xref: /dflybsd-src/sys/netinet/ip_output.c (revision 330d3c4b487f3fc5d0eb023645b0b2a569f7048e)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
31  * $DragonFly: src/sys/netinet/ip_output.c,v 1.67 2008/10/28 03:07:28 sephe Exp $
32  */
33 
34 #define _IP_VHL
35 
36 #include "opt_ipfw.h"
37 #include "opt_ipdn.h"
38 #include "opt_ipdivert.h"
39 #include "opt_ipfilter.h"
40 #include "opt_ipsec.h"
41 #include "opt_mbuf_stress_test.h"
42 #include "opt_mpls.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/proc.h>
53 #include <sys/priv.h>
54 #include <sys/sysctl.h>
55 #include <sys/in_cksum.h>
56 #include <sys/lock.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/mplock2.h>
60 #include <sys/msgport2.h>
61 
62 #include <net/if.h>
63 #include <net/netisr.h>
64 #include <net/pfil.h>
65 #include <net/route.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/in_pcb.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip_var.h>
73 
74 #include <netproto/mpls/mpls_var.h>
75 
76 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
77 
78 #ifdef IPSEC
79 #include <netinet6/ipsec.h>
80 #include <netproto/key/key.h>
81 #ifdef IPSEC_DEBUG
82 #include <netproto/key/key_debug.h>
83 #else
84 #define	KEYDEBUG(lev,arg)
85 #endif
86 #endif /*IPSEC*/
87 
88 #ifdef FAST_IPSEC
89 #include <netproto/ipsec/ipsec.h>
90 #include <netproto/ipsec/xform.h>
91 #include <netproto/ipsec/key.h>
92 #endif /*FAST_IPSEC*/
93 
94 #include <net/ipfw/ip_fw.h>
95 #include <net/dummynet/ip_dummynet.h>
96 
97 #define print_ip(x, a, y)	 kprintf("%s %d.%d.%d.%d%s",\
98 				x, (ntohl(a.s_addr)>>24)&0xFF,\
99 				  (ntohl(a.s_addr)>>16)&0xFF,\
100 				  (ntohl(a.s_addr)>>8)&0xFF,\
101 				  (ntohl(a.s_addr))&0xFF, y);
102 
103 u_short ip_id;
104 
105 #ifdef MBUF_STRESS_TEST
106 int mbuf_frag_size = 0;
107 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
108 	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
109 #endif
110 
111 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
112 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
113 static void	ip_mloopback
114 	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
115 static int	ip_getmoptions
116 	(struct sockopt *, struct ip_moptions *);
117 static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
118 static int	ip_setmoptions
119 	(struct sockopt *, struct ip_moptions **);
120 
121 int	ip_optcopy(struct ip *, struct ip *);
122 
123 extern	int route_assert_owner_access;
124 
125 extern	struct protosw inetsw[];
126 
127 static int
128 ip_localforward(struct mbuf *m, const struct sockaddr_in *dst, int hlen)
129 {
130 	struct in_ifaddr_container *iac;
131 
132 	/*
133 	 * We need to figure out if we have been forwarded to a local
134 	 * socket.  If so, then we should somehow "loop back" to
135 	 * ip_input(), and get directed to the PCB as if we had received
136 	 * this packet.  This is because it may be difficult to identify
137 	 * the packets you want to forward until they are being output
138 	 * and have selected an interface (e.g. locally initiated
139 	 * packets).  If we used the loopback inteface, we would not be
140 	 * able to control what happens as the packet runs through
141 	 * ip_input() as it is done through a ISR.
142 	 */
143 	LIST_FOREACH(iac, INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
144 		/*
145 		 * If the addr to forward to is one of ours, we pretend
146 		 * to be the destination for this packet.
147 		 */
148 		if (IA_SIN(iac->ia)->sin_addr.s_addr == dst->sin_addr.s_addr)
149 			break;
150 	}
151 	if (iac != NULL) {
152 		struct ip *ip;
153 
154 		if (m->m_pkthdr.rcvif == NULL)
155 			m->m_pkthdr.rcvif = ifunit("lo0");
156 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
157 			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
158 						  CSUM_PSEUDO_HDR;
159 			m->m_pkthdr.csum_data = 0xffff;
160 		}
161 		m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
162 
163 		/*
164 		 * Make sure that the IP header is in one mbuf,
165 		 * required by ip_input
166 		 */
167 		if (m->m_len < hlen) {
168 			m = m_pullup(m, hlen);
169 			if (m == NULL) {
170 				/* The packet was freed; we are done */
171 				return 1;
172 			}
173 		}
174 		ip = mtod(m, struct ip *);
175 
176 		ip->ip_len = htons(ip->ip_len);
177 		ip->ip_off = htons(ip->ip_off);
178 		ip_input(m);
179 
180 		return 1; /* The packet gets forwarded locally */
181 	}
182 	return 0;
183 }
184 
185 /*
186  * IP output.  The packet in mbuf chain m contains a skeletal IP
187  * header (with len, off, ttl, proto, tos, src, dst).
188  * The mbuf chain containing the packet will be freed.
189  * The mbuf opt, if present, will not be freed.
190  */
191 int
192 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
193 	  int flags, struct ip_moptions *imo, struct inpcb *inp)
194 {
195 	struct ip *ip;
196 	struct ifnet *ifp = NULL;	/* keep compiler happy */
197 	struct mbuf *m;
198 	int hlen = sizeof(struct ip);
199 	int len, error = 0;
200 	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
201 	struct in_ifaddr *ia = NULL;
202 	int isbroadcast, sw_csum;
203 	struct in_addr pkt_dst;
204 	struct route iproute;
205 	struct m_tag *mtag;
206 #ifdef IPSEC
207 	struct secpolicy *sp = NULL;
208 	struct socket *so = inp ? inp->inp_socket : NULL;
209 #endif
210 #ifdef FAST_IPSEC
211 	struct secpolicy *sp = NULL;
212 	struct tdb_ident *tdbi;
213 #endif /* FAST_IPSEC */
214 	struct sockaddr_in *next_hop = NULL;
215 	int src_was_INADDR_ANY = 0;	/* as the name says... */
216 
217 	m = m0;
218 	M_ASSERTPKTHDR(m);
219 
220 	if (ro == NULL) {
221 		ro = &iproute;
222 		bzero(ro, sizeof *ro);
223 	} else if (ro->ro_rt != NULL && ro->ro_rt->rt_cpuid != mycpuid) {
224 		if (flags & IP_DEBUGROUTE) {
225 			if (route_assert_owner_access) {
226 				panic("ip_output: "
227 				      "rt rt_cpuid %d accessed on cpu %d\n",
228 				      ro->ro_rt->rt_cpuid, mycpuid);
229 			} else {
230 				kprintf("ip_output: "
231 					"rt rt_cpuid %d accessed on cpu %d\n",
232 					ro->ro_rt->rt_cpuid, mycpuid);
233 				print_backtrace(-1);
234 			}
235 		}
236 
237 		/*
238 		 * XXX
239 		 * If the cached rtentry's owner CPU is not the current CPU,
240 		 * then don't touch the cached rtentry (remote free is too
241 		 * expensive in this context); just relocate the route.
242 		 */
243 		ro = &iproute;
244 		bzero(ro, sizeof *ro);
245 	}
246 
247 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
248 		/* Next hop */
249 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
250 		KKASSERT(mtag != NULL);
251 		next_hop = m_tag_data(mtag);
252 	}
253 
254 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
255 		struct dn_pkt *dn_pkt;
256 
257 		/* Extract info from dummynet tag */
258 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
259 		KKASSERT(mtag != NULL);
260 		dn_pkt = m_tag_data(mtag);
261 
262 		/*
263 		 * The packet was already tagged, so part of the
264 		 * processing was already done, and we need to go down.
265 		 * Get the calculated parameters from the tag.
266 		 */
267 		ifp = dn_pkt->ifp;
268 
269 		KKASSERT(ro == &iproute);
270 		*ro = dn_pkt->ro; /* structure copy */
271 		KKASSERT(ro->ro_rt == NULL || ro->ro_rt->rt_cpuid == mycpuid);
272 
273 		dst = dn_pkt->dn_dst;
274 		if (dst == (struct sockaddr_in *)&(dn_pkt->ro.ro_dst)) {
275 			/* If 'dst' points into dummynet tag, adjust it */
276 			dst = (struct sockaddr_in *)&(ro->ro_dst);
277 		}
278 
279 		ip = mtod(m, struct ip *);
280 		hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
281 		if (ro->ro_rt)
282 			ia = ifatoia(ro->ro_rt->rt_ifa);
283 		goto sendit;
284 	}
285 
286 	if (opt) {
287 		len = 0;
288 		m = ip_insertoptions(m, opt, &len);
289 		if (len != 0)
290 			hlen = len;
291 	}
292 	ip = mtod(m, struct ip *);
293 
294 	/*
295 	 * Fill in IP header.
