xref: /dflybsd-src/sys/netinet/tcp_input.c (revision 04db30e59799dbe046f0bdb23b82513671b9523e)
1 /*
2  * Copyright (c) 2002, 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2002, 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
67  * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.38 2003/05/21 04:46:41 cjc Exp $
68  */
69 
70 #include "opt_inet.h"
71 #include "opt_inet6.h"
72 #include "opt_ipsec.h"
73 #include "opt_tcpdebug.h"
74 #include "opt_tcp_input.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/sysctl.h>
80 #include <sys/malloc.h>
81 #include <sys/mbuf.h>
82 #include <sys/proc.h>		/* for proc0 declaration */
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/syslog.h>
87 #include <sys/in_cksum.h>
88 
89 #include <sys/socketvar2.h>
90 
91 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
92 #include <machine/stdarg.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM */
101 #include <netinet/in_var.h>
102 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
103 #include <netinet/in_pcb.h>
104 #include <netinet/ip_var.h>
105 #include <netinet/ip6.h>
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 #include <netinet/tcpip.h>
118 
119 #ifdef TCPDEBUG
120 #include <netinet/tcp_debug.h>
121 
122 u_char tcp_saveipgen[40];    /* the size must be of max ip header, now IPv6 */
123 struct tcphdr tcp_savetcp;
124 #endif
125 
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #include <netproto/ipsec/ipsec6.h>
129 #endif
130 
131 #ifdef IPSEC
132 #include <netinet6/ipsec.h>
133 #include <netinet6/ipsec6.h>
134 #include <netproto/key/key.h>
135 #endif
136 
137 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
138 
139 static int log_in_vain = 0;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
141     &log_in_vain, 0, "Log all incoming TCP connections");
142 
143 static int blackhole = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
145     &blackhole, 0, "Do not send RST when dropping refused connections");
146 
147 int tcp_delack_enabled = 1;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
149     &tcp_delack_enabled, 0,
150     "Delay ACK to try and piggyback it onto a data packet");
151 
152 #ifdef TCP_DROP_SYNFIN
153 static int drop_synfin = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
155     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
156 #endif
157 
158 static int tcp_do_limitedtransmit = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limitedtransmit, CTLFLAG_RW,
160     &tcp_do_limitedtransmit, 0, "Enable RFC 3042 (Limited Transmit)");
161 
162 static int tcp_do_early_retransmit = 1;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, earlyretransmit, CTLFLAG_RW,
164     &tcp_do_early_retransmit, 0, "Early retransmit");
165 
166 int tcp_aggregate_acks = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, aggregate_acks, CTLFLAG_RW,
168     &tcp_aggregate_acks, 0, "Aggregate built-up acks into one ack");
169 
170 int tcp_do_rfc3390 = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
172     &tcp_do_rfc3390, 0,
173     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
174 
175 static int tcp_do_eifel_detect = 1;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, eifel, CTLFLAG_RW,
177     &tcp_do_eifel_detect, 0, "Eifel detection algorithm (RFC 3522)");
178 
179 static int tcp_do_abc = 1;
180 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc, CTLFLAG_RW,
181     &tcp_do_abc, 0,
182     "TCP Appropriate Byte Counting (RFC 3465)");
183 
184 /*
185  * Define as tunable for easy testing with SACK on and off.
186  * Warning:  do not change setting in the middle of an existing active TCP flow,
187  *   else strange things might happen to that flow.
188  */
189 int tcp_do_sack = 1;
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW,
191     &tcp_do_sack, 0, "Enable SACK Algorithms");
192 
193 int tcp_do_smartsack = 1;
194 SYSCTL_INT(_net_inet_tcp, OID_AUTO, smartsack, CTLFLAG_RW,
195     &tcp_do_smartsack, 0, "Enable Smart SACK Algorithms");
196 
197 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW, 0,
198     "TCP Segment Reassembly Queue");
199 
200 int tcp_reass_maxseg = 0;
201 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RD,
202     &tcp_reass_maxseg, 0,
203     "Global maximum number of TCP Segments in Reassembly Queue");
204 
205 int tcp_reass_qsize = 0;
206 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
207     &tcp_reass_qsize, 0,
208     "Global number of TCP Segments currently in Reassembly Queue");
209 
210 static int tcp_reass_overflows = 0;
211 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
212     &tcp_reass_overflows, 0,
213     "Global number of TCP Segment Reassembly Queue Overflows");
214 
215 int tcp_do_autorcvbuf = 1;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
217     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
218 
219 int tcp_autorcvbuf_inc = 16*1024;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
221     &tcp_autorcvbuf_inc, 0,
222     "Incrementor step size of automatic receive buffer");
223 
224 int tcp_autorcvbuf_max = 2*1024*1024;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
226     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
227 
228 int tcp_sosnd_agglim = 2;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosnd_agglim, CTLFLAG_RW,
230     &tcp_sosnd_agglim, 0, "TCP sosend mbuf aggregation limit");
231 
232 int tcp_sosnd_async = 1;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sosnd_async, CTLFLAG_RW,
234     &tcp_sosnd_async, 0, "TCP asynchronized pru_send");
235 
236 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, boolean_t);
237 static void	 tcp_pulloutofband(struct socket *,
238 		     struct tcphdr *, struct mbuf *, int);
239 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
240 		     struct mbuf *);
241 static void	 tcp_xmit_timer(struct tcpcb *, int);
242 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *, int);
243 static void	 tcp_sack_rexmt(struct tcpcb *, struct tcphdr *);
244 static int	 tcp_rmx_msl(const struct tcpcb *);
245 static void	 tcp_established(struct tcpcb *);
246 
247 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
248 #ifdef INET6
249 #define ND6_HINT(tp) \
250 do { \
251 	if ((tp) && (tp)->t_inpcb && \
252 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) && \
253 	    (tp)->t_inpcb->in6p_route.ro_rt) \
254 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
255 } while (0)
256 #else
257 #define ND6_HINT(tp)
258 #endif
259 
260 /*
261  * Indicate whether this ack should be delayed.  We can delay the ack if
262  *	- delayed acks are enabled and
263  *	- there is no delayed ack timer in progress and
264  *	- our last ack wasn't a 0-sized window.  We never want to delay
265  *	  the ack that opens up a 0-sized window.
266  */
267 #define DELAY_ACK(tp) \
268 	(tcp_delack_enabled && !tcp_callout_pending(tp, tp->tt_delack) && \
269 	!(tp->t_flags & TF_RXWIN0SENT))
270 
271 #define acceptable_window_update(tp, th, tiwin)				\
272     (SEQ_LT(tp->snd_wl1, th->th_seq) ||					\
273      (tp->snd_wl1 == th->th_seq &&					\
274       (SEQ_LT(tp->snd_wl2, th->th_ack) ||				\
275        (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))
276 
277 static int
278 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m)
279 {
280 	struct tseg_qent *q;
281 	struct tseg_qent *p = NULL;
282 	struct tseg_qent *te;
283 	struct socket *so = tp->t_inpcb->inp_socket;
284 	int flags;
285 
286 	/*
287 	 * Call with th == NULL after become established to
288 	 * force pre-ESTABLISHED data up to user socket.
289 	 */
290 	if (th == NULL)
291 		goto present;
292 
293 	/*
294 	 * Limit the number of segments in the reassembly queue to prevent
295 	 * holding on to too many segments (and thus running out of mbufs).
296 	 * Make sure to let the missing segment through which caused this
297 	 * queue.  Always keep one global queue entry spare to be able to
298 	 * process the missing segment.
299 	 */
300 	if (th->th_seq != tp->rcv_nxt &&
301 	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
302 		tcp_reass_overflows++;
303 		tcpstat.tcps_rcvmemdrop++;
304 		m_freem(m);
305 		/* no SACK block to report */
306 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
307 		return (0);
308 	}
309 
310 	/* Allocate a new queue entry. */
311 	te = kmalloc(sizeof(struct tseg_qent), M_TSEGQ, M_INTWAIT | M_NULLOK);
312 	if (te == NULL) {
313 		tcpstat.tcps_rcvmemdrop++;
314 		m_freem(m);
315 		/* no SACK block to report */
316 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
317 		return (0);
318 	}
319 	atomic_add_int(&tcp_reass_qsize, 1);
320 
321 	/*
322 	 * Find a segment which begins after this one does.
323 	 */
324 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
325 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
326 			break;
327 		p = q;
328 	}
329 
330 	/*
331 	 * If there is a preceding segment, it may provide some of
332 	 * our data already.  If so, drop the data from the incoming
333 	 * segment.  If it provides all of our data, drop us.
334 	 */
335 	if (p != NULL) {
336 		tcp_seq_diff_t i;
337 
338 		/* conversion to int (in i) handles seq wraparound */
339 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
340 		if (i > 0) {		/* overlaps preceding segment */
341 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
342 			/* enclosing block starts w/ preceding segment */
343 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
344 			if (i >= *tlenp) {
345 				/* preceding encloses incoming segment */
346 				tp->encloseblk.rblk_end = p->tqe_th->th_seq +
347 				    p->tqe_len;
348 				tcpstat.tcps_rcvduppack++;
349 				tcpstat.tcps_rcvdupbyte += *tlenp;
350 				m_freem(m);
351 				kfree(te, M_TSEGQ);
352 				atomic_add_int(&tcp_reass_qsize, -1);
353 				/*
354 				 * Try to present any queued data
355 				 * at the left window edge to the user.
356 				 * This is needed after the 3-WHS
357 				 * completes.
358 				 */
359 				goto present;	/* ??? */
360 			}
361 			m_adj(m, i);
362 			*tlenp -= i;
363 			th->th_seq += i;
364 			/* incoming segment end is enclosing block end */
365 			tp->encloseblk.rblk_end = th->th_seq + *tlenp +
366 			    ((th->th_flags & TH_FIN) != 0);
367 			/* trim end of reported D-SACK block */
368 			tp->reportblk.rblk_end = th->th_seq;
369 		}
370 	}
371 	tcpstat.tcps_rcvoopack++;
372 	tcpstat.tcps_rcvoobyte += *tlenp;
373 
374 	/*
375 	 * While we overlap succeeding segments trim them or,
376 	 * if they are completely covered, dequeue them.
377 	 */
378 	while (q) {
379 		tcp_seq_diff_t i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
380 		tcp_seq qend = q->tqe_th->th_seq + q->tqe_len;
381 		struct tseg_qent *nq;
382 
383 		if (i <= 0)
384 			break;
385 		if (!(tp->t_flags & TF_DUPSEG)) {    /* first time through */
386 			tp->t_flags |= (TF_DUPSEG | TF_ENCLOSESEG);
387 			tp->encloseblk = tp->reportblk;
388 			/* report trailing duplicate D-SACK segment */
389 			tp->reportblk.rblk_start = q->tqe_th->th_seq;
390 		}
391 		if ((tp->t_flags & TF_ENCLOSESEG) &&
392 		    SEQ_GT(qend, tp->encloseblk.rblk_end)) {
393 			/* extend enclosing block if one exists */
394 			tp->encloseblk.rblk_end = qend;
395 		}
396 		if (i < q->tqe_len) {
397 			q->tqe_th->th_seq += i;
398 			q->tqe_len -= i;
399 			m_adj(q->tqe_m, i);
400 			break;
401 		}
402 
403 		nq = LIST_NEXT(q, tqe_q);
404 		LIST_REMOVE(q, tqe_q);
405 		m_freem(q->tqe_m);
406 		kfree(q, M_TSEGQ);
407 		atomic_add_int(&tcp_reass_qsize, -1);
408 		q = nq;
409 	}
410 
411 	/* Insert the new segment queue entry into place. */
412 	te->tqe_m = m;
413 	te->tqe_th = th;
414 	te->tqe_len = *tlenp;
415 
416 	/* check if can coalesce with following segment */
417 	if (q != NULL && (th->th_seq + *tlenp == q->tqe_th->th_seq)) {
418 		tcp_seq tend = te->tqe_th->th_seq + te->tqe_len;
419 
420 		te->tqe_len += q->tqe_len;
421 		if (q->tqe_th->th_flags & TH_FIN)
422 			te->tqe_th->th_flags |= TH_FIN;
423 		m_cat(te->tqe_m, q->tqe_m);
424 		tp->encloseblk.rblk_end = tend;
425 		/*
426 		 * When not reporting a duplicate segment, use
427 		 * the larger enclosing block as the SACK block.
428 		 */
429 		if (!(tp->t_flags & TF_DUPSEG))
430 			tp->reportblk.rblk_end = tend;
431 		LIST_REMOVE(q, tqe_q);
432 		kfree(q, M_TSEGQ);
433 		atomic_add_int(&tcp_reass_qsize, -1);
434 	}
435 
436 	if (p == NULL) {
437 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
438 	} else {
439 		/* check if can coalesce with preceding segment */
440 		if (p->tqe_th->th_seq + p->tqe_len == th->th_seq) {
441 			p->tqe_len += te->tqe_len;
442 			m_cat(p->tqe_m, te->tqe_m);
443 			tp->encloseblk.rblk_start = p->tqe_th->th_seq;
444 			/*
445 			 * When not reporting a duplicate segment, use
446 			 * the larger enclosing block as the SACK block.
447 			 */
448 			if (!(tp->t_flags & TF_DUPSEG))
449 				tp->reportblk.rblk_start = p->tqe_th->th_seq;
450 			kfree(te, M_TSEGQ);
451 			atomic_add_int(&tcp_reass_qsize, -1);
452 		} else {
453 			LIST_INSERT_AFTER(p, te, tqe_q);
454 		}
455 	}
456 
457 present:
458 	/*
459 	 * Present data to user, advancing rcv_nxt through
460 	 * completed sequence space.
461 	 */
462 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
463 		return (0);
464 	q = LIST_FIRST(&tp->t_segq);
465 	if (q == NULL || q->tqe_th->th_seq != tp->rcv_nxt)
466 		return (0);
467 	tp->rcv_nxt += q->tqe_len;
468 	if (!(tp->t_flags & TF_DUPSEG))	{
469 		/* no SACK block to report since ACK advanced */
470 		tp->reportblk.rblk_start = tp->reportblk.rblk_end;
471 	}
472 	/* no enclosing block to report since ACK advanced */
473 	tp->t_flags &= ~TF_ENCLOSESEG;
474 	flags = q->tqe_th->th_flags & TH_FIN;
475 	LIST_REMOVE(q, tqe_q);
476 	KASSERT(LIST_EMPTY(&tp->t_segq) ||
477 		LIST_FIRST(&tp->t_segq)->tqe_th->th_seq != tp->rcv_nxt,
478 		("segment not coalesced"));
479 	if (so->so_state & SS_CANTRCVMORE) {
480 		m_freem(q->tqe_m);
481 	} else {
482 		lwkt_gettoken(&so->so_rcv.ssb_token);
483 		ssb_appendstream(&so->so_rcv, q->tqe_m);
484 		lwkt_reltoken(&so->so_rcv.ssb_token);
485 	}
486 	kfree(q, M_TSEGQ);
487 	atomic_add_int(&tcp_reass_qsize, -1);
488 	ND6_HINT(tp);
489 	sorwakeup(so);
490 	return (flags);
491 }
492 
493 /*
494  * TCP input routine, follows pages 65-76 of the
495  * protocol specification dated September, 1981 very closely.
