xref: /dflybsd-src/sys/netinet/ip_input.c (revision f7e25d559127833cbbb89b74fcf0cc036406459b)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *	This product includes software developed by Jeffrey M. Hsu
43  *	for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50 
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1993
53  *	The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *	This product includes software developed by the University of
66  *	California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
84  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
85  * $DragonFly: src/sys/netinet/ip_input.c,v 1.40 2004/12/21 02:54:15 hsu Exp $
86  */
87 
88 #define	_IP_VHL
89 
90 #include "opt_bootp.h"
91 #include "opt_ipfw.h"
92 #include "opt_ipdn.h"
93 #include "opt_ipdivert.h"
94 #include "opt_ipfilter.h"
95 #include "opt_ipstealth.h"
96 #include "opt_ipsec.h"
97 #include "opt_random_ip_id.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/mbuf.h>
102 #include <sys/malloc.h>
103 #include <sys/mpipe.h>
104 #include <sys/domain.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/time.h>
108 #include <sys/globaldata.h>
109 #include <sys/thread.h>
110 #include <sys/kernel.h>
111 #include <sys/syslog.h>
112 #include <sys/sysctl.h>
113 #include <sys/in_cksum.h>
114 
115 #include <sys/thread2.h>
116 #include <sys/msgport2.h>
117 
118 #include <machine/stdarg.h>
119 
120 #include <net/if.h>
121 #include <net/if_types.h>
122 #include <net/if_var.h>
123 #include <net/if_dl.h>
124 #include <net/pfil.h>
125 #include <net/route.h>
126 #include <net/netisr.h>
127 #include <net/intrq.h>
128 
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/in_var.h>
132 #include <netinet/ip.h>
133 #include <netinet/in_pcb.h>
134 #include <netinet/ip_var.h>
135 #include <netinet/ip_icmp.h>
136 
137 
138 #include <sys/socketvar.h>
139 
140 #include <net/ipfw/ip_fw.h>
141 #include <net/dummynet/ip_dummynet.h>
142 
143 #ifdef IPSEC
144 #include <netinet6/ipsec.h>
145 #include <netproto/key/key.h>
146 #endif
147 
148 #ifdef FAST_IPSEC
149 #include <netproto/ipsec/ipsec.h>
150 #include <netproto/ipsec/key.h>
151 #endif
152 
153 int rsvp_on = 0;
154 static int ip_rsvp_on;
155 struct socket *ip_rsvpd;
156 
157 int ipforwarding = 0;
158 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
159     &ipforwarding, 0, "Enable IP forwarding between interfaces");
160 
161 static int ipsendredirects = 1; /* XXX */
162 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
163     &ipsendredirects, 0, "Enable sending IP redirects");
164 
165 int ip_defttl = IPDEFTTL;
166 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
167     &ip_defttl, 0, "Maximum TTL on IP packets");
168 
169 static int ip_dosourceroute = 0;
170 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
171     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
172 
173 static int ip_acceptsourceroute = 0;
174 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
175     CTLFLAG_RW, &ip_acceptsourceroute, 0,
176     "Enable accepting source routed IP packets");
177 
178 static int ip_keepfaith = 0;
179 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
180     &ip_keepfaith, 0,
181     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
182 
183 static int nipq = 0;	/* total # of reass queues */
184 static int maxnipq;
185 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
186     &maxnipq, 0,
187     "Maximum number of IPv4 fragment reassembly queue entries");
188 
189 static int maxfragsperpacket;
190 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
191     &maxfragsperpacket, 0,
192     "Maximum number of IPv4 fragments allowed per packet");
193 
194 static int ip_sendsourcequench = 0;
195 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
196     &ip_sendsourcequench, 0,
197     "Enable the transmission of source quench packets");
198 
199 /*
200  * XXX - Setting ip_checkinterface mostly implements the receive side of
201  * the Strong ES model described in RFC 1122, but since the routing table
202  * and transmit implementation do not implement the Strong ES model,
203  * setting this to 1 results in an odd hybrid.
204  *
205  * XXX - ip_checkinterface currently must be disabled if you use ipnat
206  * to translate the destination address to another local interface.
207  *
208  * XXX - ip_checkinterface must be disabled if you add IP aliases
209  * to the loopback interface instead of the interface where the
210  * packets for those addresses are received.
