:
2452 			tp->t_state = TCPS_CLOSING;
2453 			break;
2454 
2455 		/*
2456 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2457 		 * starting the time-wait timer, turning off the other
2458 		 * standard timers.
2459 		 */
2460 		case TCPS_FIN_WAIT_2:
2461 			tp->t_state = TCPS_TIME_WAIT;
2462 			tcp_canceltimers(tp);
2463 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2464 			if (tp->cc_recv != 0 &&
2465 			    (ticks - tp->t_starttime) < tcp_msl) {
2466 				callout_reset(tp->tt_2msl,
2467 					      tp->t_rxtcur * TCPTV_TWTRUNC,
2468 					      tcp_timer_2msl, tp);
2469 				/* For transaction client, force ACK now. */
2470 				tp->t_flags |= TF_ACKNOW;
2471 			}
2472 			else
2473 				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2474 					      tcp_timer_2msl, tp);
2475 			soisdisconnected(so);
2476 			break;
2477 
2478 		/*
2479 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2480 		 */
2481 		case TCPS_TIME_WAIT:
2482 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2483 				      tcp_timer_2msl, tp);
2484 			break;
2485 		}
2486 	}
2487 
2488 #ifdef TCPDEBUG
2489 	if (so->so_options & SO_DEBUG)
2490 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2491 #endif
2492 
2493 	/*
2494 	 * Return any desired output.
2495 	 */
2496 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2497 		tcp_output(tp);
2498 	return;
2499 
2500 dropafterack:
2501 	/*
2502 	 * Generate an ACK dropping incoming segment if it occupies
2503 	 * sequence space, where the ACK reflects our state.
2504 	 *
2505 	 * We can now skip the test for the RST flag since all
2506 	 * paths to this code happen after packets containing
2507 	 * RST have been dropped.
2508 	 *
2509 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2510 	 * segment we received passes the SYN-RECEIVED ACK test.
2511 	 * If it fails send a RST.  This breaks the loop in the
2512 	 * "LAND" DoS attack, and also prevents an ACK storm
2513 	 * between two listening ports that have been sent forged
2514 	 * SYN segments, each with the source address of the other.
2515 	 */
2516 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2517 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2518 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2519 		rstreason = BANDLIM_RST_OPENPORT;
2520 		goto dropwithreset;
2521 	}
2522 #ifdef TCPDEBUG
2523 	if (so->so_options & SO_DEBUG)
2524 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2525 #endif
2526 	m_freem(m);
2527 	tp->t_flags |= TF_ACKNOW;
2528 	tcp_output(tp);
2529 	return;
2530 
2531 dropwithreset:
2532 	/*
2533 	 * Generate a RST, dropping incoming segment.
2534 	 * Make ACK acceptable to originator of segment.
2535 	 * Don't bother to respond if destination was broadcast/multicast.
2536 	 */
2537 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2538 		goto drop;
2539 	if (isipv6) {
2540 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2541 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2542 			goto drop;
2543 	} else {
2544 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2545 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2546 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2547 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2548 			goto drop;
2549 	}
2550 	/* IPv6 anycast check is done at tcp6_input() */
2551 
2552 	/*
2553 	 * Perform bandwidth limiting.
2554 	 */
2555 #ifdef ICMP_BANDLIM
2556 	if (badport_bandlim(rstreason) < 0)
2557 		goto drop;
2558 #endif
2559 
2560 #ifdef TCPDEBUG
2561 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2562 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2563 #endif
2564 	if (thflags & TH_ACK)
2565 		/* mtod() below is safe as long as hdr dropping is delayed */
2566 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2567 			    TH_RST);
2568 	else {
2569 		if (thflags & TH_SYN)
2570 			tlen++;
2571 		/* mtod() below is safe as long as hdr dropping is delayed */
2572 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2573 			    (tcp_seq)0, TH_RST | TH_ACK);
2574 	}
2575 	return;
2576 
2577 drop:
2578 	/*
2579 	 * Drop space held by incoming segment and return.
