xref: /dflybsd-src/sys/netinet/tcp_input.c (revision 14343ad3b815bafa1bcec3656de2d614fcc75bec)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  * $DragonFly: src/sys/netinet/tcp_input.c,v 1.68 2008/08/22 09:14:17 sephe Exp $
69  */
70 
71 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
72 #include "opt_inet.h"
73 #include "opt_inet6.h"
74 #include "opt_ipsec.h"
75 #include "opt_tcpdebug.h"
76 #include "opt_tcp_input.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/proc.h>		/* for proc0 declaration */
85 #include <sys/protosw.h>
86 #include <sys/socket.h>
87 #include <sys/socketvar.h>
88 #include <sys/syslog.h>
89 #include <sys/in_cksum.h>
90 
91 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
92 #include <machine/stdarg.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
101 #include <netinet/in_var.h>
102 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_pcb.h>
104 #include <netinet/ip_var.h>
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 
122 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
123 struct tcphdr tcp_savetcp;
124 #endif
125 
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #include <netproto/ipsec/ipsec6.h>
129 #endif
130 
131 #ifdef IPSEC
132 #include <netinet6/ipsec.h>
133 #include <netinet6/ipsec6.h>
134 #include <netproto/key/key.h>
135 #endif
136 
137 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
138 
139 static int log_in_vain = 0;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
141     &log_in_vain, 0, "Log all incoming TCP connections");
142 
143 static int blackhole = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
145     &blackhole, 0, "Do not send RST when dropping refused connections");
146 
147 int tcp_delack_enabled = 1;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
149     &tcp_delack_enabled, 0,
150     "Delay ACK to try and piggyback it onto a data packet");
151 
152 #ifdef TCP_DROP_SYNFIN
153 static int drop_synfin = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
155     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
156 #endif
157 
158 static int tcp_do_limitedtransmit = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
160     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
161 
162 static int tcp_do_early_retransmit = 1;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
164     &tcp_do_early_retransmit, 0, "Early retransmit");
165 
166 int tcp_aggregate_acks = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
168     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
169 
170 int tcp_do_rfc3390 = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
172     &tcp_do_rfc3390, 0,
173     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
174 
175 static int tcp_do_eifel_detect = 1;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
177     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
178 
179 static int tcp_do_abc = 1;
180 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
181     &tcp_do_abc, 0,
182     "TCP Appropriate Byte Counting (RFC 3465)");
183 
184 /*
185  * Define as tunable for easy testing with SACK on and off.
186  * Warning:  do not change setting in the middle of an existing active TCP flow,
187  *   else strange things might happen to that flow.
188  */
189 int tcp_do_sack = 1;
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
191     &tcp_do_sack, 0, "Enable SACK Algorithms");
192 
193 int tcp_do_smartsack = 1;
194 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
195     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
196 
197 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
198     "TCP Segment Reassembly Queue");
199 
200 int tcp_reass_maxseg = 0;
201 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
202     &tcp_reass_maxseg, 0,
203     "Global maximum number of TCP Segments in Reassembly Queue");
204 
205 int tcp_reass_qsize = 0;
206 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
207     &tcp_reass_qsize, 0,
208     "Global number of TCP Segments currently in Reassembly Queue");
209 
210 static int tcp_reass_overflows = 0;
211 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
212     &tcp_reass_overflows, 0,
213     "Global number of TCP Segment Reassembly Queue Overflows");
214 
215 int tcp_do_autorcvbuf = 1;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
217     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
218 
219 int tcp_autorcvbuf_inc = 16*1024;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
221     &tcp_autorcvbuf_inc, 0,
222     "Incrementor step size of automatic receive buffer");
223 
224 int tcp_autorcvbuf_max = 2*1024*1024;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
226     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
227 
228 
229 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
230 static void	 tcp_pulloutofband(struct socket *,
231 		     struct tcphdr *, struct mbuf *, int);
232 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
233 		     struct mbuf *);
234 static void	 tcp_xmit_timer(struct tcpcb *, int);
235 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
236 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
237 
238 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
239 #ifdef INET6
240 #define ND6_HINT(tp) \
241 do { \
242 	if ((tp) && (tp)->t_inpcb && \
243 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
244 	    (tp)->t_inpcb->in6p_route.ro_rt) \
245 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
246 } while (0)
247 #else
248 #define ND6_HINT(tp)
249 #endif
250 
251 /*
252  * Indicate whether this ack should be delayed.  We can delay the ack if
253  *	- delayed acks are enabled and
254  *	- there is no delayed ack timer in progress and
255  *	- our last ack wasn't a 0-sized window.  We never want to delay
256  *	  the ack that opens up a 0-sized window.
257  */
258 #define DELAY_ACK(tp) \
259 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
260 	!(tp->t_flags & TF_RXWIN0SENT))
261 
262 #define acceptable_window_update(tp, th, tiwin)				\
263     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
264      (tp->snd_wl1 == th->th_seq &&					\
265       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
266        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
267 
268 static int
269 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
270 {
271 	struct tseg_qent *q;
272 	struct tseg_qent *p = NULL;
273 	struct tseg_qent *te;
274 	struct socket *so = tp->t_inpcb->inp_socket;
275 	int flags;
276 
277 	/*
278 	 * Call with th == NULL after become established to
279 	 * force pre-ESTABLISHED data up to user socket.
280 	 */
281 	if (th == NULL)
282 		goto present;
283 
284 	/*
285 	 * Limit the number of segments in the reassembly queue to prevent
286 	 * holding on to too many segments (and thus running out of mbufs).
287 	 * Make sure to let the missing segment through which caused this
288 	 * queue.  Always keep one global queue entry spare to be able to
289 	 * process the missing segment.
290 	 */
291 	if (th->th_seq != tp->rcv_nxt &&
292 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
293 		tcp_reass_overflows++;
294 		tcpstat.tcps_rcvmemdrop++;
295 		m_freem(m);
296 		/* no SACK block to report */
297 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
298 		return (0);
299 	}
300 
301 	/* Allocate a new queue entry. */
302 	MALLOC(te, struct tseg_qent *, sizeof(struct tseg_qent), M_TSEGQ,
303 	       M_INTWAIT | M_NULLOK);
304 	if (te == NULL) {
305 		tcpstat.tcps_rcvmemdrop++;
306 		m_freem(m);
307 		/* no SACK block to report */
308 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
309 		return (0);
310 	}
311 	tcp_reass_qsize++;
312 
313 	/*
314 	 * Find a segment which begins after this one does.
315 	 */
316 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
317 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
318 			break;
319 		p = q;
320 	}
321 
322 	/*
323 	 * If there is a preceding segment, it may provide some of
324 	 * our data already.  If so, drop the data from the incoming
325 	 * segment.  If it provides all of our data, drop us.
326 	 */
327 	if (p != NULL) {
328 		tcp_seq_diff_t i;
329 
330 		/* conversion to int (in i) handles seq wraparound */
331 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
332 		if (i > 0) {		/* overlaps preceding segment */
333 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
334 			/* enclosing block starts w/ preceding segment */
335 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
336 			if (i >= *tlenp) {
337 				/* preceding encloses incoming segment */
338 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
339 				    p->tqe_len;
340 				tcpstat.tcps_rcvduppack++;
341 				tcpstat.tcps_rcvdupbyte += *tlenp;
342 				m_freem(m);
343 				kfree(te, M_TSEGQ);
344 				tcp_reass_qsize--;
345 				/*
346 				 * Try to present any queued data
347 				 * at the left window edge to the user.
348 				 * This is needed after the 3-WHS
349 				 * completes.
350 				 */
351 				goto present;	/* ??? */
352 			}
353 			m_adj(m, i);
354 			*tlenp -= i;
355 			th->th_seq += i;
356 			/* incoming segment end is enclosing block end */
357 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
358 			    ((th->th_flags & TH_FIN) != 0);
359 			/* trim end of reported D-SACK block */
360 			tp->reportblk.rblk_end = th->th_seq;
361 		}
362 	}
363 	tcpstat.tcps_rcvoopack++;
364 	tcpstat.tcps_rcvoobyte += *tlenp;
365 
366 	/*
367 	 * While we overlap succeeding segments trim them or,
368 	 * if they are completely covered, dequeue them.
369 	 */
370 	while (q) {
371 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
372 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
373 		struct tseg_qent *nq;
374 
375 		if (i <= 0)
376 			break;
377 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
378 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
379 			tp->encloseblk = tp->reportblk;
380 			/* report trailing duplicate D-SACK segment */
381 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
382 		}
383 		if ((tp->t_flags & TF_ENCLOSESEG) &&
384 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
385 			/* extend enclosing block if one exists */
386 			tp->encloseblk.rblk_end = qend;
387 		}
388 		if (i < q->tqe_len) {
389 			q->tqe_th->th_seq += i;
390 			q->tqe_len -= i;
391 			m_adj(q->tqe_m, i);
392 			break;
393 		}
394 
395 		nq = LIST_NEXT(q, tqe_q);
396 		LIST_REMOVE(q, tqe_q);
397 		m_freem(q->tqe_m);
398 		kfree(q, M_TSEGQ);
399 		tcp_reass_qsize--;
400 		q = nq;
401 	}
402 
403 	/* Insert the new segment queue entry into place. */
404 	te->tqe_m = m;
405 	te->tqe_th = th;
406 	te->tqe_len = *tlenp;
407 
408 	/* check if can coalesce with following segment */
409 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
410 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
411 
412 		te->tqe_len += q->tqe_len;
413 		if (q->tqe_th->th_flags & TH_FIN)
414 			te->tqe_th->th_flags |= TH_FIN;
415 		m_cat(te->tqe_m, q->tqe_m);
416 		tp->encloseblk.rblk_end = tend;
417 		/*
418 		 * When not reporting a duplicate segment, use
419 		 * the larger enclosing block as the SACK block.
420 		 */
421 		if (!(tp->t_flags & TF_DUPSEG))
422 			tp->reportblk.rblk_end = tend;
423 		LIST_REMOVE(q, tqe_q);
424 		kfree(q, M_TSEGQ);
425 		tcp_reass_qsize--;
426 	}
427 
428 	if (p == NULL) {
429 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
430 	} else {
431 		/* check if can coalesce with preceding segment */
432 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
433 			p->tqe_len += te->tqe_len;
434 			m_cat(p->tqe_m, te->tqe_m);
435 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
436 			/*
437 			 * When not reporting a duplicate segment, use
438 			 * the larger enclosing block as the SACK block.
439 			 */
440 			if (!(tp->t_flags & TF_DUPSEG))
441 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
442 			kfree(te, M_TSEGQ);
443 			tcp_reass_qsize--;
444 		} else
445 			LIST_INSERT_AFTER(p, te, tqe_q);
446 	}
447 
448 present:
449 	/*
450 	 * Present data to user, advancing rcv_nxt through
451 	 * completed sequence space.
452 	 */
453 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
454 		return (0);
455 	q = LIST_FIRST(&tp->t_segq);
456 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
457 		return (0);
458 	tp->rcv_nxt += q->tqe_len;
459 	if (!(tp->t_flags & TF_DUPSEG))	{
460 		/* no SACK block to report since ACK advanced */
461 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
462 	}
463 	/* no enclosing block to report since ACK advanced */
464 	tp->t_flags &= ~TF_ENCLOSESEG;
465 	flags = q->tqe_th->th_flags & TH_FIN;
466 	LIST_REMOVE(q, tqe_q);
467 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
468 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
469 		("segment not coalesced"));
470 	if (so->so_state & SS_CANTRCVMORE)
471 		m_freem(q->tqe_m);
472 	else
473 		ssb_appendstream(&so->so_rcv, q->tqe_m);
474 	kfree(q, M_TSEGQ);
475 	tcp_reass_qsize--;
476 	ND6_HINT(tp);
477 	sorwakeup(so);
478 	return (flags);
479 }
480 
481 /*
482  * TCP input routine, follows pages 65-76 of the
483  * protocol specification dated September, 1981 very closely.
484  */
485 #ifdef INET6
486 int
487 tcp6_input(struct mbuf **mp, int *offp, int proto)
488 {
489 	struct mbuf *m = *mp;
490 	struct in6_ifaddr *ia6;
491 
492 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
493 
494 	/*
495 	 * draft-itojun-ipv6-tcp-to-anycast
496 	 * better place to put this in?
497 	 */
498 	ia6 = ip6_getdstifaddr(m);
499 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
500 		struct ip6_hdr *ip6;
501 
502 		ip6 = mtod(m, struct ip6_hdr *);
503 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
504 			    offsetof(struct ip6_hdr, ip6_dst));
505 		return (IPPROTO_DONE);
506 	}
507 
508 	tcp_input(m, *offp, proto);
509 	return (IPPROTO_DONE);
510 }
511 #endif
512 
513 void
514 tcp_input(struct mbuf *m, ...)
