xref: /dflybsd-src/sys/netinet/ip_input.c (revision fc962bc679e9e19b6e8b92bfd9d55faf0515eacd)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
63  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
64  */
65 
66 #define	_IP_VHL
67 
68 #include "opt_bootp.h"
69 #include "opt_ipdn.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_ipsec.h"
73 #include "opt_rss.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/mpipe.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/time.h>
84 #include <sys/globaldata.h>
85 #include <sys/thread.h>
86 #include <sys/kernel.h>
87 #include <sys/syslog.h>
88 #include <sys/sysctl.h>
89 #include <sys/in_cksum.h>
90 #include <sys/lock.h>
91 
92 #include <sys/mplock2.h>
93 
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/if_types.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/pfil.h>
101 #include <net/route.h>
102 #include <net/netisr2.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_icmp.h>
111 #include <netinet/ip_divert.h>
112 #include <netinet/ip_flow.h>
113 
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 #include <net/netmsg2.h>
117 
118 #include <sys/socketvar.h>
119 
120 #include <net/ipfw/ip_fw.h>
121 #include <net/dummynet/ip_dummynet.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/key.h>
131 #endif
132 
133 int rsvp_on = 0;
134 static int ip_rsvp_on;
135 struct socket *ip_rsvpd;
136 
137 int ipforwarding = 0;
138 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
139     &ipforwarding, 0, "Enable IP forwarding between interfaces");
140 
141 static int ipsendredirects = 1; /* XXX */
142 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
143     &ipsendredirects, 0, "Enable sending IP redirects");
144 
145 int ip_defttl = IPDEFTTL;
146 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
147     &ip_defttl, 0, "Maximum TTL on IP packets");
148 
149 static int ip_dosourceroute = 0;
150 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
151     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
152 
153 static int ip_acceptsourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
155     CTLFLAG_RW, &ip_acceptsourceroute, 0,
156     "Enable accepting source routed IP packets");
157 
158 static int ip_keepfaith = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
160     &ip_keepfaith, 0,
161     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
162 
163 static int maxnipq;
164 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
165     &maxnipq, 0,
166     "Maximum number of IPv4 fragment reassembly queue entries");
167 
168 static int maxfragsperpacket;
169 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
170     &maxfragsperpacket, 0,
171     "Maximum number of IPv4 fragments allowed per packet");
172 
173 static int ip_sendsourcequench = 0;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
175     &ip_sendsourcequench, 0,
176     "Enable the transmission of source quench packets");
177 
178 int ip_do_randomid = 1;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
180     &ip_do_randomid, 0,
181     "Assign random ip_id values");
182 /*
183  * XXX - Setting ip_checkinterface mostly implements the receive side of
184  * the Strong ES model described in RFC 1122, but since the routing table
185  * and transmit implementation do not implement the Strong ES model,
186  * setting this to 1 results in an odd hybrid.
187  *
188  * XXX - ip_checkinterface currently must be disabled if you use ipnat
189  * to translate the destination address to another local interface.
190  *
191  * XXX - ip_checkinterface must be disabled if you add IP aliases
192  * to the loopback interface instead of the interface where the
193  * packets for those addresses are received.
194  */
195 static int ip_checkinterface = 0;
196 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
197     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
198 
199 static u_long ip_hash_count = 0;
200 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
201     &ip_hash_count, 0, "Number of packets hashed by IP");
202 
203 #ifdef RSS_DEBUG
204 static u_long ip_rehash_count = 0;
205 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
206     &ip_rehash_count, 0, "Number of packets rehashed by IP");
207 
208 static u_long ip_dispatch_fast = 0;
209 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
210     &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
211 
212 static u_long ip_dispatch_slow = 0;
213 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
214     &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
215 #endif
216 
217 #ifdef DIAGNOSTIC
218 static int ipprintfs = 0;
219 #endif
220 
221 extern	struct domain inetdomain;
222 extern	struct protosw inetsw[];
223 u_char	ip_protox[IPPROTO_MAX];
224 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
225 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
226 						/* inet addr hash table */
227 u_long	in_ifaddrhmask;				/* mask for hash table */
228 
229 static struct mbuf *ipforward_mtemp[MAXCPU];
230 
231 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
232 
233 static int
234 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
235 {
236 	int cpu, error = 0;
237 
238 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
239 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
240 					sizeof(struct ip_stats))))
241 			break;
242 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
243 				       sizeof(struct ip_stats))))
244 			break;
245 	}
246 
247 	return (error);
248 }
249 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
250     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
251 
252 /* Packet reassembly stuff */
253 #define	IPREASS_NHASH_LOG2	6
254 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
255 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
256 #define	IPREASS_HASH(x,y)						\
257     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
258 
259 TAILQ_HEAD(ipqhead, ipq);
260 struct ipfrag_queue {
261 	int			nipq;
262 	volatile int		draining;
263 	struct netmsg_base	timeo_netmsg;
264 	struct callout		timeo_ch;
265 	struct netmsg_base	drain_netmsg;
266 	struct ipqhead		ipq[IPREASS_NHASH];
267 } __cachealign;
268 
269 static struct ipfrag_queue	ipfrag_queue_pcpu[MAXCPU];
270 
271 #ifdef IPCTL_DEFMTU
272 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
273     &ip_mtu, 0, "Default MTU");
274 #endif
275 
276 #ifdef IPSTEALTH
277 static int ipstealth = 0;
278 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
279 #else
280 static const int ipstealth = 0;
281 #endif
282 
283 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
284 
285 struct pfil_head inet_pfil_hook;
286 
287 /*
288  * struct ip_srcrt_opt is used to store packet state while it travels
289  * through the stack.
290  *
291  * XXX Note that the code even makes assumptions on the size and
292  * alignment of fields inside struct ip_srcrt so e.g. adding some
293  * fields will break the code.  This needs to be fixed.
294  *
295  * We need to save the IP options in case a protocol wants to respond
296  * to an incoming packet over the same route if the packet got here
297  * using IP source routing.  This allows connection establishment and
298  * maintenance when the remote end is on a network that is not known
299  * to us.
300  */
301 struct ip_srcrt {
302 	struct	in_addr dst;			/* final destination */
303 	char	nop;				/* one NOP to align */
304 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
305 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
306 };
307 
308 struct ip_srcrt_opt {
309 	int		ip_nhops;
310 	struct ip_srcrt	ip_srcrt;
311 };
312 
313 #define IPFRAG_MPIPE_MAX	4096
314 #define MAXIPFRAG_MIN		((IPFRAG_MPIPE_MAX * 2) / 256)
315 
316 #define IPFRAG_TIMEO		(hz / PR_SLOWHZ)
317 
318 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
319 static struct malloc_pipe ipq_mpipe;
320 
321 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
322 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
323 static void		ip_freef(struct ipfrag_queue *, struct ipqhead *,
324 			    struct ipq *);
325 static void		ip_input_handler(netmsg_t);
326 
327 static void		ipfrag_timeo_dispatch(netmsg_t);
328 static void		ipfrag_timeo(void *);
329 static void		ipfrag_drain_dispatch(netmsg_t);
330 
331 /*
332  * IP initialization: fill in IP protocol switch table.
333  * All protocols not implemented in kernel go to raw IP protocol handler.
334  */
335 void
336 ip_init(void)
337 {
338 	struct ipfrag_queue *fragq;
339 	struct protosw *pr;
340 	int cpu, i;
341 
342 	/*
343 	 * Make sure we can handle a reasonable number of fragments but
344 	 * cap it at IPFRAG_MPIPE_MAX.
345 	 */
346 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
347 	    IFQ_MAXLEN, IPFRAG_MPIPE_MAX, 0, NULL, NULL, NULL);
348 
349 	/*
350 	 * Make in_ifaddrhead and in_ifaddrhashtbl available on all CPUs,
351 	 * since they could be accessed by any threads.
352 	 */
353 	for (cpu = 0; cpu < ncpus; ++cpu) {
354 		TAILQ_INIT(&in_ifaddrheads[cpu]);
355 		in_ifaddrhashtbls[cpu] =
356 		    hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
357 	}
358 
359 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
360 	if (pr == NULL)
361 		panic("ip_init");
362 	for (i = 0; i < IPPROTO_MAX; i++)
363 		ip_protox[i] = pr - inetsw;
364 	for (pr = inetdomain.dom_protosw;
365 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
366 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
367 			if (pr->pr_protocol != IPPROTO_RAW)
368 				ip_protox[pr->pr_protocol] = pr - inetsw;
369 		}
370 	}
371 
372 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
373 	inet_pfil_hook.ph_af = AF_INET;
374 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
375 		kprintf("%s: WARNING: unable to register pfil hook, "
376 			"error %d\n", __func__, i);
377 	}
378 
379 	maxnipq = (nmbclusters / 32) / netisr_ncpus;
380 	if (maxnipq < MAXIPFRAG_MIN)
381 		maxnipq = MAXIPFRAG_MIN;
382 	maxfragsperpacket = 16;
383 
384 	ip_id = time_second & 0xffff;	/* time_second survives reboots */
385 
386 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
387 		/*
388 		 * Initialize IP statistics counters for each CPU.