2580 	 */
2581 #ifdef TCPDEBUG
2582 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2583 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2584 #endif
2585 	m_freem(m);
2586 	return;
2587 }
2588 
2589 /*
2590  * Parse TCP options and place in tcpopt.
2591  */
2592 static void
2593 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2594 {
2595 	int opt, optlen, i;
2596 
2597 	to->to_flags = 0;
2598 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2599 		opt = cp[0];
2600 		if (opt == TCPOPT_EOL)
2601 			break;
2602 		if (opt == TCPOPT_NOP)
2603 			optlen = 1;
2604 		else {
2605 			if (cnt < 2)
2606 				break;
2607 			optlen = cp[1];
2608 			if (optlen < 2 || optlen > cnt)
2609 				break;
2610 		}
2611 		switch (opt) {
2612 		case TCPOPT_MAXSEG:
2613 			if (optlen != TCPOLEN_MAXSEG)
2614 				continue;
2615 			if (!is_syn)
2616 				continue;
2617 			to->to_flags |= TOF_MSS;
2618 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2619 			to->to_mss = ntohs(to->to_mss);
2620 			break;
2621 		case TCPOPT_WINDOW:
2622 			if (optlen != TCPOLEN_WINDOW)
2623 				continue;
2624 			if (!is_syn)
2625 				continue;
2626 			to->to_flags |= TOF_SCALE;
2627 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2628 			break;
2629 		case TCPOPT_TIMESTAMP:
2630 			if (optlen != TCPOLEN_TIMESTAMP)
2631 				continue;
2632 			to->to_flags |= TOF_TS;
2633 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2634 			to->to_tsval = ntohl(to->to_tsval);
2635 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2636 			to->to_tsecr = ntohl(to->to_tsecr);
2637 			break;
2638 		case TCPOPT_CC:
2639 			if (optlen != TCPOLEN_CC)
2640 				continue;
2641 			to->to_flags |= TOF_CC;
2642 			bcopy(cp + 2, &to->to_cc, sizeof to->to_cc);
2643 			to->to_cc = ntohl(to->to_cc);
2644 			break;
2645 		case TCPOPT_CCNEW:
2646 			if (optlen != TCPOLEN_CC)
2647 				continue;
2648 			if (!is_syn)
2649 				continue;
2650 			to->to_flags |= TOF_CCNEW;
2651 			bcopy(cp + 2, &to->to_cc, sizeof to->to_cc);
2652 			to->to_cc = ntohl(to->to_cc);
2653 			break;
2654 		case TCPOPT_CCECHO:
2655 			if (optlen != TCPOLEN_CC)
2656 				continue;
2657 			if (!is_syn)
2658 				continue;
2659 			to->to_flags |= TOF_CCECHO;
2660 			bcopy(cp + 2, &to->to_ccecho, sizeof to->to_ccecho);
2661 			to->to_ccecho = ntohl(to->to_ccecho);
2662 			break;
2663 		case TCPOPT_SACK_PERMITTED:
2664 			if (optlen != TCPOLEN_SACK_PERMITTED)
2665 				continue;
2666 			if (!is_syn)
2667 				continue;
2668 			to->to_flags |= TOF_SACK_PERMITTED;
2669 			break;
2670 		case TCPOPT_SACK:
2671 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2672 				continue;
2673 			to->to_nsackblocks = (optlen - 2) / 8;
2674 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2675 			to->to_flags |= TOF_SACK;
2676 			for (i = 0; i < to->to_nsackblocks; i++) {
2677 				struct raw_sackblock *r = &to->to_sackblocks[i];
2678 
2679 				r->rblk_start = ntohl(r->rblk_start);
2680 				r->rblk_end = ntohl(r->rblk_end);
2681 			}
2682 			break;
2683 		default:
2684 			continue;
2685 		}
2686 	}
2687 }
2688 
2689 /*
2690  * Pull out of band byte out of a segment so
2691  * it doesn't appear in the user's data queue.