515 {
516 	__va_list ap;
517 	int off0, proto;
518 	struct tcphdr *th;
519 	struct ip *ip = NULL;
520 	struct ipovly *ipov;
521 	struct inpcb *inp = NULL;
522 	u_char *optp = NULL;
523 	int optlen = 0;
524 	int tlen, off;
525 	int len = 0;
526 	int drop_hdrlen;
527 	struct tcpcb *tp = NULL;
528 	int thflags;
529 	struct socket *so = 0;
530 	int todrop, acked;
531 	boolean_t ourfinisacked, needoutput = FALSE;
532 	u_long tiwin;
533 	int recvwin;
534 	struct tcpopt to;		/* options in this segment */
535 	struct sockaddr_in *next_hop = NULL;
536 	int rstreason; /* For badport_bandlim accounting purposes */
537 	int cpu;
538 	struct ip6_hdr *ip6 = NULL;
539 #ifdef INET6
540 	boolean_t isipv6;
541 #else
542 	const boolean_t isipv6 = FALSE;
543 #endif
544 #ifdef TCPDEBUG
545 	short ostate = 0;
546 #endif
547 
548 	__va_start(ap, m);
549 	off0 = __va_arg(ap, int);
550 	proto = __va_arg(ap, int);
551 	__va_end(ap);
552 
553 	tcpstat.tcps_rcvtotal++;
554 
555 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
556 		struct m_tag *mtag;
557 
558 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
559 		KKASSERT(mtag != NULL);
560 		next_hop = m_tag_data(mtag);
561 	}
562 
563 #ifdef INET6
564 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
565 #endif
566 
567 	if (isipv6) {
568 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
569 		ip6 = mtod(m, struct ip6_hdr *);
570 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
571 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
572 			tcpstat.tcps_rcvbadsum++;
573 			goto drop;
574 		}
575 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
576 
577 		/*
578 		 * Be proactive about unspecified IPv6 address in source.
579 		 * As we use all-zero to indicate unbounded/unconnected pcb,
580 		 * unspecified IPv6 address can be used to confuse us.
581 		 *
582 		 * Note that packets with unspecified IPv6 destination is
583 		 * already dropped in ip6_input.
584 		 */
585 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
586 			/* XXX stat */
587 			goto drop;
588 		}
589 	} else {
590 		/*
591 		 * Get IP and TCP header together in first mbuf.
592 		 * Note: IP leaves IP header in first mbuf.
593 		 */
594 		if (off0 > sizeof(struct ip)) {
595 			ip_stripoptions(m);
596 			off0 = sizeof(struct ip);
597 		}
598 		/* already checked and pulled up in ip_demux() */
599 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
600 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
601 		ip = mtod(m, struct ip *);
602 		ipov = (struct ipovly *)ip;
603 		th = (struct tcphdr *)((caddr_t)ip + off0);
604 		tlen = ip->ip_len;
605 
606 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
607 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
608 				th->th_sum = m->m_pkthdr.csum_data;
609 			else
610 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
611 						ip->ip_dst.s_addr,
612 						htonl(m->m_pkthdr.csum_data +
613 							ip->ip_len +
614 							IPPROTO_TCP));
615 			th->th_sum ^= 0xffff;
616 		} else {
617 			/*
618 			 * Checksum extended TCP header and data.
619 			 */
620 			len = sizeof(struct ip) + tlen;
621 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
622 			ipov->ih_len = (u_short)tlen;
623 			ipov->ih_len = htons(ipov->ih_len);
624 			th->th_sum = in_cksum(m, len);
625 		}
626 		if (th->th_sum) {
627 			tcpstat.tcps_rcvbadsum++;
628 			goto drop;
629 		}
630 #ifdef INET6
631 		/* Re-initialization for later version check */
632 		ip->ip_v = IPVERSION;
633 #endif
634 	}
635 
636 	/*
637 	 * Check that TCP offset makes sense,
638 	 * pull out TCP options and adjust length.		XXX
639 	 */
640 	off = th->th_off << 2;
641 	/* already checked and pulled up in ip_demux() */
642 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
643 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
644 	tlen -= off;	/* tlen is used instead of ti->ti_len */
645 	if (off > sizeof(struct tcphdr)) {
646 		if (isipv6) {
647 			IP6_EXTHDR_CHECK(m, off0, off, );
648 			ip6 = mtod(m, struct ip6_hdr *);
649 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
650 		} else {
651 			/* already pulled up in ip_demux() */
652 			KASSERT(m->m_len >= sizeof(struct ip) + off,
653 			    ("TCP header and options not in one mbuf: "
654 			     "m_len %d, off %d", m->m_len, off));
655 		}
656 		optlen = off - sizeof(struct tcphdr);
657 		optp = (u_char *)(th + 1);
658 	}
659 	thflags = th->th_flags;
660 
661 #ifdef TCP_DROP_SYNFIN
662 	/*
663 	 * If the drop_synfin option is enabled, drop all packets with
664 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
665 	 * identifying the TCP/IP stack.
666 	 *
667 	 * This is a violation of the TCP specification.
668 	 */
669 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
670 		goto drop;
671 #endif
672 
673 	/*
674 	 * Convert TCP protocol specific fields to host format.
675 	 */
676 	th->th_seq = ntohl(th->th_seq);
677 	th->th_ack = ntohl(th->th_ack);
678 	th->th_win = ntohs(th->th_win);
679 	th->th_urp = ntohs(th->th_urp);
680 
681 	/*
682 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
683 	 * until after ip6_savecontrol() is called and before other functions
684 	 * which don't want those proto headers.
685 	 * Because ip6_savecontrol() is going to parse the mbuf to
686 	 * search for data to be passed up to user-land, it wants mbuf
687 	 * parameters to be unchanged.
688 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
689 	 * latest version of the advanced API (20020110).
690 	 */
691 	drop_hdrlen = off0 + off;
692 
693 	/*
694 	 * Locate pcb for segment.
695 	 */
696 findpcb:
697 	/* IPFIREWALL_FORWARD section */
698 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
699 		/*
700 		 * Transparently forwarded. Pretend to be the destination.
701 		 * already got one like this?
702 		 */
703 		cpu = mycpu->gd_cpuid;
704 		inp = in_pcblookup_hash(&tcbinfo[cpu],
705 					ip->ip_src, th->th_sport,
706 					ip->ip_dst, th->th_dport,
707 					0, m->m_pkthdr.rcvif);
708 		if (!inp) {
709 			/*
710 			 * It's new.  Try to find the ambushing socket.
711 			 */
712 
713 			/*
714 			 * The rest of the ipfw code stores the port in
715 			 * host order.  XXX
716 			 * (The IP address is still in network order.)
717 			 */
718 			in_port_t dport = next_hop->sin_port ?
719 						htons(next_hop->sin_port) :
720 						th->th_dport;
721 
722 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
723 					  next_hop->sin_addr.s_addr, dport);
724 			inp = in_pcblookup_hash(&tcbinfo[cpu],
725 						ip->ip_src, th->th_sport,
726 						next_hop->sin_addr, dport,
727 						1, m->m_pkthdr.rcvif);
728 		}
729 	} else {
730 		if (isipv6) {
731 			inp = in6_pcblookup_hash(&tcbinfo[0],
732 						 &ip6->ip6_src, th->th_sport,
733 						 &ip6->ip6_dst, th->th_dport,
734 						 1, m->m_pkthdr.rcvif);
735 		} else {
736 			cpu = mycpu->gd_cpuid;
737 			inp = in_pcblookup_hash(&tcbinfo[cpu],
738 						ip->ip_src, th->th_sport,
739 						ip->ip_dst, th->th_dport,
740 						1, m->m_pkthdr.rcvif);
741 		}
742 	}
743 
744 	/*
745 	 * If the state is CLOSED (i.e., TCB does not exist) then
746 	 * all data in the incoming segment is discarded.
747 	 * If the TCB exists but is in CLOSED state, it is embryonic,
748 	 * but should either do a listen or a connect soon.
749 	 */
750 	if (inp == NULL) {
751 		if (log_in_vain) {
752 #ifdef INET6
753 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
754 #else
755 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
756 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
757 #endif
758 			if (isipv6) {
759 				strcpy(dbuf, "[");
760 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
761 				strcat(dbuf, "]");
762 				strcpy(sbuf, "[");
763 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
764 				strcat(sbuf, "]");
765 			} else {
766 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
767 				strcpy(sbuf, inet_ntoa(ip->ip_src));
768 			}
769 			switch (log_in_vain) {
770 			case 1:
771 				if (!(thflags & TH_SYN))
772 					break;
773 			case 2:
774 				log(LOG_INFO,
775 				    "Connection attempt to TCP %s:%d "
776 				    "from %s:%d flags:0x%02x\n",
777 				    dbuf, ntohs(th->th_dport), sbuf,
778 				    ntohs(th->th_sport), thflags);
779 				break;
780 			default:
781 				break;
782 			}
783 		}
784 		if (blackhole) {
785 			switch (blackhole) {
786 			case 1:
787 				if (thflags & TH_SYN)
788 					goto drop;
789 				break;
790 			case 2:
791 				goto drop;
792 			default:
793 				goto drop;
794 			}
795 		}
796 		rstreason = BANDLIM_RST_CLOSEDPORT;
797 		goto dropwithreset;
798 	}
799 
800 #ifdef IPSEC
801 	if (isipv6) {
802 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
803 			ipsec6stat.in_polvio++;
804 			goto drop;
805 		}
806 	} else {
807 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
808 			ipsecstat.in_polvio++;
809 			goto drop;
810 		}
811 	}
812 #endif
813 #ifdef FAST_IPSEC
814 	if (isipv6) {
815 		if (ipsec6_in_reject(m, inp))
816 			goto drop;
817 	} else {
818 		if (ipsec4_in_reject(m, inp))
819 			goto drop;
820 	}
821 #endif
822 	/* Check the minimum TTL for socket. */
823 #ifdef INET6
824 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
825 		goto drop;
826 #endif
827 
828 	tp = intotcpcb(inp);
829 	if (tp == NULL) {
830 		rstreason = BANDLIM_RST_CLOSEDPORT;
831 		goto dropwithreset;
832 	}
833 	if (tp->t_state <= TCPS_CLOSED)
834 		goto drop;
835 
836 	/* Unscale the window into a 32-bit value. */
837 	if (!(thflags & TH_SYN))
838 		tiwin = th->th_win << tp->snd_scale;
839 	else
840 		tiwin = th->th_win;
841 
842 	so = inp->inp_socket;
843 
844 #ifdef TCPDEBUG
845 	if (so->so_options & SO_DEBUG) {
846 		ostate = tp->t_state;
847 		if (isipv6)
848 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
849 		else
850 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
851 		tcp_savetcp = *th;
852 	}
853 #endif
854 
855 	bzero(&to, sizeof to);
856 
857 	if (so->so_options & SO_ACCEPTCONN) {
858 		struct in_conninfo inc;
859 
860 #ifdef INET6
861 		inc.inc_isipv6 = (isipv6 == TRUE);
862 #endif
863 		if (isipv6) {
864 			inc.inc6_faddr = ip6->ip6_src;
865 			inc.inc6_laddr = ip6->ip6_dst;
866 			inc.inc6_route.ro_rt = NULL;		/* XXX */
867 		} else {
868 			inc.inc_faddr = ip->ip_src;
869 			inc.inc_laddr = ip->ip_dst;
870 			inc.inc_route.ro_rt = NULL;		/* XXX */
871 		}
872 		inc.inc_fport = th->th_sport;
873 		inc.inc_lport = th->th_dport;
874 
875 		/*
876 		 * If the state is LISTEN then ignore segment if it contains
877 		 * a RST.  If the segment contains an ACK then it is bad and
878 		 * send a RST.  If it does not contain a SYN then it is not
879 		 * interesting; drop it.
880 		 *
881 		 * If the state is SYN_RECEIVED (syncache) and seg contains
882 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
883 		 * contains a RST, check the sequence number to see if it
884 		 * is a valid reset segment.
885 		 */
886 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
887 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
888 				if (!syncache_expand(&inc, th, &so, m)) {
889 					/*
890 					 * No syncache entry, or ACK was not
891 					 * for our SYN/ACK.  Send a RST.
892 					 */
893 					tcpstat.tcps_badsyn++;
894 					rstreason = BANDLIM_RST_OPENPORT;
895 					goto dropwithreset;
896 				}
897 				if (so == NULL)
898 					/*
899 					 * Could not complete 3-way handshake,
900 					 * connection is being closed down, and
901 					 * syncache will free mbuf.
902 					 */
903 					return;
904 				/*
905 				 * Socket is created in state SYN_RECEIVED.
906 				 * Continue processing segment.
907 				 */
908 				inp = so->so_pcb;
909 				tp = intotcpcb(inp);
910 				/*
911 				 * This is what would have happened in
912 				 * tcp_output() when the SYN,ACK was sent.
913 				 */
914 				tp->snd_up = tp->snd_una;
915 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
916 				tp->last_ack_sent = tp->rcv_nxt;
917 /*
918  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
919  * until the _second_ ACK is received:
920  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
921  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
922  *	  move to ESTAB, set snd_wnd to tiwin.
923  */
924 				tp->snd_wnd = tiwin;	/* unscaled */
925 				goto after_listen;
926 			}
927 			if (thflags & TH_RST) {
928 				syncache_chkrst(&inc, th);
929 				goto drop;
930 			}
931 			if (thflags & TH_ACK) {
932 				syncache_badack(&inc);
933 				tcpstat.tcps_badsyn++;
934 				rstreason = BANDLIM_RST_OPENPORT;
935 				goto dropwithreset;
936 			}
937 			goto drop;
938 		}
939 
940 		/*
941 		 * Segment's flags are (SYN) or (SYN | FIN).
942 		 */
943 #ifdef INET6
944 		/*
945 		 * If deprecated address is forbidden,
946 		 * we do not accept SYN to deprecated interface
947 		 * address to prevent any new inbound connection from
948 		 * getting established.
949 		 * When we do not accept SYN, we send a TCP RST,
950 		 * with deprecated source address (instead of dropping
951 		 * it).  We compromise it as it is much better for peer
952 		 * to send a RST, and RST will be the final packet
953 		 * for the exchange.
954 		 *
955 		 * If we do not forbid deprecated addresses, we accept
956 		 * the SYN packet.  RFC2462 does not suggest dropping
957 		 * SYN in this case.