211  */
212 static int ip_checkinterface = 0;
213 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
214     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
215 
216 #ifdef DIAGNOSTIC
217 static int ipprintfs = 0;
218 #endif
219 
220 static struct ifqueue ipintrq;
221 static int ipqmaxlen = IFQ_MAXLEN;
222 
223 extern	struct domain inetdomain;
224 extern	struct protosw inetsw[];
225 u_char	ip_protox[IPPROTO_MAX];
226 struct	in_ifaddrhead in_ifaddrhead;		/* first inet address */
227 struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table */
228 u_long	in_ifaddrhmask;				/* mask for hash table */
229 
230 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
231     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
232 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
233     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
234 
235 struct ip_stats ipstats_ary[MAXCPU];
236 #ifdef SMP
237 static int
238 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
239 {
240 	int cpu, error = 0;
241 
242 	for (cpu = 0; cpu < ncpus; ++cpu) {
243 		if ((error = SYSCTL_OUT(req, &ipstats_ary[cpu],
244 					sizeof(struct ip_stats))))
245 			break;
246 		if ((error = SYSCTL_IN(req, &ipstats_ary[cpu],
247 				       sizeof(struct ip_stats))))
248 			break;
249 	}
250 
251 	return (error);
252 }
253 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
254     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
255 #else
256 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
257     &ipstat, ip_stats, "IP statistics");
258 #endif
259 
260 /* Packet reassembly stuff */
261 #define	IPREASS_NHASH_LOG2	6
262 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
263 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
264 #define	IPREASS_HASH(x,y)						\
265     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
266 
267 static struct ipq ipq[IPREASS_NHASH];
268 const  int    ipintrq_present = 1;
269 
270 #ifdef IPCTL_DEFMTU
271 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
272     &ip_mtu, 0, "Default MTU");
273 #endif
274 
275 #ifdef IPSTEALTH
276 static int ipstealth = 0;
277 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
278 #else
279 static const int ipstealth = 0;
280 #endif
281 
282 
283 /* Firewall hooks */
284 ip_fw_chk_t *ip_fw_chk_ptr;
285 int fw_enable = 1;
286 int fw_one_pass = 1;
287 
288 /* Dummynet hooks */
289 ip_dn_io_t *ip_dn_io_ptr;
290 
291 struct pfil_head inet_pfil_hook;
292 
293 /*
294  * XXX this is ugly -- the following two global variables are
295  * used to store packet state while it travels through the stack.
296  * Note that the code even makes assumptions on the size and
297  * alignment of fields inside struct ip_srcrt so e.g. adding some
298  * fields will break the code. This needs to be fixed.
299  *
300  * We need to save the IP options in case a protocol wants to respond
301  * to an incoming packet over the same route if the packet got here
302  * using IP source routing.  This allows connection establishment and
303  * maintenance when the remote end is on a network that is not known
304  * to us.
305  */
306 static int ip_nhops = 0;
307 
308 static	struct ip_srcrt {
309 	struct	in_addr dst;			/* final destination */
310 	char	nop;				/* one NOP to align */
311 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
312 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
313 } ip_srcrt;
314 
315 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
316 static struct malloc_pipe ipq_mpipe;
317 
318 static void		save_rte (u_char *, struct in_addr);
319 static int		ip_dooptions (struct mbuf *m, int,
320 					struct sockaddr_in *next_hop);
321 static void		ip_forward (struct mbuf *m, int srcrt,
322 					struct sockaddr_in *next_hop);
323 static void		ip_freef (struct ipq *);
324 static int		ip_input_handler (struct netmsg *);
325 static struct mbuf	*ip_reass (struct mbuf *, struct ipq *,
326 					struct ipq *, u_int32_t *, u_int16_t *);
327 
328 /*
329  * IP initialization: fill in IP protocol switch table.
330  * All protocols not implemented in kernel go to raw IP protocol handler.
331  */
332 void
333 ip_init(void)
334 {
335 	struct protosw *pr;
336 	int i;
337 #ifdef SMP
338 	int cpu;
339 #endif
340 
341 	/*
342 	 * Make sure we can handle a reasonable number of fragments but
343 	 * cap it at 4000 (XXX).