496  */
497 #ifdef INET6
498 int
499 tcp6_input(struct mbuf **mp, int *offp, int proto)
500 {
501 	struct mbuf *m = *mp;
502 	struct in6_ifaddr *ia6;
503 
504 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
505 
506 	/*
507 	 * draft-itojun-ipv6-tcp-to-anycast
508 	 * better place to put this in?
509 	 */
510 	ia6 = ip6_getdstifaddr(m);
511 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
512 		struct ip6_hdr *ip6;
513 
514 		ip6 = mtod(m, struct ip6_hdr *);
515 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
516 			    offsetof(struct ip6_hdr, ip6_dst));
517 		return (IPPROTO_DONE);
518 	}
519 
520 	tcp_input(mp, offp, proto);
521 	return (IPPROTO_DONE);
522 }
523 #endif
524 
525 int
526 tcp_input(struct mbuf **mp, int *offp, int proto)
527 {
528 	int off0;
529 	struct tcphdr *th;
530 	struct ip *ip = NULL;
531 	struct ipovly *ipov;
532 	struct inpcb *inp = NULL;
533 	u_char *optp = NULL;
534 	int optlen = 0;
535 	int tlen, off;
536 	int len = 0;
537 	int drop_hdrlen;
538 	struct tcpcb *tp = NULL;
539 	int thflags;
540 	struct socket *so = NULL;
541 	int todrop, acked;
542 	boolean_t ourfinisacked, needoutput = FALSE;
543 	u_long tiwin;
544 	int recvwin;
545 	struct tcpopt to;		/* options in this segment */
546 	struct sockaddr_in *next_hop = NULL;
547 	int rstreason; /* For badport_bandlim accounting purposes */
548 	int cpu;
549 	struct ip6_hdr *ip6 = NULL;
550 	struct mbuf *m;
551 #ifdef INET6
552 	boolean_t isipv6;
553 #else
554 	const boolean_t isipv6 = FALSE;
555 #endif
556 #ifdef TCPDEBUG
557 	short ostate = 0;
558 #endif
559 
560 	off0 = *offp;
561 	m = *mp;
562 	*mp = NULL;
563 
564 	tcpstat.tcps_rcvtotal++;
565 
566 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
567 		struct m_tag *mtag;
568 
569 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
570 		KKASSERT(mtag != NULL);
571 		next_hop = m_tag_data(mtag);
572 	}
573 
574 #ifdef INET6
575 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? TRUE : FALSE;
576 #endif
577 
578 	if (isipv6) {
579 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
580 		ip6 = mtod(m, struct ip6_hdr *);
581 		tlen = (sizeof *ip6) + ntohs(ip6->ip6_plen) - off0;
582 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
583 			tcpstat.tcps_rcvbadsum++;
584 			goto drop;
585 		}
586 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
587 
588 		/*
589 		 * Be proactive about unspecified IPv6 address in source.
590 		 * As we use all-zero to indicate unbounded/unconnected pcb,
591 		 * unspecified IPv6 address can be used to confuse us.
592 		 *
593 		 * Note that packets with unspecified IPv6 destination is
594 		 * already dropped in ip6_input.
595 		 */
596 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
597 			/* XXX stat */
598 			goto drop;
599 		}
600 	} else {
601 		/*
602 		 * Get IP and TCP header together in first mbuf.
603 		 * Note: IP leaves IP header in first mbuf.
604 		 */
605 		if (off0 > sizeof(struct ip)) {
606 			ip_stripoptions(m);
607 			off0 = sizeof(struct ip);
608 		}
609 		/* already checked and pulled up in ip_demux() */
610 		KASSERT(m->m_len >= sizeof(struct tcpiphdr),
611 		    ("TCP header not in one mbuf: m->m_len %d", m->m_len));
612 		ip = mtod(m, struct ip *);
613 		ipov = (struct ipovly *)ip;
614 		th = (struct tcphdr *)((caddr_t)ip + off0);
615 		tlen = ip->ip_len;
616 
617 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
618 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
619 				th->th_sum = m->m_pkthdr.csum_data;
620 			else
621 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
622 						ip->ip_dst.s_addr,
623 						htonl(m->m_pkthdr.csum_data +
624 							ip->ip_len +
625 							IPPROTO_TCP));
626 			th->th_sum ^= 0xffff;
627 		} else {
628 			/*
629 			 * Checksum extended TCP header and data.
630 			 */
631 			len = sizeof(struct ip) + tlen;
632 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
633 			ipov->ih_len = (u_short)tlen;
634 			ipov->ih_len = htons(ipov->ih_len);
635 			th->th_sum = in_cksum(m, len);
636 		}
637 		if (th->th_sum) {
638 			tcpstat.tcps_rcvbadsum++;
639 			goto drop;
640 		}
641 #ifdef INET6
642 		/* Re-initialization for later version check */
643 		ip->ip_v = IPVERSION;
644 #endif
645 	}
646 
647 	/*
648 	 * Check that TCP offset makes sense,
649 	 * pull out TCP options and adjust length.		XXX
650 	 */
651 	off = th->th_off << 2;
652 	/* already checked and pulled up in ip_demux() */
653 	KASSERT(off >= sizeof(struct tcphdr) && off <= tlen,
654 	    ("bad TCP data offset %d (tlen %d)", off, tlen));
655 	tlen -= off;	/* tlen is used instead of ti->ti_len */
656 	if (off > sizeof(struct tcphdr)) {
657 		if (isipv6) {
658 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
659 			ip6 = mtod(m, struct ip6_hdr *);
660 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
661 		} else {
662 			/* already pulled up in ip_demux() */
663 			KASSERT(m->m_len >= sizeof(struct ip) + off,
664 			    ("TCP header and options not in one mbuf: "
665 			     "m_len %d, off %d", m->m_len, off));
666 		}
667 		optlen = off - sizeof(struct tcphdr);
668 		optp = (u_char *)(th + 1);
669 	}
670 	thflags = th->th_flags;
671 
672 #ifdef TCP_DROP_SYNFIN
673 	/*
674 	 * If the drop_synfin option is enabled, drop all packets with
675 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
676 	 * identifying the TCP/IP stack.
677 	 *
678 	 * This is a violation of the TCP specification.
679 	 */
680 	if (drop_synfin && (thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN))
681 		goto drop;
682 #endif
683 
684 	/*
685 	 * Convert TCP protocol specific fields to host format.
686 	 */
687 	th->th_seq = ntohl(th->th_seq);
688 	th->th_ack = ntohl(th->th_ack);
689 	th->th_win = ntohs(th->th_win);
690 	th->th_urp = ntohs(th->th_urp);
691 
692 	/*
693 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
694 	 * until after ip6_savecontrol() is called and before other functions
695 	 * which don't want those proto headers.
696 	 * Because ip6_savecontrol() is going to parse the mbuf to
697 	 * search for data to be passed up to user-land, it wants mbuf
698 	 * parameters to be unchanged.
699 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
700 	 * latest version of the advanced API (20020110).
701 	 */
702 	drop_hdrlen = off0 + off;
703 
704 	/*
705 	 * Locate pcb for segment.
706 	 */
707 findpcb:
708 	/* IPFIREWALL_FORWARD section */
709 	if (next_hop != NULL && !isipv6) {  /* IPv6 support is not there yet */
710 		/*
711 		 * Transparently forwarded. Pretend to be the destination.
712 		 * already got one like this?
713 		 */
714 		cpu = mycpu->gd_cpuid;
715 		inp = in_pcblookup_hash(&tcbinfo[cpu],
716 					ip->ip_src, th->th_sport,
717 					ip->ip_dst, th->th_dport,
718 					0, m->m_pkthdr.rcvif);
719 		if (!inp) {
720 			/*
721 			 * It's new.  Try to find the ambushing socket.
722 			 */
723 
724 			/*
725 			 * The rest of the ipfw code stores the port in
726 			 * host order.  XXX
727 			 * (The IP address is still in network order.)
728 			 */
729 			in_port_t dport = next_hop->sin_port ?
730 						htons(next_hop->sin_port) :
731 						th->th_dport;
732 
733 			cpu = tcp_addrcpu(ip->ip_src.s_addr, th->th_sport,
734 					  next_hop->sin_addr.s_addr, dport);
735 			inp = in_pcblookup_hash(&tcbinfo[cpu],
736 						ip->ip_src, th->th_sport,
737 						next_hop->sin_addr, dport,
738 						1, m->m_pkthdr.rcvif);
739 		}
740 	} else {
741 		if (isipv6) {
742 			inp = in6_pcblookup_hash(&tcbinfo[0],
743 						 &ip6->ip6_src, th->th_sport,
744 						 &ip6->ip6_dst, th->th_dport,
745 						 1, m->m_pkthdr.rcvif);
746 		} else {
747 			cpu = mycpu->gd_cpuid;
748 			inp = in_pcblookup_hash(&tcbinfo[cpu],
749 						ip->ip_src, th->th_sport,
750 						ip->ip_dst, th->th_dport,
751 						1, m->m_pkthdr.rcvif);
752 		}
753 	}
754 
755 	/*
756 	 * If the state is CLOSED (i.e., TCB does not exist) then
757 	 * all data in the incoming segment is discarded.
758 	 * If the TCB exists but is in CLOSED state, it is embryonic,
759 	 * but should either do a listen or a connect soon.
760 	 */
761 	if (inp == NULL) {
762 		if (log_in_vain) {
763 #ifdef INET6
764 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
765 #else
766 			char dbuf[sizeof "aaa.bbb.ccc.ddd"];
767 			char sbuf[sizeof "aaa.bbb.ccc.ddd"];
768 #endif
769 			if (isipv6) {
770 				strcpy(dbuf, "[");
771 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
772 				strcat(dbuf, "]");
773 				strcpy(sbuf, "[");
774 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
775 				strcat(sbuf, "]");
776 			} else {
777 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
778 				strcpy(sbuf, inet_ntoa(ip->ip_src));
779 			}
780 			switch (log_in_vain) {
781 			case 1:
782 				if (!(thflags & TH_SYN))
783 					break;
784 			case 2:
785 				log(LOG_INFO,
786 				    "Connection attempt to TCP %s:%d "
787 				    "from %s:%d flags:0x%02x\n",
788 				    dbuf, ntohs(th->th_dport), sbuf,
789 				    ntohs(th->th_sport), thflags);
790 				break;
791 			default:
792 				break;
793 			}
794 		}
795 		if (blackhole) {
796 			switch (blackhole) {
797 			case 1:
798 				if (thflags & TH_SYN)
799 					goto drop;
800 				break;
801 			case 2:
802 				goto drop;
803 			default:
804 				goto drop;
805 			}
806 		}
807 		rstreason = BANDLIM_RST_CLOSEDPORT;
808 		goto dropwithreset;
809 	}
810 
811 #ifdef IPSEC
812 	if (isipv6) {
813 		if (ipsec6_in_reject_so(m, inp->inp_socket)) {
814 			ipsec6stat.in_polvio++;
815 			goto drop;
816 		}
817 	} else {
818 		if (ipsec4_in_reject_so(m, inp->inp_socket)) {
819 			ipsecstat.in_polvio++;
820 			goto drop;
821 		}
822 	}
823 #endif
824 #ifdef FAST_IPSEC
825 	if (isipv6) {
826 		if (ipsec6_in_reject(m, inp))
827 			goto drop;
828 	} else {
829 		if (ipsec4_in_reject(m, inp))
830 			goto drop;
831 	}
832 #endif
833 	/* Check the minimum TTL for socket. */
834 #ifdef INET6
835 	if ((isipv6 ? ip6->ip6_hlim : ip->ip_ttl) < inp->inp_ip_minttl)
836 		goto drop;
837 #endif
838 
839 	tp = intotcpcb(inp);
840 	if (tp == NULL) {
841 		rstreason = BANDLIM_RST_CLOSEDPORT;
842 		goto dropwithreset;
843 	}
844 	if (tp->t_state <= TCPS_CLOSED)
845 		goto drop;
846 
847 	/* Unscale the window into a 32-bit value. */
848 	if (!(thflags & TH_SYN))
849 		tiwin = th->th_win << tp->snd_scale;
850 	else
851 		tiwin = th->th_win;
852 
853 	so = inp->inp_socket;
854 
855 #ifdef TCPDEBUG
856 	if (so->so_options & SO_DEBUG) {
857 		ostate = tp->t_state;
858 		if (isipv6)
859 			bcopy(ip6, tcp_saveipgen, sizeof(*ip6));
860 		else
861 			bcopy(ip, tcp_saveipgen, sizeof(*ip));
862 		tcp_savetcp = *th;
863 	}
864 #endif
865 
866 	bzero(&to, sizeof to);
867 
868 	if (so->so_options & SO_ACCEPTCONN) {
869 		struct in_conninfo inc;
870 
871 #ifdef INET6
872 		inc.inc_isipv6 = (isipv6 == TRUE);
873 #endif
874 		if (isipv6) {
875 			inc.inc6_faddr = ip6->ip6_src;
876 			inc.inc6_laddr = ip6->ip6_dst;
877 			inc.inc6_route.ro_rt = NULL;		/* XXX */
878 		} else {
879 			inc.inc_faddr = ip->ip_src;
880 			inc.inc_laddr = ip->ip_dst;
881 			inc.inc_route.ro_rt = NULL;		/* XXX */
882 		}
883 		inc.inc_fport = th->th_sport;
884 		inc.inc_lport = th->th_dport;
885 
886 		/*
887 		 * If the state is LISTEN then ignore segment if it contains
888 		 * a RST.  If the segment contains an ACK then it is bad and
889 		 * send a RST.  If it does not contain a SYN then it is not
890 		 * interesting; drop it.
891 		 *
892 		 * If the state is SYN_RECEIVED (syncache) and seg contains
893 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
894 		 * contains a RST, check the sequence number to see if it
895 		 * is a valid reset segment.
896 		 */
897 		if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) {
898 			if ((thflags & (TH_RST | TH_ACK | TH_SYN)) == TH_ACK) {
899 				if (!syncache_expand(&inc, th, &so, m)) {
900 					/*
901 					 * No syncache entry, or ACK was not
902 					 * for our SYN/ACK.  Send a RST.
903 					 */
904 					tcpstat.tcps_badsyn++;
905 					rstreason = BANDLIM_RST_OPENPORT;
906 					goto dropwithreset;
907 				}
908 
909 				/*
910 				 * Could not complete 3-way handshake,
911 				 * connection is being closed down, and
912 				 * syncache will free mbuf.
913 				 */
914 				if (so == NULL)
915 					return(IPPROTO_DONE);
916 
917 				/*
918 				 * We must be in the correct protocol thread
919 				 * for this connection.
920 				 */
921 				KKASSERT(so->so_port == &curthread->td_msgport);
922 
923 				/*
924 				 * Socket is created in state SYN_RECEIVED.
925 				 * Continue processing segment.
926 				 */
927 				inp = so->so_pcb;
928 				tp = intotcpcb(inp);
929 				/*
930 				 * This is what would have happened in
931 				 * tcp_output() when the SYN,ACK was sent.
932 				 */
933 				tp->snd_up = tp->snd_una;
934 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
935 				tp->last_ack_sent = tp->rcv_nxt;
936 /*
937  * XXX possible bug - it doesn't appear that tp->snd_wnd is unscaled
938  * until the _second_ ACK is received:
939  *    rcv SYN (set wscale opts)	 --> send SYN/ACK, set snd_wnd = window.