958 		 * If we decipher RFC2462 5.5.4, it says like this:
959 		 * 1. use of deprecated addr with existing
960 		 *    communication is okay - "SHOULD continue to be
961 		 *    used"
962 		 * 2. use of it with new communication:
963 		 *   (2a) "SHOULD NOT be used if alternate address
964 		 *	  with sufficient scope is available"
965 		 *   (2b) nothing mentioned otherwise.
966 		 * Here we fall into (2b) case as we have no choice in
967 		 * our source address selection - we must obey the peer.
968 		 *
969 		 * The wording in RFC2462 is confusing, and there are
970 		 * multiple description text for deprecated address
971 		 * handling - worse, they are not exactly the same.
972 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
973 		 */
974 		if (isipv6 && !ip6_use_deprecated) {
975 			struct in6_ifaddr *ia6;
976 
977 			if ((ia6 = ip6_getdstifaddr(m)) &&
978 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
979 				tp = NULL;
980 				rstreason = BANDLIM_RST_OPENPORT;
981 				goto dropwithreset;
982 			}
983 		}
984 #endif
985 		/*
986 		 * If it is from this socket, drop it, it must be forged.
987 		 * Don't bother responding if the destination was a broadcast.
988 		 */
989 		if (th->th_dport == th->th_sport) {
990 			if (isipv6) {
991 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
992 						       &ip6->ip6_src))
993 					goto drop;
994 			} else {
995 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
996 					goto drop;
997 			}
998 		}
999 		/*
1000 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1001 		 *
1002 		 * Note that it is quite possible to receive unicast
1003 		 * link-layer packets with a broadcast IP address. Use
1004 		 * in_broadcast() to find them.
1005 		 */
1006 		if (m->m_flags & (M_BCAST | M_MCAST))
1007 			goto drop;
1008 		if (isipv6) {
1009 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1010 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1011 				goto drop;
1012 		} else {
1013 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1014 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1015 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1016 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1017 				goto drop;
1018 		}
1019 		/*
1020 		 * SYN appears to be valid; create compressed TCP state
1021 		 * for syncache, or perform t/tcp connection.
1022 		 */
1023 		if (so->so_qlen <= so->so_qlimit) {
1024 			tcp_dooptions(&to, optp, optlen, TRUE);
1025 			if (!syncache_add(&inc, &to, th, &so, m))
1026 				goto drop;
1027 			if (so == NULL)
1028 				/*
1029 				 * Entry added to syncache, mbuf used to
1030 				 * send SYN,ACK packet.
1031 				 */
1032 				return;
1033 			inp = so->so_pcb;
1034 			tp = intotcpcb(inp);
1035 			tp->snd_wnd = tiwin;
1036 			tp->t_starttime = ticks;
1037 			tp->t_state = TCPS_ESTABLISHED;
1038 
1039 			/*
1040 			 * If there is a FIN, or if there is data and the
1041 			 * connection is local, then delay SYN,ACK(SYN) in
1042 			 * the hope of piggy-backing it on a response
1043 			 * segment.  Otherwise must send ACK now in case
1044 			 * the other side is slow starting.
1045 			 */
1046 			if (DELAY_ACK(tp) &&
1047 			    ((thflags & TH_FIN) ||
1048 			     (tlen != 0 &&
1049 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
1050 			       (!isipv6 && in_localaddr(inp->inp_faddr)))))) {
1051 				tcp_callout_reset(tp, tp->tt_delack,
1052 				    tcp_delacktime, tcp_timer_delack);
1053 				tp->t_flags |= TF_NEEDSYN;
1054 			} else {
1055 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1056 			}
1057 
1058 			tcpstat.tcps_connects++;
1059 			soisconnected(so);
1060 			goto trimthenstep6;
1061 		}
1062 		goto drop;
1063 	}
1064 after_listen:
1065 
1066 	/* should not happen - syncache should pick up these connections */
1067 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1068 
1069 	/*
1070 	 * This is the second part of the MSS DoS prevention code (after
1071 	 * minmss on the sending side) and it deals with too many too small
1072 	 * tcp packets in a too short timeframe (1 second).
1073 	 *
1074 	 * XXX Removed.  This code was crap.  It does not scale to network
1075 	 *     speed, and default values break NFS.  Gone.
1076 	 */
1077 	/* REMOVED */
1078 
1079 	/*
1080 	 * Segment received on connection.
1081 	 *
1082 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1083 	 * then a second has elapsed.  Only update t_rcvtime for non-SYN
1084 	 * packets.
1085 	 *
1086 	 * Handle the case where one side thinks the connection is established
1087 	 * but the other side has, say, rebooted without cleaning out the
1088 	 * connection.   The SYNs could be construed as an attack and wind
1089 	 * up ignored, but in case it isn't an attack we can validate the
1090 	 * connection by forcing a keepalive.
1091 	 */
1092 	if (TCPS_HAVEESTABLISHED(tp->t_state) && (ticks - tp->t_rcvtime) > hz) {
1093 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
1094 			tp->t_flags |= TF_KEEPALIVE;
1095 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
1096 					  tcp_timer_keep);
1097 		} else {
1098 			tp->t_rcvtime = ticks;
1099 			tp->t_flags &= ~TF_KEEPALIVE;
1100 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1101 					  tcp_timer_keep);
1102 		}
1103 	}
1104 
1105 	/*
1106 	 * Process options.
1107 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1108 	 */
1109 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1110 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1111 		if (to.to_flags & TOF_SCALE) {
1112 			tp->t_flags |= TF_RCVD_SCALE;
1113 			tp->requested_s_scale = to.to_requested_s_scale;
1114 		}
1115 		if (to.to_flags & TOF_TS) {
1116 			tp->t_flags |= TF_RCVD_TSTMP;
1117 			tp->ts_recent = to.to_tsval;
1118 			tp->ts_recent_age = ticks;
1119 		}
1120 		if (to.to_flags & TOF_MSS)
1121 			tcp_mss(tp, to.to_mss);
1122 		/*
1123 		 * Only set the TF_SACK_PERMITTED per-connection flag
1124 		 * if we got a SACK_PERMITTED option from the other side
1125 		 * and the global tcp_do_sack variable is true.
1126 		 */
1127 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1128 			tp->t_flags |= TF_SACK_PERMITTED;
1129 	}
1130 
1131 	/*
1132 	 * Header prediction: check for the two common cases
1133 	 * of a uni-directional data xfer.  If the packet has
1134 	 * no control flags, is in-sequence, the window didn't
1135 	 * change and we're not retransmitting, it's a
1136 	 * candidate.  If the length is zero and the ack moved
1137 	 * forward, we're the sender side of the xfer.  Just
1138 	 * free the data acked & wake any higher level process
1139 	 * that was blocked waiting for space.  If the length
1140 	 * is non-zero and the ack didn't move, we're the
1141 	 * receiver side.  If we're getting packets in-order
1142 	 * (the reassembly queue is empty), add the data to
1143 	 * the socket buffer and note that we need a delayed ack.
1144 	 * Make sure that the hidden state-flags are also off.
1145 	 * Since we check for TCPS_ESTABLISHED above, it can only
1146 	 * be TH_NEEDSYN.
1147 	 */
1148 	if (tp->t_state == TCPS_ESTABLISHED &&
1149 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1150 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1151 	    (!(to.to_flags & TOF_TS) ||
1152 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1153 	    th->th_seq == tp->rcv_nxt &&
1154 	    tp->snd_nxt == tp->snd_max) {
1155 
1156 		/*
1157 		 * If last ACK falls within this segment's sequence numbers,
1158 		 * record the timestamp.
1159 		 * NOTE that the test is modified according to the latest
1160 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1161 		 */
1162 		if ((to.to_flags & TOF_TS) &&
1163 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1164 			tp->ts_recent_age = ticks;
1165 			tp->ts_recent = to.to_tsval;
1166 		}
1167 
1168 		if (tlen == 0) {
1169 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1170 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1171 			    tp->snd_cwnd >= tp->snd_wnd &&
1172 			    !IN_FASTRECOVERY(tp)) {
1173 				/*
1174 				 * This is a pure ack for outstanding data.
1175 				 */
1176 				++tcpstat.tcps_predack;
1177 				/*
1178 				 * "bad retransmit" recovery
1179 				 *
1180 				 * If Eifel detection applies, then
1181 				 * it is deterministic, so use it
1182 				 * unconditionally over the old heuristic.
1183 				 * Otherwise, fall back to the old heuristic.
1184 				 */
1185 				if (tcp_do_eifel_detect &&
1186 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1187 				    (tp->t_flags & TF_FIRSTACCACK)) {
1188 					/* Eifel detection applicable. */
1189 					if (to.to_tsecr < tp->t_rexmtTS) {
1190 						tcp_revert_congestion_state(tp);
1191 						++tcpstat.tcps_eifeldetected;
1192 					}
1193 				} else if (tp->t_rxtshift == 1 &&
1194 					   ticks < tp->t_badrxtwin) {
1195 					tcp_revert_congestion_state(tp);
1196 					++tcpstat.tcps_rttdetected;
1197 				}
1198 				tp->t_flags &= ~(TF_FIRSTACCACK |
1199 						 TF_FASTREXMT | TF_EARLYREXMT);
1200 				/*
1201 				 * Recalculate the retransmit timer / rtt.
1202 				 *
1203 				 * Some machines (certain windows boxes)
1204 				 * send broken timestamp replies during the
1205 				 * SYN+ACK phase, ignore timestamps of 0.
1206 				 */
1207 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1208 					tcp_xmit_timer(tp,
1209 						       ticks - to.to_tsecr + 1);
1210 				} else if (tp->t_rtttime &&
1211 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1212 					tcp_xmit_timer(tp,
1213 						       ticks - tp->t_rtttime);
1214 				}
1215 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1216 				acked = th->th_ack - tp->snd_una;
1217 				tcpstat.tcps_rcvackpack++;
1218 				tcpstat.tcps_rcvackbyte += acked;
1219 				sbdrop(&so->so_snd.sb, acked);
1220 				tp->snd_recover = th->th_ack - 1;
1221 				tp->snd_una = th->th_ack;
1222 				tp->t_dupacks = 0;
1223 				/*
1224 				 * Update window information.
1225 				 */
1226 				if (tiwin != tp->snd_wnd &&
1227 				    acceptable_window_update(tp, th, tiwin)) {
1228 					/* keep track of pure window updates */
1229 					if (tp->snd_wl2 == th->th_ack &&
1230 					    tiwin > tp->snd_wnd)
1231 						tcpstat.tcps_rcvwinupd++;
1232 					tp->snd_wnd = tiwin;
1233 					tp->snd_wl1 = th->th_seq;
1234 					tp->snd_wl2 = th->th_ack;
1235 					if (tp->snd_wnd > tp->max_sndwnd)
1236 						tp->max_sndwnd = tp->snd_wnd;
1237 				}
1238 				m_freem(m);
1239 				ND6_HINT(tp); /* some progress has been done */
1240 				/*
1241 				 * If all outstanding data are acked, stop
1242 				 * retransmit timer, otherwise restart timer
1243 				 * using current (possibly backed-off) value.
1244 				 * If process is waiting for space,
1245 				 * wakeup/selwakeup/signal.  If data
1246 				 * are ready to send, let tcp_output
1247 				 * decide between more output or persist.
1248 				 */
1249 				if (tp->snd_una == tp->snd_max) {
1250 					tcp_callout_stop(tp, tp->tt_rexmt);
1251 				} else if (!tcp_callout_active(tp,
1252 					    tp->tt_persist)) {
1253 					tcp_callout_reset(tp, tp->tt_rexmt,
1254 					    tp->t_rxtcur, tcp_timer_rexmt);
1255 				}
1256 				sowwakeup(so);
1257 				if (so->so_snd.ssb_cc > 0)
1258 					tcp_output(tp);
1259 				return;
1260 			}
1261 		} else if (tiwin == tp->snd_wnd &&
1262 		    th->th_ack == tp->snd_una &&
1263 		    LIST_EMPTY(&tp->t_segq) &&
1264 		    tlen <= ssb_space(&so->so_rcv)) {
1265 			u_long newsize = 0;	/* automatic sockbuf scaling */
1266 			/*
1267 			 * This is a pure, in-sequence data packet
1268 			 * with nothing on the reassembly queue and
1269 			 * we have enough buffer space to take it.
1270 			 */
1271 			++tcpstat.tcps_preddat;
1272 			tp->rcv_nxt += tlen;
1273 			tcpstat.tcps_rcvpack++;
1274 			tcpstat.tcps_rcvbyte += tlen;
1275 			ND6_HINT(tp);	/* some progress has been done */
1276 		/*
1277 		 * Automatic sizing of receive socket buffer.  Often the send
1278 		 * buffer size is not optimally adjusted to the actual network
1279 		 * conditions at hand (delay bandwidth product).  Setting the
1280 		 * buffer size too small limits throughput on links with high
1281 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1282 		 *
1283 		 * On the receive side the socket buffer memory is only rarely
1284 		 * used to any significant extent.  This allows us to be much
1285 		 * more aggressive in scaling the receive socket buffer.  For
1286 		 * the case that the buffer space is actually used to a large
1287 		 * extent and we run out of kernel memory we can simply drop
1288 		 * the new segments; TCP on the sender will just retransmit it
1289 		 * later.  Setting the buffer size too big may only consume too
1290 		 * much kernel memory if the application doesn't read() from
1291 		 * the socket or packet loss or reordering makes use of the
1292 		 * reassembly queue.