389 		 */
390 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
391 
392 		/*
393 		 * Preallocate mbuf template for forwarding
394 		 */
395 		MGETHDR(ipforward_mtemp[cpu], M_WAITOK, MT_DATA);
396 
397 		/*
398 		 * Initialize per-cpu ip fragments queues
399 		 */
400 		fragq = &ipfrag_queue_pcpu[cpu];
401 		for (i = 0; i < IPREASS_NHASH; i++)
402 			TAILQ_INIT(&fragq->ipq[i]);
403 
404 		callout_init_mp(&fragq->timeo_ch);
405 		netmsg_init(&fragq->timeo_netmsg, NULL, &netisr_adone_rport,
406 		    MSGF_PRIORITY, ipfrag_timeo_dispatch);
407 		netmsg_init(&fragq->drain_netmsg, NULL, &netisr_adone_rport,
408 		    MSGF_PRIORITY, ipfrag_drain_dispatch);
409 	}
410 
411 	netisr_register(NETISR_IP, ip_input_handler, ip_hashfn);
412 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
413 
414 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
415 		fragq = &ipfrag_queue_pcpu[cpu];
416 		callout_reset_bycpu(&fragq->timeo_ch, IPFRAG_TIMEO,
417 		    ipfrag_timeo, NULL, cpu);
418 	}
419 }
420 
421 /* Do transport protocol processing. */
422 static void
423 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
424 {
425 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
426 
427 	/*
428 	 * Switch out to protocol's input routine.
429 	 */
430 	PR_GET_MPLOCK(pr);
431 	pr->pr_input(&m, &hlen, ip->ip_p);
432 	PR_REL_MPLOCK(pr);
433 }
434 
435 static void
436 transport_processing_handler(netmsg_t msg)
437 {
438 	struct netmsg_packet *pmsg = &msg->packet;
439 	struct ip *ip;
440 	int hlen;
441 
442 	ip = mtod(pmsg->nm_packet, struct ip *);
443 	hlen = pmsg->base.lmsg.u.ms_result;
444 
445 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
446 	/* msg was embedded in the mbuf, do not reply! */
447 }
448 
449 static void
450 ip_input_handler(netmsg_t msg)
451 {
452 	ip_input(msg->packet.nm_packet);
453 	/* msg was embedded in the mbuf, do not reply! */
454 }
455 
456 /*
457  * IP input routine.  Checksum and byte swap header.  If fragmented
458  * try to reassemble.  Process options.  Pass to next level.
459  */
460 void
461 ip_input(struct mbuf *m)
462 {
463 	struct ip *ip;
464 	struct in_ifaddr *ia = NULL;
465 	struct in_ifaddr_container *iac;
466 	int hlen, checkif;
467 	u_short sum;
468 	struct in_addr pkt_dst;
469 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
470 	struct in_addr odst;			/* original dst address(NAT) */
471 	struct m_tag *mtag;
472 	struct sockaddr_in *next_hop = NULL;
473 	lwkt_port_t port;
474 #ifdef FAST_IPSEC
475 	struct tdb_ident *tdbi;
476 	struct secpolicy *sp;
477 	int error;
478 #endif
479 
480 	ASSERT_NETISR_NCPUS(mycpuid);
481 	M_ASSERTPKTHDR(m);
482 
483 	/* length checks already done in ip_hashfn() */
484 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
485 
486 	/*
487 	 * This routine is called from numerous places which may not have
488 	 * characterized the packet.
489 	 */
490 	ip = mtod(m, struct ip *);
491 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
492 	    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK))) {
493 		/*
494 		 * Force hash recalculation for fragments and multicast
495 		 * packets; hardware may not do it correctly.
496 		 * XXX add flag to indicate the hash is from hardware
497 		 */
498 		m->m_flags &= ~M_HASH;
499 	}
500 	if ((m->m_flags & M_HASH) == 0) {
501 		ip_hashfn(&m, 0);
502 		if (m == NULL)
503 			return;
504 		KKASSERT(m->m_flags & M_HASH);
505 
506 		if (&curthread->td_msgport !=
507 		    netisr_hashport(m->m_pkthdr.hash)) {
508 			netisr_queue(NETISR_IP, m);
509 			/* Requeued to other netisr msgport; done */
510 			return;
511 		}
512 
513 		/* mbuf could have been changed */
514 		ip = mtod(m, struct ip *);
515 	}
516 
517 	/*
518 	 * Pull out certain tags
519 	 */
520 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
521 		/* Next hop */
522 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
523 		KKASSERT(mtag != NULL);
524 		next_hop = m_tag_data(mtag);
525 	}
526 
527 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
528 		/* dummynet already filtered us */
529 		ip = mtod(m, struct ip *);
530 		ip->ip_len = ntohs(ip->ip_len);
531 		ip->ip_off = ntohs(ip->ip_off);
532 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
533 		goto iphack;
534 	}
535 
536 	ipstat.ips_total++;
537 
538 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
539 		ipstat.ips_badvers++;
540 		goto bad;
541 	}
542 
543 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
544 	/* length checks already done in ip_hashfn() */
545 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
546 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
547 
548 	/* 127/8 must not appear on wire - RFC1122 */
549 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
550 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
551 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
552 			ipstat.ips_badaddr++;
553 			goto bad;
554 		}
555 	}
556 
557 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
558 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
559 	} else {
560 		if (hlen == sizeof(struct ip))
561 			sum = in_cksum_hdr(ip);
562 		else
563 			sum = in_cksum(m, hlen);
564 	}
565 	if (sum != 0) {
566 		ipstat.ips_badsum++;
567 		goto bad;
568 	}
569 
570 #ifdef ALTQ
571 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
572 		/* packet is dropped by traffic conditioner */
573 		return;
574 	}
575 #endif
576 	/*
577 	 * Convert fields to host representation.
578 	 */
579 	ip->ip_len = ntohs(ip->ip_len);
580 	ip->ip_off = ntohs(ip->ip_off);
581 
582 	/* length checks already done in ip_hashfn() */
583 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
584 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
585 
586 	/*
587 	 * Trim mbufs if longer than the IP header would have us expect.
588 	 */
589 	if (m->m_pkthdr.len > ip->ip_len) {
590 		if (m->m_len == m->m_pkthdr.len) {
591 			m->m_len = ip->ip_len;
592 			m->m_pkthdr.len = ip->ip_len;
593 		} else {
594 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
595 		}
596 	}
597 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
598 	/*
599 	 * Bypass packet filtering for packets from a tunnel (gif).
600 	 */
601 	if (ipsec_gethist(m, NULL))
602 		goto pass;
603 #endif
604 
605 	/*
606 	 * IpHack's section.
607 	 * Right now when no processing on packet has done
608 	 * and it is still fresh out of network we do our black
609 	 * deals with it.
610 	 * - Firewall: deny/allow/divert
611 	 * - Xlate: translate packet's addr/port (NAT).
612 	 * - Pipe: pass pkt through dummynet.
613 	 * - Wrap: fake packet's addr/port <unimpl.>
614 	 * - Encapsulate: put it in another IP and send out. <unimp.>
615 	 */
616 
617 iphack:
618 	/*
619 	 * If we've been forwarded from the output side, then
620 	 * skip the firewall a second time
621 	 */
622 	if (next_hop != NULL)
623 		goto ours;
624 
625 	/* No pfil hooks */
626 	if (!pfil_has_hooks(&inet_pfil_hook)) {
627 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
628 			/*
629 			 * Strip dummynet tags from stranded packets
630 			 */
631 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
632 			KKASSERT(mtag != NULL);
633 			m_tag_delete(m, mtag);
634 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
635 		}
636 		goto pass;
637 	}
638 
639 	/*
640 	 * Run through list of hooks for input packets.
641 	 *
642 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
643 	 *	  clear M_HASH.
644 	 */
645 	odst = ip->ip_dst;
646 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
647 		return;
648 	if (m == NULL)	/* consumed by filter */
649 		return;
650 	ip = mtod(m, struct ip *);
651 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
652 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
653 
654 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
655 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
656 		KKASSERT(mtag != NULL);
657 		next_hop = m_tag_data(mtag);
658 	}
659 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
660 		ip_dn_queue(m);
661 		return;
662 	}
663 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
664 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
665 	}
666 pass:
667 	/*
668 	 * Process options and, if not destined for us,
669 	 * ship it on.  ip_dooptions returns 1 when an
670 	 * error was detected (causing an icmp message
671 	 * to be sent and the original packet to be freed).
672 	 */
673 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
674 		return;
675 
676 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
677 	 * matter if it is destined to another node, or whether it is
678 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
679 	 * anywhere else. Also checks if the rsvp daemon is running before
680 	 * grabbing the packet.
681 	 */
682 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
683 		goto ours;
684 
685 	/*
686 	 * Check our list of addresses, to see if the packet is for us.
687 	 * If we don't have any addresses, assume any unicast packet
688 	 * we receive might be for us (and let the upper layers deal
689 	 * with it).
690 	 */
691 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
692 	    !(m->m_flags & (M_MCAST | M_BCAST)))
693 		goto ours;
694 
695 	/*
696 	 * Cache the destination address of the packet; this may be
697 	 * changed by use of 'ipfw fwd'.