296 	 */
297 	if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) {
298 		ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
299 		ip->ip_off &= IP_DF;
300 		ip->ip_id = ip_newid();
301 		ipstat.ips_localout++;
302 	} else {
303 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
304 	}
305 
306 reroute:
307 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
308 
309 #ifdef INVARIANTS
310 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
311 		/*
312 		 * XXX
313 		 * Multicast is not MPSAFE yet.  Caller must hold
314 		 * BGL when output a multicast IP packet.
315 		 */
316 		ASSERT_MP_LOCK_HELD(curthread);
317 	}
318 #endif
319 
320 	dst = (struct sockaddr_in *)&ro->ro_dst;
321 	/*
322 	 * If there is a cached route,
323 	 * check that it is to the same destination
324 	 * and is still up.  If not, free it and try again.
325 	 * The address family should also be checked in case of sharing the
326 	 * cache with IPv6.
327 	 */
328 	if (ro->ro_rt &&
329 	    (!(ro->ro_rt->rt_flags & RTF_UP) ||
330 	     dst->sin_family != AF_INET ||
331 	     dst->sin_addr.s_addr != pkt_dst.s_addr)) {
332 		rtfree(ro->ro_rt);
333 		ro->ro_rt = NULL;
334 	}
335 	if (ro->ro_rt == NULL) {
336 		bzero(dst, sizeof *dst);
337 		dst->sin_family = AF_INET;
338 		dst->sin_len = sizeof *dst;
339 		dst->sin_addr = pkt_dst;
340 	}
341 	/*
342 	 * If routing to interface only,
343 	 * short circuit routing lookup.
344 	 */
345 	if (flags & IP_ROUTETOIF) {
346 		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
347 		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
348 			ipstat.ips_noroute++;
349 			error = ENETUNREACH;
350 			goto bad;
351 		}
352 		ifp = ia->ia_ifp;
353 		ip->ip_ttl = 1;
354 		isbroadcast = in_broadcast(dst->sin_addr, ifp);
355 	} else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) &&
356 		   imo != NULL && imo->imo_multicast_ifp != NULL) {
357 		/*
358 		 * Bypass the normal routing lookup for multicast
359 		 * packets if the interface is specified.
360 		 */
361 		ifp = imo->imo_multicast_ifp;
362 		ia = IFP_TO_IA(ifp);
363 		isbroadcast = 0;	/* fool gcc */
364 	} else {
365 		/*
366 		 * If this is the case, we probably don't want to allocate
367 		 * a protocol-cloned route since we didn't get one from the
368 		 * ULP.  This lets TCP do its thing, while not burdening
369 		 * forwarding or ICMP with the overhead of cloning a route.
370 		 * Of course, we still want to do any cloning requested by
371 		 * the link layer, as this is probably required in all cases
372 		 * for correct operation (as it is for ARP).
373 		 */
374 		if (ro->ro_rt == NULL)
375 			rtalloc_ign(ro, RTF_PRCLONING);
376 		if (ro->ro_rt == NULL) {
377 			ipstat.ips_noroute++;
378 			error = EHOSTUNREACH;
379 			goto bad;
380 		}
381 		ia = ifatoia(ro->ro_rt->rt_ifa);
382 		ifp = ro->ro_rt->rt_ifp;
383 		ro->ro_rt->rt_use++;
384 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
385 			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
386 		if (ro->ro_rt->rt_flags & RTF_HOST)
387 			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
388 		else
389 			isbroadcast = in_broadcast(dst->sin_addr, ifp);
390 	}
391 	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
392 		struct in_multi *inm;
393 
394 		m->m_flags |= M_MCAST;
395 		/*
396 		 * IP destination address is multicast.  Make sure "dst"
397 		 * still points to the address in "ro".  (It may have been
398 		 * changed to point to a gateway address, above.)
399 		 */
400 		dst = (struct sockaddr_in *)&ro->ro_dst;
401 		/*
402 		 * See if the caller provided any multicast options
403 		 */
404 		if (imo != NULL) {
405 			ip->ip_ttl = imo->imo_multicast_ttl;
406 			if (imo->imo_multicast_vif != -1) {
407 				ip->ip_src.s_addr =
408 				    ip_mcast_src ?
409 				    ip_mcast_src(imo->imo_multicast_vif) :
410 				    INADDR_ANY;
411 			}
412 		} else {
413 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
414 		}
415 		/*
416 		 * Confirm that the outgoing interface supports multicast.
417 		 */
418 		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
419 			if (!(ifp->if_flags & IFF_MULTICAST)) {
420 				ipstat.ips_noroute++;
421 				error = ENETUNREACH;
422 				goto bad;
423 			}
424 		}
425 		/*
426 		 * If source address not specified yet, use address
427 		 * of outgoing interface.
428 		 */
429 		if (ip->ip_src.s_addr == INADDR_ANY) {
430 			/* Interface may have no addresses. */
431 			if (ia != NULL)
432 				ip->ip_src = IA_SIN(ia)->sin_addr;
433 		}
434 
435 		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
436 		if (inm != NULL &&
437 		    (imo == NULL || imo->imo_multicast_loop)) {
438 			/*
439 			 * If we belong to the destination multicast group
440 			 * on the outgoing interface, and the caller did not
441 			 * forbid loopback, loop back a copy.
442 			 */
443 			ip_mloopback(ifp, m, dst, hlen);
444 		} else {
445 			/*
446 			 * If we are acting as a multicast router, perform
447 			 * multicast forwarding as if the packet had just
448 			 * arrived on the interface to which we are about
449 			 * to send.  The multicast forwarding function
450 			 * recursively calls this function, using the
451 			 * IP_FORWARDING flag to prevent infinite recursion.
452 			 *
453 			 * Multicasts that are looped back by ip_mloopback(),
454 			 * above, will be forwarded by the ip_input() routine,
455 			 * if necessary.
456 			 */
457 			if (ip_mrouter && !(flags & IP_FORWARDING)) {
458 				/*
459 				 * If rsvp daemon is not running, do not
460 				 * set ip_moptions. This ensures that the packet
461 				 * is multicast and not just sent down one link
462 				 * as prescribed by rsvpd.
463 				 */
464 				if (!rsvp_on)
465 					imo = NULL;
466 				if (ip_mforward &&
467 				    ip_mforward(ip, ifp, m, imo) != 0) {
468 					m_freem(m);
469 					goto done;
470 				}
471 			}
472 		}
473 
474 		/*
475 		 * Multicasts with a time-to-live of zero may be looped-
476 		 * back, above, but must not be transmitted on a network.
477 		 * Also, multicasts addressed to the loopback interface
478 		 * are not sent -- the above call to ip_mloopback() will
479 		 * loop back a copy if this host actually belongs to the
480 		 * destination group on the loopback interface.
481 		 */
482 		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
483 			m_freem(m);
484 			goto done;
485 		}
486 
487 		goto sendit;
488 	} else {
489 		m->m_flags &= ~M_MCAST;
490 	}
491 
492 	/*
493 	 * If the source address is not specified yet, use the address
494 	 * of the outoing interface. In case, keep note we did that, so
495 	 * if the the firewall changes the next-hop causing the output
496 	 * interface to change, we can fix that.
497 	 */
498 	if (ip->ip_src.s_addr == INADDR_ANY || src_was_INADDR_ANY) {
499 		/* Interface may have no addresses. */
500 		if (ia != NULL) {
501 			ip->ip_src = IA_SIN(ia)->sin_addr;
502 			src_was_INADDR_ANY = 1;
503 		}
504 	}
505 
506 #ifdef ALTQ
507 	/*
508 	 * Disable packet drop hack.
509 	 * Packetdrop should be done by queueing.
510 	 */
511 #else /* !ALTQ */
512 	/*
513 	 * Verify that we have any chance at all of being able to queue
514 	 *      the packet or packet fragments
515 	 */
516 	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
517 	    ifp->if_snd.ifq_maxlen) {
518 		error = ENOBUFS;
519 		ipstat.ips_odropped++;
520 		goto bad;
521 	}
522 #endif /* !ALTQ */
523 
524 	/*
525 	 * Look for broadcast address and
526 	 * verify user is allowed to send
527 	 * such a packet.
528 	 */
529 	if (isbroadcast) {
530 		if (!(ifp->if_flags & IFF_BROADCAST)) {
531 			error = EADDRNOTAVAIL;
532 			goto bad;
533 		}
534 		if (!(flags & IP_ALLOWBROADCAST)) {
535 			error = EACCES;
536 			goto bad;
537 		}
538 		/* don't allow broadcast messages to be fragmented */
539 		if (ip->ip_len > ifp->if_mtu) {
540 			error = EMSGSIZE;
541 			goto bad;
542 		}
543 		m->m_flags |= M_BCAST;
544 	} else {
545 		m->m_flags &= ~M_BCAST;
546 	}
547 
548 sendit:
549 #ifdef IPSEC
550 	/* get SP for this packet */
551 	if (so == NULL)
552 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
553 	else
554 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
555 
556 	if (sp == NULL) {
557 		ipsecstat.out_inval++;
558 		goto bad;
559 	}
560 
561 	error = 0;
562 
563 	/* check policy */
564 	switch (sp->policy) {
565 	case IPSEC_POLICY_DISCARD:
566 		/*
567 		 * This packet is just discarded.