1293 		 *
1294 		 * The criteria to step up the receive buffer one notch are:
1295 		 *  1. the number of bytes received during the time it takes
1296 		 *     one timestamp to be reflected back to us (the RTT);
1297 		 *  2. received bytes per RTT is within seven eighth of the
1298 		 *     current socket buffer size;
1299 		 *  3. receive buffer size has not hit maximal automatic size;
1300 		 *
1301 		 * This algorithm does one step per RTT at most and only if
1302 		 * we receive a bulk stream w/o packet losses or reorderings.
1303 		 * Shrinking the buffer during idle times is not necessary as
1304 		 * it doesn't consume any memory when idle.
1305 		 *
1306 		 * TODO: Only step up if the application is actually serving
1307 		 * the buffer to better manage the socket buffer resources.
1308 		 */
1309 			if (tcp_do_autorcvbuf &&
1310 			    to.to_tsecr &&
1311 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1312 				if (to.to_tsecr > tp->rfbuf_ts &&
1313 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1314 					if (tp->rfbuf_cnt >
1315 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1316 					    so->so_rcv.ssb_hiwat <
1317 					    tcp_autorcvbuf_max) {
1318 						newsize =
1319 						    ulmin(so->so_rcv.ssb_hiwat +
1320 							  tcp_autorcvbuf_inc,
1321 							  tcp_autorcvbuf_max);
1322 					}
1323 					/* Start over with next RTT. */
1324 					tp->rfbuf_ts = 0;
1325 					tp->rfbuf_cnt = 0;
1326 				} else
1327 					tp->rfbuf_cnt += tlen;	/* add up */
1328 			}
1329 			/*
1330 			 * Add data to socket buffer.
1331 			 */
1332 			if (so->so_state & SS_CANTRCVMORE) {
1333 				m_freem(m);
1334 			} else {
1335 				/*
1336 				 * Set new socket buffer size, give up when
1337 				 * limit is reached.
1338 				 *
1339 				 * Adjusting the size can mess up ACK
1340 				 * sequencing when pure window updates are
1341 				 * being avoided (which is the default),
1342 				 * so force an ack.
1343 				 */
1344 				if (newsize) {
1345 					tp->t_flags |= TF_RXRESIZED;
1346 					if (!ssb_reserve(&so->so_rcv, newsize,
1347 							 so, NULL)) {
1348 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1349 					}
1350 					if (newsize >=
1351 					    (TCP_MAXWIN << tp->rcv_scale)) {
1352 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1353 					}
1354 				}
1355 				m_adj(m, drop_hdrlen); /* delayed header drop */
1356 				ssb_appendstream(&so->so_rcv, m);
1357 			}
1358 			sorwakeup(so);
1359 			/*
1360 			 * This code is responsible for most of the ACKs
1361 			 * the TCP stack sends back after receiving a data
1362 			 * packet.  Note that the DELAY_ACK check fails if
1363 			 * the delack timer is already running, which results
1364 			 * in an ack being sent every other packet (which is
1365 			 * what we want).
1366 			 *
1367 			 * We then further aggregate acks by not actually
1368 			 * sending one until the protocol thread has completed
1369 			 * processing the current backlog of packets.  This
1370 			 * does not delay the ack any further, but allows us
1371 			 * to take advantage of the packet aggregation that
1372 			 * high speed NICs do (usually blocks of 8-10 packets)
1373 			 * to send a single ack rather then four or five acks,
1374 			 * greatly reducing the ack rate, the return channel
1375 			 * bandwidth, and the protocol overhead on both ends.
1376 			 *
1377 			 * Since this also has the effect of slowing down
1378 			 * the exponential slow-start ramp-up, systems with
1379 			 * very large bandwidth-delay products might want
1380 			 * to turn the feature off.
1381 			 */
1382 			if (DELAY_ACK(tp)) {
1383 				tcp_callout_reset(tp, tp->tt_delack,
1384 				    tcp_delacktime, tcp_timer_delack);
1385 			} else if (tcp_aggregate_acks) {
1386 				tp->t_flags |= TF_ACKNOW;
1387 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1388 					tp->t_flags |= TF_ONOUTPUTQ;
1389 					tp->tt_cpu = mycpu->gd_cpuid;
1390 					TAILQ_INSERT_TAIL(
1391 					    &tcpcbackq[tp->tt_cpu],
1392 					    tp, t_outputq);
1393 				}
1394 			} else {
1395 				tp->t_flags |= TF_ACKNOW;
1396 				tcp_output(tp);
1397 			}
1398 			return;
1399 		}
1400 	}
1401 
1402 	/*
1403 	 * Calculate amount of space in receive window,
1404 	 * and then do TCP input processing.
1405 	 * Receive window is amount of space in rcv queue,
1406 	 * but not less than advertised window.
1407 	 */
1408 	recvwin = ssb_space(&so->so_rcv);
1409 	if (recvwin < 0)
1410 		recvwin = 0;
1411 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1412 
1413 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1414 	tp->rfbuf_ts = 0;
1415 	tp->rfbuf_cnt = 0;
1416 
1417 	switch (tp->t_state) {
1418 	/*
1419 	 * If the state is SYN_RECEIVED:
1420 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1421 	 */
1422 	case TCPS_SYN_RECEIVED:
1423 		if ((thflags & TH_ACK) &&
1424 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1425 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1426 				rstreason = BANDLIM_RST_OPENPORT;
1427 				goto dropwithreset;
1428 		}
1429 		break;
1430 
1431 	/*
1432 	 * If the state is SYN_SENT:
1433 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1434 	 *	if seg contains a RST, then drop the connection.
1435 	 *	if seg does not contain SYN, then drop it.
1436 	 * Otherwise this is an acceptable SYN segment
1437 	 *	initialize tp->rcv_nxt and tp->irs
1438 	 *	if seg contains ack then advance tp->snd_una
1439 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1440 	 *	arrange for segment to be acked (eventually)
1441 	 *	continue processing rest of data/controls, beginning with URG
1442 	 */
1443 	case TCPS_SYN_SENT:
1444 		if ((thflags & TH_ACK) &&
1445 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1446 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1447 			rstreason = BANDLIM_UNLIMITED;
1448 			goto dropwithreset;
1449 		}
1450 		if (thflags & TH_RST) {
1451 			if (thflags & TH_ACK)
1452 				tp = tcp_drop(tp, ECONNREFUSED);
1453 			goto drop;
1454 		}
1455 		if (!(thflags & TH_SYN))
1456 			goto drop;
1457 		tp->snd_wnd = th->th_win;	/* initial send window */
1458 
1459 		tp->irs = th->th_seq;
1460 		tcp_rcvseqinit(tp);
1461 		if (thflags & TH_ACK) {
1462 			/* Our SYN was acked. */
1463 			tcpstat.tcps_connects++;
1464 			soisconnected(so);
1465 			/* Do window scaling on this connection? */
1466 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1467 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1468 				tp->snd_scale = tp->requested_s_scale;
1469 				tp->rcv_scale = tp->request_r_scale;
1470 			}
1471 			tp->rcv_adv += tp->rcv_wnd;
1472 			tp->snd_una++;		/* SYN is acked */
1473 			tcp_callout_stop(tp, tp->tt_rexmt);
1474 			/*
1475 			 * If there's data, delay ACK; if there's also a FIN
1476 			 * ACKNOW will be turned on later.
1477 			 */
1478 			if (DELAY_ACK(tp) && tlen != 0) {
1479 				tcp_callout_reset(tp, tp->tt_delack,
1480 				    tcp_delacktime, tcp_timer_delack);
1481 			} else {
1482 				tp->t_flags |= TF_ACKNOW;
1483 			}
1484 			/*
1485 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1486 			 * Transitions:
1487 			 *	SYN_SENT  --> ESTABLISHED
1488 			 *	SYN_SENT* --> FIN_WAIT_1
1489 			 */
1490 			tp->t_starttime = ticks;
1491 			if (tp->t_flags & TF_NEEDFIN) {
1492 				tp->t_state = TCPS_FIN_WAIT_1;
1493 				tp->t_flags &= ~TF_NEEDFIN;
1494 				thflags &= ~TH_SYN;
1495 			} else {
1496 				tp->t_state = TCPS_ESTABLISHED;
1497 				tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1498 				    tcp_timer_keep);
1499 			}
1500 		} else {
1501 			/*
1502 			 * Received initial SYN in SYN-SENT[*] state =>
1503 			 * simultaneous open.
1504 			 * Do 3-way handshake:
1505 			 *	  SYN-SENT -> SYN-RECEIVED
1506 			 *	  SYN-SENT* -> SYN-RECEIVED*
1507 			 */
1508 			tp->t_flags |= TF_ACKNOW;
1509 			tcp_callout_stop(tp, tp->tt_rexmt);
1510 			tp->t_state = TCPS_SYN_RECEIVED;
1511 		}
1512 
1513 trimthenstep6:
1514 		/*
1515 		 * Advance th->th_seq to correspond to first data byte.
1516 		 * If data, trim to stay within window,
1517 		 * dropping FIN if necessary.
1518 		 */
1519 		th->th_seq++;
1520 		if (tlen > tp->rcv_wnd) {
1521 			todrop = tlen - tp->rcv_wnd;
1522 			m_adj(m, -todrop);
1523 			tlen = tp->rcv_wnd;
1524 			thflags &= ~TH_FIN;
1525 			tcpstat.tcps_rcvpackafterwin++;
1526 			tcpstat.tcps_rcvbyteafterwin += todrop;
1527 		}
1528 		tp->snd_wl1 = th->th_seq - 1;
1529 		tp->rcv_up = th->th_seq;
1530 		/*
1531 		 * Client side of transaction: already sent SYN and data.
1532 		 * If the remote host used T/TCP to validate the SYN,
1533 		 * our data will be ACK'd; if so, enter normal data segment
1534 		 * processing in the middle of step 5, ack processing.
1535 		 * Otherwise, goto step 6.
1536 		 */
1537 		if (thflags & TH_ACK)
1538 			goto process_ACK;
1539 
1540 		goto step6;
1541 
1542 	/*
1543 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1544 	 *	do normal processing (we no longer bother with T/TCP).
1545 	 */
1546 	case TCPS_LAST_ACK:
1547 	case TCPS_CLOSING:
1548 	case TCPS_TIME_WAIT:
1549 		break;  /* continue normal processing */
1550 	}
1551 
1552 	/*
1553 	 * States other than LISTEN or SYN_SENT.
1554 	 * First check the RST flag and sequence number since reset segments
1555 	 * are exempt from the timestamp and connection count tests.  This
1556 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1557 	 * below which allowed reset segments in half the sequence space
1558 	 * to fall though and be processed (which gives forged reset
1559 	 * segments with a random sequence number a 50 percent chance of
1560 	 * killing a connection).
1561 	 * Then check timestamp, if present.
1562 	 * Then check the connection count, if present.
1563 	 * Then check that at least some bytes of segment are within
1564 	 * receive window.  If segment begins before rcv_nxt,
1565 	 * drop leading data (and SYN); if nothing left, just ack.
1566 	 *
1567 	 *
1568 	 * If the RST bit is set, check the sequence number to see
1569 	 * if this is a valid reset segment.
1570 	 * RFC 793 page 37:
1571 	 *   In all states except SYN-SENT, all reset (RST) segments
1572 	 *   are validated by checking their SEQ-fields.  A reset is
1573 	 *   valid if its sequence number is in the window.
1574 	 * Note: this does not take into account delayed ACKs, so
1575 	 *   we should test against last_ack_sent instead of rcv_nxt.
1576 	 *   The sequence number in the reset segment is normally an
1577 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1578 	 *   send a reset with the sequence number at the rightmost edge
1579 	 *   of our receive window, and we have to handle this case.
1580 	 * If we have multiple segments in flight, the intial reset
1581 	 * segment sequence numbers will be to the left of last_ack_sent,
1582 	 * but they will eventually catch up.
1583 	 * In any case, it never made sense to trim reset segments to
1584 	 * fit the receive window since RFC 1122 says:
1585 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1586 	 *
1587 	 *    A TCP SHOULD allow a received RST segment to include data.
1588 	 *
1589 	 *    DISCUSSION
1590 	 *	   It has been suggested that a RST segment could contain
1591 	 *	   ASCII text that encoded and explained the cause of the
1592 	 *	   RST.  No standard has yet been established for such
1593 	 *	   data.
1594 	 *
1595 	 * If the reset segment passes the sequence number test examine
1596 	 * the state:
1597 	 *    SYN_RECEIVED STATE:
1598 	 *	If passive open, return to LISTEN state.
1599 	 *	If active open, inform user that connection was refused.
1600 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1601 	 *	Inform user that connection was reset, and close tcb.
1602 	 *    CLOSING, LAST_ACK STATES:
1603 	 *	Close the tcb.
1604 	 *    TIME_WAIT STATE:
1605 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1606 	 *	RFC 1337.
1607 	 */
1608 	if (thflags & TH_RST) {
1609 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1610 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1611 			switch (tp->t_state) {
1612 
1613 			case TCPS_SYN_RECEIVED:
1614 				so->so_error = ECONNREFUSED;
1615 				goto close;
1616 
1617 			case TCPS_ESTABLISHED:
1618 			case TCPS_FIN_WAIT_1:
1619 			case TCPS_FIN_WAIT_2:
1620 			case TCPS_CLOSE_WAIT:
1621 				so->so_error = ECONNRESET;
1622 			close:
1623 				tp->t_state = TCPS_CLOSED;
1624 				tcpstat.tcps_drops++;
1625 				tp = tcp_close(tp);
1626 				break;
1627 
1628 			case TCPS_CLOSING:
1629 			case TCPS_LAST_ACK:
1630 				tp = tcp_close(tp);
1631 				break;
1632 
1633 			case TCPS_TIME_WAIT:
1634 				break;
1635 			}
1636 		}
1637 		goto drop;
1638 	}
1639 
1640 	/*
1641 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1642 	 * and it's less than ts_recent, drop it.