698 	 */
699 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
700 
701 	/*
702 	 * Enable a consistency check between the destination address
703 	 * and the arrival interface for a unicast packet (the RFC 1122
704 	 * strong ES model) if IP forwarding is disabled and the packet
705 	 * is not locally generated and the packet is not subject to
706 	 * 'ipfw fwd'.
707 	 *
708 	 * XXX - Checking also should be disabled if the destination
709 	 * address is ipnat'ed to a different interface.
710 	 *
711 	 * XXX - Checking is incompatible with IP aliases added
712 	 * to the loopback interface instead of the interface where
713 	 * the packets are received.
714 	 */
715 	checkif = ip_checkinterface &&
716 		  !ipforwarding &&
717 		  m->m_pkthdr.rcvif != NULL &&
718 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
719 		  next_hop == NULL;
720 
721 	/*
722 	 * Check for exact addresses in the hash bucket.
723 	 */
724 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
725 		ia = iac->ia;
726 
727 		/*
728 		 * If the address matches, verify that the packet
729 		 * arrived via the correct interface if checking is
730 		 * enabled.
731 		 */
732 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
733 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
734 			goto ours;
735 	}
736 	ia = NULL;
737 
738 	/*
739 	 * Check for broadcast addresses.
740 	 *
741 	 * Only accept broadcast packets that arrive via the matching
742 	 * interface.  Reception of forwarded directed broadcasts would
743 	 * be handled via ip_forward() and ether_output() with the loopback
744 	 * into the stack for SIMPLEX interfaces handled by ether_output().
745 	 */
746 	if (m->m_pkthdr.rcvif != NULL &&
747 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
748 		struct ifaddr_container *ifac;
749 
750 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
751 			      ifa_link) {
752 			struct ifaddr *ifa = ifac->ifa;
753 
754 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
755 				continue;
756 			if (ifa->ifa_addr->sa_family != AF_INET)
757 				continue;
758 			ia = ifatoia(ifa);
759 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
760 								pkt_dst.s_addr)
761 				goto ours;
762 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
763 				goto ours;
764 #ifdef BOOTP_COMPAT
765 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
766 				goto ours;
767 #endif
768 		}
769 	}
770 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
771 		struct in_multi *inm;
772 
773 		if (ip_mrouter != NULL) {
774 			/* XXX Multicast routing is not MPSAFE yet */
775 			get_mplock();
776 
777 			/*
778 			 * If we are acting as a multicast router, all
779 			 * incoming multicast packets are passed to the
780 			 * kernel-level multicast forwarding function.
781 			 * The packet is returned (relatively) intact; if
782 			 * ip_mforward() returns a non-zero value, the packet
783 			 * must be discarded, else it may be accepted below.
784 			 */
785 			if (ip_mforward != NULL &&
786 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
787 				rel_mplock();
788 				ipstat.ips_cantforward++;
789 				m_freem(m);
790 				return;
791 			}
792 
793 			rel_mplock();
794 
795 			/*
796 			 * The process-level routing daemon needs to receive
797 			 * all multicast IGMP packets, whether or not this
798 			 * host belongs to their destination groups.
799 			 */
800 			if (ip->ip_p == IPPROTO_IGMP)
801 				goto ours;
802 			ipstat.ips_forward++;
803 		}
804 		/*
805 		 * See if we belong to the destination multicast group on the
806 		 * arrival interface.
807 		 */
808 		inm = IN_LOOKUP_MULTI(&ip->ip_dst, m->m_pkthdr.rcvif);
809 		if (inm == NULL) {
810 			ipstat.ips_notmember++;
811 			m_freem(m);
812 			return;
813 		}
814 		goto ours;
815 	}
816 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
817 		goto ours;
818 	if (ip->ip_dst.s_addr == INADDR_ANY)
819 		goto ours;
820 
821 	/*
822 	 * FAITH(Firewall Aided Internet Translator)
823 	 */
824 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
825 		if (ip_keepfaith) {
826 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
827 				goto ours;
828 		}
829 		m_freem(m);
830 		return;
831 	}
832 
833 	/*
834 	 * Not for us; forward if possible and desirable.
835 	 */
836 	if (!ipforwarding) {
837 		ipstat.ips_cantforward++;
838 		m_freem(m);
839 	} else {
840 #ifdef IPSEC
841 		/*
842 		 * Enforce inbound IPsec SPD.
843 		 */
844 		if (ipsec4_in_reject(m, NULL)) {
845 			ipsecstat.in_polvio++;
846 			goto bad;
847 		}
848 #endif
849 #ifdef FAST_IPSEC
850 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
851 		crit_enter();
852 		if (mtag != NULL) {
853 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
854 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
855 		} else {
856 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
857 						   IP_FORWARDING, &error);
858 		}
859 		if (sp == NULL) {	/* NB: can happen if error */
860 			crit_exit();
861 			/*XXX error stat???*/
862 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
863 			goto bad;
864 		}
865 
866 		/*
867 		 * Check security policy against packet attributes.
868 		 */
869 		error = ipsec_in_reject(sp, m);
870 		KEY_FREESP(&sp);
871 		crit_exit();
872 		if (error) {
873 			ipstat.ips_cantforward++;
874 			goto bad;
875 		}
876 #endif
877 		ip_forward(m, using_srcrt, next_hop);
878 	}
879 	return;
880 
881 ours:
882 
883 	/*
884 	 * IPSTEALTH: Process non-routing options only
885 	 * if the packet is destined for us.
886 	 */
887 	if (ipstealth &&
888 	    hlen > sizeof(struct ip) &&
889 	    ip_dooptions(m, 1, next_hop))
890 		return;
891 
892 	/* Count the packet in the ip address stats */
893 	if (ia != NULL) {
894 		IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
895 		IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
896 	}
897 
898 	/*
899 	 * If offset or IP_MF are set, must reassemble.
900 	 * Otherwise, nothing need be done.
901 	 * (We could look in the reassembly queue to see
902 	 * if the packet was previously fragmented,
903 	 * but it's not worth the time; just let them time out.)
904 	 */
905 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
906 		/*
907 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
908 		 * will return a different mbuf.
909 		 *
910 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
911 		 *	 us to recharacterize the packet.
912 		 */
913 		m = ip_reass(m);
914 		if (m == NULL)
915 			return;
916 		ip = mtod(m, struct ip *);
917 
918 		/* Get the header length of the reassembled packet */
919 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
920 	} else {
921 		ip->ip_len -= hlen;
922 	}
923 
924 #ifdef IPSEC
925 	/*
926 	 * enforce IPsec policy checking if we are seeing last header.
927 	 * note that we do not visit this with protocols with pcb layer
928 	 * code - like udp/tcp/raw ip.
929 	 */
930 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
931 	    ipsec4_in_reject(m, NULL)) {
932 		ipsecstat.in_polvio++;
933 		goto bad;
934 	}
935 #endif
936 #ifdef FAST_IPSEC
937 	/*
938 	 * enforce IPsec policy checking if we are seeing last header.
939 	 * note that we do not visit this with protocols with pcb layer
940 	 * code - like udp/tcp/raw ip.
941 	 */
942 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
943 		/*
944 		 * Check if the packet has already had IPsec processing
945 		 * done.  If so, then just pass it along.  This tag gets
946 		 * set during AH, ESP, etc. input handling, before the
947 		 * packet is returned to the ip input queue for delivery.
948 		 */
949 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
950 		crit_enter();
951 		if (mtag != NULL) {
952 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
953 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
954 		} else {
955 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
956 						   IP_FORWARDING, &error);
957 		}
958 		if (sp != NULL) {
959 			/*
960 			 * Check security policy against packet attributes.
961 			 */
962 			error = ipsec_in_reject(sp, m);
963 			KEY_FREESP(&sp);
964 		} else {
965 			/* XXX error stat??? */
966 			error = EINVAL;
967 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
968 			crit_exit();
969 			goto bad;
970 		}
971 		crit_exit();
972 		if (error)
973 			goto bad;
974 	}
975 #endif /* FAST_IPSEC */
976 
977 	/*
978 	 * We must forward the packet to the correct protocol thread if
979 	 * we are not already in it.
980 	 *
981 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
982 	 *	 further for protocol processing, instead we pass hlen
983 	 *	 to the protosw and let it deal with it.
984 	 */
985 	ipstat.ips_delivered++;
986 
987 	if ((m->m_flags & M_HASH) == 0) {
988 #ifdef RSS_DEBUG
989 		atomic_add_long(&ip_rehash_count, 1);
990 #endif
991 		ip->ip_len = htons(ip->ip_len + hlen);
992 		ip->ip_off = htons(ip->ip_off);
993 
994 		ip_hashfn(&m, 0);
995 		if (m == NULL)
996 			return;
997 
998 		ip = mtod(m, struct ip *);
999 		ip->ip_len = ntohs(ip->ip_len) - hlen;
1000 		ip->ip_off = ntohs(ip->ip_off);
1001 		KKASSERT(m->m_flags & M_HASH);
1002 	}
1003 	port = netisr_hashport(m->m_pkthdr.hash);
1004 
1005 	if (port != &curthread->td_msgport) {
1006 		struct netmsg_packet *pmsg;
1007 
1008 #ifdef RSS_DEBUG
1009 		atomic_add_long(&ip_dispatch_slow, 1);
1010 #endif
1011 
1012 		pmsg = &m->m_hdr.mh_netmsg;
1013 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1014 			    0, transport_processing_handler);
1015 		pmsg->nm_packet = m;
1016 		pmsg->base.lmsg.u.ms_result = hlen;
1017 		lwkt_sendmsg(port, &pmsg->base.lmsg);
1018 	} else {
1019 #ifdef RSS_DEBUG
1020 		atomic_add_long(&ip_dispatch_fast, 1);
1021 #endif
1022 		transport_processing_oncpu(m, hlen, ip);
1023 	}
1024 	return;
1025 
1026 bad:
1027 	m_freem(m);
1028 }
1029 
1030 /*
1031  * Take incoming datagram fragment and try to reassemble it into
1032  * whole datagram.  If a chain for reassembly of this datagram already
1033  * exists, then it is given as fp; otherwise have to make a chain.