344 	 */
345 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
346 		    IFQ_MAXLEN, 4000, 0, NULL);
347 	TAILQ_INIT(&in_ifaddrhead);
348 	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
349 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
350 	if (pr == NULL)
351 		panic("ip_init");
352 	for (i = 0; i < IPPROTO_MAX; i++)
353 		ip_protox[i] = pr - inetsw;
354 	for (pr = inetdomain.dom_protosw;
355 	     pr < inetdomain.dom_protoswNPROTOSW; pr++)
356 		if (pr->pr_domain->dom_family == PF_INET &&
357 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
358 			ip_protox[pr->pr_protocol] = pr - inetsw;
359 
360 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
361 	inet_pfil_hook.ph_af = AF_INET;
362 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
363 		printf("%s: WARNING: unable to register pfil hook, "
364 			"error %d\n", __func__, i);
365 	}
366 
367 	for (i = 0; i < IPREASS_NHASH; i++)
368 	    ipq[i].next = ipq[i].prev = &ipq[i];
369 
370 	maxnipq = nmbclusters / 32;
371 	maxfragsperpacket = 16;
372 
373 #ifndef RANDOM_IP_ID
374 	ip_id = time_second & 0xffff;
375 #endif
376 	ipintrq.ifq_maxlen = ipqmaxlen;
377 
378 	/*
379 	 * Initialize IP statistics.
380 	 *
381 	 * It is layed out as an array which is has one element for UP,
382 	 * and SMP_MAXCPU elements for SMP.  This allows us to retain
383 	 * the access mechanism from userland for both UP and SMP.
384 	 */
385 #ifdef SMP
386 	for (cpu = 0; cpu < ncpus; ++cpu) {
387 		bzero(&ipstats_ary[cpu], sizeof(struct ip_stats));
388 	}
389 #else
390 	bzero(&ipstat, sizeof(struct ip_stats));
391 #endif
392 
393 	netisr_register(NETISR_IP, ip_mport, ip_input_handler);
394 }
395 
396 /*
397  * XXX watch out this one. It is perhaps used as a cache for
398  * the most recently used route ? it is cleared in in_addroute()
399  * when a new route is successfully created.
400  */
401 struct route ipforward_rt;
402 static struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
403 
404 /* Do transport protocol processing. */
405 static void
406 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
407 			   struct sockaddr_in *nexthop)
408 {
409 	/*
410 	 * Switch out to protocol's input routine.
411 	 */
412 	if (nexthop && ip->ip_p == IPPROTO_TCP) {
413 		/* TCP needs IPFORWARD info if available */
414 		struct m_hdr tag;
415 
416 		tag.mh_type = MT_TAG;
417 		tag.mh_flags = PACKET_TAG_IPFORWARD;
418 		tag.mh_data = (caddr_t)nexthop;
419 		tag.mh_next = m;
420 
421 		(*inetsw[ip_protox[ip->ip_p]].pr_input)
422 		    ((struct mbuf *)&tag, hlen, ip->ip_p);
423 	} else {
424 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
425 	}
426 }
427 
428 struct netmsg_transport_packet {
429 	struct lwkt_msg		nm_lmsg;
430 	struct mbuf		*nm_mbuf;
431 	int			nm_hlen;
432 	boolean_t		nm_hasnexthop;
433 	struct sockaddr_in	nm_nexthop;
434 };
435 
436 static int
437 transport_processing_handler(lwkt_msg_t lmsg)
438 {
439 	struct netmsg_transport_packet *msg = (void *)lmsg;
440 	struct sockaddr_in *nexthop;
441 	struct ip *ip;
442 
443 	ip = mtod(msg->nm_mbuf, struct ip *);
444 	nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
445 	transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
446 	lwkt_replymsg(lmsg, 0);
447 	return(EASYNC);
448 }
449 
450 static int
451 ip_input_handler(struct netmsg *msg0)
452 {
453 	struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
454 
455 	ip_input(m);
456 	lwkt_replymsg(&msg0->nm_lmsg, 0);
457 	return(EASYNC);
458 }
459 
460 /*
461  * Ip input routine.  Checksum and byte swap header.  If fragmented
462  * try to reassemble.  Process options.  Pass to next level.