1643 	 */
1644 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1645 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1646 
1647 		/* Check to see if ts_recent is over 24 days old.  */
1648 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1649 			/*
1650 			 * Invalidate ts_recent.  If this segment updates
1651 			 * ts_recent, the age will be reset later and ts_recent
1652 			 * will get a valid value.  If it does not, setting
1653 			 * ts_recent to zero will at least satisfy the
1654 			 * requirement that zero be placed in the timestamp
1655 			 * echo reply when ts_recent isn't valid.  The
1656 			 * age isn't reset until we get a valid ts_recent
1657 			 * because we don't want out-of-order segments to be
1658 			 * dropped when ts_recent is old.
1659 			 */
1660 			tp->ts_recent = 0;
1661 		} else {
1662 			tcpstat.tcps_rcvduppack++;
1663 			tcpstat.tcps_rcvdupbyte += tlen;
1664 			tcpstat.tcps_pawsdrop++;
1665 			if (tlen)
1666 				goto dropafterack;
1667 			goto drop;
1668 		}
1669 	}
1670 
1671 	/*
1672 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1673 	 * this connection before trimming the data to fit the receive
1674 	 * window.  Check the sequence number versus IRS since we know
1675 	 * the sequence numbers haven't wrapped.  This is a partial fix
1676 	 * for the "LAND" DoS attack.
1677 	 */
1678 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1679 		rstreason = BANDLIM_RST_OPENPORT;
1680 		goto dropwithreset;
1681 	}
1682 
1683 	todrop = tp->rcv_nxt - th->th_seq;
1684 	if (todrop > 0) {
1685 		if (TCP_DO_SACK(tp)) {
1686 			/* Report duplicate segment at head of packet. */
1687 			tp->reportblk.rblk_start = th->th_seq;
1688 			tp->reportblk.rblk_end = th->th_seq + tlen;
1689 			if (thflags & TH_FIN)
1690 				++tp->reportblk.rblk_end;
1691 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1692 				tp->reportblk.rblk_end = tp->rcv_nxt;
1693 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1694 		}
1695 		if (thflags & TH_SYN) {
1696 			thflags &= ~TH_SYN;
1697 			th->th_seq++;
1698 			if (th->th_urp > 1)
1699 				th->th_urp--;
1700 			else
1701 				thflags &= ~TH_URG;
1702 			todrop--;
1703 		}
1704 		/*
1705 		 * Following if statement from Stevens, vol. 2, p. 960.
1706 		 */
1707 		if (todrop > tlen ||
1708 		    (todrop == tlen && !(thflags & TH_FIN))) {
1709 			/*
1710 			 * Any valid FIN must be to the left of the window.
1711 			 * At this point the FIN must be a duplicate or out
1712 			 * of sequence; drop it.
1713 			 */
1714 			thflags &= ~TH_FIN;
1715 
1716 			/*
1717 			 * Send an ACK to resynchronize and drop any data.
1718 			 * But keep on processing for RST or ACK.
1719 			 */
1720 			tp->t_flags |= TF_ACKNOW;
1721 			todrop = tlen;
1722 			tcpstat.tcps_rcvduppack++;
1723 			tcpstat.tcps_rcvdupbyte += todrop;
1724 		} else {
1725 			tcpstat.tcps_rcvpartduppack++;
1726 			tcpstat.tcps_rcvpartdupbyte += todrop;
1727 		}
1728 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1729 		th->th_seq += todrop;
1730 		tlen -= todrop;
1731 		if (th->th_urp > todrop)
1732 			th->th_urp -= todrop;
1733 		else {
1734 			thflags &= ~TH_URG;
1735 			th->th_urp = 0;
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * If new data are received on a connection after the
1741 	 * user processes are gone, then RST the other end.
1742 	 */
1743 	if ((so->so_state & SS_NOFDREF) &&
1744 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1745 		tp = tcp_close(tp);
1746 		tcpstat.tcps_rcvafterclose++;
1747 		rstreason = BANDLIM_UNLIMITED;
1748 		goto dropwithreset;
1749 	}
1750 
1751 	/*
1752 	 * If segment ends after window, drop trailing data
1753 	 * (and PUSH and FIN); if nothing left, just ACK.
1754 	 */
1755 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1756 	if (todrop > 0) {
1757 		tcpstat.tcps_rcvpackafterwin++;
1758 		if (todrop >= tlen) {
1759 			tcpstat.tcps_rcvbyteafterwin += tlen;
1760 			/*
1761 			 * If a new connection request is received
1762 			 * while in TIME_WAIT, drop the old connection
1763 			 * and start over if the sequence numbers
1764 			 * are above the previous ones.
1765 			 */
1766 			if (thflags & TH_SYN &&
1767 			    tp->t_state == TCPS_TIME_WAIT &&
1768 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1769 				tp = tcp_close(tp);
1770 				goto findpcb;
1771 			}
1772 			/*
1773 			 * If window is closed can only take segments at
1774 			 * window edge, and have to drop data and PUSH from
1775 			 * incoming segments.  Continue processing, but
1776 			 * remember to ack.  Otherwise, drop segment
1777 			 * and ack.
1778 			 */
1779 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1780 				tp->t_flags |= TF_ACKNOW;
1781 				tcpstat.tcps_rcvwinprobe++;
1782 			} else
1783 				goto dropafterack;
1784 		} else
1785 			tcpstat.tcps_rcvbyteafterwin += todrop;
1786 		m_adj(m, -todrop);
1787 		tlen -= todrop;
1788 		thflags &= ~(TH_PUSH | TH_FIN);
1789 	}
1790 
1791 	/*
1792 	 * If last ACK falls within this segment's sequence numbers,
1793 	 * record its timestamp.
1794 	 * NOTE:
1795 	 * 1) That the test incorporates suggestions from the latest
1796 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1797 	 * 2) That updating only on newer timestamps interferes with
1798 	 *    our earlier PAWS tests, so this check should be solely
1799 	 *    predicated on the sequence space of this segment.
1800 	 * 3) That we modify the segment boundary check to be
1801 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1802 	 *    instead of RFC1323's
1803 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1804 	 *    This modified check allows us to overcome RFC1323's
1805 	 *    limitations as described in Stevens TCP/IP Illustrated
1806 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1807 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1808 	 */
1809 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1810 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1811 					+ ((thflags & TH_SYN) != 0)
1812 					+ ((thflags & TH_FIN) != 0)))) {
1813 		tp->ts_recent_age = ticks;
1814 		tp->ts_recent = to.to_tsval;
1815 	}
1816 
1817 	/*
1818 	 * If a SYN is in the window, then this is an
1819 	 * error and we send an RST and drop the connection.
1820 	 */
1821 	if (thflags & TH_SYN) {
1822 		tp = tcp_drop(tp, ECONNRESET);
1823 		rstreason = BANDLIM_UNLIMITED;
1824 		goto dropwithreset;
1825 	}
1826 
1827 	/*
1828 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1829 	 * flag is on (half-synchronized state), then queue data for
1830 	 * later processing; else drop segment and return.
1831 	 */
1832 	if (!(thflags & TH_ACK)) {
1833 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1834 		    (tp->t_flags & TF_NEEDSYN))
1835 			goto step6;
1836 		else
1837 			goto drop;
1838 	}
1839 
1840 	/*
1841 	 * Ack processing.
1842 	 */
1843 	switch (tp->t_state) {
1844 	/*
1845 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1846 	 * ESTABLISHED state and continue processing.
1847 	 * The ACK was checked above.
1848 	 */
1849 	case TCPS_SYN_RECEIVED:
1850 
1851 		tcpstat.tcps_connects++;
1852 		soisconnected(so);
1853 		/* Do window scaling? */
1854 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1855 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1856 			tp->snd_scale = tp->requested_s_scale;
1857 			tp->rcv_scale = tp->request_r_scale;
1858 		}
1859 		/*
1860 		 * Make transitions:
1861 		 *      SYN-RECEIVED  -> ESTABLISHED
1862 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1863 		 */
1864 		tp->t_starttime = ticks;
1865 		if (tp->t_flags & TF_NEEDFIN) {
1866 			tp->t_state = TCPS_FIN_WAIT_1;
1867 			tp->t_flags &= ~TF_NEEDFIN;
1868 		} else {
1869 			tp->t_state = TCPS_ESTABLISHED;
1870 			tcp_callout_reset(tp, tp->tt_keep, tcp_keepidle,
1871 			    tcp_timer_keep);
1872 		}
1873 		/*
1874 		 * If segment contains data or ACK, will call tcp_reass()
1875 		 * later; if not, do so now to pass queued data to user.
1876 		 */
1877 		if (tlen == 0 && !(thflags & TH_FIN))
1878 			tcp_reass(tp, NULL, NULL, NULL);
1879 		/* fall into ... */
1880 
1881 	/*
1882 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1883 	 * ACKs.  If the ack is in the range
1884 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1885 	 * then advance tp->snd_una to th->th_ack and drop
1886 	 * data from the retransmission queue.  If this ACK reflects
1887 	 * more up to date window information we update our window information.
1888 	 */
1889 	case TCPS_ESTABLISHED:
1890 	case TCPS_FIN_WAIT_1:
1891 	case TCPS_FIN_WAIT_2:
1892 	case TCPS_CLOSE_WAIT:
1893 	case TCPS_CLOSING:
1894 	case TCPS_LAST_ACK:
1895 	case TCPS_TIME_WAIT:
1896 
1897 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1898 			if (TCP_DO_SACK(tp))
1899 				tcp_sack_update_scoreboard(tp, &to);
1900 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1901 				tp->t_dupacks = 0;
1902 				break;
1903 			}
1904 			tcpstat.tcps_rcvdupack++;
1905 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1906 			    th->th_ack != tp->snd_una) {
1907 				tp->t_dupacks = 0;
1908 				break;
1909 			}
1910 			/*
1911 			 * We have outstanding data (other than
1912 			 * a window probe), this is a completely
1913 			 * duplicate ack (ie, window info didn't
1914 			 * change), the ack is the biggest we've
1915 			 * seen and we've seen exactly our rexmt
1916 			 * threshhold of them, so assume a packet
1917 			 * has been dropped and retransmit it.
1918 			 * Kludge snd_nxt & the congestion
1919 			 * window so we send only this one
1920 			 * packet.
1921 			 */
1922 			if (IN_FASTRECOVERY(tp)) {
1923 				if (TCP_DO_SACK(tp)) {
1924 					/* No artifical cwnd inflation. */
1925 					tcp_sack_rexmt(tp, th);
1926 				} else {
1927 					/*
1928 					 * Dup acks mean that packets
1929 					 * have left the network
1930 					 * (they're now cached at the
1931 					 * receiver) so bump cwnd by
1932 					 * the amount in the receiver
1933 					 * to keep a constant cwnd
1934 					 * packets in the network.
1935 					 */
1936 					tp->snd_cwnd += tp->t_maxseg;
1937 					tcp_output(tp);
1938 				}
1939 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1940 				tp->t_dupacks = 0;
1941 				break;
1942 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1943 				tcp_seq old_snd_nxt;
1944 				u_int win;
1945 
1946 fastretransmit:
1947 				if (tcp_do_eifel_detect &&
1948 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1949 					tcp_save_congestion_state(tp);
1950 					tp->t_flags |= TF_FASTREXMT;
1951 				}
1952 				/*
1953 				 * We know we're losing at the current
1954 				 * window size, so do congestion avoidance:
1955 				 * set ssthresh to half the current window
1956 				 * and pull our congestion window back to the
1957 				 * new ssthresh.
1958 				 */
1959 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1960 				    tp->t_maxseg;
1961 				if (win < 2)
1962 					win = 2;
1963 				tp->snd_ssthresh = win * tp->t_maxseg;
1964 				ENTER_FASTRECOVERY(tp);
1965 				tp->snd_recover = tp->snd_max;
1966 				tcp_callout_stop(tp, tp->tt_rexmt);
1967 				tp->t_rtttime = 0;
1968 				old_snd_nxt = tp->snd_nxt;
1969 				tp->snd_nxt = th->th_ack;
1970 				tp->snd_cwnd = tp->t_maxseg;
1971 				tcp_output(tp);
1972 				++tcpstat.tcps_sndfastrexmit;
1973 				tp->snd_cwnd = tp->snd_ssthresh;
1974 				tp->rexmt_high = tp->snd_nxt;
1975 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1976 					tp->snd_nxt = old_snd_nxt;
1977 				KASSERT(tp->snd_limited <= 2,
1978 				    ("tp->snd_limited too big"));
1979 				if (TCP_DO_SACK(tp))
1980 					tcp_sack_rexmt(tp, th);
1981 				else
1982 					tp->snd_cwnd += tp->t_maxseg *
1983 					    (tp->t_dupacks - tp->snd_limited);
1984 			} else if (tcp_do_limitedtransmit) {
1985 				u_long oldcwnd = tp->snd_cwnd;
1986 				tcp_seq oldsndmax = tp->snd_max;
1987 				tcp_seq oldsndnxt = tp->snd_nxt;
1988 				/* outstanding data */
1989 				uint32_t ownd = tp->snd_max - tp->snd_una;
1990 				u_int sent;
1991 
1992 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
1993 
1994 				KASSERT(tp->t_dupacks == 1 ||
1995 					tp->t_dupacks == 2,
1996 				    ("dupacks not 1 or 2"));
1997 				if (tp->t_dupacks == 1)
1998 					tp->snd_limited = 0;
1999 				tp->snd_nxt = tp->snd_max;
2000 				tp->snd_cwnd = ownd +
2001 				    (tp->t_dupacks - tp->snd_limited) *
2002 				    tp->t_maxseg;
2003 				tcp_output(tp);
2004 
2005 				/*
2006 				 * Other acks may have been processed,
2007 				 * snd_nxt cannot be reset to a value less
2008 				 * then snd_una.