1034  */
1035 struct mbuf *
1036 ip_reass(struct mbuf *m)
1037 {
1038 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1039 	struct ip *ip = mtod(m, struct ip *);
1040 	struct mbuf *p = NULL, *q, *nq;
1041 	struct mbuf *n;
1042 	struct ipq *fp = NULL;
1043 	struct ipqhead *head;
1044 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1045 	int i, next;
1046 	u_short sum;
1047 
1048 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
1049 	if (maxnipq == 0 || maxfragsperpacket == 0) {
1050 		ipstat.ips_fragments++;
1051 		ipstat.ips_fragdropped++;
1052 		m_freem(m);
1053 		return NULL;
1054 	}
1055 
1056 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1057 	/*
1058 	 * Look for queue of fragments of this datagram.
1059 	 */
1060 	head = &fragq->ipq[sum];
1061 	TAILQ_FOREACH(fp, head, ipq_list) {
1062 		if (ip->ip_id == fp->ipq_id &&
1063 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1064 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1065 		    ip->ip_p == fp->ipq_p)
1066 			goto found;
1067 	}
1068 
1069 	fp = NULL;
1070 
1071 	/*
1072 	 * Enforce upper bound on number of fragmented packets
1073 	 * for which we attempt reassembly;
1074 	 * If maxnipq is -1, accept all fragments without limitation.
1075 	 */
1076 	if (fragq->nipq > maxnipq && maxnipq > 0) {
1077 		/*
1078 		 * drop something from the tail of the current queue
1079 		 * before proceeding further
1080 		 */
1081 		struct ipq *q = TAILQ_LAST(head, ipqhead);
1082 		if (q == NULL) {
1083 			/*
1084 			 * The current queue is empty,
1085 			 * so drop from one of the others.
1086 			 */
1087 			for (i = 0; i < IPREASS_NHASH; i++) {
1088 				struct ipq *r = TAILQ_LAST(&fragq->ipq[i],
1089 				    ipqhead);
1090 				if (r) {
1091 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1092 					ip_freef(fragq, &fragq->ipq[i], r);
1093 					break;
1094 				}
1095 			}
1096 		} else {
1097 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1098 			ip_freef(fragq, head, q);
1099 		}
1100 	}
1101 found:
1102 	/*
1103 	 * Adjust ip_len to not reflect header,
1104 	 * convert offset of this to bytes.
1105 	 */
1106 	ip->ip_len -= hlen;
1107 	if (ip->ip_off & IP_MF) {
1108 		/*
1109 		 * Make sure that fragments have a data length
1110 		 * that's a non-zero multiple of 8 bytes.
1111 		 */
1112 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1113 			ipstat.ips_toosmall++; /* XXX */
1114 			m_freem(m);
1115 			goto done;
1116 		}
1117 		m->m_flags |= M_FRAG;
1118 	} else {
1119 		m->m_flags &= ~M_FRAG;
1120 	}
1121 	ip->ip_off <<= 3;
1122 
1123 	ipstat.ips_fragments++;
1124 	m->m_pkthdr.header = ip;
1125 
1126 	/*
1127 	 * If the hardware has not done csum over this fragment
1128 	 * then csum_data is not valid at all.
1129 	 */
1130 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1131 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1132 		m->m_pkthdr.csum_data = 0;
1133 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1134 	}
1135 
1136 	/*
1137 	 * Presence of header sizes in mbufs
1138 	 * would confuse code below.
1139 	 */
1140 	m->m_data += hlen;
1141 	m->m_len -= hlen;
1142 
1143 	/*
1144 	 * If first fragment to arrive, create a reassembly queue.
1145 	 */
1146 	if (fp == NULL) {
1147 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1148 			goto dropfrag;
1149 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1150 		fragq->nipq++;
1151 		fp->ipq_nfrags = 1;
1152 		fp->ipq_ttl = IPFRAGTTL;
1153 		fp->ipq_p = ip->ip_p;
1154 		fp->ipq_id = ip->ip_id;
1155 		fp->ipq_src = ip->ip_src;
1156 		fp->ipq_dst = ip->ip_dst;
1157 		fp->ipq_frags = m;
1158 		m->m_nextpkt = NULL;
1159 		goto inserted;
1160 	}
1161 	fp->ipq_nfrags++;
1162 
1163 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1164 
1165 	/*
1166 	 * Find a segment which begins after this one does.
1167 	 */
1168 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1169 		if (GETIP(q)->ip_off > ip->ip_off)
1170 			break;
1171 	}
1172 
1173 	/*
1174 	 * If there is a preceding segment, it may provide some of
1175 	 * our data already.  If so, drop the data from the incoming
1176 	 * segment.  If it provides all of our data, drop us, otherwise
1177 	 * stick new segment in the proper place.
1178 	 *
1179 	 * If some of the data is dropped from the the preceding
1180 	 * segment, then it's checksum is invalidated.
1181 	 */
1182 	if (p) {
1183 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1184 		if (i > 0) {
1185 			if (i >= ip->ip_len)
1186 				goto dropfrag;
1187 			m_adj(m, i);
1188 			m->m_pkthdr.csum_flags = 0;
1189 			ip->ip_off += i;
1190 			ip->ip_len -= i;
1191 		}
1192 		m->m_nextpkt = p->m_nextpkt;
1193 		p->m_nextpkt = m;
1194 	} else {
1195 		m->m_nextpkt = fp->ipq_frags;
1196 		fp->ipq_frags = m;
1197 	}
1198 
1199 	/*
1200 	 * While we overlap succeeding segments trim them or,
1201 	 * if they are completely covered, dequeue them.
1202 	 */
1203 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1204 	     q = nq) {
1205 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1206 		if (i < GETIP(q)->ip_len) {
1207 			GETIP(q)->ip_len -= i;
1208 			GETIP(q)->ip_off += i;
1209 			m_adj(q, i);
1210 			q->m_pkthdr.csum_flags = 0;
1211 			break;
1212 		}
1213 		nq = q->m_nextpkt;
1214 		m->m_nextpkt = nq;
1215 		ipstat.ips_fragdropped++;
1216 		fp->ipq_nfrags--;
1217 		q->m_nextpkt = NULL;
1218 		m_freem(q);
1219 	}
1220 
1221 inserted:
1222 	/*
1223 	 * Check for complete reassembly and perform frag per packet
1224 	 * limiting.
1225 	 *
1226 	 * Frag limiting is performed here so that the nth frag has
1227 	 * a chance to complete the packet before we drop the packet.
1228 	 * As a result, n+1 frags are actually allowed per packet, but
1229 	 * only n will ever be stored. (n = maxfragsperpacket.)
1230 	 *
1231 	 */
1232 	next = 0;
1233 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1234 		if (GETIP(q)->ip_off != next) {
1235 			if (fp->ipq_nfrags > maxfragsperpacket) {
1236 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1237 				ip_freef(fragq, head, fp);
1238 			}
1239 			goto done;
1240 		}
1241 		next += GETIP(q)->ip_len;
1242 	}
1243 	/* Make sure the last packet didn't have the IP_MF flag */
1244 	if (p->m_flags & M_FRAG) {
1245 		if (fp->ipq_nfrags > maxfragsperpacket) {
1246 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1247 			ip_freef(fragq, head, fp);
1248 		}
1249 		goto done;
1250 	}
1251 
1252 	/*
1253 	 * Reassembly is complete.  Make sure the packet is a sane size.
1254 	 */
1255 	q = fp->ipq_frags;
1256 	ip = GETIP(q);
1257 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1258 		ipstat.ips_toolong++;
1259 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1260 		ip_freef(fragq, head, fp);
1261 		goto done;
1262 	}
1263 
1264 	/*
1265 	 * Concatenate fragments.
1266 	 */
1267 	m = q;
1268 	n = m->m_next;
1269 	m->m_next = NULL;
1270 	m_cat(m, n);
1271 	nq = q->m_nextpkt;
1272 	q->m_nextpkt = NULL;
1273 	for (q = nq; q != NULL; q = nq) {
1274 		nq = q->m_nextpkt;
1275 		q->m_nextpkt = NULL;
1276 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1277 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1278 		m_cat(m, q);
1279 	}
1280 
1281 	/*
1282 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1283 	 * be added back.  This assumes no more then 65535 packet fragments
1284 	 * were reassembled.  A second carry can also occur (but not a third).