940  *    rcv ACK, calculate tiwin --> process SYN_RECEIVED, determine wscale,
941  *	  move to ESTAB, set snd_wnd to tiwin.
942  */
943 				tp->snd_wnd = tiwin;	/* unscaled */
944 				goto after_listen;
945 			}
946 			if (thflags & TH_RST) {
947 				syncache_chkrst(&inc, th);
948 				goto drop;
949 			}
950 			if (thflags & TH_ACK) {
951 				syncache_badack(&inc);
952 				tcpstat.tcps_badsyn++;
953 				rstreason = BANDLIM_RST_OPENPORT;
954 				goto dropwithreset;
955 			}
956 			goto drop;
957 		}
958 
959 		/*
960 		 * Segment's flags are (SYN) or (SYN | FIN).
961 		 */
962 #ifdef INET6
963 		/*
964 		 * If deprecated address is forbidden,
965 		 * we do not accept SYN to deprecated interface
966 		 * address to prevent any new inbound connection from
967 		 * getting established.
968 		 * When we do not accept SYN, we send a TCP RST,
969 		 * with deprecated source address (instead of dropping
970 		 * it).  We compromise it as it is much better for peer
971 		 * to send a RST, and RST will be the final packet
972 		 * for the exchange.
973 		 *
974 		 * If we do not forbid deprecated addresses, we accept
975 		 * the SYN packet.  RFC2462 does not suggest dropping
976 		 * SYN in this case.
977 		 * If we decipher RFC2462 5.5.4, it says like this:
978 		 * 1. use of deprecated addr with existing
979 		 *    communication is okay - "SHOULD continue to be
980 		 *    used"
981 		 * 2. use of it with new communication:
982 		 *   (2a) "SHOULD NOT be used if alternate address
983 		 *	  with sufficient scope is available"
984 		 *   (2b) nothing mentioned otherwise.
985 		 * Here we fall into (2b) case as we have no choice in
986 		 * our source address selection - we must obey the peer.
987 		 *
988 		 * The wording in RFC2462 is confusing, and there are
989 		 * multiple description text for deprecated address
990 		 * handling - worse, they are not exactly the same.
991 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
992 		 */
993 		if (isipv6 && !ip6_use_deprecated) {
994 			struct in6_ifaddr *ia6;
995 
996 			if ((ia6 = ip6_getdstifaddr(m)) &&
997 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
998 				tp = NULL;
999 				rstreason = BANDLIM_RST_OPENPORT;
1000 				goto dropwithreset;
1001 			}
1002 		}
1003 #endif
1004 		/*
1005 		 * If it is from this socket, drop it, it must be forged.
1006 		 * Don't bother responding if the destination was a broadcast.
1007 		 */
1008 		if (th->th_dport == th->th_sport) {
1009 			if (isipv6) {
1010 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1011 						       &ip6->ip6_src))
1012 					goto drop;
1013 			} else {
1014 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1015 					goto drop;
1016 			}
1017 		}
1018 		/*
1019 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1020 		 *
1021 		 * Note that it is quite possible to receive unicast
1022 		 * link-layer packets with a broadcast IP address. Use
1023 		 * in_broadcast() to find them.
1024 		 */
1025 		if (m->m_flags & (M_BCAST | M_MCAST))
1026 			goto drop;
1027 		if (isipv6) {
1028 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1029 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1030 				goto drop;
1031 		} else {
1032 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1033 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1034 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1035 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1036 				goto drop;
1037 		}
1038 		/*
1039 		 * SYN appears to be valid; create compressed TCP state
1040 		 * for syncache, or perform t/tcp connection.
1041 		 */
1042 		if (so->so_qlen <= so->so_qlimit) {
1043 			tcp_dooptions(&to, optp, optlen, TRUE);
1044 			if (!syncache_add(&inc, &to, th, so, m))
1045 				goto drop;
1046 
1047 			/*
1048 			 * Entry added to syncache, mbuf used to
1049 			 * send SYN,ACK packet.
1050 			 */
1051 			return(IPPROTO_DONE);
1052 		}
1053 		goto drop;
1054 	}
1055 
1056 after_listen:
1057 	/*
1058 	 * Should not happen - syncache should pick up these connections.
1059 	 *
1060 	 * Once we are past handling listen sockets we must be in the
1061 	 * correct protocol processing thread.
1062 	 */
1063 	KASSERT(tp->t_state != TCPS_LISTEN, ("tcp_input: TCPS_LISTEN state"));
1064 	KKASSERT(so->so_port == &curthread->td_msgport);
1065 
1066 	/*
1067 	 * This is the second part of the MSS DoS prevention code (after
1068 	 * minmss on the sending side) and it deals with too many too small
1069 	 * tcp packets in a too short timeframe (1 second).
1070 	 *
1071 	 * XXX Removed.  This code was crap.  It does not scale to network
1072 	 *     speed, and default values break NFS.  Gone.
1073 	 */
1074 	/* REMOVED */
1075 
1076 	/*
1077 	 * Segment received on connection.
1078 	 *
1079 	 * Reset idle time and keep-alive timer.  Don't waste time if less
1080 	 * then a second has elapsed.
1081 	 */
1082 	if ((int)(ticks - tp->t_rcvtime) > hz)
1083 		tcp_timer_keep_activity(tp, thflags);
1084 
1085 	/*
1086 	 * Process options.
1087 	 * XXX this is tradtitional behavior, may need to be cleaned up.
1088 	 */
1089 	tcp_dooptions(&to, optp, optlen, (thflags & TH_SYN) != 0);
1090 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1091 		if (to.to_flags & TOF_SCALE) {
1092 			tp->t_flags |= TF_RCVD_SCALE;
1093 			tp->requested_s_scale = to.to_requested_s_scale;
1094 		}
1095 		if (to.to_flags & TOF_TS) {
1096 			tp->t_flags |= TF_RCVD_TSTMP;
1097 			tp->ts_recent = to.to_tsval;
1098 			tp->ts_recent_age = ticks;
1099 		}
1100 		if (!(to.to_flags & TOF_MSS))
1101 			to.to_mss = 0;
1102 		tcp_mss(tp, to.to_mss);
1103 		/*
1104 		 * Only set the TF_SACK_PERMITTED per-connection flag
1105 		 * if we got a SACK_PERMITTED option from the other side
1106 		 * and the global tcp_do_sack variable is true.
1107 		 */
1108 		if (tcp_do_sack && (to.to_flags & TOF_SACK_PERMITTED))
1109 			tp->t_flags |= TF_SACK_PERMITTED;
1110 	}
1111 
1112 	/*
1113 	 * Header prediction: check for the two common cases
1114 	 * of a uni-directional data xfer.  If the packet has
1115 	 * no control flags, is in-sequence, the window didn't
1116 	 * change and we're not retransmitting, it's a
1117 	 * candidate.  If the length is zero and the ack moved
1118 	 * forward, we're the sender side of the xfer.  Just
1119 	 * free the data acked & wake any higher level process
1120 	 * that was blocked waiting for space.  If the length
1121 	 * is non-zero and the ack didn't move, we're the
1122 	 * receiver side.  If we're getting packets in-order
1123 	 * (the reassembly queue is empty), add the data to
1124 	 * the socket buffer and note that we need a delayed ack.
1125 	 * Make sure that the hidden state-flags are also off.
1126 	 * Since we check for TCPS_ESTABLISHED above, it can only
1127 	 * be TH_NEEDSYN.
1128 	 */
1129 	if (tp->t_state == TCPS_ESTABLISHED &&
1130 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1131 	    !(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)) &&
1132 	    (!(to.to_flags & TOF_TS) ||
1133 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1134 	    th->th_seq == tp->rcv_nxt &&
1135 	    tp->snd_nxt == tp->snd_max) {
1136 
1137 		/*
1138 		 * If last ACK falls within this segment's sequence numbers,
1139 		 * record the timestamp.
1140 		 * NOTE that the test is modified according to the latest
1141 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1142 		 */
1143 		if ((to.to_flags & TOF_TS) &&
1144 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1145 			tp->ts_recent_age = ticks;
1146 			tp->ts_recent = to.to_tsval;
1147 		}
1148 
1149 		if (tlen == 0) {
1150 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1151 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1152 			    tp->snd_cwnd >= tp->snd_wnd &&
1153 			    !IN_FASTRECOVERY(tp)) {
1154 				/*
1155 				 * This is a pure ack for outstanding data.
1156 				 */
1157 				++tcpstat.tcps_predack;
1158 				/*
1159 				 * "bad retransmit" recovery
1160 				 *
1161 				 * If Eifel detection applies, then
1162 				 * it is deterministic, so use it
1163 				 * unconditionally over the old heuristic.
1164 				 * Otherwise, fall back to the old heuristic.
1165 				 */
1166 				if (tcp_do_eifel_detect &&
1167 				    (to.to_flags & TOF_TS) && to.to_tsecr &&
1168 				    (tp->t_flags & TF_FIRSTACCACK)) {
1169 					/* Eifel detection applicable. */
1170 					if (to.to_tsecr < tp->t_rexmtTS) {
1171 						tcp_revert_congestion_state(tp);
1172 						++tcpstat.tcps_eifeldetected;
1173 						if (tp->t_rxtshift != 1 ||
1174 						    ticks >= tp->t_badrxtwin)
1175 							++tcpstat.tcps_rttcantdetect;
1176 					}
1177 				} else if (tp->t_rxtshift == 1 &&
1178 					   ticks < tp->t_badrxtwin) {
1179 					tcp_revert_congestion_state(tp);
1180 					++tcpstat.tcps_rttdetected;
1181 				}
1182 				tp->t_flags &= ~(TF_FIRSTACCACK |
1183 						 TF_FASTREXMT | TF_EARLYREXMT);
1184 				/*
1185 				 * Recalculate the retransmit timer / rtt.
1186 				 *
1187 				 * Some machines (certain windows boxes)
1188 				 * send broken timestamp replies during the
1189 				 * SYN+ACK phase, ignore timestamps of 0.
1190 				 */
1191 				if ((to.to_flags & TOF_TS) && to.to_tsecr) {
1192 					tcp_xmit_timer(tp,
1193 						       ticks - to.to_tsecr + 1);
1194 				} else if (tp->t_rtttime &&
1195 					   SEQ_GT(th->th_ack, tp->t_rtseq)) {
1196 					tcp_xmit_timer(tp,
1197 						       ticks - tp->t_rtttime);
1198 				}
1199 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1200 				acked = th->th_ack - tp->snd_una;
1201 				tcpstat.tcps_rcvackpack++;
1202 				tcpstat.tcps_rcvackbyte += acked;
1203 				sbdrop(&so->so_snd.sb, acked);
1204 				tp->snd_recover = th->th_ack - 1;
1205 				tp->snd_una = th->th_ack;
1206 				tp->t_dupacks = 0;
1207 				/*
1208 				 * Update window information.
1209 				 */
1210 				if (tiwin != tp->snd_wnd &&
1211 				    acceptable_window_update(tp, th, tiwin)) {
1212 					/* keep track of pure window updates */
1213 					if (tp->snd_wl2 == th->th_ack &&
1214 					    tiwin > tp->snd_wnd)
1215 						tcpstat.tcps_rcvwinupd++;
1216 					tp->snd_wnd = tiwin;
1217 					tp->snd_wl1 = th->th_seq;
1218 					tp->snd_wl2 = th->th_ack;
1219 					if (tp->snd_wnd > tp->max_sndwnd)
1220 						tp->max_sndwnd = tp->snd_wnd;
1221 				}
1222 				m_freem(m);
1223 				ND6_HINT(tp); /* some progress has been done */
1224 				/*
1225 				 * If all outstanding data are acked, stop
1226 				 * retransmit timer, otherwise restart timer
1227 				 * using current (possibly backed-off) value.
1228 				 * If process is waiting for space,
1229 				 * wakeup/selwakeup/signal.  If data
1230 				 * are ready to send, let tcp_output
1231 				 * decide between more output or persist.
1232 				 */
1233 				if (tp->snd_una == tp->snd_max) {
1234 					tcp_callout_stop(tp, tp->tt_rexmt);
1235 				} else if (!tcp_callout_active(tp,
1236 					    tp->tt_persist)) {
1237 					tcp_callout_reset(tp, tp->tt_rexmt,
1238 					    tp->t_rxtcur, tcp_timer_rexmt);
1239 				}
1240 				sowwakeup(so);
1241 				if (so->so_snd.ssb_cc > 0)
1242 					tcp_output(tp);
1243 				return(IPPROTO_DONE);
1244 			}
1245 		} else if (tiwin == tp->snd_wnd &&
1246 		    th->th_ack == tp->snd_una &&
1247 		    LIST_EMPTY(&tp->t_segq) &&
1248 		    tlen <= ssb_space(&so->so_rcv)) {
1249 			u_long newsize = 0;	/* automatic sockbuf scaling */
1250 			/*
1251 			 * This is a pure, in-sequence data packet
1252 			 * with nothing on the reassembly queue and
1253 			 * we have enough buffer space to take it.
1254 			 */
1255 			++tcpstat.tcps_preddat;
1256 			tp->rcv_nxt += tlen;
1257 			tcpstat.tcps_rcvpack++;
1258 			tcpstat.tcps_rcvbyte += tlen;
1259 			ND6_HINT(tp);	/* some progress has been done */
1260 		/*
1261 		 * Automatic sizing of receive socket buffer.  Often the send
1262 		 * buffer size is not optimally adjusted to the actual network
1263 		 * conditions at hand (delay bandwidth product).  Setting the
1264 		 * buffer size too small limits throughput on links with high
1265 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1266 		 *
1267 		 * On the receive side the socket buffer memory is only rarely
1268 		 * used to any significant extent.  This allows us to be much
1269 		 * more aggressive in scaling the receive socket buffer.  For
1270 		 * the case that the buffer space is actually used to a large
1271 		 * extent and we run out of kernel memory we can simply drop
1272 		 * the new segments; TCP on the sender will just retransmit it
1273 		 * later.  Setting the buffer size too big may only consume too
1274 		 * much kernel memory if the application doesn't read() from
1275 		 * the socket or packet loss or reordering makes use of the
1276 		 * reassembly queue.
1277 		 *
1278 		 * The criteria to step up the receive buffer one notch are:
1279 		 *  1. the number of bytes received during the time it takes
1280 		 *     one timestamp to be reflected back to us (the RTT);
1281 		 *  2. received bytes per RTT is within seven eighth of the
1282 		 *     current socket buffer size;
1283 		 *  3. receive buffer size has not hit maximal automatic size;
1284 		 *
1285 		 * This algorithm does one step per RTT at most and only if
1286 		 * we receive a bulk stream w/o packet losses or reorderings.
1287 		 * Shrinking the buffer during idle times is not necessary as
1288 		 * it doesn't consume any memory when idle.
1289 		 *
1290 		 * TODO: Only step up if the application is actually serving
1291 		 * the buffer to better manage the socket buffer resources.