568 		 */
569 		ipsecstat.out_polvio++;
570 		goto bad;
571 
572 	case IPSEC_POLICY_BYPASS:
573 	case IPSEC_POLICY_NONE:
574 	case IPSEC_POLICY_TCP:
575 		/* no need to do IPsec. */
576 		goto skip_ipsec;
577 
578 	case IPSEC_POLICY_IPSEC:
579 		if (sp->req == NULL) {
580 			/* acquire a policy */
581 			error = key_spdacquire(sp);
582 			goto bad;
583 		}
584 		break;
585 
586 	case IPSEC_POLICY_ENTRUST:
587 	default:
588 		kprintf("ip_output: Invalid policy found. %d\n", sp->policy);
589 	}
590     {
591 	struct ipsec_output_state state;
592 	bzero(&state, sizeof state);
593 	state.m = m;
594 	if (flags & IP_ROUTETOIF) {
595 		state.ro = &iproute;
596 		bzero(&iproute, sizeof iproute);
597 	} else
598 		state.ro = ro;
599 	state.dst = (struct sockaddr *)dst;
600 
601 	ip->ip_sum = 0;
602 
603 	/*
604 	 * XXX
605 	 * delayed checksums are not currently compatible with IPsec
606 	 */
607 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
608 		in_delayed_cksum(m);
609 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
610 	}
611 
612 	ip->ip_len = htons(ip->ip_len);
613 	ip->ip_off = htons(ip->ip_off);
614 
615 	error = ipsec4_output(&state, sp, flags);
616 
617 	m = state.m;
618 	if (flags & IP_ROUTETOIF) {
619 		/*
620 		 * if we have tunnel mode SA, we may need to ignore
621 		 * IP_ROUTETOIF.
622 		 */
623 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
624 			flags &= ~IP_ROUTETOIF;
625 			ro = state.ro;
626 		}
627 	} else
628 		ro = state.ro;
629 	dst = (struct sockaddr_in *)state.dst;
630 	if (error) {
631 		/* mbuf is already reclaimed in ipsec4_output. */
632 		m0 = NULL;
633 		switch (error) {
634 		case EHOSTUNREACH:
635 		case ENETUNREACH:
636 		case EMSGSIZE:
637 		case ENOBUFS:
638 		case ENOMEM:
639 			break;
640 		default:
641 			kprintf("ip4_output (ipsec): error code %d\n", error);
642 			/*fall through*/
643 		case ENOENT:
644 			/* don't show these error codes to the user */
645 			error = 0;
646 			break;
647 		}
648 		goto bad;
649 	}
650     }
651 
652 	/* be sure to update variables that are affected by ipsec4_output() */
653 	ip = mtod(m, struct ip *);
654 #ifdef _IP_VHL
655 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
656 #else
657 	hlen = ip->ip_hl << 2;
658 #endif
659 	if (ro->ro_rt == NULL) {
660 		if (!(flags & IP_ROUTETOIF)) {
661 			kprintf("ip_output: "
662 				"can't update route after IPsec processing\n");
663 			error = EHOSTUNREACH;	/*XXX*/
664 			goto bad;
665 		}
666 	} else {
667 		ia = ifatoia(ro->ro_rt->rt_ifa);
668 		ifp = ro->ro_rt->rt_ifp;
669 	}
670 
671 	/* make it flipped, again. */
672 	ip->ip_len = ntohs(ip->ip_len);
673 	ip->ip_off = ntohs(ip->ip_off);
674 skip_ipsec:
675 #endif /*IPSEC*/
676 #ifdef FAST_IPSEC
677 	/*
678 	 * Check the security policy (SP) for the packet and, if
679 	 * required, do IPsec-related processing.  There are two
680 	 * cases here; the first time a packet is sent through
681 	 * it will be untagged and handled by ipsec4_checkpolicy.
682 	 * If the packet is resubmitted to ip_output (e.g. after
683 	 * AH, ESP, etc. processing), there will be a tag to bypass
684 	 * the lookup and related policy checking.
685 	 */
686 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
687 	crit_enter();
688 	if (mtag != NULL) {
689 		tdbi = (struct tdb_ident *)m_tag_data(mtag);
690 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
691 		if (sp == NULL)
692 			error = -EINVAL;	/* force silent drop */
693 		m_tag_delete(m, mtag);
694 	} else {
695 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
696 					&error, inp);
697 	}
698 	/*
699 	 * There are four return cases:
700 	 *    sp != NULL		    apply IPsec policy
701 	 *    sp == NULL, error == 0	    no IPsec handling needed
702 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
703 	 *    sp == NULL, error != 0	    discard packet, report error
704 	 */
705 	if (sp != NULL) {
706 		/* Loop detection, check if ipsec processing already done */
707 		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
708 		for (mtag = m_tag_first(m); mtag != NULL;
709 		     mtag = m_tag_next(m, mtag)) {
710 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
711 				continue;
712 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
713 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
714 				continue;
715 			/*
716 			 * Check if policy has an SA associated with it.
717 			 * This can happen when an SP has yet to acquire
718 			 * an SA; e.g. on first reference.  If it occurs,
719 			 * then we let ipsec4_process_packet do its thing.
720 			 */
721 			if (sp->req->sav == NULL)
722 				break;
723 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
724 			if (tdbi->spi == sp->req->sav->spi &&
725 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
726 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
727 				 sizeof(union sockaddr_union)) == 0) {
728 				/*
729 				 * No IPsec processing is needed, free
730 				 * reference to SP.
731 				 *
732 				 * NB: null pointer to avoid free at
733 				 *     done: below.
734 				 */
735 				KEY_FREESP(&sp), sp = NULL;
736 				crit_exit();
737 				goto spd_done;
738 			}
739 		}
740 
741 		/*
742 		 * Do delayed checksums now because we send before
743 		 * this is done in the normal processing path.
744 		 */
745 		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
746 			in_delayed_cksum(m);
747 			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
748 		}
749 
750 		ip->ip_len = htons(ip->ip_len);
751 		ip->ip_off = htons(ip->ip_off);
752 
753 		/* NB: callee frees mbuf */
754 		error = ipsec4_process_packet(m, sp->req, flags, 0);
755 		/*
756 		 * Preserve KAME behaviour: ENOENT can be returned
757 		 * when an SA acquire is in progress.  Don't propagate
758 		 * this to user-level; it confuses applications.
759 		 *
760 		 * XXX this will go away when the SADB is redone.
761 		 */
762 		if (error == ENOENT)
763 			error = 0;
764 		crit_exit();
765 		goto done;
766 	} else {
767 		crit_exit();
768 
769 		if (error != 0) {
770 			/*
771 			 * Hack: -EINVAL is used to signal that a packet
772 			 * should be silently discarded.  This is typically
773 			 * because we asked key management for an SA and
774 			 * it was delayed (e.g. kicked up to IKE).
775 			 */
776 			if (error == -EINVAL)
777 				error = 0;
778 			goto bad;
779 		} else {
780 			/* No IPsec processing for this packet. */
781 		}
782 #ifdef notyet
783 		/*
784 		 * If deferred crypto processing is needed, check that
785 		 * the interface supports it.
786 		 */
787 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
788 		if (mtag != NULL && !(ifp->if_capenable & IFCAP_IPSEC)) {
789 			/* notify IPsec to do its own crypto */
790 			ipsp_skipcrypto_unmark((struct tdb_ident *)m_tag_data(mtag));
791 			error = EHOSTUNREACH;
792 			goto bad;
793 		}
794 #endif
795 	}
796 spd_done:
797 #endif /* FAST_IPSEC */
798 
799 	/* We are already being fwd'd from a firewall. */
800 	if (next_hop != NULL)
801 		goto pass;
802 
803 	/* No pfil hooks */
804 	if (!pfil_has_hooks(&inet_pfil_hook)) {
805 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
806 			/*
807 			 * Strip dummynet tags from stranded packets
808 			 */
809 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
810 			KKASSERT(mtag != NULL);
811 			m_tag_delete(m, mtag);
812 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
813 		}
814 		goto pass;
815 	}
816 
817 	/*
818 	 * IpHack's section.
819 	 * - Xlate: translate packet's addr/port (NAT).
820 	 * - Firewall: deny/allow/etc.
821 	 * - Wrap: fake packet's addr/port <unimpl.>
822 	 * - Encapsulate: put it in another IP and send out. <unimp.>
823 	 */
824 
825 	/*
826 	 * Run through list of hooks for output packets.
827 	 */
828 	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
829 	if (error != 0 || m == NULL)
830 		goto done;
831 	ip = mtod(m, struct ip *);
832 
833 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
834 		/*
835 		 * Check dst to make sure it is directly reachable on the
836 		 * interface we previously thought it was.
837 		 * If it isn't (which may be likely in some situations) we have
838 		 * to re-route it (ie, find a route for the next-hop and the
839 		 * associated interface) and set them here. This is nested
840 		 * forwarding which in most cases is undesirable, except where
841 		 * such control is nigh impossible. So we do it here.
842 		 * And I'm babbling.