2009 				 */
2010 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
2011 				    if (SEQ_GT(oldsndnxt, tp->snd_una))
2012 					tp->snd_nxt = oldsndnxt;
2013 				    else
2014 					tp->snd_nxt = tp->snd_una;
2015 				}
2016 				tp->snd_cwnd = oldcwnd;
2017 				sent = tp->snd_max - oldsndmax;
2018 				if (sent > tp->t_maxseg) {
2019 					KASSERT((tp->t_dupacks == 2 &&
2020 						 tp->snd_limited == 0) ||
2021 						(sent == tp->t_maxseg + 1 &&
2022 						 tp->t_flags & TF_SENTFIN),
2023 					    ("sent too much"));
2024 					KASSERT(sent <= tp->t_maxseg * 2,
2025 					    ("sent too many segments"));
2026 					tp->snd_limited = 2;
2027 					tcpstat.tcps_sndlimited += 2;
2028 				} else if (sent > 0) {
2029 					++tp->snd_limited;
2030 					++tcpstat.tcps_sndlimited;
2031 				} else if (tcp_do_early_retransmit &&
2032 				    (tcp_do_eifel_detect &&
2033 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2034 				    ownd < 4 * tp->t_maxseg &&
2035 				    tp->t_dupacks + 1 >=
2036 				      iceildiv(ownd, tp->t_maxseg) &&
2037 				    (!TCP_DO_SACK(tp) ||
2038 				     ownd <= tp->t_maxseg ||
2039 				     tcp_sack_has_sacked(&tp->scb,
2040 							ownd - tp->t_maxseg))) {
2041 					++tcpstat.tcps_sndearlyrexmit;
2042 					tp->t_flags |= TF_EARLYREXMT;
2043 					goto fastretransmit;
2044 				}
2045 			}
2046 			goto drop;
2047 		}
2048 
2049 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2050 		tp->t_dupacks = 0;
2051 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2052 			/*
2053 			 * Detected optimistic ACK attack.
2054 			 * Force slow-start to de-synchronize attack.
2055 			 */
2056 			tp->snd_cwnd = tp->t_maxseg;
2057 			tp->snd_wacked = 0;
2058 
2059 			tcpstat.tcps_rcvacktoomuch++;
2060 			goto dropafterack;
2061 		}
2062 		/*
2063 		 * If we reach this point, ACK is not a duplicate,
2064 		 *     i.e., it ACKs something we sent.
2065 		 */
2066 		if (tp->t_flags & TF_NEEDSYN) {
2067 			/*
2068 			 * T/TCP: Connection was half-synchronized, and our
2069 			 * SYN has been ACK'd (so connection is now fully
2070 			 * synchronized).  Go to non-starred state,
2071 			 * increment snd_una for ACK of SYN, and check if
2072 			 * we can do window scaling.
2073 			 */
2074 			tp->t_flags &= ~TF_NEEDSYN;
2075 			tp->snd_una++;
2076 			/* Do window scaling? */
2077 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2078 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2079 				tp->snd_scale = tp->requested_s_scale;
2080 				tp->rcv_scale = tp->request_r_scale;
2081 			}
2082 		}
2083 
2084 process_ACK:
2085 		acked = th->th_ack - tp->snd_una;
2086 		tcpstat.tcps_rcvackpack++;
2087 		tcpstat.tcps_rcvackbyte += acked;
2088 
2089 		if (tcp_do_eifel_detect && acked > 0 &&
2090 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2091 		    (tp->t_flags & TF_FIRSTACCACK)) {
2092 			/* Eifel detection applicable. */
2093 			if (to.to_tsecr < tp->t_rexmtTS) {
2094 				++tcpstat.tcps_eifeldetected;
2095 				tcp_revert_congestion_state(tp);
2096 				if (tp->t_rxtshift == 1 &&
2097 				    ticks >= tp->t_badrxtwin)
2098 					++tcpstat.tcps_rttcantdetect;
2099 			}
2100 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2101 			/*
2102 			 * If we just performed our first retransmit,
2103 			 * and the ACK arrives within our recovery window,
2104 			 * then it was a mistake to do the retransmit
2105 			 * in the first place.  Recover our original cwnd
2106 			 * and ssthresh, and proceed to transmit where we
2107 			 * left off.
2108 			 */
2109 			tcp_revert_congestion_state(tp);
2110 			++tcpstat.tcps_rttdetected;
2111 		}
2112 
2113 		/*
2114 		 * If we have a timestamp reply, update smoothed
2115 		 * round trip time.  If no timestamp is present but
2116 		 * transmit timer is running and timed sequence
2117 		 * number was acked, update smoothed round trip time.
2118 		 * Since we now have an rtt measurement, cancel the
2119 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2120 		 * Recompute the initial retransmit timer.
2121 		 *
2122 		 * Some machines (certain windows boxes) send broken
2123 		 * timestamp replies during the SYN+ACK phase, ignore
2124 		 * timestamps of 0.
2125 		 */
2126 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2127 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2128 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2129 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2130 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2131 
2132 		/*
2133 		 * If no data (only SYN) was ACK'd,
2134 		 *    skip rest of ACK processing.
2135 		 */
2136 		if (acked == 0)
2137 			goto step6;
2138 
2139 		/* Stop looking for an acceptable ACK since one was received. */
2140 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2141 
2142 		if (acked > so->so_snd.ssb_cc) {
2143 			tp->snd_wnd -= so->so_snd.ssb_cc;
2144 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2145 			ourfinisacked = TRUE;
2146 		} else {
2147 			sbdrop(&so->so_snd.sb, acked);
2148 			tp->snd_wnd -= acked;
2149 			ourfinisacked = FALSE;
2150 		}
2151 		sowwakeup(so);
2152 
2153 		/*
2154 		 * Update window information.
2155 		 * Don't look at window if no ACK:
2156 		 * TAC's send garbage on first SYN.
2157 		 */
2158 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2159 		    (tp->snd_wl1 == th->th_seq &&
2160 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2161 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2162 			/* keep track of pure window updates */
2163 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2164 			    tiwin > tp->snd_wnd)
2165 				tcpstat.tcps_rcvwinupd++;
2166 			tp->snd_wnd = tiwin;
2167 			tp->snd_wl1 = th->th_seq;
2168 			tp->snd_wl2 = th->th_ack;
2169 			if (tp->snd_wnd > tp->max_sndwnd)
2170 				tp->max_sndwnd = tp->snd_wnd;
2171 			needoutput = TRUE;
2172 		}
2173 
2174 		tp->snd_una = th->th_ack;
2175 		if (TCP_DO_SACK(tp))
2176 			tcp_sack_update_scoreboard(tp, &to);
2177 		if (IN_FASTRECOVERY(tp)) {
2178 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2179 				EXIT_FASTRECOVERY(tp);
2180 				needoutput = TRUE;
2181 				/*
2182 				 * If the congestion window was inflated
2183 				 * to account for the other side's
2184 				 * cached packets, retract it.
2185 				 */
2186 				if (!TCP_DO_SACK(tp))
2187 					tp->snd_cwnd = tp->snd_ssthresh;
2188 
2189 				/*
2190 				 * Window inflation should have left us
2191 				 * with approximately snd_ssthresh outstanding
2192 				 * data.  But, in case we would be inclined
2193 				 * to send a burst, better do it using
2194 				 * slow start.
2195 				 */
2196 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2197 					   tp->snd_max + 2 * tp->t_maxseg))
2198 					tp->snd_cwnd =
2199 					    (tp->snd_max - tp->snd_una) +
2200 					    2 * tp->t_maxseg;
2201 
2202 				tp->snd_wacked = 0;
2203 			} else {
2204 				if (TCP_DO_SACK(tp)) {
2205 					tp->snd_max_rexmt = tp->snd_max;
2206 					tcp_sack_rexmt(tp, th);
2207 				} else {
2208 					tcp_newreno_partial_ack(tp, th, acked);
2209 				}
2210 				needoutput = FALSE;
2211 			}
2212 		} else {
2213 			/*
2214 			 * Open the congestion window.  When in slow-start,
2215 			 * open exponentially: maxseg per packet.  Otherwise,
2216 			 * open linearly: maxseg per window.
2217 			 */
2218 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2219 				u_int abc_sslimit =
2220 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2221 				     tp->t_maxseg : 2 * tp->t_maxseg);
2222 
2223 				/* slow-start */
2224 				tp->snd_cwnd += tcp_do_abc ?
2225 				    min(acked, abc_sslimit) : tp->t_maxseg;
2226 			} else {
2227 				/* linear increase */
2228 				tp->snd_wacked += tcp_do_abc ? acked :
2229 				    tp->t_maxseg;
2230 				if (tp->snd_wacked >= tp->snd_cwnd) {
2231 					tp->snd_wacked -= tp->snd_cwnd;
2232 					tp->snd_cwnd += tp->t_maxseg;
2233 				}
2234 			}
2235 			tp->snd_cwnd = min(tp->snd_cwnd,
2236 					   TCP_MAXWIN << tp->snd_scale);
2237 			tp->snd_recover = th->th_ack - 1;
2238 		}
2239 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2240 			tp->snd_nxt = tp->snd_una;
2241 
2242 		/*
2243 		 * If all outstanding data is acked, stop retransmit
2244 		 * timer and remember to restart (more output or persist).
2245 		 * If there is more data to be acked, restart retransmit
2246 		 * timer, using current (possibly backed-off) value.
2247 		 */
2248 		if (th->th_ack == tp->snd_max) {
2249 			tcp_callout_stop(tp, tp->tt_rexmt);
2250 			needoutput = TRUE;
2251 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2252 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2253 			    tcp_timer_rexmt);
2254 		}
2255 
2256 		switch (tp->t_state) {
2257 		/*
2258 		 * In FIN_WAIT_1 STATE in addition to the processing
2259 		 * for the ESTABLISHED state if our FIN is now acknowledged
2260 		 * then enter FIN_WAIT_2.
2261 		 */
2262 		case TCPS_FIN_WAIT_1:
2263 			if (ourfinisacked) {
2264 				/*
2265 				 * If we can't receive any more
2266 				 * data, then closing user can proceed.
2267 				 * Starting the timer is contrary to the
2268 				 * specification, but if we don't get a FIN
2269 				 * we'll hang forever.
2270 				 */
2271 				if (so->so_state & SS_CANTRCVMORE) {
2272 					soisdisconnected(so);
2273 					tcp_callout_reset(tp, tp->tt_2msl,
2274 					    tcp_maxidle, tcp_timer_2msl);
2275 				}
2276 				tp->t_state = TCPS_FIN_WAIT_2;
2277 			}
2278 			break;
2279 
2280 		/*
2281 		 * In CLOSING STATE in addition to the processing for
2282 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2283 		 * then enter the TIME-WAIT state, otherwise ignore
2284 		 * the segment.
2285 		 */
2286 		case TCPS_CLOSING:
2287 			if (ourfinisacked) {
2288 				tp->t_state = TCPS_TIME_WAIT;
2289 				tcp_canceltimers(tp);
2290 				tcp_callout_reset(tp, tp->tt_2msl,
2291 					    2 * tcp_msl, tcp_timer_2msl);
2292 				soisdisconnected(so);
2293 			}
2294 			break;
2295 
2296 		/*
2297 		 * In LAST_ACK, we may still be waiting for data to drain
2298 		 * and/or to be acked, as well as for the ack of our FIN.
2299 		 * If our FIN is now acknowledged, delete the TCB,
2300 		 * enter the closed state and return.
2301 		 */
2302 		case TCPS_LAST_ACK:
2303 			if (ourfinisacked) {
2304 				tp = tcp_close(tp);
2305 				goto drop;
2306 			}
2307 			break;
2308 
2309 		/*
2310 		 * In TIME_WAIT state the only thing that should arrive
2311 		 * is a retransmission of the remote FIN.  Acknowledge
2312 		 * it and restart the finack timer.
2313 		 */
2314 		case TCPS_TIME_WAIT:
2315 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2316 			    tcp_timer_2msl);
2317 			goto dropafterack;
2318 		}
2319 	}
2320 
2321 step6:
2322 	/*
2323 	 * Update window information.
2324 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2325 	 */
2326 	if ((thflags & TH_ACK) &&
2327 	    acceptable_window_update(tp, th, tiwin)) {
2328 		/* keep track of pure window updates */
2329 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2330 		    tiwin > tp->snd_wnd)
2331 			tcpstat.tcps_rcvwinupd++;
2332 		tp->snd_wnd = tiwin;
2333 		tp->snd_wl1 = th->th_seq;
2334 		tp->snd_wl2 = th->th_ack;
2335 		if (tp->snd_wnd > tp->max_sndwnd)
2336 			tp->max_sndwnd = tp->snd_wnd;
2337 		needoutput = TRUE;
2338 	}
2339 
2340 	/*
2341 	 * Process segments with URG.
2342 	 */
2343 	if ((thflags & TH_URG) && th->th_urp &&
2344 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2345 		/*
2346 		 * This is a kludge, but if we receive and accept
2347 		 * random urgent pointers, we'll crash in
2348 		 * soreceive.  It's hard to imagine someone
2349 		 * actually wanting to send this much urgent data.
2350 		 */
2351 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2352 			th->th_urp = 0;			/* XXX */
2353 			thflags &= ~TH_URG;		/* XXX */
2354 			goto dodata;			/* XXX */
2355 		}
2356 		/*
2357 		 * If this segment advances the known urgent pointer,
2358 		 * then mark the data stream.  This should not happen
2359 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2360 		 * a FIN has been received from the remote side.