1292 		 */
1293 			if (tcp_do_autorcvbuf &&
1294 			    to.to_tsecr &&
1295 			    (so->so_rcv.ssb_flags & SSB_AUTOSIZE)) {
1296 				if (to.to_tsecr > tp->rfbuf_ts &&
1297 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1298 					if (tp->rfbuf_cnt >
1299 					    (so->so_rcv.ssb_hiwat / 8 * 7) &&
1300 					    so->so_rcv.ssb_hiwat <
1301 					    tcp_autorcvbuf_max) {
1302 						newsize =
1303 						    ulmin(so->so_rcv.ssb_hiwat +
1304 							  tcp_autorcvbuf_inc,
1305 							  tcp_autorcvbuf_max);
1306 					}
1307 					/* Start over with next RTT. */
1308 					tp->rfbuf_ts = 0;
1309 					tp->rfbuf_cnt = 0;
1310 				} else
1311 					tp->rfbuf_cnt += tlen;	/* add up */
1312 			}
1313 			/*
1314 			 * Add data to socket buffer.
1315 			 */
1316 			if (so->so_state & SS_CANTRCVMORE) {
1317 				m_freem(m);
1318 			} else {
1319 				/*
1320 				 * Set new socket buffer size, give up when
1321 				 * limit is reached.
1322 				 *
1323 				 * Adjusting the size can mess up ACK
1324 				 * sequencing when pure window updates are
1325 				 * being avoided (which is the default),
1326 				 * so force an ack.
1327 				 */
1328 				lwkt_gettoken(&so->so_rcv.ssb_token);
1329 				if (newsize) {
1330 					tp->t_flags |= TF_RXRESIZED;
1331 					if (!ssb_reserve(&so->so_rcv, newsize,
1332 							 so, NULL)) {
1333 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1334 					}
1335 					if (newsize >=
1336 					    (TCP_MAXWIN << tp->rcv_scale)) {
1337 						atomic_clear_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1338 					}
1339 				}
1340 				m_adj(m, drop_hdrlen); /* delayed header drop */
1341 				ssb_appendstream(&so->so_rcv, m);
1342 				lwkt_reltoken(&so->so_rcv.ssb_token);
1343 			}
1344 			sorwakeup(so);
1345 			/*
1346 			 * This code is responsible for most of the ACKs
1347 			 * the TCP stack sends back after receiving a data
1348 			 * packet.  Note that the DELAY_ACK check fails if
1349 			 * the delack timer is already running, which results
1350 			 * in an ack being sent every other packet (which is
1351 			 * what we want).
1352 			 *
1353 			 * We then further aggregate acks by not actually
1354 			 * sending one until the protocol thread has completed
1355 			 * processing the current backlog of packets.  This
1356 			 * does not delay the ack any further, but allows us
1357 			 * to take advantage of the packet aggregation that
1358 			 * high speed NICs do (usually blocks of 8-10 packets)
1359 			 * to send a single ack rather then four or five acks,
1360 			 * greatly reducing the ack rate, the return channel
1361 			 * bandwidth, and the protocol overhead on both ends.
1362 			 *
1363 			 * Since this also has the effect of slowing down
1364 			 * the exponential slow-start ramp-up, systems with
1365 			 * very large bandwidth-delay products might want
1366 			 * to turn the feature off.
1367 			 */
1368 			if (DELAY_ACK(tp)) {
1369 				tcp_callout_reset(tp, tp->tt_delack,
1370 				    tcp_delacktime, tcp_timer_delack);
1371 			} else if (tcp_aggregate_acks) {
1372 				tp->t_flags |= TF_ACKNOW;
1373 				if (!(tp->t_flags & TF_ONOUTPUTQ)) {
1374 					tp->t_flags |= TF_ONOUTPUTQ;
1375 					tp->tt_cpu = mycpu->gd_cpuid;
1376 					TAILQ_INSERT_TAIL(
1377 					    &tcpcbackq[tp->tt_cpu],
1378 					    tp, t_outputq);
1379 				}
1380 			} else {
1381 				tp->t_flags |= TF_ACKNOW;
1382 				tcp_output(tp);
1383 			}
1384 			return(IPPROTO_DONE);
1385 		}
1386 	}
1387 
1388 	/*
1389 	 * Calculate amount of space in receive window,
1390 	 * and then do TCP input processing.
1391 	 * Receive window is amount of space in rcv queue,
1392 	 * but not less than advertised window.
1393 	 */
1394 	recvwin = ssb_space(&so->so_rcv);
1395 	if (recvwin < 0)
1396 		recvwin = 0;
1397 	tp->rcv_wnd = imax(recvwin, (int)(tp->rcv_adv - tp->rcv_nxt));
1398 
1399 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1400 	tp->rfbuf_ts = 0;
1401 	tp->rfbuf_cnt = 0;
1402 
1403 	switch (tp->t_state) {
1404 	/*
1405 	 * If the state is SYN_RECEIVED:
1406 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1407 	 */
1408 	case TCPS_SYN_RECEIVED:
1409 		if ((thflags & TH_ACK) &&
1410 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1411 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1412 				rstreason = BANDLIM_RST_OPENPORT;
1413 				goto dropwithreset;
1414 		}
1415 		break;
1416 
1417 	/*
1418 	 * If the state is SYN_SENT:
1419 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1420 	 *	if seg contains a RST, then drop the connection.
1421 	 *	if seg does not contain SYN, then drop it.
1422 	 * Otherwise this is an acceptable SYN segment
1423 	 *	initialize tp->rcv_nxt and tp->irs
1424 	 *	if seg contains ack then advance tp->snd_una
1425 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1426 	 *	arrange for segment to be acked (eventually)
1427 	 *	continue processing rest of data/controls, beginning with URG
1428 	 */
1429 	case TCPS_SYN_SENT:
1430 		if ((thflags & TH_ACK) &&
1431 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1432 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1433 			rstreason = BANDLIM_UNLIMITED;
1434 			goto dropwithreset;
1435 		}
1436 		if (thflags & TH_RST) {
1437 			if (thflags & TH_ACK)
1438 				tp = tcp_drop(tp, ECONNREFUSED);
1439 			goto drop;
1440 		}
1441 		if (!(thflags & TH_SYN))
1442 			goto drop;
1443 		tp->snd_wnd = th->th_win;	/* initial send window */
1444 
1445 		tp->irs = th->th_seq;
1446 		tcp_rcvseqinit(tp);
1447 		if (thflags & TH_ACK) {
1448 			/* Our SYN was acked. */
1449 			tcpstat.tcps_connects++;
1450 			soisconnected(so);
1451 			/* Do window scaling on this connection? */
1452 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1453 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1454 				tp->snd_scale = tp->requested_s_scale;
1455 				tp->rcv_scale = tp->request_r_scale;
1456 			}
1457 			tp->rcv_adv += tp->rcv_wnd;
1458 			tp->snd_una++;		/* SYN is acked */
1459 			tcp_callout_stop(tp, tp->tt_rexmt);
1460 			/*
1461 			 * If there's data, delay ACK; if there's also a FIN
1462 			 * ACKNOW will be turned on later.
1463 			 */
1464 			if (DELAY_ACK(tp) && tlen != 0) {
1465 				tcp_callout_reset(tp, tp->tt_delack,
1466 				    tcp_delacktime, tcp_timer_delack);
1467 			} else {
1468 				tp->t_flags |= TF_ACKNOW;
1469 			}
1470 			/*
1471 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1472 			 * Transitions:
1473 			 *	SYN_SENT  --> ESTABLISHED
1474 			 *	SYN_SENT* --> FIN_WAIT_1
1475 			 */
1476 			tp->t_starttime = ticks;
1477 			if (tp->t_flags & TF_NEEDFIN) {
1478 				tp->t_state = TCPS_FIN_WAIT_1;
1479 				tp->t_flags &= ~TF_NEEDFIN;
1480 				thflags &= ~TH_SYN;
1481 			} else {
1482 				tcp_established(tp);
1483 			}
1484 		} else {
1485 			/*
1486 			 * Received initial SYN in SYN-SENT[*] state =>
1487 			 * simultaneous open.
1488 			 * Do 3-way handshake:
1489 			 *	  SYN-SENT -> SYN-RECEIVED
1490 			 *	  SYN-SENT* -> SYN-RECEIVED*
1491 			 */
1492 			tp->t_flags |= TF_ACKNOW;
1493 			tcp_callout_stop(tp, tp->tt_rexmt);
1494 			tp->t_state = TCPS_SYN_RECEIVED;
1495 		}
1496 
1497 		/*
1498 		 * Advance th->th_seq to correspond to first data byte.
1499 		 * If data, trim to stay within window,
1500 		 * dropping FIN if necessary.
1501 		 */
1502 		th->th_seq++;
1503 		if (tlen > tp->rcv_wnd) {
1504 			todrop = tlen - tp->rcv_wnd;
1505 			m_adj(m, -todrop);
1506 			tlen = tp->rcv_wnd;
1507 			thflags &= ~TH_FIN;
1508 			tcpstat.tcps_rcvpackafterwin++;
1509 			tcpstat.tcps_rcvbyteafterwin += todrop;
1510 		}
1511 		tp->snd_wl1 = th->th_seq - 1;
1512 		tp->rcv_up = th->th_seq;
1513 		/*
1514 		 * Client side of transaction: already sent SYN and data.
1515 		 * If the remote host used T/TCP to validate the SYN,
1516 		 * our data will be ACK'd; if so, enter normal data segment
1517 		 * processing in the middle of step 5, ack processing.
1518 		 * Otherwise, goto step 6.
1519 		 */
1520 		if (thflags & TH_ACK)
1521 			goto process_ACK;
1522 
1523 		goto step6;
1524 
1525 	/*
1526 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1527 	 *	do normal processing (we no longer bother with T/TCP).
1528 	 */
1529 	case TCPS_LAST_ACK:
1530 	case TCPS_CLOSING:
1531 	case TCPS_TIME_WAIT:
1532 		break;  /* continue normal processing */
1533 	}
1534 
1535 	/*
1536 	 * States other than LISTEN or SYN_SENT.
1537 	 * First check the RST flag and sequence number since reset segments
1538 	 * are exempt from the timestamp and connection count tests.  This
1539 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1540 	 * below which allowed reset segments in half the sequence space
1541 	 * to fall though and be processed (which gives forged reset
1542 	 * segments with a random sequence number a 50 percent chance of
1543 	 * killing a connection).
1544 	 * Then check timestamp, if present.
1545 	 * Then check the connection count, if present.
1546 	 * Then check that at least some bytes of segment are within
1547 	 * receive window.  If segment begins before rcv_nxt,
1548 	 * drop leading data (and SYN); if nothing left, just ack.
1549 	 *
1550 	 *
1551 	 * If the RST bit is set, check the sequence number to see
1552 	 * if this is a valid reset segment.
1553 	 * RFC 793 page 37:
1554 	 *   In all states except SYN-SENT, all reset (RST) segments
1555 	 *   are validated by checking their SEQ-fields.  A reset is
1556 	 *   valid if its sequence number is in the window.
1557 	 * Note: this does not take into account delayed ACKs, so
1558 	 *   we should test against last_ack_sent instead of rcv_nxt.
1559 	 *   The sequence number in the reset segment is normally an
1560 	 *   echo of our outgoing acknowledgement numbers, but some hosts
1561 	 *   send a reset with the sequence number at the rightmost edge
1562 	 *   of our receive window, and we have to handle this case.
1563 	 * If we have multiple segments in flight, the intial reset
1564 	 * segment sequence numbers will be to the left of last_ack_sent,
1565 	 * but they will eventually catch up.
1566 	 * In any case, it never made sense to trim reset segments to
1567 	 * fit the receive window since RFC 1122 says:
1568 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1569 	 *
1570 	 *    A TCP SHOULD allow a received RST segment to include data.
1571 	 *
1572 	 *    DISCUSSION
1573 	 *	   It has been suggested that a RST segment could contain
1574 	 *	   ASCII text that encoded and explained the cause of the
1575 	 *	   RST.  No standard has yet been established for such
1576 	 *	   data.
1577 	 *
1578 	 * If the reset segment passes the sequence number test examine
1579 	 * the state:
1580 	 *    SYN_RECEIVED STATE:
1581 	 *	If passive open, return to LISTEN state.
1582 	 *	If active open, inform user that connection was refused.
1583 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1584 	 *	Inform user that connection was reset, and close tcb.
1585 	 *    CLOSING, LAST_ACK STATES:
1586 	 *	Close the tcb.
1587 	 *    TIME_WAIT STATE:
1588 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1589 	 *	RFC 1337.
1590 	 */
1591 	if (thflags & TH_RST) {
1592 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1593 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1594 			switch (tp->t_state) {
1595 
1596 			case TCPS_SYN_RECEIVED:
1597 				so->so_error = ECONNREFUSED;
1598 				goto close;
1599 
1600 			case TCPS_ESTABLISHED:
1601 			case TCPS_FIN_WAIT_1:
1602 			case TCPS_FIN_WAIT_2:
1603 			case TCPS_CLOSE_WAIT:
1604 				so->so_error = ECONNRESET;
1605 			close:
1606 				tp->t_state = TCPS_CLOSED;
1607 				tcpstat.tcps_drops++;
1608 				tp = tcp_close(tp);
1609 				break;
1610 
1611 			case TCPS_CLOSING:
1612 			case TCPS_LAST_ACK:
1613 				tp = tcp_close(tp);
1614 				break;
1615 
1616 			case TCPS_TIME_WAIT:
1617 				break;
1618 			}
1619 		}
1620 		goto drop;
1621 	}
1622 
1623 	/*
1624 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1625 	 * and it's less than ts_recent, drop it.
1626 	 */
1627 	if ((to.to_flags & TOF_TS) && tp->ts_recent != 0 &&
1628 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1629 
1630 		/* Check to see if ts_recent is over 24 days old.  */
1631 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1632 			/*
1633 			 * Invalidate ts_recent.  If this segment updates
1634 			 * ts_recent, the age will be reset later and ts_recent
1635 			 * will get a valid value.  If it does not, setting
1636 			 * ts_recent to zero will at least satisfy the
1637 			 * requirement that zero be placed in the timestamp
1638 			 * echo reply when ts_recent isn't valid.  The
1639 			 * age isn't reset until we get a valid ts_recent
1640 			 * because we don't want out-of-order segments to be
1641 			 * dropped when ts_recent is old.
1642 			 */
1643 			tp->ts_recent = 0;
1644 		} else {
1645 			tcpstat.tcps_rcvduppack++;
1646 			tcpstat.tcps_rcvdupbyte += tlen;
1647 			tcpstat.tcps_pawsdrop++;
1648 			if (tlen)
1649 				goto dropafterack;
1650 			goto drop;
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1656 	 * this connection before trimming the data to fit the receive
1657 	 * window.  Check the sequence number versus IRS since we know
1658 	 * the sequence numbers haven't wrapped.  This is a partial fix
1659 	 * for the "LAND" DoS attack.