843 		 */
844 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
845 		KKASSERT(mtag != NULL);
846 		next_hop = m_tag_data(mtag);
847 
848 		/*
849 		 * Try local forwarding first
850 		 */
851 		if (ip_localforward(m, next_hop, hlen))
852 			goto done;
853 
854 		/*
855 		 * Relocate the route based on next_hop.
856 		 * If the current route is inp's cache, keep it untouched.
857 		 */
858 		if (ro == &iproute && ro->ro_rt != NULL) {
859 			RTFREE(ro->ro_rt);
860 			ro->ro_rt = NULL;
861 		}
862 		ro = &iproute;
863 		bzero(ro, sizeof *ro);
864 
865 		/*
866 		 * Forwarding to broadcast address is not allowed.
867 		 * XXX Should we follow IP_ROUTETOIF?
868 		 */
869 		flags &= ~(IP_ALLOWBROADCAST | IP_ROUTETOIF);
870 
871 		/* We are doing forwarding now */
872 		flags |= IP_FORWARDING;
873 
874 		goto reroute;
875 	}
876 
877 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
878 		struct dn_pkt *dn_pkt;
879 
880 		mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
881 		KKASSERT(mtag != NULL);
882 		dn_pkt = m_tag_data(mtag);
883 
884 		/*
885 		 * Under certain cases it is not possible to recalculate
886 		 * 'ro' and 'dst', let alone 'flags', so just save them in
887 		 * dummynet tag and avoid the possible wrong reculcalation
888 		 * when we come back to ip_output() again.
889 		 *
890 		 * All other parameters have been already used and so they
891 		 * are not needed anymore.
892 		 * XXX if the ifp is deleted while a pkt is in dummynet,
893 		 * we are in trouble! (TODO use ifnet_detach_event)
894 		 *
895 		 * We need to copy *ro because for ICMP pkts (and maybe
896 		 * others) the caller passed a pointer into the stack;
897 		 * dst might also be a pointer into *ro so it needs to
898 		 * be updated.
899 		 */
900 		dn_pkt->ro = *ro;
901 		if (ro->ro_rt)
902 			ro->ro_rt->rt_refcnt++;
903 		if (dst == (struct sockaddr_in *)&ro->ro_dst) {
904 			/* 'dst' points into 'ro' */
905 			dst = (struct sockaddr_in *)&(dn_pkt->ro.ro_dst);
906 		}
907 		dn_pkt->dn_dst = dst;
908 		dn_pkt->flags = flags;
909 
910 		ip_dn_queue(m);
911 		goto done;
912 	}
913 pass:
914 	/* 127/8 must not appear on wire - RFC1122. */
915 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
916 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
917 		if (!(ifp->if_flags & IFF_LOOPBACK)) {
918 			ipstat.ips_badaddr++;
919 			error = EADDRNOTAVAIL;
920 			goto bad;
921 		}
922 	}
923 
924 	m->m_pkthdr.csum_flags |= CSUM_IP;
925 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
926 	if (sw_csum & CSUM_DELAY_DATA) {
927 		in_delayed_cksum(m);
928 		sw_csum &= ~CSUM_DELAY_DATA;
929 	}
930 	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
931 
932 	/*
933 	 * If small enough for interface, or the interface will take
934 	 * care of the fragmentation for us, can just send directly.
935 	 */
936 	if (ip->ip_len <= ifp->if_mtu || ((ifp->if_hwassist & CSUM_FRAGMENT) &&
937 	    !(ip->ip_off & IP_DF))) {
938 		ip->ip_len = htons(ip->ip_len);
939 		ip->ip_off = htons(ip->ip_off);
940 		ip->ip_sum = 0;
941 		if (sw_csum & CSUM_DELAY_IP) {
942 			if (ip->ip_vhl == IP_VHL_BORING)
943 				ip->ip_sum = in_cksum_hdr(ip);
944 			else
945 				ip->ip_sum = in_cksum(m, hlen);
946 		}
947 
948 		/* Record statistics for this interface address. */
949 		if (!(flags & IP_FORWARDING) && ia) {
950 			ia->ia_ifa.if_opackets++;
951 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
952 		}
953 
954 #ifdef IPSEC
955 		/* clean ipsec history once it goes out of the node */
956 		ipsec_delaux(m);
957 #endif
958 
959 #ifdef MBUF_STRESS_TEST
960 		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
961 			struct mbuf *m1, *m2;
962 			int length, tmp;
963 
964 			tmp = length = m->m_pkthdr.len;
965 
966 			while ((length -= mbuf_frag_size) >= 1) {
967 				m1 = m_split(m, length, MB_DONTWAIT);
968 				if (m1 == NULL)
969 					break;
970 				m2 = m;
971 				while (m2->m_next != NULL)
972 					m2 = m2->m_next;
973 				m2->m_next = m1;
974 			}
975 			m->m_pkthdr.len = tmp;
976 		}
977 #endif
978 
979 #ifdef MPLS
980 		if (!mpls_output_process(m, ro->ro_rt))
981 			goto done;
982 #endif
983 		error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
984 				       ro->ro_rt);
985 		goto done;
986 	}
987 
988 	if (ip->ip_off & IP_DF) {
989 		error = EMSGSIZE;
990 		/*
991 		 * This case can happen if the user changed the MTU
992 		 * of an interface after enabling IP on it.  Because
993 		 * most netifs don't keep track of routes pointing to
994 		 * them, there is no way for one to update all its
995 		 * routes when the MTU is changed.
996 		 */
997 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
998 		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
999 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1000 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1001 		}
1002 		ipstat.ips_cantfrag++;
1003 		goto bad;
1004 	}
1005 
1006 	/*
1007 	 * Too large for interface; fragment if possible. If successful,
1008 	 * on return, m will point to a list of packets to be sent.
1009 	 */
1010 	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1011 	if (error)
1012 		goto bad;
1013 	for (; m; m = m0) {
1014 		m0 = m->m_nextpkt;
1015 		m->m_nextpkt = NULL;
1016 #ifdef IPSEC
1017 		/* clean ipsec history once it goes out of the node */
1018 		ipsec_delaux(m);
1019 #endif
1020 		if (error == 0) {
1021 			/* Record statistics for this interface address. */
1022 			if (ia != NULL) {
1023 				ia->ia_ifa.if_opackets++;
1024 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1025 			}
1026 #ifdef MPLS
1027 			if (!mpls_output_process(m, ro->ro_rt))
1028 				continue;
1029 #endif
1030 			error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
1031 					       ro->ro_rt);
1032 		} else {
1033 			m_freem(m);
1034 		}
1035 	}
1036 
1037 	if (error == 0)
1038 		ipstat.ips_fragmented++;
1039 
1040 done:
1041 	if (ro == &iproute && ro->ro_rt != NULL) {
1042 		RTFREE(ro->ro_rt);
1043 		ro->ro_rt = NULL;
1044 	}
1045 #ifdef IPSEC
1046 	if (sp != NULL) {
1047 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1048 			kprintf("DP ip_output call free SP:%p\n", sp));
1049 		key_freesp(sp);
1050 	}
1051 #endif
1052 #ifdef FAST_IPSEC
1053 	if (sp != NULL)
1054 		KEY_FREESP(&sp);
1055 #endif
1056 	return (error);
1057 bad:
1058 	m_freem(m);
1059 	goto done;
1060 }
1061 
1062 /*
1063  * Create a chain of fragments which fit the given mtu. m_frag points to the
1064  * mbuf to be fragmented; on return it points to the chain with the fragments.
1065  * Return 0 if no error. If error, m_frag may contain a partially built
1066  * chain of fragments that should be freed by the caller.
1067  *
1068  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1069  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1070  */
1071 int
1072 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1073 	    u_long if_hwassist_flags, int sw_csum)
1074 {
1075 	int error = 0;
1076 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1077 	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1078 	int off;
1079 	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1080 	int firstlen;
1081 	struct mbuf **mnext;
1082 	int nfrags;
1083 
1084 	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1085 		ipstat.ips_cantfrag++;
1086 		return EMSGSIZE;
1087 	}
1088 
1089 	/*
1090 	 * Must be able to put at least 8 bytes per fragment.
1091 	 */
1092 	if (len < 8)
1093 		return EMSGSIZE;
1094 
1095 	/*
1096 	 * If the interface will not calculate checksums on
1097 	 * fragmented packets, then do it here.
1098 	 */
1099 	if ((m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
1100 	    !(if_hwassist_flags & CSUM_IP_FRAGS)) {
1101 		in_delayed_cksum(m0);
1102 		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1103 	}
1104 
1105 	if (len > PAGE_SIZE) {
1106 		/*
1107 		 * Fragment large datagrams such that each segment
1108 		 * contains a multiple of PAGE_SIZE amount of data,
1109 		 * plus headers. This enables a receiver to perform
1110 		 * page-flipping zero-copy optimizations.
1111 		 *
1112 		 * XXX When does this help given that sender and receiver
1113 		 * could have different page sizes, and also mtu could
1114 		 * be less than the receiver's page size ?