463  */
464 void
465 ip_input(struct mbuf *m)
466 {
467 	struct ip *ip;
468 	struct ipq *fp;
469 	struct in_ifaddr *ia = NULL;
470 	struct ifaddr *ifa;
471 	int i, hlen, checkif;
472 	u_short sum;
473 	struct in_addr pkt_dst;
474 	u_int32_t divert_info = 0;		/* packet divert/tee info */
475 	struct ip_fw_args args;
476 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
477 	boolean_t needredispatch = FALSE;
478 	struct in_addr odst;			/* original dst address(NAT) */
479 #ifdef FAST_IPSEC
480 	struct m_tag *mtag;
481 	struct tdb_ident *tdbi;
482 	struct secpolicy *sp;
483 	int s, error;
484 #endif
485 
486 	args.eh = NULL;
487 	args.oif = NULL;
488 	args.rule = NULL;
489 	args.divert_rule = 0;			/* divert cookie */
490 	args.next_hop = NULL;
491 
492 	/* Grab info from MT_TAG mbufs prepended to the chain. */
493 	for (; m && m->m_type == MT_TAG; m = m->m_next) {
494 		switch(m->_m_tag_id) {
495 		default:
496 			printf("ip_input: unrecognised MT_TAG tag %d\n",
497 			    m->_m_tag_id);
498 			break;
499 
500 		case PACKET_TAG_DUMMYNET:
501 			args.rule = ((struct dn_pkt *)m)->rule;
502 			break;
503 
504 		case PACKET_TAG_DIVERT:
505 			args.divert_rule = (int)m->m_hdr.mh_data & 0xffff;
506 			break;
507 
508 		case PACKET_TAG_IPFORWARD:
509 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
510 			break;
511 		}
512 	}
513 
514 	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
515 	    ("ip_input: no HDR"));
516 
517 	if (args.rule) {	/* dummynet already filtered us */
518 		ip = mtod(m, struct ip *);
519 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
520 		goto iphack;
521 	}
522 
523 	ipstat.ips_total++;
524 
525 	/* length checks already done in ip_demux() */
526 	KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
527 
528 	ip = mtod(m, struct ip *);
529 
530 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
531 		ipstat.ips_badvers++;
532 		goto bad;
533 	}
534 
535 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
536 	/* length checks already done in ip_demux() */
537 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
538 	KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
539 
540 	/* 127/8 must not appear on wire - RFC1122 */
541 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
542 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
543 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
544 			ipstat.ips_badaddr++;
545 			goto bad;
546 		}
547 	}
548 
549 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
550 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
551 	} else {
552 		if (hlen == sizeof(struct ip)) {
553 			sum = in_cksum_hdr(ip);
554 		} else {
555 			sum = in_cksum(m, hlen);
556 		}
557 	}
558 	if (sum) {
559 		ipstat.ips_badsum++;
560 		goto bad;
561 	}
562 
563 	/*
564 	 * Convert fields to host representation.
565 	 */
566 	ip->ip_len = ntohs(ip->ip_len);
567 	if (ip->ip_len < hlen) {
568 		ipstat.ips_badlen++;
569 		goto bad;
570 	}
571 	ip->ip_off = ntohs(ip->ip_off);
572 
573 	/*
574 	 * Check that the amount of data in the buffers
575 	 * is as at least much as the IP header would have us expect.
576 	 * Trim mbufs if longer than we expect.
577 	 * Drop packet if shorter than we expect.
578 	 */
579 	if (m->m_pkthdr.len < ip->ip_len) {
580 		ipstat.ips_tooshort++;
581 		goto bad;
582 	}
583 	if (m->m_pkthdr.len > ip->ip_len) {
584 		if (m->m_len == m->m_pkthdr.len) {
585 			m->m_len = ip->ip_len;
586 			m->m_pkthdr.len = ip->ip_len;
587 		} else
588 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
589 	}
590 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
591 	/*
592 	 * Bypass packet filtering for packets from a tunnel (gif).
593 	 */
594 	if (ipsec_gethist(m, NULL))
595 		goto pass;
596 #endif
597 
598 	/*
599 	 * IpHack's section.
600 	 * Right now when no processing on packet has done
601 	 * and it is still fresh out of network we do our black
602 	 * deals with it.
603 	 * - Firewall: deny/allow/divert
604 	 * - Xlate: translate packet's addr/port (NAT).
605 	 * - Pipe: pass pkt through dummynet.
606 	 * - Wrap: fake packet's addr/port <unimpl.>
607 	 * - Encapsulate: put it in another IP and send out. <unimp.>
608 	 */
609 
610 iphack:
611 
612 	/*
613 	 * Run through list of hooks for input packets.
614 	 *
615 	 * NB: Beware of the destination address changing (e.g.
616 	 *     by NAT rewriting). When this happens, tell
617 	 *     ip_forward to do the right thing.