1660 	 */
1661 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1662 		rstreason = BANDLIM_RST_OPENPORT;
1663 		goto dropwithreset;
1664 	}
1665 
1666 	todrop = tp->rcv_nxt - th->th_seq;
1667 	if (todrop > 0) {
1668 		if (TCP_DO_SACK(tp)) {
1669 			/* Report duplicate segment at head of packet. */
1670 			tp->reportblk.rblk_start = th->th_seq;
1671 			tp->reportblk.rblk_end = th->th_seq + tlen;
1672 			if (thflags & TH_FIN)
1673 				++tp->reportblk.rblk_end;
1674 			if (SEQ_GT(tp->reportblk.rblk_end, tp->rcv_nxt))
1675 				tp->reportblk.rblk_end = tp->rcv_nxt;
1676 			tp->t_flags |= (TF_DUPSEG | TF_SACKLEFT | TF_ACKNOW);
1677 		}
1678 		if (thflags & TH_SYN) {
1679 			thflags &= ~TH_SYN;
1680 			th->th_seq++;
1681 			if (th->th_urp > 1)
1682 				th->th_urp--;
1683 			else
1684 				thflags &= ~TH_URG;
1685 			todrop--;
1686 		}
1687 		/*
1688 		 * Following if statement from Stevens, vol. 2, p. 960.
1689 		 */
1690 		if (todrop > tlen ||
1691 		    (todrop == tlen && !(thflags & TH_FIN))) {
1692 			/*
1693 			 * Any valid FIN must be to the left of the window.
1694 			 * At this point the FIN must be a duplicate or out
1695 			 * of sequence; drop it.
1696 			 */
1697 			thflags &= ~TH_FIN;
1698 
1699 			/*
1700 			 * Send an ACK to resynchronize and drop any data.
1701 			 * But keep on processing for RST or ACK.
1702 			 */
1703 			tp->t_flags |= TF_ACKNOW;
1704 			todrop = tlen;
1705 			tcpstat.tcps_rcvduppack++;
1706 			tcpstat.tcps_rcvdupbyte += todrop;
1707 		} else {
1708 			tcpstat.tcps_rcvpartduppack++;
1709 			tcpstat.tcps_rcvpartdupbyte += todrop;
1710 		}
1711 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1712 		th->th_seq += todrop;
1713 		tlen -= todrop;
1714 		if (th->th_urp > todrop)
1715 			th->th_urp -= todrop;
1716 		else {
1717 			thflags &= ~TH_URG;
1718 			th->th_urp = 0;
1719 		}
1720 	}
1721 
1722 	/*
1723 	 * If new data are received on a connection after the
1724 	 * user processes are gone, then RST the other end.
1725 	 */
1726 	if ((so->so_state & SS_NOFDREF) &&
1727 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1728 		tp = tcp_close(tp);
1729 		tcpstat.tcps_rcvafterclose++;
1730 		rstreason = BANDLIM_UNLIMITED;
1731 		goto dropwithreset;
1732 	}
1733 
1734 	/*
1735 	 * If segment ends after window, drop trailing data
1736 	 * (and PUSH and FIN); if nothing left, just ACK.
1737 	 */
1738 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1739 	if (todrop > 0) {
1740 		tcpstat.tcps_rcvpackafterwin++;
1741 		if (todrop >= tlen) {
1742 			tcpstat.tcps_rcvbyteafterwin += tlen;
1743 			/*
1744 			 * If a new connection request is received
1745 			 * while in TIME_WAIT, drop the old connection
1746 			 * and start over if the sequence numbers
1747 			 * are above the previous ones.
1748 			 */
1749 			if (thflags & TH_SYN &&
1750 			    tp->t_state == TCPS_TIME_WAIT &&
1751 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1752 				tp = tcp_close(tp);
1753 				goto findpcb;
1754 			}
1755 			/*
1756 			 * If window is closed can only take segments at
1757 			 * window edge, and have to drop data and PUSH from
1758 			 * incoming segments.  Continue processing, but
1759 			 * remember to ack.  Otherwise, drop segment
1760 			 * and ack.
1761 			 */
1762 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1763 				tp->t_flags |= TF_ACKNOW;
1764 				tcpstat.tcps_rcvwinprobe++;
1765 			} else
1766 				goto dropafterack;
1767 		} else
1768 			tcpstat.tcps_rcvbyteafterwin += todrop;
1769 		m_adj(m, -todrop);
1770 		tlen -= todrop;
1771 		thflags &= ~(TH_PUSH | TH_FIN);
1772 	}
1773 
1774 	/*
1775 	 * If last ACK falls within this segment's sequence numbers,
1776 	 * record its timestamp.
1777 	 * NOTE:
1778 	 * 1) That the test incorporates suggestions from the latest
1779 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1780 	 * 2) That updating only on newer timestamps interferes with
1781 	 *    our earlier PAWS tests, so this check should be solely
1782 	 *    predicated on the sequence space of this segment.
1783 	 * 3) That we modify the segment boundary check to be
1784 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.LEN
1785 	 *    instead of RFC1323's
1786 	 *        Last.ACK.Sent < SEG.SEQ + SEG.LEN,
1787 	 *    This modified check allows us to overcome RFC1323's
1788 	 *    limitations as described in Stevens TCP/IP Illustrated
1789 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1790 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1791 	 */
1792 	if ((to.to_flags & TOF_TS) && SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1793 	    SEQ_LEQ(tp->last_ack_sent, (th->th_seq + tlen
1794 					+ ((thflags & TH_SYN) != 0)
1795 					+ ((thflags & TH_FIN) != 0)))) {
1796 		tp->ts_recent_age = ticks;
1797 		tp->ts_recent = to.to_tsval;
1798 	}
1799 
1800 	/*
1801 	 * If a SYN is in the window, then this is an
1802 	 * error and we send an RST and drop the connection.
1803 	 */
1804 	if (thflags & TH_SYN) {
1805 		tp = tcp_drop(tp, ECONNRESET);
1806 		rstreason = BANDLIM_UNLIMITED;
1807 		goto dropwithreset;
1808 	}
1809 
1810 	/*
1811 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1812 	 * flag is on (half-synchronized state), then queue data for
1813 	 * later processing; else drop segment and return.
1814 	 */
1815 	if (!(thflags & TH_ACK)) {
1816 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1817 		    (tp->t_flags & TF_NEEDSYN))
1818 			goto step6;
1819 		else
1820 			goto drop;
1821 	}
1822 
1823 	/*
1824 	 * Ack processing.
1825 	 */
1826 	switch (tp->t_state) {
1827 	/*
1828 	 * In SYN_RECEIVED state, the ACK acknowledges our SYN, so enter
1829 	 * ESTABLISHED state and continue processing.
1830 	 * The ACK was checked above.
1831 	 */
1832 	case TCPS_SYN_RECEIVED:
1833 
1834 		tcpstat.tcps_connects++;
1835 		soisconnected(so);
1836 		/* Do window scaling? */
1837 		if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
1838 		    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
1839 			tp->snd_scale = tp->requested_s_scale;
1840 			tp->rcv_scale = tp->request_r_scale;
1841 		}
1842 		/*
1843 		 * Make transitions:
1844 		 *      SYN-RECEIVED  -> ESTABLISHED
1845 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1846 		 */
1847 		tp->t_starttime = ticks;
1848 		if (tp->t_flags & TF_NEEDFIN) {
1849 			tp->t_state = TCPS_FIN_WAIT_1;
1850 			tp->t_flags &= ~TF_NEEDFIN;
1851 		} else {
1852 			tcp_established(tp);
1853 		}
1854 		/*
1855 		 * If segment contains data or ACK, will call tcp_reass()
1856 		 * later; if not, do so now to pass queued data to user.
1857 		 */
1858 		if (tlen == 0 && !(thflags & TH_FIN))
1859 			tcp_reass(tp, NULL, NULL, NULL);
1860 		/* fall into ... */
1861 
1862 	/*
1863 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1864 	 * ACKs.  If the ack is in the range
1865 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1866 	 * then advance tp->snd_una to th->th_ack and drop
1867 	 * data from the retransmission queue.  If this ACK reflects
1868 	 * more up to date window information we update our window information.
1869 	 */
1870 	case TCPS_ESTABLISHED:
1871 	case TCPS_FIN_WAIT_1:
1872 	case TCPS_FIN_WAIT_2:
1873 	case TCPS_CLOSE_WAIT:
1874 	case TCPS_CLOSING:
1875 	case TCPS_LAST_ACK:
1876 	case TCPS_TIME_WAIT:
1877 
1878 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1879 			if (TCP_DO_SACK(tp))
1880 				tcp_sack_update_scoreboard(tp, &to);
1881 			if (tlen != 0 || tiwin != tp->snd_wnd) {
1882 				tp->t_dupacks = 0;
1883 				break;
1884 			}
1885 			tcpstat.tcps_rcvdupack++;
1886 			if (!tcp_callout_active(tp, tp->tt_rexmt) ||
1887 			    th->th_ack != tp->snd_una) {
1888 				tp->t_dupacks = 0;
1889 				break;
1890 			}
1891 			/*
1892 			 * We have outstanding data (other than
1893 			 * a window probe), this is a completely
1894 			 * duplicate ack (ie, window info didn't
1895 			 * change), the ack is the biggest we've
1896 			 * seen and we've seen exactly our rexmt
1897 			 * threshhold of them, so assume a packet
1898 			 * has been dropped and retransmit it.
1899 			 * Kludge snd_nxt & the congestion
1900 			 * window so we send only this one
1901 			 * packet.
1902 			 */
1903 			if (IN_FASTRECOVERY(tp)) {
1904 				if (TCP_DO_SACK(tp)) {
1905 					/* No artifical cwnd inflation. */
1906 					tcp_sack_rexmt(tp, th);
1907 				} else {
1908 					/*
1909 					 * Dup acks mean that packets
1910 					 * have left the network
1911 					 * (they're now cached at the
1912 					 * receiver) so bump cwnd by
1913 					 * the amount in the receiver
1914 					 * to keep a constant cwnd
1915 					 * packets in the network.
1916 					 */
1917 					tp->snd_cwnd += tp->t_maxseg;
1918 					tcp_output(tp);
1919 				}
1920 			} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1921 				tp->t_dupacks = 0;
1922 				break;
1923 			} else if (++tp->t_dupacks == tcprexmtthresh) {
1924 				tcp_seq old_snd_nxt;
1925 				u_int win;
1926 
1927 fastretransmit:
1928 				if (tcp_do_eifel_detect &&
1929 				    (tp->t_flags & TF_RCVD_TSTMP)) {
1930 					tcp_save_congestion_state(tp);
1931 					tp->t_flags |= TF_FASTREXMT;
1932 				}
1933 				/*
1934 				 * We know we're losing at the current
1935 				 * window size, so do congestion avoidance:
1936 				 * set ssthresh to half the current window
1937 				 * and pull our congestion window back to the
1938 				 * new ssthresh.
1939 				 */
1940 				win = min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1941 				    tp->t_maxseg;
1942 				if (win < 2)
1943 					win = 2;
1944 				tp->snd_ssthresh = win * tp->t_maxseg;
1945 				ENTER_FASTRECOVERY(tp);
1946 				tp->snd_recover = tp->snd_max;
1947 				tcp_callout_stop(tp, tp->tt_rexmt);
1948 				tp->t_rtttime = 0;
1949 				old_snd_nxt = tp->snd_nxt;
1950 				tp->snd_nxt = th->th_ack;
1951 				tp->snd_cwnd = tp->t_maxseg;
1952 				tcp_output(tp);
1953 				++tcpstat.tcps_sndfastrexmit;
1954 				tp->snd_cwnd = tp->snd_ssthresh;
1955 				tp->rexmt_high = tp->snd_nxt;
1956 				if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
1957 					tp->snd_nxt = old_snd_nxt;
1958 				KASSERT(tp->snd_limited <= 2,
1959 				    ("tp->snd_limited too big"));
1960 				if (TCP_DO_SACK(tp))
1961 					tcp_sack_rexmt(tp, th);
1962 				else
1963 					tp->snd_cwnd += tp->t_maxseg *
1964 					    (tp->t_dupacks - tp->snd_limited);
1965 			} else if (tcp_do_limitedtransmit) {
1966 				u_long oldcwnd = tp->snd_cwnd;
1967 				tcp_seq oldsndmax = tp->snd_max;
1968 				tcp_seq oldsndnxt = tp->snd_nxt;
1969 				/* outstanding data */
1970 				uint32_t ownd = tp->snd_max - tp->snd_una;
1971 				u_int sent;
1972 
1973 #define	iceildiv(n, d)		(((n)+(d)-1) / (d))
1974 
1975 				KASSERT(tp->t_dupacks == 1 ||
1976 					tp->t_dupacks == 2,
1977 				    ("dupacks not 1 or 2"));
1978 				if (tp->t_dupacks == 1)
1979 					tp->snd_limited = 0;
1980 				tp->snd_nxt = tp->snd_max;
1981 				tp->snd_cwnd = ownd +
1982 				    (tp->t_dupacks - tp->snd_limited) *
1983 				    tp->t_maxseg;
1984 				tcp_output(tp);
1985 
1986 				/*
1987 				 * Other acks may have been processed,
1988 				 * snd_nxt cannot be reset to a value less
1989 				 * then snd_una.
1990 				 */
1991 				if (SEQ_LT(oldsndnxt, oldsndmax)) {
1992 				    if (SEQ_GT(oldsndnxt, tp->snd_una))
1993 					tp->snd_nxt = oldsndnxt;
1994 				    else
1995 					tp->snd_nxt = tp->snd_una;
1996 				}
1997 				tp->snd_cwnd = oldcwnd;
1998 				sent = tp->snd_max - oldsndmax;
1999 				if (sent > tp->t_maxseg) {
2000 					KASSERT((tp->t_dupacks == 2 &&
2001 						 tp->snd_limited == 0) ||
2002 						(sent == tp->t_maxseg + 1 &&
2003 						 tp->t_flags & TF_SENTFIN),
2004 					    ("sent too much"));
2005 					KASSERT(sent <= tp->t_maxseg * 2,
2006 					    ("sent too many segments"));
2007 					tp->snd_limited = 2;
2008 					tcpstat.tcps_sndlimited += 2;
2009 				} else if (sent > 0) {
2010 					++tp->snd_limited;
2011 					++tcpstat.tcps_sndlimited;
2012 				} else if (tcp_do_early_retransmit &&
2013 				    (tcp_do_eifel_detect &&
2014 				     (tp->t_flags & TF_RCVD_TSTMP)) &&
2015 				    ownd < 4 * tp->t_maxseg &&
2016 				    tp->t_dupacks + 1 >=
2017 				      iceildiv(ownd, tp->t_maxseg) &&
2018 				    (!TCP_DO_SACK(tp) ||
2019 				     ownd <= tp->t_maxseg ||
2020 				     tcp_sack_has_sacked(&tp->scb,
2021 							ownd - tp->t_maxseg))) {
2022 					++tcpstat.tcps_sndearlyrexmit;
2023 					tp->t_flags |= TF_EARLYREXMT;
2024 					goto fastretransmit;
2025 				}
2026 			}
2027 			goto drop;
2028 		}
2029 
2030 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
2031 		tp->t_dupacks = 0;
2032 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2033 			/*
2034 			 * Detected optimistic ACK attack.
2035 			 * Force slow-start to de-synchronize attack.
2036 			 */
2037 			tp->snd_cwnd = tp->t_maxseg;
2038 			tp->snd_wacked = 0;
2039 
2040 			tcpstat.tcps_rcvacktoomuch++;
2041 			goto dropafterack;
2042 		}
2043 		/*
2044 		 * If we reach this point, ACK is not a duplicate,
2045 		 *     i.e., it ACKs something we sent.