1115 		 */
1116 		int newlen;
1117 		struct mbuf *m;
1118 
1119 		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1120 			off += m->m_len;
1121 
1122 		/*
1123 		 * firstlen (off - hlen) must be aligned on an
1124 		 * 8-byte boundary
1125 		 */
1126 		if (off < hlen)
1127 			goto smart_frag_failure;
1128 		off = ((off - hlen) & ~7) + hlen;
1129 		newlen = (~PAGE_MASK) & mtu;
1130 		if ((newlen + sizeof(struct ip)) > mtu) {
1131 			/* we failed, go back the default */
1132 smart_frag_failure:
1133 			newlen = len;
1134 			off = hlen + len;
1135 		}
1136 		len = newlen;
1137 
1138 	} else {
1139 		off = hlen + len;
1140 	}
1141 
1142 	firstlen = off - hlen;
1143 	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1144 
1145 	/*
1146 	 * Loop through length of segment after first fragment,
1147 	 * make new header and copy data of each part and link onto chain.
1148 	 * Here, m0 is the original packet, m is the fragment being created.
1149 	 * The fragments are linked off the m_nextpkt of the original
1150 	 * packet, which after processing serves as the first fragment.
1151 	 */
1152 	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1153 		struct ip *mhip;	/* ip header on the fragment */
1154 		struct mbuf *m;
1155 		int mhlen = sizeof(struct ip);
1156 
1157 		MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1158 		if (m == NULL) {
1159 			error = ENOBUFS;
1160 			ipstat.ips_odropped++;
1161 			goto done;
1162 		}
1163 		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1164 		/*
1165 		 * In the first mbuf, leave room for the link header, then
1166 		 * copy the original IP header including options. The payload
1167 		 * goes into an additional mbuf chain returned by m_copy().
1168 		 */
1169 		m->m_data += max_linkhdr;
1170 		mhip = mtod(m, struct ip *);
1171 		*mhip = *ip;
1172 		if (hlen > sizeof(struct ip)) {
1173 			mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
1174 			mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1175 		}
1176 		m->m_len = mhlen;
1177 		/* XXX do we need to add ip->ip_off below ? */
1178 		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1179 		if (off + len >= ip->ip_len) {	/* last fragment */
1180 			len = ip->ip_len - off;
1181 			m->m_flags |= M_LASTFRAG;
1182 		} else
1183 			mhip->ip_off |= IP_MF;
1184 		mhip->ip_len = htons((u_short)(len + mhlen));
1185 		m->m_next = m_copy(m0, off, len);
1186 		if (m->m_next == NULL) {		/* copy failed */
1187 			m_free(m);
1188 			error = ENOBUFS;	/* ??? */
1189 			ipstat.ips_odropped++;
1190 			goto done;
1191 		}
1192 		m->m_pkthdr.len = mhlen + len;
1193 		m->m_pkthdr.rcvif = NULL;
1194 		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1195 		mhip->ip_off = htons(mhip->ip_off);
1196 		mhip->ip_sum = 0;
1197 		if (sw_csum & CSUM_DELAY_IP)
1198 			mhip->ip_sum = in_cksum(m, mhlen);
1199 		*mnext = m;
1200 		mnext = &m->m_nextpkt;
1201 	}
1202 	ipstat.ips_ofragments += nfrags;
1203 
1204 	/* set first marker for fragment chain */
1205 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1206 	m0->m_pkthdr.csum_data = nfrags;
1207 
1208 	/*
1209 	 * Update first fragment by trimming what's been copied out
1210 	 * and updating header.
1211 	 */
1212 	m_adj(m0, hlen + firstlen - ip->ip_len);
1213 	m0->m_pkthdr.len = hlen + firstlen;
1214 	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1215 	ip->ip_off |= IP_MF;
1216 	ip->ip_off = htons(ip->ip_off);
1217 	ip->ip_sum = 0;
1218 	if (sw_csum & CSUM_DELAY_IP)
1219 		ip->ip_sum = in_cksum(m0, hlen);
1220 
1221 done:
1222 	*m_frag = m0;
1223 	return error;
1224 }
1225 
1226 void
1227 in_delayed_cksum(struct mbuf *m)
1228 {
1229 	struct ip *ip;
1230 	u_short csum, offset;
1231 
1232 	ip = mtod(m, struct ip *);
1233 	offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1234 	csum = in_cksum_skip(m, ip->ip_len, offset);
1235 	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1236 		csum = 0xffff;
1237 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1238 
1239 	if (offset + sizeof(u_short) > m->m_len) {
1240 		kprintf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1241 		    m->m_len, offset, ip->ip_p);
1242 		/*
1243 		 * XXX
1244 		 * this shouldn't happen, but if it does, the
1245 		 * correct behavior may be to insert the checksum
1246 		 * in the existing chain instead of rearranging it.
1247 		 */
1248 		m = m_pullup(m, offset + sizeof(u_short));
1249 	}
1250 	*(u_short *)(m->m_data + offset) = csum;
1251 }
1252 
1253 /*
1254  * Insert IP options into preformed packet.
1255  * Adjust IP destination as required for IP source routing,
1256  * as indicated by a non-zero in_addr at the start of the options.
1257  *
1258  * XXX This routine assumes that the packet has no options in place.
1259  */
1260 static struct mbuf *
1261 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1262 {
1263 	struct ipoption *p = mtod(opt, struct ipoption *);
1264 	struct mbuf *n;
1265 	struct ip *ip = mtod(m, struct ip *);
1266 	unsigned optlen;
1267 
1268 	optlen = opt->m_len - sizeof p->ipopt_dst;
1269 	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1270 		*phlen = 0;
1271 		return (m);		/* XXX should fail */
1272 	}
1273 	if (p->ipopt_dst.s_addr)
1274 		ip->ip_dst = p->ipopt_dst;
1275 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1276 		MGETHDR(n, MB_DONTWAIT, MT_HEADER);
1277 		if (n == NULL) {
1278 			*phlen = 0;
1279 			return (m);
1280 		}
1281 		n->m_pkthdr.rcvif = NULL;
1282 		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1283 		m->m_len -= sizeof(struct ip);
1284 		m->m_data += sizeof(struct ip);
1285 		n->m_next = m;
1286 		m = n;
1287 		m->m_len = optlen + sizeof(struct ip);
1288 		m->m_data += max_linkhdr;
1289 		memcpy(mtod(m, void *), ip, sizeof(struct ip));
1290 	} else {
1291 		m->m_data -= optlen;
1292 		m->m_len += optlen;
1293 		m->m_pkthdr.len += optlen;
1294 		ovbcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
1295 	}
1296 	ip = mtod(m, struct ip *);
1297 	bcopy(p->ipopt_list, ip + 1, optlen);
1298 	*phlen = sizeof(struct ip) + optlen;
1299 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1300 	ip->ip_len += optlen;
1301 	return (m);
1302 }
1303 
1304 /*
1305  * Copy options from ip to jp,
1306  * omitting those not copied during fragmentation.
1307  */
1308 int
1309 ip_optcopy(struct ip *ip, struct ip *jp)
1310 {
1311 	u_char *cp, *dp;
1312 	int opt, optlen, cnt;
1313 
1314 	cp = (u_char *)(ip + 1);
1315 	dp = (u_char *)(jp + 1);
1316 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1317 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1318 		opt = cp[0];
1319 		if (opt == IPOPT_EOL)
1320 			break;
1321 		if (opt == IPOPT_NOP) {
1322 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1323 			*dp++ = IPOPT_NOP;
1324 			optlen = 1;
1325 			continue;
1326 		}
1327 
1328 		KASSERT(cnt >= IPOPT_OLEN + sizeof *cp,
1329 		    ("ip_optcopy: malformed ipv4 option"));
1330 		optlen = cp[IPOPT_OLEN];
1331 		KASSERT(optlen >= IPOPT_OLEN + sizeof *cp && optlen <= cnt,
1332 		    ("ip_optcopy: malformed ipv4 option"));
1333 
1334 		/* bogus lengths should have been caught by ip_dooptions */
1335 		if (optlen > cnt)
1336 			optlen = cnt;
1337 		if (IPOPT_COPIED(opt)) {
1338 			bcopy(cp, dp, optlen);
1339 			dp += optlen;
1340 		}
1341 	}
1342 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1343 		*dp++ = IPOPT_EOL;
1344 	return (optlen);
1345 }
1346 
1347 /*
1348  * IP socket option processing.