618 	 */
619 	if (pfil_has_hooks(&inet_pfil_hook)) {
620 		odst = ip->ip_dst;
621 		if (pfil_run_hooks(&inet_pfil_hook, &m,
622 		    m->m_pkthdr.rcvif, PFIL_IN)) {
623 			return;
624 		}
625 		if (m == NULL)			/* consumed by filter */
626 			return;
627 		ip = mtod(m, struct ip *);
628 		using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
629 	}
630 
631 	if (fw_enable && IPFW_LOADED) {
632 		/*
633 		 * If we've been forwarded from the output side, then
634 		 * skip the firewall a second time
635 		 */
636 		if (args.next_hop)
637 			goto ours;
638 
639 		args.m = m;
640 		i = ip_fw_chk_ptr(&args);
641 		m = args.m;
642 
643 		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
644 			if (m)
645 				m_freem(m);
646 			return;
647 		}
648 		ip = mtod(m, struct ip *); /* just in case m changed */
649 		if (i == 0 && args.next_hop == NULL)	/* common case */
650 			goto pass;
651 		if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
652 			/* Send packet to the appropriate pipe */
653 			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
654 			return;
655 		}
656 #ifdef IPDIVERT
657 		if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
658 			/* Divert or tee packet */
659 			divert_info = i;
660 			goto ours;
661 		}
662 #endif
663 		if (i == 0 && args.next_hop != NULL)
664 			goto pass;
665 		/*
666 		 * if we get here, the packet must be dropped
667 		 */
668 		m_freem(m);
669 		return;
670 	}
671 pass:
672 
673 	/*
674 	 * Process options and, if not destined for us,
675 	 * ship it on.  ip_dooptions returns 1 when an
676 	 * error was detected (causing an icmp message
677 	 * to be sent and the original packet to be freed).
678 	 */
679 	ip_nhops = 0;		/* for source routed packets */
680 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
681 		return;
682 
683 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
684 	 * matter if it is destined to another node, or whether it is
685 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
686 	 * anywhere else. Also checks if the rsvp daemon is running before
687 	 * grabbing the packet.
688 	 */
689 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
690 		goto ours;
691 
692 	/*
693 	 * Check our list of addresses, to see if the packet is for us.
694 	 * If we don't have any addresses, assume any unicast packet
695 	 * we receive might be for us (and let the upper layers deal
696 	 * with it).
697 	 */
698 	if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
699 		goto ours;
700 
701 	/*
702 	 * Cache the destination address of the packet; this may be
703 	 * changed by use of 'ipfw fwd'.
704 	 */
705 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
706 
707 	/*
708 	 * Enable a consistency check between the destination address
709 	 * and the arrival interface for a unicast packet (the RFC 1122
710 	 * strong ES model) if IP forwarding is disabled and the packet
711 	 * is not locally generated and the packet is not subject to
712 	 * 'ipfw fwd'.
713 	 *
714 	 * XXX - Checking also should be disabled if the destination
715 	 * address is ipnat'ed to a different interface.
716 	 *
717 	 * XXX - Checking is incompatible with IP aliases added
718 	 * to the loopback interface instead of the interface where
719 	 * the packets are received.
720 	 */
721 	checkif = ip_checkinterface &&
722 		  !ipforwarding &&
723 		  m->m_pkthdr.rcvif != NULL &&
724 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
725 		  (args.next_hop == NULL);
726 
727 	/*
728 	 * Check for exact addresses in the hash bucket.
729 	 */
730 	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
731 		/*
732 		 * If the address matches, verify that the packet
733 		 * arrived via the correct interface if checking is
734 		 * enabled.
735 		 */
736 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
737 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
738 			goto ours;
739 	}
740 	/*
741 	 * Check for broadcast addresses.
742 	 *
743 	 * Only accept broadcast packets that arrive via the matching
744 	 * interface.  Reception of forwarded directed broadcasts would
745 	 * be handled via ip_forward() and ether_output() with the loopback
746 	 * into the stack for SIMPLEX interfaces handled by ether_output().
747 	 */
748 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
749 		TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
750 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
751 				continue;
752 			if (ifa->ifa_addr->sa_family != AF_INET)
753 				continue;
754 			ia = ifatoia(ifa);
755 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
756 								pkt_dst.s_addr)
757 				goto ours;
758 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
759 				goto ours;
760 #ifdef BOOTP_COMPAT
761 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
762 				goto ours;
763 #endif
764 		}
765 	}
766 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
767 		struct in_multi *inm;
768 		if (ip_mrouter) {
769 			/*
770 			 * If we are acting as a multicast router, all
771 			 * incoming multicast packets are passed to the
772 			 * kernel-level multicast forwarding function.
773 			 * The packet is returned (relatively) intact; if
774 			 * ip_mforward() returns a non-zero value, the packet
775 			 * must be discarded, else it may be accepted below.