2692  * It is still reflected in the segment length for
2693  * sequencing purposes.
2694  * "off" is the delayed to be dropped hdrlen.
2695  */
2696 static void
2697 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2698 {
2699 	int cnt = off + th->th_urp - 1;
2700 
2701 	while (cnt >= 0) {
2702 		if (m->m_len > cnt) {
2703 			char *cp = mtod(m, caddr_t) + cnt;
2704 			struct tcpcb *tp = sototcpcb(so);
2705 
2706 			tp->t_iobc = *cp;
2707 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2708 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2709 			m->m_len--;
2710 			if (m->m_flags & M_PKTHDR)
2711 				m->m_pkthdr.len--;
2712 			return;
2713 		}
2714 		cnt -= m->m_len;
2715 		m = m->m_next;
2716 		if (m == 0)
2717 			break;
2718 	}
2719 	panic("tcp_pulloutofband");
2720 }
2721 
2722 /*
2723  * Collect new round-trip time estimate
2724  * and update averages and current timeout.
2725  */
2726 static void
2727 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2728 {
2729 	int delta;
2730 
2731 	tcpstat.tcps_rttupdated++;
2732 	tp->t_rttupdated++;
2733 	if (tp->t_srtt != 0) {
2734 		/*
2735 		 * srtt is stored as fixed point with 5 bits after the
2736 		 * binary point (i.e., scaled by 8).  The following magic
2737 		 * is equivalent to the smoothing algorithm in rfc793 with
2738 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2739 		 * point).  Adjust rtt to origin 0.
2740 		 */
2741 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2742 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2743 
2744 		if ((tp->t_srtt += delta) <= 0)
2745 			tp->t_srtt = 1;
2746 
2747 		/*
2748 		 * We accumulate a smoothed rtt variance (actually, a
2749 		 * smoothed mean difference), then set the retransmit
2750 		 * timer to smoothed rtt + 4 times the smoothed variance.
2751 		 * rttvar is stored as fixed point with 4 bits after the
2752 		 * binary point (scaled by 16).  The following is
2753 		 * equivalent to rfc793 smoothing with an alpha of .75
2754 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2755 		 * rfc793's wired-in beta.
2756 		 */
2757 		if (delta < 0)
2758 			delta = -delta;
2759 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2760 		if ((tp->t_rttvar += delta) <= 0)
2761 			tp->t_rttvar = 1;
2762 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2763 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2764 	} else {
2765 		/*
2766 		 * No rtt measurement yet - use the unsmoothed rtt.
2767 		 * Set the variance to half the rtt (so our first
2768 		 * retransmit happens at 3*rtt).
2769 		 */
2770 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2771 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2772 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2773 	}
2774 	tp->t_rtttime = 0;
2775 	tp->t_rxtshift = 0;
2776 
2777 	/*
2778 	 * the retransmit should happen at rtt + 4 * rttvar.
2779 	 * Because of the way we do the smoothing, srtt and rttvar
2780 	 * will each average +1/2 tick of bias.  When we compute
2781 	 * the retransmit timer, we want 1/2 tick of rounding and
2782 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2783 	 * firing of the timer.  The bias will give us exactly the
2784 	 * 1.5 tick we need.  But, because the bias is
2785 	 * statistical, we have to test that we don't drop below
2786 	 * the minimum feasible timer (which is 2 ticks).
2787 	 */
2788 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2789 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2790 
2791 	/*
2792 	 * We received an ack for a packet that wasn't retransmitted;
2793 	 * it is probably safe to discard any error indications we've
2794 	 * received recently.  This isn't quite right, but close enough
2795 	 * for now (a route might have failed after we sent a segment,
2796 	 * and the return path might not be symmetrical).