2046 		 */
2047 		if (tp->t_flags & TF_NEEDSYN) {
2048 			/*
2049 			 * T/TCP: Connection was half-synchronized, and our
2050 			 * SYN has been ACK'd (so connection is now fully
2051 			 * synchronized).  Go to non-starred state,
2052 			 * increment snd_una for ACK of SYN, and check if
2053 			 * we can do window scaling.
2054 			 */
2055 			tp->t_flags &= ~TF_NEEDSYN;
2056 			tp->snd_una++;
2057 			/* Do window scaling? */
2058 			if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
2059 			    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
2060 				tp->snd_scale = tp->requested_s_scale;
2061 				tp->rcv_scale = tp->request_r_scale;
2062 			}
2063 		}
2064 
2065 process_ACK:
2066 		acked = th->th_ack - tp->snd_una;
2067 		tcpstat.tcps_rcvackpack++;
2068 		tcpstat.tcps_rcvackbyte += acked;
2069 
2070 		if (tcp_do_eifel_detect && acked > 0 &&
2071 		    (to.to_flags & TOF_TS) && (to.to_tsecr != 0) &&
2072 		    (tp->t_flags & TF_FIRSTACCACK)) {
2073 			/* Eifel detection applicable. */
2074 			if (to.to_tsecr < tp->t_rexmtTS) {
2075 				++tcpstat.tcps_eifeldetected;
2076 				tcp_revert_congestion_state(tp);
2077 				if (tp->t_rxtshift != 1 ||
2078 				    ticks >= tp->t_badrxtwin)
2079 					++tcpstat.tcps_rttcantdetect;
2080 			}
2081 		} else if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2082 			/*
2083 			 * If we just performed our first retransmit,
2084 			 * and the ACK arrives within our recovery window,
2085 			 * then it was a mistake to do the retransmit
2086 			 * in the first place.  Recover our original cwnd
2087 			 * and ssthresh, and proceed to transmit where we
2088 			 * left off.
2089 			 */
2090 			tcp_revert_congestion_state(tp);
2091 			++tcpstat.tcps_rttdetected;
2092 		}
2093 
2094 		/*
2095 		 * If we have a timestamp reply, update smoothed
2096 		 * round trip time.  If no timestamp is present but
2097 		 * transmit timer is running and timed sequence
2098 		 * number was acked, update smoothed round trip time.
2099 		 * Since we now have an rtt measurement, cancel the
2100 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2101 		 * Recompute the initial retransmit timer.
2102 		 *
2103 		 * Some machines (certain windows boxes) send broken
2104 		 * timestamp replies during the SYN+ACK phase, ignore
2105 		 * timestamps of 0.
2106 		 */
2107 		if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0))
2108 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2109 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2110 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2111 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2112 
2113 		/*
2114 		 * If no data (only SYN) was ACK'd,
2115 		 *    skip rest of ACK processing.
2116 		 */
2117 		if (acked == 0)
2118 			goto step6;
2119 
2120 		/* Stop looking for an acceptable ACK since one was received. */
2121 		tp->t_flags &= ~(TF_FIRSTACCACK | TF_FASTREXMT | TF_EARLYREXMT);
2122 
2123 		if (acked > so->so_snd.ssb_cc) {
2124 			tp->snd_wnd -= so->so_snd.ssb_cc;
2125 			sbdrop(&so->so_snd.sb, (int)so->so_snd.ssb_cc);
2126 			ourfinisacked = TRUE;
2127 		} else {
2128 			sbdrop(&so->so_snd.sb, acked);
2129 			tp->snd_wnd -= acked;
2130 			ourfinisacked = FALSE;
2131 		}
2132 		sowwakeup(so);
2133 
2134 		/*
2135 		 * Update window information.
2136 		 * Don't look at window if no ACK:
2137 		 * TAC's send garbage on first SYN.
2138 		 */
2139 		if (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2140 		    (tp->snd_wl1 == th->th_seq &&
2141 		     (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2142 		      (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)))) {
2143 			/* keep track of pure window updates */
2144 			if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2145 			    tiwin > tp->snd_wnd)
2146 				tcpstat.tcps_rcvwinupd++;
2147 			tp->snd_wnd = tiwin;
2148 			tp->snd_wl1 = th->th_seq;
2149 			tp->snd_wl2 = th->th_ack;
2150 			if (tp->snd_wnd > tp->max_sndwnd)
2151 				tp->max_sndwnd = tp->snd_wnd;
2152 			needoutput = TRUE;
2153 		}
2154 
2155 		tp->snd_una = th->th_ack;
2156 		if (TCP_DO_SACK(tp))
2157 			tcp_sack_update_scoreboard(tp, &to);
2158 		if (IN_FASTRECOVERY(tp)) {
2159 			if (SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2160 				EXIT_FASTRECOVERY(tp);
2161 				needoutput = TRUE;
2162 				/*
2163 				 * If the congestion window was inflated
2164 				 * to account for the other side's
2165 				 * cached packets, retract it.
2166 				 */
2167 				if (!TCP_DO_SACK(tp))
2168 					tp->snd_cwnd = tp->snd_ssthresh;
2169 
2170 				/*
2171 				 * Window inflation should have left us
2172 				 * with approximately snd_ssthresh outstanding
2173 				 * data.  But, in case we would be inclined
2174 				 * to send a burst, better do it using
2175 				 * slow start.
2176 				 */
2177 				if (SEQ_GT(th->th_ack + tp->snd_cwnd,
2178 					   tp->snd_max + 2 * tp->t_maxseg))
2179 					tp->snd_cwnd =
2180 					    (tp->snd_max - tp->snd_una) +
2181 					    2 * tp->t_maxseg;
2182 
2183 				tp->snd_wacked = 0;
2184 			} else {
2185 				if (TCP_DO_SACK(tp)) {
2186 					tp->snd_max_rexmt = tp->snd_max;
2187 					tcp_sack_rexmt(tp, th);
2188 				} else {
2189 					tcp_newreno_partial_ack(tp, th, acked);
2190 				}
2191 				needoutput = FALSE;
2192 			}
2193 		} else {
2194 			/*
2195 			 * Open the congestion window.  When in slow-start,
2196 			 * open exponentially: maxseg per packet.  Otherwise,
2197 			 * open linearly: maxseg per window.
2198 			 */
2199 			if (tp->snd_cwnd <= tp->snd_ssthresh) {
2200 				u_int abc_sslimit =
2201 				    (SEQ_LT(tp->snd_nxt, tp->snd_max) ?
2202 				     tp->t_maxseg : 2 * tp->t_maxseg);
2203 
2204 				/* slow-start */
2205 				tp->snd_cwnd += tcp_do_abc ?
2206 				    min(acked, abc_sslimit) : tp->t_maxseg;
2207 			} else {
2208 				/* linear increase */
2209 				tp->snd_wacked += tcp_do_abc ? acked :
2210 				    tp->t_maxseg;
2211 				if (tp->snd_wacked >= tp->snd_cwnd) {
2212 					tp->snd_wacked -= tp->snd_cwnd;
2213 					tp->snd_cwnd += tp->t_maxseg;
2214 				}
2215 			}
2216 			tp->snd_cwnd = min(tp->snd_cwnd,
2217 					   TCP_MAXWIN << tp->snd_scale);
2218 			tp->snd_recover = th->th_ack - 1;
2219 		}
2220 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2221 			tp->snd_nxt = tp->snd_una;
2222 
2223 		/*
2224 		 * If all outstanding data is acked, stop retransmit
2225 		 * timer and remember to restart (more output or persist).
2226 		 * If there is more data to be acked, restart retransmit
2227 		 * timer, using current (possibly backed-off) value.
2228 		 */
2229 		if (th->th_ack == tp->snd_max) {
2230 			tcp_callout_stop(tp, tp->tt_rexmt);
2231 			needoutput = TRUE;
2232 		} else if (!tcp_callout_active(tp, tp->tt_persist)) {
2233 			tcp_callout_reset(tp, tp->tt_rexmt, tp->t_rxtcur,
2234 			    tcp_timer_rexmt);
2235 		}
2236 
2237 		switch (tp->t_state) {
2238 		/*
2239 		 * In FIN_WAIT_1 STATE in addition to the processing
2240 		 * for the ESTABLISHED state if our FIN is now acknowledged
2241 		 * then enter FIN_WAIT_2.
2242 		 */
2243 		case TCPS_FIN_WAIT_1:
2244 			if (ourfinisacked) {
2245 				/*
2246 				 * If we can't receive any more
2247 				 * data, then closing user can proceed.
2248 				 * Starting the timer is contrary to the
2249 				 * specification, but if we don't get a FIN
2250 				 * we'll hang forever.
2251 				 */
2252 				if (so->so_state & SS_CANTRCVMORE) {
2253 					soisdisconnected(so);
2254 					tcp_callout_reset(tp, tp->tt_2msl,
2255 					    tp->t_maxidle, tcp_timer_2msl);
2256 				}
2257 				tp->t_state = TCPS_FIN_WAIT_2;
2258 			}
2259 			break;
2260 
2261 		/*
2262 		 * In CLOSING STATE in addition to the processing for
2263 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2264 		 * then enter the TIME-WAIT state, otherwise ignore
2265 		 * the segment.
2266 		 */
2267 		case TCPS_CLOSING:
2268 			if (ourfinisacked) {
2269 				tp->t_state = TCPS_TIME_WAIT;
2270 				tcp_canceltimers(tp);
2271 				tcp_callout_reset(tp, tp->tt_2msl,
2272 					    2 * tcp_rmx_msl(tp),
2273 					    tcp_timer_2msl);
2274 				soisdisconnected(so);
2275 			}
2276 			break;
2277 
2278 		/*
2279 		 * In LAST_ACK, we may still be waiting for data to drain
2280 		 * and/or to be acked, as well as for the ack of our FIN.
2281 		 * If our FIN is now acknowledged, delete the TCB,
2282 		 * enter the closed state and return.
2283 		 */
2284 		case TCPS_LAST_ACK:
2285 			if (ourfinisacked) {
2286 				tp = tcp_close(tp);
2287 				goto drop;
2288 			}
2289 			break;
2290 
2291 		/*
2292 		 * In TIME_WAIT state the only thing that should arrive
2293 		 * is a retransmission of the remote FIN.  Acknowledge
2294 		 * it and restart the finack timer.
2295 		 */
2296 		case TCPS_TIME_WAIT:
2297 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2298 			    tcp_timer_2msl);
2299 			goto dropafterack;
2300 		}
2301 	}
2302 
2303 step6:
2304 	/*
2305 	 * Update window information.
2306 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2307 	 */
2308 	if ((thflags & TH_ACK) &&
2309 	    acceptable_window_update(tp, th, tiwin)) {
2310 		/* keep track of pure window updates */
2311 		if (tlen == 0 && tp->snd_wl2 == th->th_ack &&
2312 		    tiwin > tp->snd_wnd)
2313 			tcpstat.tcps_rcvwinupd++;
2314 		tp->snd_wnd = tiwin;
2315 		tp->snd_wl1 = th->th_seq;
2316 		tp->snd_wl2 = th->th_ack;
2317 		if (tp->snd_wnd > tp->max_sndwnd)
2318 			tp->max_sndwnd = tp->snd_wnd;
2319 		needoutput = TRUE;
2320 	}
2321 
2322 	/*
2323 	 * Process segments with URG.
2324 	 */
2325 	if ((thflags & TH_URG) && th->th_urp &&
2326 	    !TCPS_HAVERCVDFIN(tp->t_state)) {
2327 		/*
2328 		 * This is a kludge, but if we receive and accept
2329 		 * random urgent pointers, we'll crash in
2330 		 * soreceive.  It's hard to imagine someone
2331 		 * actually wanting to send this much urgent data.
2332 		 */
2333 		if (th->th_urp + so->so_rcv.ssb_cc > sb_max) {
2334 			th->th_urp = 0;			/* XXX */
2335 			thflags &= ~TH_URG;		/* XXX */
2336 			goto dodata;			/* XXX */
2337 		}
2338 		/*
2339 		 * If this segment advances the known urgent pointer,
2340 		 * then mark the data stream.  This should not happen
2341 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2342 		 * a FIN has been received from the remote side.
2343 		 * In these states we ignore the URG.
2344 		 *
2345 		 * According to RFC961 (Assigned Protocols),
2346 		 * the urgent pointer points to the last octet
2347 		 * of urgent data.  We continue, however,
2348 		 * to consider it to indicate the first octet
2349 		 * of data past the urgent section as the original
2350 		 * spec states (in one of two places).
2351 		 */
2352 		if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
2353 			tp->rcv_up = th->th_seq + th->th_urp;
2354 			so->so_oobmark = so->so_rcv.ssb_cc +
2355 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2356 			if (so->so_oobmark == 0)
2357 				sosetstate(so, SS_RCVATMARK);
2358 			sohasoutofband(so);
2359 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2360 		}
2361 		/*
2362 		 * Remove out of band data so doesn't get presented to user.
2363 		 * This can happen independent of advancing the URG pointer,
2364 		 * but if two URG's are pending at once, some out-of-band
2365 		 * data may creep in... ick.
2366 		 */
2367 		if (th->th_urp <= (u_long)tlen &&
2368 		    !(so->so_options & SO_OOBINLINE)) {
2369 			/* hdr drop is delayed */
2370 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2371 		}
2372 	} else {
2373 		/*
2374 		 * If no out of band data is expected,
2375 		 * pull receive urgent pointer along
2376 		 * with the receive window.
2377 		 */
2378 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2379 			tp->rcv_up = tp->rcv_nxt;
2380 	}
2381 
2382 dodata:							/* XXX */
2383 	/*
2384 	 * Process the segment text, merging it into the TCP sequencing queue,
2385 	 * and arranging for acknowledgment of receipt if necessary.
2386 	 * This process logically involves adjusting tp->rcv_wnd as data
2387 	 * is presented to the user (this happens in tcp_usrreq.c,
2388 	 * case PRU_RCVD).  If a FIN has already been received on this
2389 	 * connection then we just ignore the text.
2390 	 */
2391 	if ((tlen || (thflags & TH_FIN)) && !TCPS_HAVERCVDFIN(tp->t_state)) {
2392 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2393 		/*
2394 		 * Insert segment which includes th into TCP reassembly queue
2395 		 * with control block tp.  Set thflags to whether reassembly now
2396 		 * includes a segment with FIN.  This handles the common case
2397 		 * inline (segment is the next to be received on an established
2398 		 * connection, and the queue is empty), avoiding linkage into
2399 		 * and removal from the queue and repetition of various
2400 		 * conversions.
2401 		 * Set DELACK for segments received in order, but ack
2402 		 * immediately when segments are out of order (so
2403 		 * fast retransmit can work).