2361 		 * In these states we ignore the URG.
2362 		 *
2363 		 * According to RFC961 (Assigned Protocols),
2364 		 * the urgent pointer points to the last octet
2365 		 * of urgent data.  We continue, however,
2366 		 * to consider it to indicate the first octet
2367 		 * of data past the urgent section as the original
2368 		 * spec states (in one of two places).
2369 		 */
2370 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2371 			tp->rcv_up = th->th_seq + th->th_urp;
2372 			so->so_oobmark = so->so_rcv.ssb_cc +
2373 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2374 			if (so->so_oobmark == 0)
2375 				so->so_state |= SS_RCVATMARK;
2376 			sohasoutofband(so);
2377 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2378 		}
2379 		/*
2380 		 * Remove out of band data so doesn't get presented to user.
2381 		 * This can happen independent of advancing the URG pointer,
2382 		 * but if two URG's are pending at once, some out-of-band
2383 		 * data may creep in... ick.
2384 		 */
2385 		if (th->th_urp <= (u_long)tlen &&
2386 		    !(so->so_options & SO_OOBINLINE)) {
2387 			/* hdr drop is delayed */
2388 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2389 		}
2390 	} else {
2391 		/*
2392 		 * If no out of band data is expected,
2393 		 * pull receive urgent pointer along
2394 		 * with the receive window.
2395 		 */
2396 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2397 			tp->rcv_up = tp->rcv_nxt;
2398 	}
2399 
2400 dodata:							/* XXX */
2401 	/*
2402 	 * Process the segment text, merging it into the TCP sequencing queue,
2403 	 * and arranging for acknowledgment of receipt if necessary.
2404 	 * This process logically involves adjusting tp->rcv_wnd as data
2405 	 * is presented to the user (this happens in tcp_usrreq.c,
2406 	 * case PRU_RCVD).  If a FIN has already been received on this
2407 	 * connection then we just ignore the text.
2408 	 */
2409 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2410 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2411 		/*
2412 		 * Insert segment which includes th into TCP reassembly queue
2413 		 * with control block tp.  Set thflags to whether reassembly now
2414 		 * includes a segment with FIN.  This handles the common case
2415 		 * inline (segment is the next to be received on an established
2416 		 * connection, and the queue is empty), avoiding linkage into
2417 		 * and removal from the queue and repetition of various
2418 		 * conversions.
2419 		 * Set DELACK for segments received in order, but ack
2420 		 * immediately when segments are out of order (so
2421 		 * fast retransmit can work).
2422 		 */
2423 		if (th->th_seq == tp->rcv_nxt &&
2424 		    LIST_EMPTY(&tp->t_segq) &&
2425 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2426 			if (DELAY_ACK(tp)) {
2427 				tcp_callout_reset(tp, tp->tt_delack,
2428 				    tcp_delacktime, tcp_timer_delack);
2429 			} else {
2430 				tp->t_flags |= TF_ACKNOW;
2431 			}
2432 			tp->rcv_nxt += tlen;
2433 			thflags = th->th_flags & TH_FIN;
2434 			tcpstat.tcps_rcvpack++;
2435 			tcpstat.tcps_rcvbyte += tlen;
2436 			ND6_HINT(tp);
2437 			if (so->so_state & SS_CANTRCVMORE)
2438 				m_freem(m);
2439 			else
2440 				ssb_appendstream(&so->so_rcv, m);
2441 			sorwakeup(so);
2442 		} else {
2443 			if (!(tp->t_flags & TF_DUPSEG)) {
2444 				/* Initialize SACK report block. */
2445 				tp->reportblk.rblk_start = th->th_seq;
2446 				tp->reportblk.rblk_end = th->th_seq + tlen +
2447 				    ((thflags & TH_FIN) != 0);
2448 			}
2449 			thflags = tcp_reass(tp, th, &tlen, m);
2450 			tp->t_flags |= TF_ACKNOW;
2451 		}
2452 
2453 		/*
2454 		 * Note the amount of data that peer has sent into
2455 		 * our window, in order to estimate the sender's
2456 		 * buffer size.
2457 		 */
2458 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2459 	} else {
2460 		m_freem(m);
2461 		thflags &= ~TH_FIN;
2462 	}
2463 
2464 	/*
2465 	 * If FIN is received ACK the FIN and let the user know
2466 	 * that the connection is closing.
2467 	 */
2468 	if (thflags & TH_FIN) {
2469 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2470 			socantrcvmore(so);
2471 			/*
2472 			 * If connection is half-synchronized
2473 			 * (ie NEEDSYN flag on) then delay ACK,
2474 			 * so it may be piggybacked when SYN is sent.
2475 			 * Otherwise, since we received a FIN then no
2476 			 * more input can be expected, send ACK now.
2477 			 */
2478 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2479 				tcp_callout_reset(tp, tp->tt_delack,
2480 				    tcp_delacktime, tcp_timer_delack);
2481 			} else {
2482 				tp->t_flags |= TF_ACKNOW;
2483 			}
2484 			tp->rcv_nxt++;
2485 		}
2486 
2487 		switch (tp->t_state) {
2488 		/*
2489 		 * In SYN_RECEIVED and ESTABLISHED STATES
2490 		 * enter the CLOSE_WAIT state.
2491 		 */
2492 		case TCPS_SYN_RECEIVED:
2493 			tp->t_starttime = ticks;
2494 			/*FALLTHROUGH*/
2495 		case TCPS_ESTABLISHED:
2496 			tp->t_state = TCPS_CLOSE_WAIT;
2497 			break;
2498 
2499 		/*
2500 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2501 		 * enter the CLOSING state.
2502 		 */
2503 		case TCPS_FIN_WAIT_1:
2504 			tp->t_state = TCPS_CLOSING;
2505 			break;
2506 
2507 		/*
2508 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2509 		 * starting the time-wait timer, turning off the other
2510 		 * standard timers.
2511 		 */
2512 		case TCPS_FIN_WAIT_2:
2513 			tp->t_state = TCPS_TIME_WAIT;
2514 			tcp_canceltimers(tp);
2515 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2516 				    tcp_timer_2msl);
2517 			soisdisconnected(so);
2518 			break;
2519 
2520 		/*
2521 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2522 		 */
2523 		case TCPS_TIME_WAIT:
2524 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_msl,
2525 			    tcp_timer_2msl);
2526 			break;
2527 		}
2528 	}
2529 
2530 #ifdef TCPDEBUG
2531 	if (so->so_options & SO_DEBUG)
2532 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2533 #endif
2534 
2535 	/*
2536 	 * Return any desired output.
2537 	 */
2538 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2539 		tcp_output(tp);
2540 	return;
2541 
2542 dropafterack:
2543 	/*
2544 	 * Generate an ACK dropping incoming segment if it occupies
2545 	 * sequence space, where the ACK reflects our state.
2546 	 *
2547 	 * We can now skip the test for the RST flag since all
2548 	 * paths to this code happen after packets containing
2549 	 * RST have been dropped.
2550 	 *
2551 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2552 	 * segment we received passes the SYN-RECEIVED ACK test.
2553 	 * If it fails send a RST.  This breaks the loop in the
2554 	 * "LAND" DoS attack, and also prevents an ACK storm
2555 	 * between two listening ports that have been sent forged
2556 	 * SYN segments, each with the source address of the other.
2557 	 */
2558 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2559 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2560 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2561 		rstreason = BANDLIM_RST_OPENPORT;
2562 		goto dropwithreset;
2563 	}
2564 #ifdef TCPDEBUG
2565 	if (so->so_options & SO_DEBUG)
2566 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2567 #endif
2568 	m_freem(m);
2569 	tp->t_flags |= TF_ACKNOW;
2570 	tcp_output(tp);
2571 	return;
2572 
2573 dropwithreset:
2574 	/*
2575 	 * Generate a RST, dropping incoming segment.
2576 	 * Make ACK acceptable to originator of segment.
2577 	 * Don't bother to respond if destination was broadcast/multicast.
2578 	 */
2579 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2580 		goto drop;
2581 	if (isipv6) {
2582 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2583 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2584 			goto drop;
2585 	} else {
2586 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2587 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2588 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2589 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2590 			goto drop;
2591 	}
2592 	/* IPv6 anycast check is done at tcp6_input() */
2593 
2594 	/*
2595 	 * Perform bandwidth limiting.
2596 	 */
2597 #ifdef ICMP_BANDLIM
2598 	if (badport_bandlim(rstreason) < 0)
2599 		goto drop;
2600 #endif
2601 
2602 #ifdef TCPDEBUG
2603 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2604 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2605 #endif
2606 	if (thflags & TH_ACK)
2607 		/* mtod() below is safe as long as hdr dropping is delayed */
2608 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2609 			    TH_RST);
2610 	else {
2611 		if (thflags & TH_SYN)
2612 			tlen++;
2613 		/* mtod() below is safe as long as hdr dropping is delayed */
2614 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2615 			    (tcp_seq)0, TH_RST | TH_ACK);
2616 	}
2617 	return;
2618 
2619 drop:
2620 	/*
2621 	 * Drop space held by incoming segment and return.
2622 	 */
2623 #ifdef TCPDEBUG
2624 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2625 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2626 #endif
2627 	m_freem(m);
2628 	return;
2629 }
2630 
2631 /*
2632  * Parse TCP options and place in tcpopt.
2633  */
2634 static void
2635 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2636 {
2637 	int opt, optlen, i;
2638 
2639 	to->to_flags = 0;
2640 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2641 		opt = cp[0];
2642 		if (opt == TCPOPT_EOL)
2643 			break;
2644 		if (opt == TCPOPT_NOP)
2645 			optlen = 1;
2646 		else {
2647 			if (cnt < 2)
2648 				break;
2649 			optlen = cp[1];
2650 			if (optlen < 2 || optlen > cnt)
2651 				break;
2652 		}
2653 		switch (opt) {
2654 		case TCPOPT_MAXSEG:
2655 			if (optlen != TCPOLEN_MAXSEG)
2656 				continue;
2657 			if (!is_syn)
2658 				continue;
2659 			to->to_flags |= TOF_MSS;
2660 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2661 			to->to_mss = ntohs(to->to_mss);
2662 			break;
2663 		case TCPOPT_WINDOW:
2664 			if (optlen != TCPOLEN_WINDOW)
2665 				continue;
2666 			if (!is_syn)
2667 				continue;
2668 			to->to_flags |= TOF_SCALE;
2669 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2670 			break;
2671 		case TCPOPT_TIMESTAMP:
2672 			if (optlen != TCPOLEN_TIMESTAMP)
2673 				continue;
2674 			to->to_flags |= TOF_TS;
2675 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2676 			to->to_tsval = ntohl(to->to_tsval);
2677 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2678 			to->to_tsecr = ntohl(to->to_tsecr);
2679 			/*
2680 			 * If echoed timestamp is later than the current time,
2681 			 * fall back to non RFC1323 RTT calculation.
2682 			 */
2683 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2684 				to->to_tsecr = 0;
2685 			break;
2686 		case TCPOPT_SACK_PERMITTED:
2687 			if (optlen != TCPOLEN_SACK_PERMITTED)
2688 				continue;
2689 			if (!is_syn)
2690 				continue;
2691 			to->to_flags |= TOF_SACK_PERMITTED;
2692 			break;
2693 		case TCPOPT_SACK:
2694 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2695 				continue;
2696 			to->to_nsackblocks = (optlen - 2) / 8;
2697 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2698 			to->to_flags |= TOF_SACK;
2699 			for (i = 0; i < to->to_nsackblocks; i++) {
2700 				struct raw_sackblock *r = &to->to_sackblocks[i];
2701 
2702 				r->rblk_start = ntohl(r->rblk_start);
2703 				r->rblk_end = ntohl(r->rblk_end);
2704 			}
2705 			break;
2706 #ifdef TCP_SIGNATURE
2707 		/*
2708 		 * XXX In order to reply to a host which has set the
2709 		 * TCP_SIGNATURE option in its initial SYN, we have to
2710 		 * record the fact that the option was observed here
2711 		 * for the syncache code to perform the correct response.
2712 		 */
2713 		case TCPOPT_SIGNATURE:
2714 			if (optlen != TCPOLEN_SIGNATURE)
2715 				continue;
2716 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2717 			break;
2718 #endif /* TCP_SIGNATURE */
2719 		default:
2720 			continue;
2721 		}
2722 	}
2723 }
2724 
2725 /*
2726  * Pull out of band byte out of a segment so
2727  * it doesn't appear in the user's data queue.
2728  * It is still reflected in the segment length for
2729  * sequencing purposes.
2730  * "off" is the delayed to be dropped hdrlen.
2731  */
2732 static void
2733 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2734 {
2735 	int cnt = off + th->th_urp - 1;
2736 
2737 	while (cnt >= 0) {
2738 		if (m->m_len > cnt) {
2739 			char *cp = mtod(m, caddr_t) + cnt;
2740 			struct tcpcb *tp = sototcpcb(so);
2741 
2742 			tp->t_iobc = *cp;
2743 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2744 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2745 			m->m_len--;
2746 			if (m->m_flags & M_PKTHDR)
2747 				m->m_pkthdr.len--;
2748 			return;
2749 		}
2750 		cnt -= m->m_len;
2751 		m = m->m_next;
2752 		if (m == 0)
2753 			break;
2754 	}
2755 	panic("tcp_pulloutofband");
2756 }
2757 
2758 /*
2759  * Collect new round-trip time estimate
2760  * and update averages and current timeout.