1349  */
1350 void
1351 ip_ctloutput(netmsg_t msg)
1352 {
1353 	struct socket *so = msg->base.nm_so;
1354 	struct sockopt *sopt = msg->ctloutput.nm_sopt;
1355 	struct	inpcb *inp = so->so_pcb;
1356 	int	error, optval;
1357 
1358 	error = optval = 0;
1359 	if (sopt->sopt_level != IPPROTO_IP) {
1360 		error = EINVAL;
1361 		goto done;
1362 	}
1363 
1364 	switch (sopt->sopt_dir) {
1365 	case SOPT_SET:
1366 		switch (sopt->sopt_name) {
1367 		case IP_OPTIONS:
1368 #ifdef notyet
1369 		case IP_RETOPTS:
1370 #endif
1371 		{
1372 			struct mbuf *m;
1373 			if (sopt->sopt_valsize > MLEN) {
1374 				error = EMSGSIZE;
1375 				break;
1376 			}
1377 			MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER);
1378 			if (m == NULL) {
1379 				error = ENOBUFS;
1380 				break;
1381 			}
1382 			m->m_len = sopt->sopt_valsize;
1383 			error = soopt_to_kbuf(sopt, mtod(m, void *), m->m_len,
1384 					      m->m_len);
1385 			error = ip_pcbopts(sopt->sopt_name,
1386 					   &inp->inp_options, m);
1387 			goto done;
1388 		}
1389 
1390 		case IP_TOS:
1391 		case IP_TTL:
1392 		case IP_MINTTL:
1393 		case IP_RECVOPTS:
1394 		case IP_RECVRETOPTS:
1395 		case IP_RECVDSTADDR:
1396 		case IP_RECVIF:
1397 		case IP_RECVTTL:
1398 		case IP_FAITH:
1399 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1400 					     sizeof optval);
1401 			if (error)
1402 				break;
1403 			switch (sopt->sopt_name) {
1404 			case IP_TOS:
1405 				inp->inp_ip_tos = optval;
1406 				break;
1407 
1408 			case IP_TTL:
1409 				inp->inp_ip_ttl = optval;
1410 				break;
1411 			case IP_MINTTL:
1412 				if (optval >= 0 && optval <= MAXTTL)
1413 					inp->inp_ip_minttl = optval;
1414 				else
1415 					error = EINVAL;
1416 				break;
1417 #define	OPTSET(bit) \
1418 	if (optval) \
1419 		inp->inp_flags |= bit; \
1420 	else \
1421 		inp->inp_flags &= ~bit;
1422 
1423 			case IP_RECVOPTS:
1424 				OPTSET(INP_RECVOPTS);
1425 				break;
1426 
1427 			case IP_RECVRETOPTS:
1428 				OPTSET(INP_RECVRETOPTS);
1429 				break;
1430 
1431 			case IP_RECVDSTADDR:
1432 				OPTSET(INP_RECVDSTADDR);
1433 				break;
1434 
1435 			case IP_RECVIF:
1436 				OPTSET(INP_RECVIF);
1437 				break;
1438 
1439 			case IP_RECVTTL:
1440 				OPTSET(INP_RECVTTL);
1441 				break;
1442 
1443 			case IP_FAITH:
1444 				OPTSET(INP_FAITH);
1445 				break;
1446 			}
1447 			break;
1448 #undef OPTSET
1449 
1450 		case IP_MULTICAST_IF:
1451 		case IP_MULTICAST_VIF:
1452 		case IP_MULTICAST_TTL:
1453 		case IP_MULTICAST_LOOP:
1454 		case IP_ADD_MEMBERSHIP:
1455 		case IP_DROP_MEMBERSHIP:
1456 			error = ip_setmoptions(sopt, &inp->inp_moptions);
1457 			break;
1458 
1459 		case IP_PORTRANGE:
1460 			error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1461 					    sizeof optval);
1462 			if (error)
1463 				break;
1464 
1465 			switch (optval) {
1466 			case IP_PORTRANGE_DEFAULT:
1467 				inp->inp_flags &= ~(INP_LOWPORT);
1468 				inp->inp_flags &= ~(INP_HIGHPORT);
1469 				break;
1470 
1471 			case IP_PORTRANGE_HIGH:
1472 				inp->inp_flags &= ~(INP_LOWPORT);
1473 				inp->inp_flags |= INP_HIGHPORT;
1474 				break;
1475 
1476 			case IP_PORTRANGE_LOW:
1477 				inp->inp_flags &= ~(INP_HIGHPORT);
1478 				inp->inp_flags |= INP_LOWPORT;
1479 				break;
1480 
1481 			default:
1482 				error = EINVAL;
1483 				break;
1484 			}
1485 			break;
1486 
1487 #if defined(IPSEC) || defined(FAST_IPSEC)
1488 		case IP_IPSEC_POLICY:
1489 		{
1490 			caddr_t req;
1491 			size_t len = 0;
1492 			int priv;
1493 			struct mbuf *m;
1494 			int optname;
1495 
1496 			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1497 				break;
1498 			soopt_to_mbuf(sopt, m);
1499 			priv = (sopt->sopt_td != NULL &&
1500 				priv_check(sopt->sopt_td, PRIV_ROOT) != 0) ? 0 : 1;
1501 			req = mtod(m, caddr_t);
1502 			len = m->m_len;
1503 			optname = sopt->sopt_name;
1504 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1505 			m_freem(m);
1506 			break;
1507 		}
1508 #endif /*IPSEC*/
1509 
1510 		default:
1511 			error = ENOPROTOOPT;
1512 			break;
1513 		}
1514 		break;
1515 
1516 	case SOPT_GET:
1517 		switch (sopt->sopt_name) {
1518 		case IP_OPTIONS:
1519 		case IP_RETOPTS:
1520 			if (inp->inp_options)
1521 				soopt_from_kbuf(sopt, mtod(inp->inp_options,
1522 							   char *),
1523 						inp->inp_options->m_len);
1524 			else
1525 				sopt->sopt_valsize = 0;
1526 			break;
1527 
1528 		case IP_TOS:
1529 		case IP_TTL:
1530 		case IP_MINTTL:
1531 		case IP_RECVOPTS:
1532 		case IP_RECVRETOPTS:
1533 		case IP_RECVDSTADDR:
1534 		case IP_RECVTTL:
1535 		case IP_RECVIF:
1536 		case IP_PORTRANGE:
1537 		case IP_FAITH:
1538 			switch (sopt->sopt_name) {
1539 
1540 			case IP_TOS:
1541 				optval = inp->inp_ip_tos;
1542 				break;
1543 
1544 			case IP_TTL:
1545 				optval = inp->inp_ip_ttl;
1546 				break;
1547 			case IP_MINTTL:
1548 				optval = inp->inp_ip_minttl;
1549 				break;
1550 
1551 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1552 
1553 			case IP_RECVOPTS:
1554 				optval = OPTBIT(INP_RECVOPTS);
1555 				break;
1556 
1557 			case IP_RECVRETOPTS:
1558 				optval = OPTBIT(INP_RECVRETOPTS);
1559 				break;
1560 
1561 			case IP_RECVDSTADDR:
1562 				optval = OPTBIT(INP_RECVDSTADDR);
1563 				break;
1564 
1565 			case IP_RECVTTL:
1566 				optval = OPTBIT(INP_RECVTTL);
1567 				break;
1568 
1569 			case IP_RECVIF:
1570 				optval = OPTBIT(INP_RECVIF);
1571 				break;
1572 
1573 			case IP_PORTRANGE:
1574 				if (inp->inp_flags & INP_HIGHPORT)
1575 					optval = IP_PORTRANGE_HIGH;
1576 				else if (inp->inp_flags & INP_LOWPORT)
1577 					optval = IP_PORTRANGE_LOW;
1578 				else
1579 					optval = 0;
1580 				break;
1581 
1582 			case IP_FAITH:
1583 				optval = OPTBIT(INP_FAITH);
1584 				break;
1585 			}
1586 			soopt_from_kbuf(sopt, &optval, sizeof optval);
1587 			break;
1588 
1589 		case IP_MULTICAST_IF:
1590 		case IP_MULTICAST_VIF:
1591 		case IP_MULTICAST_TTL:
1592 		case IP_MULTICAST_LOOP:
1593 		case IP_ADD_MEMBERSHIP:
1594 		case IP_DROP_MEMBERSHIP:
1595 			error = ip_getmoptions(sopt, inp->inp_moptions);
1596 			break;
1597 
1598 #if defined(IPSEC) || defined(FAST_IPSEC)
1599 		case IP_IPSEC_POLICY:
1600 		{
1601 			struct mbuf *m = NULL;
1602 			caddr_t req = NULL;
1603 			size_t len = 0;
1604 
1605 			if (m != NULL) {
1606 				req = mtod(m, caddr_t);
1607 				len = m->m_len;
1608 			}
1609 			error = ipsec4_get_policy(so->so_pcb, req, len, &m);
1610 			if (error == 0)
1611 				error = soopt_from_mbuf(sopt, m); /* XXX */
1612 			if (error == 0)
1613 				m_freem(m);
1614 			break;
1615 		}
1616 #endif /*IPSEC*/
1617 
1618 		default:
1619 			error = ENOPROTOOPT;
1620 			break;
1621 		}
1622 		break;
1623 	}
1624 done:
1625 	lwkt_replymsg(&msg->lmsg, error);
1626 }
1627 
1628 /*
1629  * Set up IP options in pcb for insertion in output packets.
1630  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1631  * with destination address if source routed.
1632  */
1633 static int
1634 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1635 {
1636 	int cnt, optlen;
1637 	u_char *cp;
1638 	u_char opt;
1639 
1640 	/* turn off any old options */
1641 	if (*pcbopt)
1642 		m_free(*pcbopt);
1643 	*pcbopt = 0;
1644 	if (m == NULL || m->m_len == 0) {
1645 		/*
1646 		 * Only turning off any previous options.