2404 		 */
2405 		if (th->th_seq == tp->rcv_nxt &&
2406 		    LIST_EMPTY(&tp->t_segq) &&
2407 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2408 			if (DELAY_ACK(tp)) {
2409 				tcp_callout_reset(tp, tp->tt_delack,
2410 				    tcp_delacktime, tcp_timer_delack);
2411 			} else {
2412 				tp->t_flags |= TF_ACKNOW;
2413 			}
2414 			tp->rcv_nxt += tlen;
2415 			thflags = th->th_flags & TH_FIN;
2416 			tcpstat.tcps_rcvpack++;
2417 			tcpstat.tcps_rcvbyte += tlen;
2418 			ND6_HINT(tp);
2419 			if (so->so_state & SS_CANTRCVMORE) {
2420 				m_freem(m);
2421 			} else {
2422 				lwkt_gettoken(&so->so_rcv.ssb_token);
2423 				ssb_appendstream(&so->so_rcv, m);
2424 				lwkt_reltoken(&so->so_rcv.ssb_token);
2425 			}
2426 			sorwakeup(so);
2427 		} else {
2428 			if (!(tp->t_flags & TF_DUPSEG)) {
2429 				/* Initialize SACK report block. */
2430 				tp->reportblk.rblk_start = th->th_seq;
2431 				tp->reportblk.rblk_end = th->th_seq + tlen +
2432 				    ((thflags & TH_FIN) != 0);
2433 			}
2434 			thflags = tcp_reass(tp, th, &tlen, m);
2435 			tp->t_flags |= TF_ACKNOW;
2436 		}
2437 
2438 		/*
2439 		 * Note the amount of data that peer has sent into
2440 		 * our window, in order to estimate the sender's
2441 		 * buffer size.
2442 		 */
2443 		len = so->so_rcv.ssb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2444 	} else {
2445 		m_freem(m);
2446 		thflags &= ~TH_FIN;
2447 	}
2448 
2449 	/*
2450 	 * If FIN is received ACK the FIN and let the user know
2451 	 * that the connection is closing.
2452 	 */
2453 	if (thflags & TH_FIN) {
2454 		if (!TCPS_HAVERCVDFIN(tp->t_state)) {
2455 			socantrcvmore(so);
2456 			/*
2457 			 * If connection is half-synchronized
2458 			 * (ie NEEDSYN flag on) then delay ACK,
2459 			 * so it may be piggybacked when SYN is sent.
2460 			 * Otherwise, since we received a FIN then no
2461 			 * more input can be expected, send ACK now.
2462 			 */
2463 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2464 				tcp_callout_reset(tp, tp->tt_delack,
2465 				    tcp_delacktime, tcp_timer_delack);
2466 			} else {
2467 				tp->t_flags |= TF_ACKNOW;
2468 			}
2469 			tp->rcv_nxt++;
2470 		}
2471 
2472 		switch (tp->t_state) {
2473 		/*
2474 		 * In SYN_RECEIVED and ESTABLISHED STATES
2475 		 * enter the CLOSE_WAIT state.
2476 		 */
2477 		case TCPS_SYN_RECEIVED:
2478 			tp->t_starttime = ticks;
2479 			/*FALLTHROUGH*/
2480 		case TCPS_ESTABLISHED:
2481 			tp->t_state = TCPS_CLOSE_WAIT;
2482 			break;
2483 
2484 		/*
2485 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2486 		 * enter the CLOSING state.
2487 		 */
2488 		case TCPS_FIN_WAIT_1:
2489 			tp->t_state = TCPS_CLOSING;
2490 			break;
2491 
2492 		/*
2493 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2494 		 * starting the time-wait timer, turning off the other
2495 		 * standard timers.
2496 		 */
2497 		case TCPS_FIN_WAIT_2:
2498 			tp->t_state = TCPS_TIME_WAIT;
2499 			tcp_canceltimers(tp);
2500 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2501 				    tcp_timer_2msl);
2502 			soisdisconnected(so);
2503 			break;
2504 
2505 		/*
2506 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2507 		 */
2508 		case TCPS_TIME_WAIT:
2509 			tcp_callout_reset(tp, tp->tt_2msl, 2 * tcp_rmx_msl(tp),
2510 			    tcp_timer_2msl);
2511 			break;
2512 		}
2513 	}
2514 
2515 #ifdef TCPDEBUG
2516 	if (so->so_options & SO_DEBUG)
2517 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2518 #endif
2519 
2520 	/*
2521 	 * Return any desired output.
2522 	 */
2523 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2524 		tcp_output(tp);
2525 	return(IPPROTO_DONE);
2526 
2527 dropafterack:
2528 	/*
2529 	 * Generate an ACK dropping incoming segment if it occupies
2530 	 * sequence space, where the ACK reflects our state.
2531 	 *
2532 	 * We can now skip the test for the RST flag since all
2533 	 * paths to this code happen after packets containing
2534 	 * RST have been dropped.
2535 	 *
2536 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2537 	 * segment we received passes the SYN-RECEIVED ACK test.
2538 	 * If it fails send a RST.  This breaks the loop in the
2539 	 * "LAND" DoS attack, and also prevents an ACK storm
2540 	 * between two listening ports that have been sent forged
2541 	 * SYN segments, each with the source address of the other.
2542 	 */
2543 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2544 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2545 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2546 		rstreason = BANDLIM_RST_OPENPORT;
2547 		goto dropwithreset;
2548 	}
2549 #ifdef TCPDEBUG
2550 	if (so->so_options & SO_DEBUG)
2551 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2552 #endif
2553 	m_freem(m);
2554 	tp->t_flags |= TF_ACKNOW;
2555 	tcp_output(tp);
2556 	return(IPPROTO_DONE);
2557 
2558 dropwithreset:
2559 	/*
2560 	 * Generate a RST, dropping incoming segment.
2561 	 * Make ACK acceptable to originator of segment.
2562 	 * Don't bother to respond if destination was broadcast/multicast.
2563 	 */
2564 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST))
2565 		goto drop;
2566 	if (isipv6) {
2567 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2568 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2569 			goto drop;
2570 	} else {
2571 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2572 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2573 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2574 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2575 			goto drop;
2576 	}
2577 	/* IPv6 anycast check is done at tcp6_input() */
2578 
2579 	/*
2580 	 * Perform bandwidth limiting.
2581 	 */
2582 #ifdef ICMP_BANDLIM
2583 	if (badport_bandlim(rstreason) < 0)
2584 		goto drop;
2585 #endif
2586 
2587 #ifdef TCPDEBUG
2588 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2589 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2590 #endif
2591 	if (thflags & TH_ACK)
2592 		/* mtod() below is safe as long as hdr dropping is delayed */
2593 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2594 			    TH_RST);
2595 	else {
2596 		if (thflags & TH_SYN)
2597 			tlen++;
2598 		/* mtod() below is safe as long as hdr dropping is delayed */
2599 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen,
2600 			    (tcp_seq)0, TH_RST | TH_ACK);
2601 	}
2602 	return(IPPROTO_DONE);
2603 
2604 drop:
2605 	/*
2606 	 * Drop space held by incoming segment and return.
2607 	 */
2608 #ifdef TCPDEBUG
2609 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2610 		tcp_trace(TA_DROP, ostate, tp, tcp_saveipgen, &tcp_savetcp, 0);
2611 #endif
2612 	m_freem(m);
2613 	return(IPPROTO_DONE);
2614 }
2615 
2616 /*
2617  * Parse TCP options and place in tcpopt.
2618  */
2619 static void
2620 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, boolean_t is_syn)
2621 {
2622 	int opt, optlen, i;
2623 
2624 	to->to_flags = 0;
2625 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2626 		opt = cp[0];
2627 		if (opt == TCPOPT_EOL)
2628 			break;
2629 		if (opt == TCPOPT_NOP)
2630 			optlen = 1;
2631 		else {
2632 			if (cnt < 2)
2633 				break;
2634 			optlen = cp[1];
2635 			if (optlen < 2 || optlen > cnt)
2636 				break;
2637 		}
2638 		switch (opt) {
2639 		case TCPOPT_MAXSEG:
2640 			if (optlen != TCPOLEN_MAXSEG)
2641 				continue;
2642 			if (!is_syn)
2643 				continue;
2644 			to->to_flags |= TOF_MSS;
2645 			bcopy(cp + 2, &to->to_mss, sizeof to->to_mss);
2646 			to->to_mss = ntohs(to->to_mss);
2647 			break;
2648 		case TCPOPT_WINDOW:
2649 			if (optlen != TCPOLEN_WINDOW)
2650 				continue;
2651 			if (!is_syn)
2652 				continue;
2653 			to->to_flags |= TOF_SCALE;
2654 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2655 			break;
2656 		case TCPOPT_TIMESTAMP:
2657 			if (optlen != TCPOLEN_TIMESTAMP)
2658 				continue;
2659 			to->to_flags |= TOF_TS;
2660 			bcopy(cp + 2, &to->to_tsval, sizeof to->to_tsval);
2661 			to->to_tsval = ntohl(to->to_tsval);
2662 			bcopy(cp + 6, &to->to_tsecr, sizeof to->to_tsecr);
2663 			to->to_tsecr = ntohl(to->to_tsecr);
2664 			/*
2665 			 * If echoed timestamp is later than the current time,
2666 			 * fall back to non RFC1323 RTT calculation.
2667 			 */
2668 			if (to->to_tsecr != 0 && TSTMP_GT(to->to_tsecr, ticks))
2669 				to->to_tsecr = 0;
2670 			break;
2671 		case TCPOPT_SACK_PERMITTED:
2672 			if (optlen != TCPOLEN_SACK_PERMITTED)
2673 				continue;
2674 			if (!is_syn)
2675 				continue;
2676 			to->to_flags |= TOF_SACK_PERMITTED;
2677 			break;
2678 		case TCPOPT_SACK:
2679 			if ((optlen - 2) & 0x07)	/* not multiple of 8 */
2680 				continue;
2681 			to->to_nsackblocks = (optlen - 2) / 8;
2682 			to->to_sackblocks = (struct raw_sackblock *) (cp + 2);
2683 			to->to_flags |= TOF_SACK;
2684 			for (i = 0; i < to->to_nsackblocks; i++) {
2685 				struct raw_sackblock *r = &to->to_sackblocks[i];
2686 
2687 				r->rblk_start = ntohl(r->rblk_start);
2688 				r->rblk_end = ntohl(r->rblk_end);
2689 
2690 				if (SEQ_LEQ(r->rblk_end, r->rblk_start)) {
2691 					/*
2692 					 * Invalid SACK block; discard all
2693 					 * SACK blocks
2694 					 */
2695 					tcpstat.tcps_rcvbadsackopt++;
2696 					to->to_nsackblocks = 0;
2697 					to->to_sackblocks = NULL;
2698 					to->to_flags &= ~TOF_SACK;
2699 					break;
2700 				}
2701 			}
2702 			break;
2703 #ifdef TCP_SIGNATURE
2704 		/*
2705 		 * XXX In order to reply to a host which has set the
2706 		 * TCP_SIGNATURE option in its initial SYN, we have to
2707 		 * record the fact that the option was observed here
2708 		 * for the syncache code to perform the correct response.
2709 		 */
2710 		case TCPOPT_SIGNATURE:
2711 			if (optlen != TCPOLEN_SIGNATURE)
2712 				continue;
2713 			to->to_flags |= (TOF_SIGNATURE | TOF_SIGLEN);
2714 			break;
2715 #endif /* TCP_SIGNATURE */
2716 		default:
2717 			continue;
2718 		}
2719 	}
2720 }
2721 
2722 /*
2723  * Pull out of band byte out of a segment so
2724  * it doesn't appear in the user's data queue.
2725  * It is still reflected in the segment length for
2726  * sequencing purposes.
2727  * "off" is the delayed to be dropped hdrlen.
2728  */
2729 static void
2730 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off)
2731 {
2732 	int cnt = off + th->th_urp - 1;
2733 
2734 	while (cnt >= 0) {
2735 		if (m->m_len > cnt) {
2736 			char *cp = mtod(m, caddr_t) + cnt;
2737 			struct tcpcb *tp = sototcpcb(so);
2738 
2739 			tp->t_iobc = *cp;
2740 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2741 			bcopy(cp + 1, cp, m->m_len - cnt - 1);
2742 			m->m_len--;
2743 			if (m->m_flags & M_PKTHDR)
2744 				m->m_pkthdr.len--;
2745 			return;
2746 		}
2747 		cnt -= m->m_len;
2748 		m = m->m_next;
2749 		if (m == NULL)
2750 			break;
2751 	}
2752 	panic("tcp_pulloutofband");
2753 }
2754 
2755 /*
2756  * Collect new round-trip time estimate
2757  * and update averages and current timeout.
2758  */
2759 static void
2760 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2761 {
2762 	int delta;
2763 
2764 	tcpstat.tcps_rttupdated++;
2765 	tp->t_rttupdated++;
2766 	if (tp->t_srtt != 0) {
2767 		/*
2768 		 * srtt is stored as fixed point with 5 bits after the
2769 		 * binary point (i.e., scaled by 8).  The following magic
2770 		 * is equivalent to the smoothing algorithm in rfc793 with
2771 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2772 		 * point).  Adjust rtt to origin 0.
2773 		 */
2774 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2775 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2776 
2777 		if ((tp->t_srtt += delta) <= 0)
2778 			tp->t_srtt = 1;
2779 
2780 		/*
2781 		 * We accumulate a smoothed rtt variance (actually, a
2782 		 * smoothed mean difference), then set the retransmit
2783 		 * timer to smoothed rtt + 4 times the smoothed variance.
2784 		 * rttvar is stored as fixed point with 4 bits after the
2785 		 * binary point (scaled by 16).  The following is
2786 		 * equivalent to rfc793 smoothing with an alpha of .75
2787 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2788 		 * rfc793's wired-in beta.
2789 		 */
2790 		if (delta < 0)
2791 			delta = -delta;
2792 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2793 		if ((tp->t_rttvar += delta) <= 0)
2794 			tp->t_rttvar = 1;
2795 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2796 			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2797 	} else {
2798 		/*
2799 		 * No rtt measurement yet - use the unsmoothed rtt.
2800 		 * Set the variance to half the rtt (so our first
2801 		 * retransmit happens at 3*rtt).
2802 		 */
2803 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2804 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2805 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2806 	}
2807 	tp->t_rtttime = 0;
2808 	tp->t_rxtshift = 0;
2809 
2810 	/*
2811 	 * the retransmit should happen at rtt + 4 * rttvar.
2812 	 * Because of the way we do the smoothing, srtt and rttvar
2813 	 * will each average +1/2 tick of bias.  When we compute
2814 	 * the retransmit timer, we want 1/2 tick of rounding and
2815 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2816 	 * firing of the timer.  The bias will give us exactly the
2817 	 * 1.5 tick we need.  But, because the bias is
2818 	 * statistical, we have to test that we don't drop below
2819 	 * the minimum feasible timer (which is 2 ticks).
2820 	 */
2821 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2822 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2823 
2824 	/*
2825 	 * We received an ack for a packet that wasn't retransmitted;
2826 	 * it is probably safe to discard any error indications we've
2827 	 * received recently.  This isn't quite right, but close enough
2828 	 * for now (a route might have failed after we sent a segment,
2829 	 * and the return path might not be symmetrical).
2830 	 */
2831 	tp->t_softerror = 0;
2832 }
2833 
2834 /*
2835  * Determine a reasonable value for maxseg size.
2836  * If the route is known, check route for mtu.
2837  * If none, use an mss that can be handled on the outgoing
2838  * interface without forcing IP to fragment; if bigger than
2839  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2840  * to utilize large mbufs.  If no route is found, route has no mtu,
2841  * or the destination isn't local, use a default, hopefully conservative
2842  * size (usually 512 or the default IP max size, but no more than the mtu
2843  * of the interface), as we can't discover anything about intervening
2844  * gateways or networks.  We also initialize the congestion/slow start
2845  * window to be a single segment if the destination isn't local.