2761  */
2762 static void
2763 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2764 {
2765 	int delta;
2766 
2767 	tcpstat.tcps_rttupdated++;
2768 	tp->t_rttupdated++;
2769 	if (tp->t_srtt != 0) {
2770 		/*
2771 		 * srtt is stored as fixed point with 5 bits after the
2772 		 * binary point (i.e., scaled by 8).  The following magic
2773 		 * is equivalent to the smoothing algorithm in rfc793 with
2774 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2775 		 * point).  Adjust rtt to origin 0.
2776 		 */
2777 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2778 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2779 
2780 		if ((tp->t_srtt += delta) <= 0)
2781 			tp->t_srtt = 1;
2782 
2783 		/*
2784 		 * We accumulate a smoothed rtt variance (actually, a
2785 		 * smoothed mean difference), then set the retransmit
2786 		 * timer to smoothed rtt + 4 times the smoothed variance.
2787 		 * rttvar is stored as fixed point with 4 bits after the
2788 		 * binary point (scaled by 16).  The following is
2789 		 * equivalent to rfc793 smoothing with an alpha of .75
2790 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2791 		 * rfc793's wired-in beta.
2792 		 */
2793 		if (delta < 0)
2794 			delta = -delta;
2795 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2796 		if ((tp->t_rttvar += delta) <= 0)
2797 			tp->t_rttvar = 1;
2798 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2799 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2800 	} else {
2801 		/*
2802 		 * No rtt measurement yet - use the unsmoothed rtt.
2803 		 * Set the variance to half the rtt (so our first
2804 		 * retransmit happens at 3*rtt).
2805 		 */
2806 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2807 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2808 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2809 	}
2810 	tp->t_rtttime = 0;
2811 	tp->t_rxtshift = 0;
2812 
2813 	/*
2814 	 * the retransmit should happen at rtt + 4 * rttvar.
2815 	 * Because of the way we do the smoothing, srtt and rttvar
2816 	 * will each average +1/2 tick of bias.  When we compute
2817 	 * the retransmit timer, we want 1/2 tick of rounding and
2818 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2819 	 * firing of the timer.  The bias will give us exactly the
2820 	 * 1.5 tick we need.  But, because the bias is
2821 	 * statistical, we have to test that we don't drop below
2822 	 * the minimum feasible timer (which is 2 ticks).
2823 	 */
2824 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2825 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2826 
2827 	/*
2828 	 * We received an ack for a packet that wasn't retransmitted;
2829 	 * it is probably safe to discard any error indications we've
2830 	 * received recently.  This isn't quite right, but close enough
2831 	 * for now (a route might have failed after we sent a segment,
2832 	 * and the return path might not be symmetrical).
2833 	 */
2834 	tp->t_softerror = 0;
2835 }
2836 
2837 /*
2838  * Determine a reasonable value for maxseg size.
2839  * If the route is known, check route for mtu.
2840  * If none, use an mss that can be handled on the outgoing
2841  * interface without forcing IP to fragment; if bigger than
2842  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2843  * to utilize large mbufs.  If no route is found, route has no mtu,
2844  * or the destination isn't local, use a default, hopefully conservative
2845  * size (usually 512 or the default IP max size, but no more than the mtu
2846  * of the interface), as we can't discover anything about intervening
2847  * gateways or networks.  We also initialize the congestion/slow start
2848  * window to be a single segment if the destination isn't local.
2849  * While looking at the routing entry, we also initialize other path-dependent
2850  * parameters from pre-set or cached values in the routing entry.
2851  *
2852  * Also take into account the space needed for options that we
2853  * send regularly.  Make maxseg shorter by that amount to assure
2854  * that we can send maxseg amount of data even when the options
2855  * are present.  Store the upper limit of the length of options plus
2856  * data in maxopd.
2857  *
2858  * NOTE that this routine is only called when we process an incoming
2859  * segment, for outgoing segments only tcp_mssopt is called.
2860  */
2861 void
2862 tcp_mss(struct tcpcb *tp, int offer)
2863 {
2864 	struct rtentry *rt;
2865 	struct ifnet *ifp;
2866 	int rtt, mss;
2867 	u_long bufsize;
2868 	struct inpcb *inp = tp->t_inpcb;
2869 	struct socket *so;
2870 #ifdef INET6
2871 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2872 	size_t min_protoh = isipv6 ?
2873 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2874 			    sizeof(struct tcpiphdr);
2875 #else
2876 	const boolean_t isipv6 = FALSE;
2877 	const size_t min_protoh = sizeof(struct tcpiphdr);
2878 #endif
2879 
2880 	if (isipv6)
2881 		rt = tcp_rtlookup6(&inp->inp_inc);
2882 	else
2883 		rt = tcp_rtlookup(&inp->inp_inc);
2884 	if (rt == NULL) {
2885 		tp->t_maxopd = tp->t_maxseg =
2886 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2887 		return;
2888 	}
2889 	ifp = rt->rt_ifp;
2890 	so = inp->inp_socket;
2891 
2892 	/*
2893 	 * Offer == 0 means that there was no MSS on the SYN segment,
2894 	 * in this case we use either the interface mtu or tcp_mssdflt.
2895 	 *
2896 	 * An offer which is too large will be cut down later.
2897 	 */
2898 	if (offer == 0) {
2899 		if (isipv6) {
2900 			if (in6_localaddr(&inp->in6p_faddr)) {
2901 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2902 					min_protoh;
2903 			} else {
2904 				offer = tcp_v6mssdflt;
2905 			}
2906 		} else {
2907 			if (in_localaddr(inp->inp_faddr))
2908 				offer = ifp->if_mtu - min_protoh;
2909 			else
2910 				offer = tcp_mssdflt;
2911 		}
2912 	}
2913 
2914 	/*
2915 	 * Prevent DoS attack with too small MSS. Round up
2916 	 * to at least minmss.
2917 	 *
2918 	 * Sanity check: make sure that maxopd will be large
2919 	 * enough to allow some data on segments even is the
2920 	 * all the option space is used (40bytes).  Otherwise
2921 	 * funny things may happen in tcp_output.
2922 	 */
2923 	offer = max(offer, tcp_minmss);
2924 	offer = max(offer, 64);
2925 
2926 	rt->rt_rmx.rmx_mssopt = offer;
2927 
2928 	/*
2929 	 * While we're here, check if there's an initial rtt
2930 	 * or rttvar.  Convert from the route-table units
2931 	 * to scaled multiples of the slow timeout timer.
2932 	 */
2933 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2934 		/*
2935 		 * XXX the lock bit for RTT indicates that the value
2936 		 * is also a minimum value; this is subject to time.
2937 		 */
2938 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2939 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2940 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2941 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2942 		tcpstat.tcps_usedrtt++;
2943 		if (rt->rt_rmx.rmx_rttvar) {
2944 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2945 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2946 			tcpstat.tcps_usedrttvar++;
2947 		} else {
2948 			/* default variation is +- 1 rtt */
2949 			tp->t_rttvar =
2950 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2951 		}
2952 		TCPT_RANGESET(tp->t_rxtcur,
2953 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2954 			      tp->t_rttmin, TCPTV_REXMTMAX);
2955 	}
2956 
2957 	/*
2958 	 * if there's an mtu associated with the route, use it
2959 	 * else, use the link mtu.  Take the smaller of mss or offer
2960 	 * as our final mss.
2961 	 */
2962 	if (rt->rt_rmx.rmx_mtu) {
2963 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2964 	} else {
2965 		if (isipv6)
2966 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2967 		else
2968 			mss = ifp->if_mtu - min_protoh;
2969 	}
2970 	mss = min(mss, offer);
2971 
2972 	/*
2973 	 * maxopd stores the maximum length of data AND options
2974 	 * in a segment; maxseg is the amount of data in a normal
2975 	 * segment.  We need to store this value (maxopd) apart
2976 	 * from maxseg, because now every segment carries options
2977 	 * and thus we normally have somewhat less data in segments.
2978 	 */
2979 	tp->t_maxopd = mss;
2980 
2981 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
2982 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2983 		mss -= TCPOLEN_TSTAMP_APPA;
2984 
2985 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2986 		if (mss > MCLBYTES)
2987 			mss &= ~(MCLBYTES-1);
2988 #else
2989 		if (mss > MCLBYTES)
2990 			mss = mss / MCLBYTES * MCLBYTES;
2991 #endif
2992 	/*
2993 	 * If there's a pipesize, change the socket buffer
2994 	 * to that size.  Make the socket buffers an integral
2995 	 * number of mss units; if the mss is larger than
2996 	 * the socket buffer, decrease the mss.
2997 	 */
2998 #ifdef RTV_SPIPE
2999 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3000 #endif
3001 		bufsize = so->so_snd.ssb_hiwat;
3002 	if (bufsize < mss)
3003 		mss = bufsize;
3004 	else {
3005 		bufsize = roundup(bufsize, mss);
3006 		if (bufsize > sb_max)
3007 			bufsize = sb_max;
3008 		if (bufsize > so->so_snd.ssb_hiwat)
3009 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3010 	}
3011 	tp->t_maxseg = mss;
3012 
3013 #ifdef RTV_RPIPE
3014 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3015 #endif
3016 		bufsize = so->so_rcv.ssb_hiwat;
3017 	if (bufsize > mss) {
3018 		bufsize = roundup(bufsize, mss);
3019 		if (bufsize > sb_max)
3020 			bufsize = sb_max;
3021 		if (bufsize > so->so_rcv.ssb_hiwat)
3022 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3023 	}
3024 
3025 	/*
3026 	 * Set the slow-start flight size depending on whether this
3027 	 * is a local network or not.
3028 	 */
3029 	if (tcp_do_rfc3390)
3030 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3031 	else
3032 		tp->snd_cwnd = mss;
3033 
3034 	if (rt->rt_rmx.rmx_ssthresh) {
3035 		/*
3036 		 * There's some sort of gateway or interface
3037 		 * buffer limit on the path.  Use this to set
3038 		 * the slow start threshhold, but set the
3039 		 * threshold to no less than 2*mss.
3040 		 */
3041 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3042 		tcpstat.tcps_usedssthresh++;
3043 	}
3044 }
3045 
3046 /*
3047  * Determine the MSS option to send on an outgoing SYN.
3048  */
3049 int
3050 tcp_mssopt(struct tcpcb *tp)
3051 {
3052 	struct rtentry *rt;
3053 #ifdef INET6
3054 	boolean_t isipv6 =
3055 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3056 	int min_protoh = isipv6 ?
3057 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3058 			     sizeof(struct tcpiphdr);
3059 #else
3060 	const boolean_t isipv6 = FALSE;
3061 	const size_t min_protoh = sizeof(struct tcpiphdr);
3062 #endif
3063 
3064 	if (isipv6)
3065 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3066 	else
3067 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3068 	if (rt == NULL)
3069 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3070 
3071 	return (rt->rt_ifp->if_mtu - min_protoh);
3072 }
3073 
3074 /*
3075  * When a partial ack arrives, force the retransmission of the
3076  * next unacknowledged segment.  Do not exit Fast Recovery.
3077  *
3078  * Implement the Slow-but-Steady variant of NewReno by restarting the
3079  * the retransmission timer.  Turn it off here so it can be restarted
3080  * later in tcp_output().
3081  */
3082 static void
3083 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3084 {
3085 	tcp_seq old_snd_nxt = tp->snd_nxt;
3086 	u_long ocwnd = tp->snd_cwnd;
3087 
3088 	tcp_callout_stop(tp, tp->tt_rexmt);
3089 	tp->t_rtttime = 0;
3090 	tp->snd_nxt = th->th_ack;
3091 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3092 	tp->snd_cwnd = tp->t_maxseg;
3093 	tp->t_flags |= TF_ACKNOW;
3094 	tcp_output(tp);
3095 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3096 		tp->snd_nxt = old_snd_nxt;
3097 	/* partial window deflation */
3098 	if (ocwnd > acked)
3099 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3100 	else
3101 		tp->snd_cwnd = tp->t_maxseg;
3102 }
3103 
3104 /*
3105  * In contrast to the Slow-but-Steady NewReno variant,
3106  * we do not reset the retransmission timer for SACK retransmissions,
3107  * except when retransmitting snd_una.
3108  */
3109 static void
3110 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3111 {
3112 	uint32_t pipe, seglen;
3113 	tcp_seq nextrexmt;
3114 	boolean_t lostdup;
3115 	tcp_seq old_snd_nxt = tp->snd_nxt;
3116 	u_long ocwnd = tp->snd_cwnd;
3117 	int nseg = 0;		/* consecutive new segments */
3118 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3119 
3120 	tp->t_rtttime = 0;
3121 	pipe = tcp_sack_compute_pipe(tp);
3122 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3123 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3124 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3125 		uint32_t sent;
3126 		tcp_seq old_snd_max;
3127 		int error;
3128 
3129 		if (nextrexmt == tp->snd_max)
3130 			++nseg;
3131 		tp->snd_nxt = nextrexmt;
3132 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3133 		old_snd_max = tp->snd_max;
3134 		if (nextrexmt == tp->snd_una)
3135 			tcp_callout_stop(tp, tp->tt_rexmt);
3136 		error = tcp_output(tp);
3137 		if (error != 0)
3138 			break;
3139 		sent = tp->snd_nxt - nextrexmt;
3140 		if (sent <= 0)
3141 			break;
3142 		if (!lostdup)
3143 			pipe += sent;
3144 		tcpstat.tcps_sndsackpack++;
3145 		tcpstat.tcps_sndsackbyte += sent;
3146 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3147 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3148 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3149 	}
3150 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3151 		tp->snd_nxt = old_snd_nxt;
3152 	tp->snd_cwnd = ocwnd;
3153 }
3154