1285 	 */
1286 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1287 				(m->m_pkthdr.csum_data >> 16);
1288 	if (m->m_pkthdr.csum_data > 0xFFFF)
1289 		m->m_pkthdr.csum_data -= 0xFFFF;
1290 
1291 	/*
1292 	 * Create header for new ip packet by
1293 	 * modifying header of first packet;
1294 	 * dequeue and discard fragment reassembly header.
1295 	 * Make header visible.
1296 	 */
1297 	ip->ip_len = next;
1298 	ip->ip_src = fp->ipq_src;
1299 	ip->ip_dst = fp->ipq_dst;
1300 	TAILQ_REMOVE(head, fp, ipq_list);
1301 	fragq->nipq--;
1302 	mpipe_free(&ipq_mpipe, fp);
1303 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1304 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1305 	/* some debugging cruft by sklower, below, will go away soon */
1306 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1307 		int plen = 0;
1308 
1309 		for (n = m; n; n = n->m_next)
1310 			plen += n->m_len;
1311 		m->m_pkthdr.len = plen;
1312 	}
1313 
1314 	/*
1315 	 * Reassembly complete, return the next protocol.
1316 	 *
1317 	 * Be sure to clear M_HASH to force the packet
1318 	 * to be re-characterized.
1319 	 *
1320 	 * Clear M_FRAG, we are no longer a fragment.
1321 	 */
1322 	m->m_flags &= ~(M_HASH | M_FRAG);
1323 
1324 	ipstat.ips_reassembled++;
1325 	return (m);
1326 
1327 dropfrag:
1328 	ipstat.ips_fragdropped++;
1329 	if (fp != NULL)
1330 		fp->ipq_nfrags--;
1331 	m_freem(m);
1332 done:
1333 	return (NULL);
1334 
1335 #undef GETIP
1336 }
1337 
1338 /*
1339  * Free a fragment reassembly header and all
1340  * associated datagrams.
1341  */
1342 static void
1343 ip_freef(struct ipfrag_queue *fragq, struct ipqhead *fhp, struct ipq *fp)
1344 {
1345 	struct mbuf *q;
1346 
1347 	/*
1348 	 * Remove first to protect against blocking
1349 	 */
1350 	TAILQ_REMOVE(fhp, fp, ipq_list);
1351 
1352 	/*
1353 	 * Clean out at our leisure
1354 	 */
1355 	while (fp->ipq_frags) {
1356 		q = fp->ipq_frags;
1357 		fp->ipq_frags = q->m_nextpkt;
1358 		q->m_nextpkt = NULL;
1359 		m_freem(q);
1360 	}
1361 	mpipe_free(&ipq_mpipe, fp);
1362 	fragq->nipq--;
1363 }
1364 
1365 /*
1366  * If a timer expires on a reassembly queue, discard it.
1367  */
1368 static void
1369 ipfrag_timeo_dispatch(netmsg_t nmsg)
1370 {
1371 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1372 	struct ipq *fp, *fp_temp;
1373 	struct ipqhead *head;
1374 	int i;
1375 
1376 	crit_enter();
1377 	netisr_replymsg(&nmsg->base, 0);  /* reply ASAP */
1378 	crit_exit();
1379 
1380 	if (fragq->nipq == 0)
1381 		goto done;
1382 
1383 	for (i = 0; i < IPREASS_NHASH; i++) {
1384 		head = &fragq->ipq[i];
1385 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1386 			if (--fp->ipq_ttl == 0) {
1387 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1388 				ip_freef(fragq, head, fp);
1389 			}
1390 		}
1391 	}
1392 	/*
1393 	 * If we are over the maximum number of fragments
1394 	 * (due to the limit being lowered), drain off
1395 	 * enough to get down to the new limit.
1396 	 */
1397 	if (maxnipq >= 0 && fragq->nipq > maxnipq) {
1398 		for (i = 0; i < IPREASS_NHASH; i++) {
1399 			head = &fragq->ipq[i];
1400 			while (fragq->nipq > maxnipq && !TAILQ_EMPTY(head)) {
1401 				ipstat.ips_fragdropped +=
1402 				    TAILQ_FIRST(head)->ipq_nfrags;
1403 				ip_freef(fragq, head, TAILQ_FIRST(head));
1404 			}
1405 		}
1406 	}
1407 done:
1408 	callout_reset(&fragq->timeo_ch, IPFRAG_TIMEO, ipfrag_timeo, NULL);
1409 }
1410 
1411 static void
1412 ipfrag_timeo(void *dummy __unused)
1413 {
1414 	struct netmsg_base *msg = &ipfrag_queue_pcpu[mycpuid].timeo_netmsg;
1415 
1416 	crit_enter();
1417 	if (msg->lmsg.ms_flags & MSGF_DONE)
1418 		netisr_sendmsg_oncpu(msg);
1419 	crit_exit();
1420 }
1421 
1422 /*
1423  * Drain off all datagram fragments.
1424  */
1425 static void
1426 ipfrag_drain_oncpu(struct ipfrag_queue *fragq)
1427 {
1428 	struct ipqhead *head;
1429 	int i;
1430 
1431 	for (i = 0; i < IPREASS_NHASH; i++) {
1432 		head = &fragq->ipq[i];
1433 		while (!TAILQ_EMPTY(head)) {
1434 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1435 			ip_freef(fragq, head, TAILQ_FIRST(head));
1436 		}
1437 	}
1438 }
1439 
1440 static void
1441 ipfrag_drain_dispatch(netmsg_t nmsg)
1442 {
1443 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1444 
1445 	crit_enter();
1446 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1447 	crit_exit();
1448 
1449 	ipfrag_drain_oncpu(fragq);
1450 	fragq->draining = 0;
1451 }
1452 
1453 static void
1454 ipfrag_drain_ipi(void *arg __unused)
1455 {
1456 	int cpu = mycpuid;
1457 	struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].drain_netmsg.lmsg;
1458 
1459 	crit_enter();
1460 	if (msg->ms_flags & MSGF_DONE)
1461 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1462 	crit_exit();
1463 }
1464 
1465 static void
1466 ipfrag_drain(void)
1467 {
1468 	cpumask_t mask;
1469 	int cpu;
1470 
1471 	CPUMASK_ASSBMASK(mask, netisr_ncpus);
1472 	CPUMASK_ANDMASK(mask, smp_active_mask);
1473 
1474 	if (IN_NETISR_NCPUS(mycpuid)) {
1475 		ipfrag_drain_oncpu(&ipfrag_queue_pcpu[mycpuid]);
1476 		CPUMASK_NANDBIT(mask, mycpuid);
1477 	}
1478 
1479 	for (cpu = 0; cpu < netisr_ncpus; ++cpu) {
1480 		struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[cpu];
1481 
1482 		if (!CPUMASK_TESTBIT(mask, cpu))
1483 			continue;
1484 
1485 		if (fragq->nipq == 0 || fragq->draining) {
1486 			/* No fragments or is draining; skip this cpu. */
1487 			CPUMASK_NANDBIT(mask, cpu);
1488 			continue;
1489 		}
1490 		fragq->draining = 1;
1491 	}
1492 
1493 	if (CPUMASK_TESTNZERO(mask))
1494 		lwkt_send_ipiq_mask(mask, ipfrag_drain_ipi, NULL);
1495 }
1496 
1497 void
1498 ip_drain(void)
1499 {
1500 	ipfrag_drain();
1501 	in_rtqdrain();
1502 }
1503 
1504 /*
1505  * Do option processing on a datagram,
1506  * possibly discarding it if bad options are encountered,
1507  * or forwarding it if source-routed.
1508  * The pass argument is used when operating in the IPSTEALTH
1509  * mode to tell what options to process:
1510  * [LS]SRR (pass 0) or the others (pass 1).
1511  * The reason for as many as two passes is that when doing IPSTEALTH,
1512  * non-routing options should be processed only if the packet is for us.
1513  * Returns 1 if packet has been forwarded/freed,
1514  * 0 if the packet should be processed further.
1515  */
1516 static int
1517 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1518 {
1519 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1520 	struct ip *ip = mtod(m, struct ip *);
1521 	u_char *cp;
1522 	struct in_ifaddr *ia;
1523 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1524 	boolean_t forward = FALSE;
1525 	struct in_addr *sin, dst;
1526 	n_time ntime;
1527 
1528 	dst = ip->ip_dst;
1529 	cp = (u_char *)(ip + 1);
1530 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1531 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1532 		opt = cp[IPOPT_OPTVAL];
1533 		if (opt == IPOPT_EOL)
1534 			break;
1535 		if (opt == IPOPT_NOP)
1536 			optlen = 1;
1537 		else {
1538 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1539 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1540 				goto bad;
1541 			}
1542 			optlen = cp[IPOPT_OLEN];
1543 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1544 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1545 				goto bad;
1546 			}
1547 		}
1548 		switch (opt) {
1549 
1550 		default:
1551 			break;
1552 
1553 		/*
1554 		 * Source routing with record.
1555 		 * Find interface with current destination address.
1556 		 * If none on this machine then drop if strictly routed,
1557 		 * or do nothing if loosely routed.
1558 		 * Record interface address and bring up next address
1559 		 * component.  If strictly routed make sure next
1560 		 * address is on directly accessible net.