2846  * While looking at the routing entry, we also initialize other path-dependent
2847  * parameters from pre-set or cached values in the routing entry.
2848  *
2849  * Also take into account the space needed for options that we
2850  * send regularly.  Make maxseg shorter by that amount to assure
2851  * that we can send maxseg amount of data even when the options
2852  * are present.  Store the upper limit of the length of options plus
2853  * data in maxopd.
2854  *
2855  * NOTE that this routine is only called when we process an incoming
2856  * segment, for outgoing segments only tcp_mssopt is called.
2857  */
2858 void
2859 tcp_mss(struct tcpcb *tp, int offer)
2860 {
2861 	struct rtentry *rt;
2862 	struct ifnet *ifp;
2863 	int rtt, mss;
2864 	u_long bufsize;
2865 	struct inpcb *inp = tp->t_inpcb;
2866 	struct socket *so;
2867 #ifdef INET6
2868 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
2869 	size_t min_protoh = isipv6 ?
2870 			    sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2871 			    sizeof(struct tcpiphdr);
2872 #else
2873 	const boolean_t isipv6 = FALSE;
2874 	const size_t min_protoh = sizeof(struct tcpiphdr);
2875 #endif
2876 
2877 	if (isipv6)
2878 		rt = tcp_rtlookup6(&inp->inp_inc);
2879 	else
2880 		rt = tcp_rtlookup(&inp->inp_inc);
2881 	if (rt == NULL) {
2882 		tp->t_maxopd = tp->t_maxseg =
2883 		    (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2884 		return;
2885 	}
2886 	ifp = rt->rt_ifp;
2887 	so = inp->inp_socket;
2888 
2889 	/*
2890 	 * Offer == 0 means that there was no MSS on the SYN segment,
2891 	 * in this case we use either the interface mtu or tcp_mssdflt.
2892 	 *
2893 	 * An offer which is too large will be cut down later.
2894 	 */
2895 	if (offer == 0) {
2896 		if (isipv6) {
2897 			if (in6_localaddr(&inp->in6p_faddr)) {
2898 				offer = ND_IFINFO(rt->rt_ifp)->linkmtu -
2899 					min_protoh;
2900 			} else {
2901 				offer = tcp_v6mssdflt;
2902 			}
2903 		} else {
2904 			if (in_localaddr(inp->inp_faddr))
2905 				offer = ifp->if_mtu - min_protoh;
2906 			else
2907 				offer = tcp_mssdflt;
2908 		}
2909 	}
2910 
2911 	/*
2912 	 * Prevent DoS attack with too small MSS. Round up
2913 	 * to at least minmss.
2914 	 *
2915 	 * Sanity check: make sure that maxopd will be large
2916 	 * enough to allow some data on segments even is the
2917 	 * all the option space is used (40bytes).  Otherwise
2918 	 * funny things may happen in tcp_output.
2919 	 */
2920 	offer = max(offer, tcp_minmss);
2921 	offer = max(offer, 64);
2922 
2923 	rt->rt_rmx.rmx_mssopt = offer;
2924 
2925 	/*
2926 	 * While we're here, check if there's an initial rtt
2927 	 * or rttvar.  Convert from the route-table units
2928 	 * to scaled multiples of the slow timeout timer.
2929 	 */
2930 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2931 		/*
2932 		 * XXX the lock bit for RTT indicates that the value
2933 		 * is also a minimum value; this is subject to time.
2934 		 */
2935 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2936 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2937 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2938 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2939 		tcpstat.tcps_usedrtt++;
2940 		if (rt->rt_rmx.rmx_rttvar) {
2941 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2942 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2943 			tcpstat.tcps_usedrttvar++;
2944 		} else {
2945 			/* default variation is +- 1 rtt */
2946 			tp->t_rttvar =
2947 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2948 		}
2949 		TCPT_RANGESET(tp->t_rxtcur,
2950 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2951 			      tp->t_rttmin, TCPTV_REXMTMAX);
2952 	}
2953 
2954 	/*
2955 	 * if there's an mtu associated with the route, use it
2956 	 * else, use the link mtu.  Take the smaller of mss or offer
2957 	 * as our final mss.
2958 	 */
2959 	if (rt->rt_rmx.rmx_mtu) {
2960 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2961 	} else {
2962 		if (isipv6)
2963 			mss = ND_IFINFO(rt->rt_ifp)->linkmtu - min_protoh;
2964 		else
2965 			mss = ifp->if_mtu - min_protoh;
2966 	}
2967 	mss = min(mss, offer);
2968 
2969 	/*
2970 	 * maxopd stores the maximum length of data AND options
2971 	 * in a segment; maxseg is the amount of data in a normal
2972 	 * segment.  We need to store this value (maxopd) apart
2973 	 * from maxseg, because now every segment carries options
2974 	 * and thus we normally have somewhat less data in segments.
2975 	 */
2976 	tp->t_maxopd = mss;
2977 
2978 	if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
2979 	    ((tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2980 		mss -= TCPOLEN_TSTAMP_APPA;
2981 
2982 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2983 		if (mss > MCLBYTES)
2984 			mss &= ~(MCLBYTES-1);
2985 #else
2986 		if (mss > MCLBYTES)
2987 			mss = mss / MCLBYTES * MCLBYTES;
2988 #endif
2989 	/*
2990 	 * If there's a pipesize, change the socket buffer
2991 	 * to that size.  Make the socket buffers an integral
2992 	 * number of mss units; if the mss is larger than
2993 	 * the socket buffer, decrease the mss.
2994 	 */
2995 #ifdef RTV_SPIPE
2996 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2997 #endif
2998 		bufsize = so->so_snd.ssb_hiwat;
2999 	if (bufsize < mss)
3000 		mss = bufsize;
3001 	else {
3002 		bufsize = roundup(bufsize, mss);
3003 		if (bufsize > sb_max)
3004 			bufsize = sb_max;
3005 		if (bufsize > so->so_snd.ssb_hiwat)
3006 			ssb_reserve(&so->so_snd, bufsize, so, NULL);
3007 	}
3008 	tp->t_maxseg = mss;
3009 
3010 #ifdef RTV_RPIPE
3011 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3012 #endif
3013 		bufsize = so->so_rcv.ssb_hiwat;
3014 	if (bufsize > mss) {
3015 		bufsize = roundup(bufsize, mss);
3016 		if (bufsize > sb_max)
3017 			bufsize = sb_max;
3018 		if (bufsize > so->so_rcv.ssb_hiwat) {
3019 			lwkt_gettoken(&so->so_rcv.ssb_token);
3020 			ssb_reserve(&so->so_rcv, bufsize, so, NULL);
3021 			lwkt_reltoken(&so->so_rcv.ssb_token);
3022 		}
3023 	}
3024 
3025 	/*
3026 	 * Set the slow-start flight size depending on whether this
3027 	 * is a local network or not.
3028 	 */
3029 	if (tcp_do_rfc3390)
3030 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3031 	else
3032 		tp->snd_cwnd = mss;
3033 
3034 	if (rt->rt_rmx.rmx_ssthresh) {
3035 		/*
3036 		 * There's some sort of gateway or interface
3037 		 * buffer limit on the path.  Use this to set
3038 		 * the slow start threshhold, but set the
3039 		 * threshold to no less than 2*mss.
3040 		 */
3041 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3042 		tcpstat.tcps_usedssthresh++;
3043 	}
3044 }
3045 
3046 /*
3047  * Determine the MSS option to send on an outgoing SYN.
3048  */
3049 int
3050 tcp_mssopt(struct tcpcb *tp)
3051 {
3052 	struct rtentry *rt;
3053 #ifdef INET6
3054 	boolean_t isipv6 =
3055 	    ((tp->t_inpcb->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3056 	int min_protoh = isipv6 ?
3057 			     sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
3058 			     sizeof(struct tcpiphdr);
3059 #else
3060 	const boolean_t isipv6 = FALSE;
3061 	const size_t min_protoh = sizeof(struct tcpiphdr);
3062 #endif
3063 
3064 	if (isipv6)
3065 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
3066 	else
3067 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
3068 	if (rt == NULL)
3069 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
3070 
3071 	return (rt->rt_ifp->if_mtu - min_protoh);
3072 }
3073 
3074 /*
3075  * When a partial ack arrives, force the retransmission of the
3076  * next unacknowledged segment.  Do not exit Fast Recovery.
3077  *
3078  * Implement the Slow-but-Steady variant of NewReno by restarting the
3079  * the retransmission timer.  Turn it off here so it can be restarted
3080  * later in tcp_output().
3081  */
3082 static void
3083 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th, int acked)
3084 {
3085 	tcp_seq old_snd_nxt = tp->snd_nxt;
3086 	u_long ocwnd = tp->snd_cwnd;
3087 
3088 	tcp_callout_stop(tp, tp->tt_rexmt);
3089 	tp->t_rtttime = 0;
3090 	tp->snd_nxt = th->th_ack;
3091 	/* Set snd_cwnd to one segment beyond acknowledged offset. */
3092 	tp->snd_cwnd = tp->t_maxseg;
3093 	tp->t_flags |= TF_ACKNOW;
3094 	tcp_output(tp);
3095 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3096 		tp->snd_nxt = old_snd_nxt;
3097 	/* partial window deflation */
3098 	if (ocwnd > acked)
3099 		tp->snd_cwnd = ocwnd - acked + tp->t_maxseg;
3100 	else
3101 		tp->snd_cwnd = tp->t_maxseg;
3102 }
3103 
3104 /*
3105  * In contrast to the Slow-but-Steady NewReno variant,
3106  * we do not reset the retransmission timer for SACK retransmissions,
3107  * except when retransmitting snd_una.
3108  */
3109 static void
3110 tcp_sack_rexmt(struct tcpcb *tp, struct tcphdr *th)
3111 {
3112 	uint32_t pipe, seglen;
3113 	tcp_seq nextrexmt;
3114 	boolean_t lostdup;
3115 	tcp_seq old_snd_nxt = tp->snd_nxt;
3116 	u_long ocwnd = tp->snd_cwnd;
3117 	int nseg = 0;		/* consecutive new segments */
3118 #define MAXBURST 4		/* limit burst of new packets on partial ack */
3119 
3120 	tp->t_rtttime = 0;
3121 	pipe = tcp_sack_compute_pipe(tp);
3122 	while ((tcp_seq_diff_t)(ocwnd - pipe) >= (tcp_seq_diff_t)tp->t_maxseg &&
3123 	    (!tcp_do_smartsack || nseg < MAXBURST) &&
3124 	    tcp_sack_nextseg(tp, &nextrexmt, &seglen, &lostdup)) {
3125 		uint32_t sent;
3126 		tcp_seq old_snd_max;
3127 		int error;
3128 
3129 		if (nextrexmt == tp->snd_max)
3130 			++nseg;
3131 		tp->snd_nxt = nextrexmt;
3132 		tp->snd_cwnd = nextrexmt - tp->snd_una + seglen;
3133 		old_snd_max = tp->snd_max;
3134 		if (nextrexmt == tp->snd_una)
3135 			tcp_callout_stop(tp, tp->tt_rexmt);
3136 		error = tcp_output(tp);
3137 		if (error != 0)
3138 			break;
3139 		sent = tp->snd_nxt - nextrexmt;
3140 		if (sent <= 0)
3141 			break;
3142 		if (!lostdup)
3143 			pipe += sent;
3144 		tcpstat.tcps_sndsackpack++;
3145 		tcpstat.tcps_sndsackbyte += sent;
3146 		if (SEQ_LT(nextrexmt, old_snd_max) &&
3147 		    SEQ_LT(tp->rexmt_high, tp->snd_nxt))
3148 			tp->rexmt_high = seq_min(tp->snd_nxt, old_snd_max);
3149 	}
3150 	if (SEQ_GT(old_snd_nxt, tp->snd_nxt))
3151 		tp->snd_nxt = old_snd_nxt;
3152 	tp->snd_cwnd = ocwnd;
3153 }
3154 
3155 /*
3156  * Reset idle time and keep-alive timer, typically called when a valid
3157  * tcp packet is received but may also be called when FASTKEEP is set
3158  * to prevent the previous long-timeout from calculating to a drop.
3159  *
3160  * Only update t_rcvtime for non-SYN packets.
3161  *
3162  * Handle the case where one side thinks the connection is established
3163  * but the other side has, say, rebooted without cleaning out the
3164  * connection.   The SYNs could be construed as an attack and wind
3165  * up ignored, but in case it isn't an attack we can validate the
3166  * connection by forcing a keepalive.
3167  */
3168 void
3169 tcp_timer_keep_activity(struct tcpcb *tp, int thflags)
3170 {
3171 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
3172 		if ((thflags & (TH_SYN | TH_ACK)) == TH_SYN) {
3173 			tp->t_flags |= TF_KEEPALIVE;
3174 			tcp_callout_reset(tp, tp->tt_keep, hz / 2,
3175 					  tcp_timer_keep);
3176 		} else {
3177 			tp->t_rcvtime = ticks;
3178 			tp->t_flags &= ~TF_KEEPALIVE;
3179 			tcp_callout_reset(tp, tp->tt_keep,
3180 					  tcp_getkeepidle(tp),
3181 					  tcp_timer_keep);
3182 		}
3183 	}
3184 }
3185 
3186 static int
3187 tcp_rmx_msl(const struct tcpcb *tp)
3188 {
3189 	struct rtentry *rt;
3190 	struct inpcb *inp = tp->t_inpcb;
3191 	int msl;
3192 #ifdef INET6
3193 	boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) ? TRUE : FALSE);
3194 #else
3195 	const boolean_t isipv6 = FALSE;
3196 #endif
3197 
3198 	if (isipv6)
3199 		rt = tcp_rtlookup6(&inp->inp_inc);
3200 	else
3201 		rt = tcp_rtlookup(&inp->inp_inc);
3202 	if (rt == NULL || rt->rt_rmx.rmx_msl == 0)
3203 		return tcp_msl;
3204 
3205 	msl = (rt->rt_rmx.rmx_msl * hz) / 1000;
3206 	if (msl == 0)
3207 		msl = 1;
3208 
3209 	return msl;
3210 }
3211 
3212 static void
3213 tcp_established(struct tcpcb *tp)
3214 {
3215 	tp->t_state = TCPS_ESTABLISHED;
3216 	tcp_callout_reset(tp, tp->tt_keep, tcp_getkeepidle(tp), tcp_timer_keep);
3217 
3218 	if (tp->t_flags & TF_SYN_WASLOST) {
3219 		/*
3220 		 * RFC3390:
3221 		 * "If the SYN or SYN/ACK is lost, the initial window used by
3222 		 *  a sender after a correctly transmitted SYN MUST be one
3223 		 *  segment consisting of MSS bytes."
3224 		 */
3225 		tp->snd_cwnd = tp->t_maxseg;
3226 
3227 		/*
3228 		 * RFC6298:
3229 		 * "If the timer expires awaiting the ACK of a SYN segment
3230 		 *  and the TCP implementation is using an RTO less than 3
3231 		 *  seconds, the RTO MUST be re-initialized to 3 seconds
3232 		 *  when data transmission begins"
3233 		 */
3234 		if (tp->t_rxtcur < TCPTV_RTOBASE3)
3235 			tp->t_rxtcur = TCPTV_RTOBASE3;
3236 	}
3237 }
3238