1647 		 */
1648 		if (m != NULL)
1649 			m_free(m);
1650 		return (0);
1651 	}
1652 
1653 	if (m->m_len % sizeof(int32_t))
1654 		goto bad;
1655 	/*
1656 	 * IP first-hop destination address will be stored before
1657 	 * actual options; move other options back
1658 	 * and clear it when none present.
1659 	 */
1660 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1661 		goto bad;
1662 	cnt = m->m_len;
1663 	m->m_len += sizeof(struct in_addr);
1664 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1665 	ovbcopy(mtod(m, caddr_t), cp, cnt);
1666 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1667 
1668 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1669 		opt = cp[IPOPT_OPTVAL];
1670 		if (opt == IPOPT_EOL)
1671 			break;
1672 		if (opt == IPOPT_NOP)
1673 			optlen = 1;
1674 		else {
1675 			if (cnt < IPOPT_OLEN + sizeof *cp)
1676 				goto bad;
1677 			optlen = cp[IPOPT_OLEN];
1678 			if (optlen < IPOPT_OLEN + sizeof *cp || optlen > cnt)
1679 				goto bad;
1680 		}
1681 		switch (opt) {
1682 
1683 		default:
1684 			break;
1685 
1686 		case IPOPT_LSRR:
1687 		case IPOPT_SSRR:
1688 			/*
1689 			 * user process specifies route as:
1690 			 *	->A->B->C->D
1691 			 * D must be our final destination (but we can't
1692 			 * check that since we may not have connected yet).
1693 			 * A is first hop destination, which doesn't appear in
1694 			 * actual IP option, but is stored before the options.
1695 			 */
1696 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1697 				goto bad;
1698 			m->m_len -= sizeof(struct in_addr);
1699 			cnt -= sizeof(struct in_addr);
1700 			optlen -= sizeof(struct in_addr);
1701 			cp[IPOPT_OLEN] = optlen;
1702 			/*
1703 			 * Move first hop before start of options.
1704 			 */
1705 			bcopy(&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1706 			      sizeof(struct in_addr));
1707 			/*
1708 			 * Then copy rest of options back
1709 			 * to close up the deleted entry.
1710 			 */
1711 			ovbcopy(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1712 				&cp[IPOPT_OFFSET+1],
1713 				cnt - (IPOPT_MINOFF - 1));
1714 			break;
1715 		}
1716 	}
1717 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1718 		goto bad;
1719 	*pcbopt = m;
1720 	return (0);
1721 
1722 bad:
1723 	m_free(m);
1724 	return (EINVAL);
1725 }
1726 
1727 /*
1728  * XXX
1729  * The whole multicast option thing needs to be re-thought.
1730  * Several of these options are equally applicable to non-multicast
1731  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1732  * standard option (IP_TTL).
1733  */
1734 
1735 /*
1736  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1737  */
1738 static struct ifnet *
1739 ip_multicast_if(struct in_addr *a, int *ifindexp)
1740 {
1741 	int ifindex;
1742 	struct ifnet *ifp;
1743 
1744 	if (ifindexp)
1745 		*ifindexp = 0;
1746 	if (ntohl(a->s_addr) >> 24 == 0) {
1747 		ifindex = ntohl(a->s_addr) & 0xffffff;
1748 		if (ifindex < 0 || if_index < ifindex)
1749 			return NULL;
1750 		ifp = ifindex2ifnet[ifindex];
1751 		if (ifindexp)
1752 			*ifindexp = ifindex;
1753 	} else {
1754 		ifp = INADDR_TO_IFP(a);
1755 	}
1756 	return ifp;
1757 }
1758 
1759 /*
1760  * Set the IP multicast options in response to user setsockopt().
1761  */
1762 static int
1763 ip_setmoptions(struct sockopt *sopt, struct ip_moptions **imop)
1764 {
1765 	int error = 0;
1766 	int i;
1767 	struct in_addr addr;
1768 	struct ip_mreq mreq;
1769 	struct ifnet *ifp;
1770 	struct ip_moptions *imo = *imop;
1771 	int ifindex;
1772 
1773 	if (imo == NULL) {
1774 		/*
1775 		 * No multicast option buffer attached to the pcb;
1776 		 * allocate one and initialize to default values.
1777 		 */
1778 		imo = kmalloc(sizeof *imo, M_IPMOPTS, M_WAITOK);
1779 
1780 		*imop = imo;
1781 		imo->imo_multicast_ifp = NULL;
1782 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1783 		imo->imo_multicast_vif = -1;
1784 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1785 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1786 		imo->imo_num_memberships = 0;
1787 	}
1788 	switch (sopt->sopt_name) {
1789 	/* store an index number for the vif you wanna use in the send */
1790 	case IP_MULTICAST_VIF:
1791 		if (legal_vif_num == 0) {
1792 			error = EOPNOTSUPP;
1793 			break;
1794 		}
1795 		error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
1796 		if (error)
1797 			break;
1798 		if (!legal_vif_num(i) && (i != -1)) {
1799 			error = EINVAL;
1800 			break;
1801 		}
1802 		imo->imo_multicast_vif = i;
1803 		break;
1804 
1805 	case IP_MULTICAST_IF:
1806 		/*
1807 		 * Select the interface for outgoing multicast packets.
1808 		 */
1809 		error = soopt_to_kbuf(sopt, &addr, sizeof addr, sizeof addr);
1810 		if (error)
1811 			break;
1812 
1813 		/*
1814 		 * INADDR_ANY is used to remove a previous selection.
1815 		 * When no interface is selected, a default one is
1816 		 * chosen every time a multicast packet is sent.
1817 		 */
1818 		if (addr.s_addr == INADDR_ANY) {
1819 			imo->imo_multicast_ifp = NULL;
1820 			break;
1821 		}
1822 		/*
1823 		 * The selected interface is identified by its local
1824 		 * IP address.  Find the interface and confirm that
1825 		 * it supports multicasting.
1826 		 */
1827 		crit_enter();
1828 		ifp = ip_multicast_if(&addr, &ifindex);
1829 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1830 			crit_exit();
1831 			error = EADDRNOTAVAIL;
1832 			break;
1833 		}
1834 		imo->imo_multicast_ifp = ifp;
1835 		if (ifindex)
1836 			imo->imo_multicast_addr = addr;
1837 		else
1838 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1839 		crit_exit();
1840 		break;
1841 
1842 	case IP_MULTICAST_TTL:
1843 		/*
1844 		 * Set the IP time-to-live for outgoing multicast packets.
1845 		 * The original multicast API required a char argument,
1846 		 * which is inconsistent with the rest of the socket API.
1847 		 * We allow either a char or an int.
1848 		 */
1849 		if (sopt->sopt_valsize == 1) {
1850 			u_char ttl;
1851 			error = soopt_to_kbuf(sopt, &ttl, 1, 1);
1852 			if (error)
1853 				break;
1854 			imo->imo_multicast_ttl = ttl;
1855 		} else {
1856 			u_int ttl;
1857 			error = soopt_to_kbuf(sopt, &ttl, sizeof ttl, sizeof ttl);
1858 			if (error)
1859 				break;
1860 			if (ttl > 255)
1861 				error = EINVAL;
1862 			else
1863 				imo->imo_multicast_ttl = ttl;
1864 		}
1865 		break;
1866 
1867 	case IP_MULTICAST_LOOP:
1868 		/*
1869 		 * Set the loopback flag for outgoing multicast packets.
1870 		 * Must be zero or one.  The original multicast API required a
1871 		 * char argument, which is inconsistent with the rest
1872 		 * of the socket API.  We allow either a char or an int.
1873 		 */
1874 		if (sopt->sopt_valsize == 1) {
1875 			u_char loop;
1876 
1877 			error = soopt_to_kbuf(sopt, &loop, 1, 1);
1878 			if (error)
1879 				break;
1880 			imo->imo_multicast_loop = !!loop;
1881 		} else {
1882 			u_int loop;
1883 
1884 			error = soopt_to_kbuf(sopt, &loop, sizeof loop,
1885 					    sizeof loop);
1886 			if (error)
1887 				break;
1888 			imo->imo_multicast_loop = !!loop;
1889 		}
1890 		break;
1891 
1892 	case IP_ADD_MEMBERSHIP:
1893 		/*
1894 		 * Add a multicast group membership.
1895 		 * Group must be a valid IP multicast address.
1896 		 */
1897 		error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1898 		if (error)
1899 			break;
1900 
1901 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1902 			error = EINVAL;
1903 			break;
1904 		}
1905 		crit_enter();
1906 		/*
1907 		 * If no interface address was provided, use the interface of
1908 		 * the route to the given multicast address.
1909 		 */
1910 		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1911 			struct sockaddr_in dst;
1912 			struct rtentry *rt;
1913 
1914 			bzero(&dst, sizeof(struct sockaddr_in));
1915 			dst.sin_len = sizeof(struct sockaddr_in);
1916 			dst.sin_family = AF_INET;
1917 			dst.sin_addr = mreq.imr_multiaddr;
1918 			rt = rtlookup((struct sockaddr *)&dst);
1919 			if (rt == NULL) {
1920 				error = EADDRNOTAVAIL;
1921 				crit_exit();
1922 				break;
1923 			}
1924 			--rt->rt_refcnt;
1925 			ifp = rt->rt_ifp;
1926 		} else {
1927 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1928 		}
1929 
1930 		/*
1931 		 * See if we found an interface, and confirm that it
1932 		 * supports multicast.