2797 	 */
2798 	tp->t_softerror = 0;
2799 }
2800 
2801 /*
2802  * Determine a reasonable value for maxseg size.
2803  * If the route is known, check route for mtu.
2804  * If none, use an mss that can be handled on the outgoing
2805  * interface without forcing IP to fragment; if bigger than
2806  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2807  * to utilize large mbufs.  If no route is found, route has no mtu,
2808  * or the destination isn't local, use a default, hopefully conservative
2809  * size (usually 512 or the default IP max size, but no more than the mtu
2810  * of the interface), as we can't discover anything about intervening
2811  * gateways or networks.  We also initialize the congestion/slow start
2812  * window to be a single segment if the destination isn't local.
2813  * While looking at the routing entry, we also initialize other path-dependent
2814  * parameters from pre-set or cached values in the routing entry.
2815  *
2816  * Also take into account the space needed for options that we
2817  * send regularly.  Make maxseg shorter by that amount to assure
2818  * that we can send maxseg amount of data even when the options
2819  * are present.  Store the upper limit of the length of options plus
2820  * data in maxopd.
2821  *
2822  * NOTE that this routine is only called when we process an incoming
2823  * segment, for outgoing segments only tcp_mssopt is called.
2824  *
2825  * In case of T/TCP, we call this routine during implicit connection
2826  * setup as well (offer = -1), to initialize maxseg from the cached
2827  * MSS of our peer.
2828  */
2829 void
2830 tcp_mss(struct tcpcb *tp, int offer)
2831 {
2832 	struct rtentry *rt;
2833 	struct ifnet *ifp;
2834 	int rtt, mss;
2835 	u_long bufsize;
2836 	struct inpcb *inp = tp->t_inpcb;
2837 	struct socket *so;
2838 	struct rmxp_tao *taop;
2839 	int origoffer = offer;
2840 #ifdef INET6
2841 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2842 	size_t min_protoh = isipv6 ?
2843 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2844 			    sizeof(struct tcpiphdr);
2845 #else
2846 	const boolean_t isipv6 = FALSE;
2847 	const size_t min_protoh = sizeof(struct tcpiphdr);
2848 #endif
2849 
2850 	if (isipv6)
2851 		rt = tcp_rtlookup6(&inp->inp_inc);
2852 	else
2853 		rt = tcp_rtlookup(&inp->inp_inc);
2854 	if (rt == NULL) {
2855 		tp->t_maxopd = tp->t_maxseg =
2856 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2857 		return;
2858 	}
2859 	ifp = rt->rt_ifp;
2860 	so = inp->inp_socket;
2861 
2862 	taop = rmx_taop(rt->rt_rmx);
2863 	/*
2864 	 * Offer == -1 means that we didn't receive SYN yet,
2865 	 * use cached value in that case;
2866 	 */
2867 	if (offer == -1)
2868 		offer = taop->tao_mssopt;
2869 	/*
2870 	 * Offer == 0 means that there was no MSS on the SYN segment,
2871 	 * in this case we use tcp_mssdflt.
2872 	 */
2873 	if (offer == 0)
2874 		offer = (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2875 	else
2876 		/*
2877 		 * Sanity check: make sure that maxopd will be large
2878 		 * enough to allow some data on segments even is the
2879 		 * all the option space is used (40bytes).  Otherwise
2880 		 * funny things may happen in tcp_output.
2881 		 */
2882 		offer = max(offer, 64);
2883 	taop->tao_mssopt = offer;
2884 
2885 	/*
2886 	 * While we're here, check if there's an initial rtt
2887 	 * or rttvar.  Convert from the route-table units
2888 	 * to scaled multiples of the slow timeout timer.
2889 	 */
2890 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2891 		/*
2892 		 * XXX the lock bit for RTT indicates that the value
2893 		 * is also a minimum value; this is subject to time.