1561 		 */
1562 		case IPOPT_LSRR:
1563 		case IPOPT_SSRR:
1564 			if (ipstealth && pass > 0)
1565 				break;
1566 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1567 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1568 				goto bad;
1569 			}
1570 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1571 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1572 				goto bad;
1573 			}
1574 			ipaddr.sin_addr = ip->ip_dst;
1575 			ia = (struct in_ifaddr *)
1576 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1577 			if (ia == NULL) {
1578 				if (opt == IPOPT_SSRR) {
1579 					type = ICMP_UNREACH;
1580 					code = ICMP_UNREACH_SRCFAIL;
1581 					goto bad;
1582 				}
1583 				if (!ip_dosourceroute)
1584 					goto nosourcerouting;
1585 				/*
1586 				 * Loose routing, and not at next destination
1587 				 * yet; nothing to do except forward.
1588 				 */
1589 				break;
1590 			}
1591 			off--;			/* 0 origin */
1592 			if (off > optlen - (int)sizeof(struct in_addr)) {
1593 				/*
1594 				 * End of source route.  Should be for us.
1595 				 */
1596 				if (!ip_acceptsourceroute)
1597 					goto nosourcerouting;
1598 				save_rte(m, cp, ip->ip_src);
1599 				break;
1600 			}
1601 			if (ipstealth)
1602 				goto dropit;
1603 			if (!ip_dosourceroute) {
1604 				if (ipforwarding) {
1605 					char sbuf[INET_ADDRSTRLEN];
1606 					char dbuf[INET_ADDRSTRLEN];
1607 
1608 					/*
1609 					 * Acting as a router, so generate ICMP
1610 					 */
1611 nosourcerouting:
1612 					log(LOG_WARNING,
1613 					    "attempted source route from %s to %s\n",
1614 					    kinet_ntoa(ip->ip_src, sbuf),
1615 					    kinet_ntoa(ip->ip_dst, dbuf));
1616 					type = ICMP_UNREACH;
1617 					code = ICMP_UNREACH_SRCFAIL;
1618 					goto bad;
1619 				} else {
1620 					/*
1621 					 * Not acting as a router,
1622 					 * so silently drop.
1623 					 */
1624 dropit:
1625 					ipstat.ips_cantforward++;
1626 					m_freem(m);
1627 					return (1);
1628 				}
1629 			}
1630 
1631 			/*
1632 			 * locate outgoing interface
1633 			 */
1634 			memcpy(&ipaddr.sin_addr, cp + off,
1635 			    sizeof ipaddr.sin_addr);
1636 
1637 			if (opt == IPOPT_SSRR) {
1638 #define	INA	struct in_ifaddr *
1639 #define	SA	struct sockaddr *
1640 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1641 									== NULL)
1642 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1643 			} else {
1644 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1645 			}
1646 			if (ia == NULL) {
1647 				type = ICMP_UNREACH;
1648 				code = ICMP_UNREACH_SRCFAIL;
1649 				goto bad;
1650 			}
1651 			ip->ip_dst = ipaddr.sin_addr;
1652 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1653 			    sizeof(struct in_addr));
1654 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1655 			/*
1656 			 * Let ip_intr's mcast routing check handle mcast pkts
1657 			 */
1658 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1659 			break;
1660 
1661 		case IPOPT_RR:
1662 			if (ipstealth && pass == 0)
1663 				break;
1664 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1665 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1666 				goto bad;
1667 			}
1668 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1669 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1670 				goto bad;
1671 			}
1672 			/*
1673 			 * If no space remains, ignore.
1674 			 */
1675 			off--;			/* 0 origin */
1676 			if (off > optlen - (int)sizeof(struct in_addr))
1677 				break;
1678 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1679 			    sizeof ipaddr.sin_addr);
1680 			/*
1681 			 * locate outgoing interface; if we're the destination,
1682 			 * use the incoming interface (should be same).
1683 			 */
1684 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1685 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1686 				type = ICMP_UNREACH;
1687 				code = ICMP_UNREACH_HOST;
1688 				goto bad;
1689 			}
1690 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1691 			    sizeof(struct in_addr));
1692 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1693 			break;
1694 
1695 		case IPOPT_TS:
1696 			if (ipstealth && pass == 0)
1697 				break;
1698 			code = cp - (u_char *)ip;
1699 			if (optlen < 4 || optlen > 40) {
1700 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1701 				goto bad;
1702 			}
1703 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1704 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1705 				goto bad;
1706 			}
1707 			if (off > optlen - (int)sizeof(int32_t)) {
1708 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1709 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1710 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1711 					goto bad;
1712 				}
1713 				break;
1714 			}
1715 			off--;				/* 0 origin */
1716 			sin = (struct in_addr *)(cp + off);
1717 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1718 
1719 			case IPOPT_TS_TSONLY:
1720 				break;
1721 
1722 			case IPOPT_TS_TSANDADDR:
1723 				if (off + sizeof(n_time) +
1724 				    sizeof(struct in_addr) > optlen) {
1725 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1726 					goto bad;
1727 				}
1728 				ipaddr.sin_addr = dst;
1729 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1730 							    m->m_pkthdr.rcvif);
1731 				if (ia == NULL)
1732 					continue;
1733 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1734 				    sizeof(struct in_addr));
1735 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1736 				off += sizeof(struct in_addr);
1737 				break;
1738 
1739 			case IPOPT_TS_PRESPEC:
1740 				if (off + sizeof(n_time) +
1741 				    sizeof(struct in_addr) > optlen) {
1742 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1743 					goto bad;
1744 				}
1745 				memcpy(&ipaddr.sin_addr, sin,
1746 				    sizeof(struct in_addr));
1747 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1748 					continue;
1749 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1750 				off += sizeof(struct in_addr);
1751 				break;
1752 
1753 			default:
1754 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1755 				goto bad;
1756 			}
1757 			ntime = iptime();
1758 			memcpy(cp + off, &ntime, sizeof(n_time));
1759 			cp[IPOPT_OFFSET] += sizeof(n_time);
1760 		}
1761 	}
1762 	if (forward && ipforwarding) {
1763 		ip_forward(m, TRUE, next_hop);
1764 		return (1);
1765 	}
1766 	return (0);
1767 bad:
1768 	icmp_error(m, type, code, 0, 0);
1769 	ipstat.ips_badoptions++;
1770 	return (1);
1771 }
1772 
1773 /*
1774  * Given address of next destination (final or next hop),
1775  * return internet address info of interface to be used to get there.
1776  */
1777 struct in_ifaddr *
1778 ip_rtaddr(struct in_addr dst, struct route *ro0)
1779 {
1780 	struct route sro, *ro;
1781 	struct sockaddr_in *sin;
1782 	struct in_ifaddr *ia;
1783 
1784 	if (ro0 != NULL) {
1785 		ro = ro0;
1786 	} else {
1787 		bzero(&sro, sizeof(sro));
1788 		ro = &sro;
1789 	}
1790 
1791 	sin = (struct sockaddr_in *)&ro->ro_dst;
1792 
1793 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1794 		if (ro->ro_rt != NULL) {
1795 			RTFREE(ro->ro_rt);
1796 			ro->ro_rt = NULL;
1797 		}
1798 		sin->sin_family = AF_INET;
1799 		sin->sin_len = sizeof *sin;
1800 		sin->sin_addr = dst;
1801 		rtalloc_ign(ro, RTF_PRCLONING);
1802 	}
1803 
1804 	if (ro->ro_rt == NULL)
1805 		return (NULL);
1806 
1807 	ia = ifatoia(ro->ro_rt->rt_ifa);
1808 
1809 	if (ro == &sro)
1810 		RTFREE(ro->ro_rt);
1811 	return ia;
1812 }
1813 
1814 /*
1815  * Save incoming source route for use in replies,
1816  * to be picked up later by ip_srcroute if the receiver is interested.
1817  */
1818 static void
1819 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1820 {
1821 	struct m_tag *mtag;
1822 	struct ip_srcrt_opt *opt;
1823 	unsigned olen;
1824 
1825 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), M_NOWAIT);
1826 	if (mtag == NULL)
1827 		return;
1828 	opt = m_tag_data(mtag);
1829 
1830 	olen = option[IPOPT_OLEN];
1831 #ifdef DIAGNOSTIC
1832 	if (ipprintfs)
1833 		kprintf("save_rte: olen %d\n", olen);
1834 #endif
1835 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1836 		m_tag_free(mtag);
1837 		return;
1838 	}
1839 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1840 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1841 	opt->ip_srcrt.dst = dst;
1842 	m_tag_prepend(m, mtag);
1843 }
1844 
1845 /*
1846  * Retrieve incoming source route for use in replies,
1847  * in the same form used by setsockopt.
1848  * The first hop is placed before the options, will be removed later.