1933 		 */
1934 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1935 			error = EADDRNOTAVAIL;
1936 			crit_exit();
1937 			break;
1938 		}
1939 		/*
1940 		 * See if the membership already exists or if all the
1941 		 * membership slots are full.
1942 		 */
1943 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1944 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1945 			    imo->imo_membership[i]->inm_addr.s_addr
1946 						== mreq.imr_multiaddr.s_addr)
1947 				break;
1948 		}
1949 		if (i < imo->imo_num_memberships) {
1950 			error = EADDRINUSE;
1951 			crit_exit();
1952 			break;
1953 		}
1954 		if (i == IP_MAX_MEMBERSHIPS) {
1955 			error = ETOOMANYREFS;
1956 			crit_exit();
1957 			break;
1958 		}
1959 		/*
1960 		 * Everything looks good; add a new record to the multicast
1961 		 * address list for the given interface.
1962 		 */
1963 		if ((imo->imo_membership[i] =
1964 		     in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1965 			error = ENOBUFS;
1966 			crit_exit();
1967 			break;
1968 		}
1969 		++imo->imo_num_memberships;
1970 		crit_exit();
1971 		break;
1972 
1973 	case IP_DROP_MEMBERSHIP:
1974 		/*
1975 		 * Drop a multicast group membership.
1976 		 * Group must be a valid IP multicast address.
1977 		 */
1978 		error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1979 		if (error)
1980 			break;
1981 
1982 		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1983 			error = EINVAL;
1984 			break;
1985 		}
1986 
1987 		crit_enter();
1988 		/*
1989 		 * If an interface address was specified, get a pointer
1990 		 * to its ifnet structure.
1991 		 */
1992 		if (mreq.imr_interface.s_addr == INADDR_ANY)
1993 			ifp = NULL;
1994 		else {
1995 			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1996 			if (ifp == NULL) {
1997 				error = EADDRNOTAVAIL;
1998 				crit_exit();
1999 				break;
2000 			}
2001 		}
2002 		/*
2003 		 * Find the membership in the membership array.
2004 		 */
2005 		for (i = 0; i < imo->imo_num_memberships; ++i) {
2006 			if ((ifp == NULL ||
2007 			     imo->imo_membership[i]->inm_ifp == ifp) &&
2008 			    imo->imo_membership[i]->inm_addr.s_addr ==
2009 			    mreq.imr_multiaddr.s_addr)
2010 				break;
2011 		}
2012 		if (i == imo->imo_num_memberships) {
2013 			error = EADDRNOTAVAIL;
2014 			crit_exit();
2015 			break;
2016 		}
2017 		/*
2018 		 * Give up the multicast address record to which the
2019 		 * membership points.
2020 		 */
2021 		in_delmulti(imo->imo_membership[i]);
2022 		/*
2023 		 * Remove the gap in the membership array.
2024 		 */
2025 		for (++i; i < imo->imo_num_memberships; ++i)
2026 			imo->imo_membership[i-1] = imo->imo_membership[i];
2027 		--imo->imo_num_memberships;
2028 		crit_exit();
2029 		break;
2030 
2031 	default:
2032 		error = EOPNOTSUPP;
2033 		break;
2034 	}
2035 
2036 	/*
2037 	 * If all options have default values, no need to keep the mbuf.
2038 	 */
2039 	if (imo->imo_multicast_ifp == NULL &&
2040 	    imo->imo_multicast_vif == -1 &&
2041 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2042 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2043 	    imo->imo_num_memberships == 0) {
2044 		kfree(*imop, M_IPMOPTS);
2045 		*imop = NULL;
2046 	}
2047 
2048 	return (error);
2049 }
2050 
2051 /*
2052  * Return the IP multicast options in response to user getsockopt().
2053  */
2054 static int
2055 ip_getmoptions(struct sockopt *sopt, struct ip_moptions *imo)
2056 {
2057 	struct in_addr addr;
2058 	struct in_ifaddr *ia;
2059 	int error, optval;
2060 	u_char coptval;
2061 
2062 	error = 0;
2063 	switch (sopt->sopt_name) {
2064 	case IP_MULTICAST_VIF:
2065 		if (imo != NULL)
2066 			optval = imo->imo_multicast_vif;
2067 		else
2068 			optval = -1;
2069 		soopt_from_kbuf(sopt, &optval, sizeof optval);
2070 		break;
2071 
2072 	case IP_MULTICAST_IF:
2073 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2074 			addr.s_addr = INADDR_ANY;
2075 		else if (imo->imo_multicast_addr.s_addr) {
2076 			/* return the value user has set */
2077 			addr = imo->imo_multicast_addr;
2078 		} else {
2079 			ia = IFP_TO_IA(imo->imo_multicast_ifp);
2080 			addr.s_addr = (ia == NULL) ? INADDR_ANY
2081 				: IA_SIN(ia)->sin_addr.s_addr;
2082 		}
2083 		soopt_from_kbuf(sopt, &addr, sizeof addr);
2084 		break;
2085 
2086 	case IP_MULTICAST_TTL:
2087 		if (imo == NULL)
2088 			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2089 		else
2090 			optval = coptval = imo->imo_multicast_ttl;
2091 		if (sopt->sopt_valsize == 1)
2092 			soopt_from_kbuf(sopt, &coptval, 1);
2093 		else
2094 			soopt_from_kbuf(sopt, &optval, sizeof optval);
2095 		break;
2096 
2097 	case IP_MULTICAST_LOOP:
2098 		if (imo == NULL)
2099 			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2100 		else
2101 			optval = coptval = imo->imo_multicast_loop;
2102 		if (sopt->sopt_valsize == 1)
2103 			soopt_from_kbuf(sopt, &coptval, 1);
2104 		else
2105 			soopt_from_kbuf(sopt, &optval, sizeof optval);
2106 		break;
2107 
2108 	default:
2109 		error = ENOPROTOOPT;
2110 		break;
2111 	}
2112 	return (error);
2113 }
2114 
2115 /*
2116  * Discard the IP multicast options.
2117  */
2118 void
2119 ip_freemoptions(struct ip_moptions *imo)
2120 {
2121 	int i;
2122 
2123 	if (imo != NULL) {
2124 		for (i = 0; i < imo->imo_num_memberships; ++i)
2125 			in_delmulti(imo->imo_membership[i]);
2126 		kfree(imo, M_IPMOPTS);
2127 	}
2128 }
2129 
2130 /*
2131  * Routine called from ip_output() to loop back a copy of an IP multicast
2132  * packet to the input queue of a specified interface.  Note that this
2133  * calls the output routine of the loopback "driver", but with an interface
2134  * pointer that might NOT be a loopback interface -- evil, but easier than
2135  * replicating that code here.
2136  */
2137 static void
2138 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
2139 	     int hlen)
2140 {
2141 	struct ip *ip;
2142 	struct mbuf *copym;
2143 
2144 	copym = m_copypacket(m, MB_DONTWAIT);
2145 	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2146 		copym = m_pullup(copym, hlen);
2147 	if (copym != NULL) {
2148 		/*
2149 		 * if the checksum hasn't been computed, mark it as valid
2150 		 */
2151 		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2152 			in_delayed_cksum(copym);
2153 			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2154 			copym->m_pkthdr.csum_flags |=
2155 			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2156 			copym->m_pkthdr.csum_data = 0xffff;
2157 		}
2158 		/*
2159 		 * We don't bother to fragment if the IP length is greater
2160 		 * than the interface's MTU.  Can this possibly matter?
2161 		 */
2162 		ip = mtod(copym, struct ip *);
2163 		ip->ip_len = htons(ip->ip_len);
2164 		ip->ip_off = htons(ip->ip_off);
2165 		ip->ip_sum = 0;
2166 		if (ip->ip_vhl == IP_VHL_BORING) {
2167 			ip->ip_sum = in_cksum_hdr(ip);
2168 		} else {
2169 			ip->ip_sum = in_cksum(copym, hlen);
2170 		}
2171 		/*
2172 		 * NB:
2173 		 * It's not clear whether there are any lingering
2174 		 * reentrancy problems in other areas which might
2175 		 * be exposed by using ip_input directly (in
2176 		 * particular, everything which modifies the packet
2177 		 * in-place).  Yet another option is using the
2178 		 * protosw directly to deliver the looped back
2179 		 * packet.  For the moment, we'll err on the side
2180 		 * of safety by using if_simloop().
2181 		 */
2182 #if 1 /* XXX */
2183 		if (dst->sin_family != AF_INET) {
2184 			kprintf("ip_mloopback: bad address family %d\n",
2185 						dst->sin_family);
2186 			dst->sin_family = AF_INET;
2187 		}
2188 #endif
2189 		if_simloop(ifp, copym, dst->sin_family, 0);
2190 	}
2191 }
2192