2894 		 */
2895 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2896 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2897 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2898 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2899 		tcpstat.tcps_usedrtt++;
2900 		if (rt->rt_rmx.rmx_rttvar) {
2901 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2902 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2903 			tcpstat.tcps_usedrttvar++;
2904 		} else {
2905 			/* default variation is +- 1 rtt */
2906 			tp->t_rttvar =
2907 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2908 		}
2909 		TCPT_RANGESET(tp->t_rxtcur,
2910 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2911 			      tp->t_rttmin, TCPTV_REXMTMAX);
2912 	}
2913 	/*
2914 	 * if there's an mtu associated with the route, use it
2915 	 * else, use the link mtu.
2916 	 */
2917 	if (rt->rt_rmx.rmx_mtu)
2918 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2919 	else {
2920 		if (isipv6) {
2921 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2922 			if (!in6_localaddr(&inp->in6p_faddr))
2923 				mss = min(mss, tcp_v6mssdflt);
2924 		} else {
2925 			mss = ifp->if_mtu - min_protoh;
2926 			if (!in_localaddr(inp->inp_faddr))
2927 				mss = min(mss, tcp_mssdflt);
2928 		}
2929 	}
2930 	mss = min(mss, offer);
2931 	/*
2932 	 * maxopd stores the maximum length of data AND options
2933 	 * in a segment; maxseg is the amount of data in a normal
2934 	 * segment.  We need to store this value (maxopd) apart
2935 	 * from maxseg, because now every segment carries options
2936 	 * and thus we normally have somewhat less data in segments.
2937 	 */
2938 	tp->t_maxopd = mss;
2939 
2940 	/*
2941 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2942 	 * were received yet.  In this case we just guess, otherwise
2943 	 * we do the same as before T/TCP.
2944 	 */
2945 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
2946 	    (origoffer == -1 ||
2947 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2948 		mss -= TCPOLEN_TSTAMP_APPA;
2949 	if ((tp->t_flags & (TF_REQ_CC | TF_NOOPT)) == TF_REQ_CC &&
2950 	    (origoffer == -1 ||
2951 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2952 		mss -= TCPOLEN_CC_APPA;
2953 
2954 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2955 		if (mss > MCLBYTES)
2956 			mss &= ~(MCLBYTES-1);
2957 #else
2958 		if (mss > MCLBYTES)
2959 			mss = mss / MCLBYTES * MCLBYTES;
2960 #endif
2961 	/*
2962 	 * If there's a pipesize, change the socket buffer
2963 	 * to that size.  Make the socket buffers an integral
2964 	 * number of mss units; if the mss is larger than
2965 	 * the socket buffer, decrease the mss.
2966 	 */
2967 #ifdef RTV_SPIPE
2968 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2969 #endif
2970 		bufsize = so->so_snd.sb_hiwat;
2971 	if (bufsize < mss)
2972 		mss = bufsize;
2973 	else {
2974 		bufsize = roundup(bufsize, mss);
2975 		if (bufsize > sb_max)
2976 			bufsize = sb_max;
2977 		if (bufsize > so->so_snd.sb_hiwat)
2978 			sbreserve(&so->so_snd, bufsize, so, NULL);
2979 	}
2980 	tp->t_maxseg = mss;
2981 
2982 #ifdef RTV_RPIPE
2983 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2984 #endif
2985 		bufsize = so->so_rcv.sb_hiwat;
2986 	if (bufsize > mss) {
2987 		bufsize = roundup(bufsize, mss);
2988 		if (bufsize > sb_max)
2989 			bufsize = sb_max;
2990 		if (bufsize > so->so_rcv.sb_hiwat)
2991 			sbreserve(&so->so_rcv, bufsize, so, NULL);
2992 	}
2993 
2994 	/*
2995 	 * Set the slow-start flight size depending on whether this
2996 	 * is a local network or not.