1849  */
1850 struct mbuf *
1851 ip_srcroute(struct mbuf *m0)
1852 {
1853 	struct in_addr *p, *q;
1854 	struct mbuf *m;
1855 	struct m_tag *mtag;
1856 	struct ip_srcrt_opt *opt;
1857 
1858 	if (m0 == NULL)
1859 		return NULL;
1860 
1861 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1862 	if (mtag == NULL)
1863 		return NULL;
1864 	opt = m_tag_data(mtag);
1865 
1866 	if (opt->ip_nhops == 0)
1867 		return (NULL);
1868 	m = m_get(M_NOWAIT, MT_HEADER);
1869 	if (m == NULL)
1870 		return (NULL);
1871 
1872 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1873 
1874 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1875 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1876 		   sizeof(struct in_addr) + OPTSIZ;
1877 #ifdef DIAGNOSTIC
1878 	if (ipprintfs) {
1879 		kprintf("ip_srcroute: nhops %d mlen %d",
1880 			opt->ip_nhops, m->m_len);
1881 	}
1882 #endif
1883 
1884 	/*
1885 	 * First save first hop for return route
1886 	 */
1887 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1888 	*(mtod(m, struct in_addr *)) = *p--;
1889 #ifdef DIAGNOSTIC
1890 	if (ipprintfs)
1891 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1892 #endif
1893 
1894 	/*
1895 	 * Copy option fields and padding (nop) to mbuf.
1896 	 */
1897 	opt->ip_srcrt.nop = IPOPT_NOP;
1898 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1899 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1900 	    OPTSIZ);
1901 	q = (struct in_addr *)(mtod(m, caddr_t) +
1902 	    sizeof(struct in_addr) + OPTSIZ);
1903 #undef OPTSIZ
1904 	/*
1905 	 * Record return path as an IP source route,
1906 	 * reversing the path (pointers are now aligned).
1907 	 */
1908 	while (p >= opt->ip_srcrt.route) {
1909 #ifdef DIAGNOSTIC
1910 		if (ipprintfs)
1911 			kprintf(" %x", ntohl(q->s_addr));
1912 #endif
1913 		*q++ = *p--;
1914 	}
1915 	/*
1916 	 * Last hop goes to final destination.
1917 	 */
1918 	*q = opt->ip_srcrt.dst;
1919 	m_tag_delete(m0, mtag);
1920 #ifdef DIAGNOSTIC
1921 	if (ipprintfs)
1922 		kprintf(" %x\n", ntohl(q->s_addr));
1923 #endif
1924 	return (m);
1925 }
1926 
1927 /*
1928  * Strip out IP options.
1929  */
1930 void
1931 ip_stripoptions(struct mbuf *m)
1932 {
1933 	int datalen;
1934 	struct ip *ip = mtod(m, struct ip *);
1935 	caddr_t opts;
1936 	int optlen;
1937 
1938 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1939 	opts = (caddr_t)(ip + 1);
1940 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1941 	bcopy(opts + optlen, opts, datalen);
1942 	m->m_len -= optlen;
1943 	if (m->m_flags & M_PKTHDR)
1944 		m->m_pkthdr.len -= optlen;
1945 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1946 }
1947 
1948 u_char inetctlerrmap[PRC_NCMDS] = {
1949 	0,		0,		0,		0,
1950 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1951 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1952 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1953 	0,		0,		0,		0,
1954 	ENOPROTOOPT,	ECONNREFUSED
1955 };
1956 
1957 /*
1958  * Forward a packet.  If some error occurs return the sender
1959  * an icmp packet.  Note we can't always generate a meaningful
1960  * icmp message because icmp doesn't have a large enough repertoire
1961  * of codes and types.
1962  *
1963  * If not forwarding, just drop the packet.  This could be confusing
1964  * if ipforwarding was zero but some routing protocol was advancing
1965  * us as a gateway to somewhere.  However, we must let the routing
1966  * protocol deal with that.
1967  *
1968  * The using_srcrt parameter indicates whether the packet is being forwarded
1969  * via a source route.
1970  */
1971 void
1972 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1973 {
1974 	struct ip *ip = mtod(m, struct ip *);
1975 	struct rtentry *rt;
1976 	struct route fwd_ro;
1977 	int error, type = 0, code = 0, destmtu = 0;
1978 	struct mbuf *mcopy, *mtemp = NULL;
1979 	n_long dest;
1980 	struct in_addr pkt_dst;
1981 
1982 	dest = INADDR_ANY;
1983 	/*
1984 	 * Cache the destination address of the packet; this may be
1985 	 * changed by use of 'ipfw fwd'.
1986 	 */
1987 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1988 
1989 #ifdef DIAGNOSTIC
1990 	if (ipprintfs)
1991 		kprintf("forward: src %x dst %x ttl %x\n",
1992 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1993 #endif
1994 
1995 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1996 		ipstat.ips_cantforward++;
1997 		m_freem(m);
1998 		return;
1999 	}
2000 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
2001 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
2002 		return;
2003 	}
2004 
2005 	bzero(&fwd_ro, sizeof(fwd_ro));
2006 	ip_rtaddr(pkt_dst, &fwd_ro);
2007 	if (fwd_ro.ro_rt == NULL) {
2008 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
2009 		return;
2010 	}
2011 	rt = fwd_ro.ro_rt;
2012 
2013 	if (curthread->td_type == TD_TYPE_NETISR) {
2014 		/*
2015 		 * Save the IP header and at most 8 bytes of the payload,
2016 		 * in case we need to generate an ICMP message to the src.
2017 		 */
2018 		mtemp = ipforward_mtemp[mycpuid];
2019 		KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2020 		    mtemp->m_data == mtemp->m_pktdat &&
2021 		    m_tag_first(mtemp) == NULL,
2022 		    ("ip_forward invalid mtemp1"));
2023 
2024 		if (!m_dup_pkthdr(mtemp, m, M_NOWAIT)) {
2025 			/*
2026 			 * It's probably ok if the pkthdr dup fails (because
2027 			 * the deep copy of the tag chain failed), but for now
2028 			 * be conservative and just discard the copy since
2029 			 * code below may some day want the tags.
2030 			 */
2031 			mtemp = NULL;
2032 		} else {
2033 			mtemp->m_type = m->m_type;
2034 			mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2035 			    (int)ip->ip_len);
2036 			mtemp->m_pkthdr.len = mtemp->m_len;
2037 			m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
2038 		}
2039 	}
2040 
2041 	if (!ipstealth)
2042 		ip->ip_ttl -= IPTTLDEC;
2043 
2044 	/*
2045 	 * If forwarding packet using same interface that it came in on,
2046 	 * perhaps should send a redirect to sender to shortcut a hop.
2047 	 * Only send redirect if source is sending directly to us,
2048 	 * and if packet was not source routed (or has any options).
2049 	 * Also, don't send redirect if forwarding using a default route
2050 	 * or a route modified by a redirect.
2051 	 */
2052 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2053 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
2054 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
2055 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
2056 		u_long src = ntohl(ip->ip_src.s_addr);
2057 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
2058 
2059 		if (rt_ifa != NULL &&
2060 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
2061 			if (rt->rt_flags & RTF_GATEWAY)
2062 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2063 			else
2064 				dest = pkt_dst.s_addr;
2065 			/*
2066 			 * Router requirements says to only send
2067 			 * host redirects.
2068 			 */
2069 			type = ICMP_REDIRECT;
2070 			code = ICMP_REDIRECT_HOST;
2071 #ifdef DIAGNOSTIC
2072 			if (ipprintfs)
2073 				kprintf("redirect (%d) to %x\n", code, dest);
2074 #endif
2075 		}
2076 	}
2077 
2078 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
2079 	if (error == 0) {
2080 		ipstat.ips_forward++;
2081 		if (type == 0) {
2082 			if (mtemp)
2083 				ipflow_create(&fwd_ro, mtemp);
2084 			goto done;
2085 		}
2086 		ipstat.ips_redirectsent++;
2087 	} else {
2088 		ipstat.ips_cantforward++;
2089 	}
2090 
2091 	if (mtemp == NULL)
2092 		goto done;
2093 
2094 	/*
2095 	 * Errors that do not require generating ICMP message
2096 	 */
2097 	switch (error) {
2098 	case ENOBUFS:
2099 		/*
2100 		 * A router should not generate ICMP_SOURCEQUENCH as
2101 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2102 		 * Source quench could be a big problem under DoS attacks,
2103 		 * or if the underlying interface is rate-limited.
2104 		 * Those who need source quench packets may re-enable them
2105 		 * via the net.inet.ip.sendsourcequench sysctl.
2106 		 */
2107 		if (!ip_sendsourcequench)
2108 			goto done;
2109 		break;
2110 
2111 	case EACCES:			/* ipfw denied packet */
2112 		goto done;
2113 	}
2114 
2115 	KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2116 	    mtemp->m_data == mtemp->m_pktdat,
2117 	    ("ip_forward invalid mtemp2"));
2118 	mcopy = m_copym(mtemp, 0, mtemp->m_len, M_NOWAIT);
2119 	if (mcopy == NULL)
2120 		goto done;
2121 
2122 	/*
2123 	 * Send ICMP message.
2124 	 */
2125 	switch (error) {
2126 	case 0:				/* forwarded, but need redirect */
2127 		/* type, code set above */
2128 		break;
2129 
2130 	case ENETUNREACH:		/* shouldn't happen, checked above */
2131 	case EHOSTUNREACH:
2132 	case ENETDOWN:
2133 	case EHOSTDOWN:
2134 	default:
2135 		type = ICMP_UNREACH;
2136 		code = ICMP_UNREACH_HOST;
2137 		break;
2138 
2139 	case EMSGSIZE:
2140 		type = ICMP_UNREACH;
2141 		code = ICMP_UNREACH_NEEDFRAG;
2142 #ifdef IPSEC
2143 		/*
2144 		 * If the packet is routed over IPsec tunnel, tell the
2145 		 * originator the tunnel MTU.
2146 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2147 		 * XXX quickhack!!!
2148 		 */
2149 		if (fwd_ro.ro_rt != NULL) {
2150 			struct secpolicy *sp = NULL;
2151 			int ipsecerror;
2152 			int ipsechdr;
2153 			struct route *ro;
2154 
2155 			sp = ipsec4_getpolicybyaddr(mcopy,
2156 						    IPSEC_DIR_OUTBOUND,
2157 						    IP_FORWARDING,
2158 						    &ipsecerror);
2159 
2160 			if (sp == NULL)
2161 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2162 			else {
2163 				/* count IPsec header size */
2164 				ipsechdr = ipsec4_hdrsiz(mcopy,
2165 							 IPSEC_DIR_OUTBOUND,
2166 							 NULL);
2167 
2168 				/*
2169 				 * find the correct route for outer IPv4
2170 				 * header, compute tunnel MTU.
2171 				 *
2172 				 */
2173 				if (sp->req != NULL && sp->req->sav != NULL &&
2174 				    sp->req->sav->sah != NULL) {
2175 					ro = &sp->req->sav->sah->sa_route;
2176 					if (ro->ro_rt != NULL &&
2177 					    ro->ro_rt->rt_ifp != NULL) {
2178 						destmtu =
2179 						    ro->ro_rt->rt_ifp->if_mtu;
2180 						destmtu -= ipsechdr;
2181 					}
2182 				}
2183 
2184 				key_freesp(sp);
2185 			}
2186 		}
2187 #elif defined(FAST_IPSEC)
2188 		/*
2189 		 * If the packet is routed over IPsec tunnel, tell the
2190 		 * originator the tunnel MTU.
2191 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2192 		 * XXX quickhack!!!
2193 		 */
2194 		if (fwd_ro.ro_rt != NULL) {
2195 			struct secpolicy *sp = NULL;
2196 			int ipsecerror;
2197 			int ipsechdr;
2198 			struct route *ro;
2199 
2200 			sp = ipsec_getpolicybyaddr(mcopy,
2201 						   IPSEC_DIR_OUTBOUND,
2202 						   IP_FORWARDING,
2203 						   &ipsecerror);
2204 
2205 			if (sp == NULL)
2206 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2207 			else {
2208 				/* count IPsec header size */
2209 				ipsechdr = ipsec4_hdrsiz(mcopy,
2210 							 IPSEC_DIR_OUTBOUND,
2211 							 NULL);
2212 
2213 				/*
2214 				 * find the correct route for outer IPv4
2215 				 * header, compute tunnel MTU.
2216 				 */
2217 
2218 				if (sp->req != NULL &&
2219 				    sp->req->sav != NULL &&
2220 				    sp->req->sav->sah != NULL) {
2221 					ro = &sp->req->sav->sah->sa_route;
2222 					if (ro->ro_rt != NULL &&
2223 					    ro->ro_rt->rt_ifp != NULL) {
2224 						destmtu =
2225 						    ro->ro_rt->rt_ifp->if_mtu;
2226 						destmtu -= ipsechdr;
2227 					}
2228 				}
2229 
2230 				KEY_FREESP(&sp);
2231 			}
2232 		}
2233 #else /* !IPSEC && !FAST_IPSEC */
2234 		if (fwd_ro.ro_rt != NULL)
2235 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2236 #endif /*IPSEC*/
2237 		ipstat.ips_cantfrag++;
2238 		break;
2239 
2240 	case ENOBUFS:
2241 		type = ICMP_SOURCEQUENCH;
2242 		code = 0;
2243 		break;
2244 
2245 	case EACCES:			/* ipfw denied packet */
2246 		panic("ip_forward EACCES should not reach");
2247 	}
2248 	icmp_error(mcopy, type, code, dest, destmtu);
2249 done:
2250 	if (mtemp != NULL)
2251 		m_tag_delete_chain(mtemp);
2252 	if (fwd_ro.ro_rt != NULL)
2253 		RTFREE(fwd_ro.ro_rt);
2254 }
2255 
2256 void
2257 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2258 	       struct mbuf *m)
2259 {
2260 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2261 		struct timeval tv;
2262 
2263 		microtime(&tv);
2264 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2265 		    SCM_TIMESTAMP, SOL_SOCKET);
2266 		if (*mp)
2267 			mp = &(*mp)->m_next;
2268 	}
2269 	if (inp->inp_flags & INP_RECVDSTADDR) {
2270 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2271 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2272 		if (*mp)
2273 			mp = &(*mp)->m_next;
2274 	}
2275 	if (inp->inp_flags & INP_RECVTTL) {
2276 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2277 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2278 		if (*mp)
2279 			mp = &(*mp)->m_next;
2280 	}
2281 #ifdef notyet
2282 	/* XXX
2283 	 * Moving these out of udp_input() made them even more broken
2284 	 * than they already were.
2285 	 */
2286 	/* options were tossed already */
2287 	if (inp->inp_flags & INP_RECVOPTS) {
2288 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2289 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2290 		if (*mp)
2291 			mp = &(*mp)->m_next;
2292 	}
2293 	/* ip_srcroute doesn't do what we want here, need to fix */
2294 	if (inp->inp_flags & INP_RECVRETOPTS) {
2295 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2296 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2297 		if (*mp)
2298 			mp = &(*mp)->m_next;
2299 	}
2300 #endif
2301 	if (inp->inp_flags & INP_RECVIF) {
2302 		struct ifnet *ifp;
2303 		struct sdlbuf {
2304 			struct sockaddr_dl sdl;
2305 			u_char	pad[32];
2306 		} sdlbuf;
2307 		struct sockaddr_dl *sdp;
2308 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2309 
2310 		if (((ifp = m->m_pkthdr.rcvif)) &&
2311 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2312 			sdp = IF_LLSOCKADDR(ifp);
2313 			/*
2314 			 * Change our mind and don't try copy.
2315 			 */
2316 			if ((sdp->sdl_family != AF_LINK) ||
2317 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2318 				goto makedummy;
2319 			}
2320 			bcopy(sdp, sdl2, sdp->sdl_len);
2321 		} else {
2322 makedummy:
2323 			sdl2->sdl_len =
2324 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2325 			sdl2->sdl_family = AF_LINK;
2326 			sdl2->sdl_index = 0;
2327 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2328 		}
2329 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2330 			IP_RECVIF, IPPROTO_IP);
2331 		if (*mp)
2332 			mp = &(*mp)->m_next;
2333 	}
2334 }
2335 
2336 /*
2337  * XXX these routines are called from the upper part of the kernel.
2338  *
2339  * They could also be moved to ip_mroute.c, since all the RSVP
2340  *  handling is done there already.
2341  */
2342 int
2343 ip_rsvp_init(struct socket *so)
2344 {
2345 	if (so->so_type != SOCK_RAW ||
2346 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2347 		return EOPNOTSUPP;
2348 
2349 	if (ip_rsvpd != NULL)
2350 		return EADDRINUSE;
2351 
2352 	ip_rsvpd = so;
2353 	/*
2354 	 * This may seem silly, but we need to be sure we don't over-increment
2355 	 * the RSVP counter, in case something slips up.
2356 	 */
2357 	if (!ip_rsvp_on) {
2358 		ip_rsvp_on = 1;
2359 		rsvp_on++;
2360 	}
2361 
2362 	return 0;
2363 }
2364 
2365 int
2366 ip_rsvp_done(void)
2367 {
2368 	ip_rsvpd = NULL;
2369 	/*
2370 	 * This may seem silly, but we need to be sure we don't over-decrement
2371 	 * the RSVP counter, in case something slips up.
2372 	 */
2373 	if (ip_rsvp_on) {
2374 		ip_rsvp_on = 0;
2375 		rsvp_on--;
2376 	}
2377 	return 0;
2378 }
2379 
2380 int
2381 rsvp_input(struct mbuf **mp, int *offp, int proto)
2382 {
2383 	struct mbuf *m = *mp;
2384 
2385 	*mp = NULL;
2386 
2387 	if (rsvp_input_p) { /* call the real one if loaded */
2388 		*mp = m;
2389 		rsvp_input_p(mp, offp, proto);
2390 		return(IPPROTO_DONE);
2391 	}
2392 
2393 	/* Can still get packets with rsvp_on = 0 if there is a local member
2394 	 * of the group to which the RSVP packet is addressed.  But in this
2395 	 * case we want to throw the packet away.
2396 	 */
2397 
2398 	if (!rsvp_on) {
2399 		m_freem(m);
2400 		return(IPPROTO_DONE);
2401 	}
2402 
2403 	if (ip_rsvpd != NULL) {
2404 		*mp = m;
2405 		rip_input(mp, offp, proto);
2406 		return(IPPROTO_DONE);
2407 	}
2408 	/* Drop the packet */
2409 	m_freem(m);
2410 	return(IPPROTO_DONE);
2411 }
2412