2997 	 */
2998 	if (tcp_do_rfc3390)
2999 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3000 	else
3001 		tp->snd_cwnd = mss;
3002 
3003 	if (rt->rt_rmx.rmx_ssthresh) {
3004 		/*
3005 		 * There's some sort of gateway or interface
3006 		 * buffer limit on the path.  Use this to set
3007 		 * the slow start threshhold, but set the
3008 		 * threshold to no less than 2*mss.
3009 		 */
3010 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3011 		tcpstat.tcps_usedssthresh++;
3012 	}
3013 }
3014 
3015 /*
3016  * Determine the MSS option to send on an outgoing SYN.
3017  */
3018 int
3019 tcp_mssopt(struct tcpcb *tp)
3020 {
3021 	struct rtentry *rt;
3022 #ifdef INET6
3023 	boolean_t isipv6 =
3024 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3025 	int min_protoh = isipv6 ?
3026 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3027 			     sizeof(struct tcpiphdr);
3028 #else
3029 	const boolean_t isipv6 = FALSE;
3030 	const size_t min_protoh = sizeof(struct tcpiphdr);
3031 #endif
3032 
3033 	if (isipv6)
3034 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3035 	else
3036 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3037 	if (rt == NULL)
3038 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3039 
3040 	return (rt->rt_ifp->if_mtu - min_protoh);
3041 }
3042 
3043 /*
3044  * When a partial ack arrives, force the retransmission of the
3045  * next unacknowledged segment.  Do not exit Fast Recovery.
3046  *
3047  * Implement the Slow-but-Steady variant of NewReno by restarting the
3048  * the retransmission timer.  Turn it off here so it can be restarted
3049  * later in tcp_output().
3050  */
3051 static void
3052 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3053 {
3054 	tcp_seq old_snd_nxt = tp->snd_nxt;
3055 	u_long ocwnd = tp->snd_cwnd;
3056 
3057 	callout_stop(tp->tt_rexmt);
3058 	tp->t_rtttime = 0;
3059 	tp->snd_nxt = th->th_ack;
3060 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3061 	tp->snd_cwnd = tp->t_maxseg;
3062 	tp->t_flags |= TF_ACKNOW;
3063 	tcp_output(tp);
3064 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3065 		tp->snd_nxt = old_snd_nxt;
3066 	/* partial window deflation */
3067 	tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3068 }
3069 
3070 /*
3071  * In contrast to the Slow-but-Steady NewReno variant,
3072  * we do not reset the retransmission timer for SACK retransmissions,
3073  * except when retransmitting snd_una.
3074  */
3075 static void
3076 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3077 {
3078 	uint32_t pipe, seglen;
3079 	tcp_seq nextrexmt;
3080 	boolean_t lostdup;
3081 	tcp_seq old_snd_nxt = tp->snd_nxt;
3082 	u_long ocwnd = tp->snd_cwnd;
3083 	int nseg = 0;		/* consecutive new segments */
3084 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3085 
3086 	tp->t_rtttime = 0;
3087 	pipe = tcp_sack_compute_pipe(tp);
3088 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3089 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3090 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3091 		uint32_t sent;
3092 		tcp_seq old_snd_max;
3093 		int error;
3094 
3095 		if (nextrexmt == tp->snd_max) ++nseg;
3096 		tp->snd_nxt = nextrexmt;
3097 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3098 		old_snd_max = tp->snd_max;
3099 		if (nextrexmt == tp->snd_una)
3100 			callout_stop(tp->tt_rexmt);
3101 		error = tcp_output(tp);
3102 		if (error != 0)
3103 			break;
3104 		sent = tp->snd_nxt - nextrexmt;
3105 		if (sent <= 0)
3106 			break;
3107 		if (!lostdup)
3108 			pipe += sent;
3109 		tcpstat.tcps_sndsackpack++;
3110 		tcpstat.tcps_sndsackbyte += sent;
3111 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3112 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3113 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3114 	}
3115 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3116 		tp->snd_nxt = old_snd_nxt;
3117 	tp->snd_cwnd = ocwnd;
3118 }
3119