776 			 */
777 			if (ip_mforward &&
778 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
779 				ipstat.ips_cantforward++;
780 				m_freem(m);
781 				return;
782 			}
783 
784 			/*
785 			 * The process-level routing daemon needs to receive
786 			 * all multicast IGMP packets, whether or not this
787 			 * host belongs to their destination groups.
788 			 */
789 			if (ip->ip_p == IPPROTO_IGMP)
790 				goto ours;
791 			ipstat.ips_forward++;
792 		}
793 		/*
794 		 * See if we belong to the destination multicast group on the
795 		 * arrival interface.
796 		 */
797 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
798 		if (inm == NULL) {
799 			ipstat.ips_notmember++;
800 			m_freem(m);
801 			return;
802 		}
803 		goto ours;
804 	}
805 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
806 		goto ours;
807 	if (ip->ip_dst.s_addr == INADDR_ANY)
808 		goto ours;
809 
810 	/*
811 	 * FAITH(Firewall Aided Internet Translator)
812 	 */
813 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
814 		if (ip_keepfaith) {
815 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
816 				goto ours;
817 		}
818 		m_freem(m);
819 		return;
820 	}
821 
822 	/*
823 	 * Not for us; forward if possible and desirable.
824 	 */
825 	if (!ipforwarding) {
826 		ipstat.ips_cantforward++;
827 		m_freem(m);
828 	} else {
829 #ifdef IPSEC
830 		/*
831 		 * Enforce inbound IPsec SPD.
832 		 */
833 		if (ipsec4_in_reject(m, NULL)) {
834 			ipsecstat.in_polvio++;
835 			goto bad;
836 		}
837 #endif
838 #ifdef FAST_IPSEC
839 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
840 		s = splnet();
841 		if (mtag != NULL) {
842 			tdbi = (struct tdb_ident *)(mtag + 1);
843 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
844 		} else {
845 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
846 						   IP_FORWARDING, &error);
847 		}
848 		if (sp == NULL) {	/* NB: can happen if error */
849 			splx(s);
850 			/*XXX error stat???*/
851 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
852 			goto bad;
853 		}
854 
855 		/*
856 		 * Check security policy against packet attributes.
857 		 */
858 		error = ipsec_in_reject(sp, m);
859 		KEY_FREESP(&sp);
860 		splx(s);
861 		if (error) {
862 			ipstat.ips_cantforward++;
863 			goto bad;
864 		}
865 #endif
866 		ip_forward(m, using_srcrt, args.next_hop);
867 	}
868 	return;
869 
870 ours:
871 
872 	/*
873 	 * IPSTEALTH: Process non-routing options only
874 	 * if the packet is destined for us.
875 	 */
876 	if (ipstealth &&
877 	    hlen > sizeof(struct ip) &&
878 	    ip_dooptions(m, 1, args.next_hop))
879 		return;
880 
881 	/* Count the packet in the ip address stats */
882 	if (ia != NULL) {
883 		ia->ia_ifa.if_ipackets++;
884 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
885 	}
886 
887 	/*
888 	 * If offset or IP_MF are set, must reassemble.
889 	 * Otherwise, nothing need be done.
890 	 * (We could look in the reassembly queue to see
891 	 * if the packet was previously fragmented,
892 	 * but it's not worth the time; just let them time out.)
893 	 */
894 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
895 
896 		/* If maxnipq is 0, never accept fragments. */
897 		if (maxnipq == 0) {
898 			ipstat.ips_fragments++;
899 			ipstat.ips_fragdropped++;
900 			goto bad;
901 		}
902 
903 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
904 		/*
905 		 * Look for queue of fragments
906 		 * of this datagram.
907 		 */
908 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
909 			if (ip->ip_id == fp->ipq_id &&
910 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
911 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
912 			    ip->ip_p == fp->ipq_p)
913 				goto found;
914 
915 		fp = NULL;
916 
917 		/*
918 		 * Enforce upper bound on number of fragmented packets
919 		 * for which we attempt reassembly;
920 		 * If maxnipq is -1, accept all fragments without limitation.
921 		 */
922 		if ((nipq > maxnipq) && (maxnipq > 0)) {
923 			/*
924 			 * drop something from the tail of the current queue
925 			 * before proceeding further
926 			 */
927 			if (ipq[sum].prev == &ipq[sum]) {   /* gak */
928 				for (i = 0; i < IPREASS_NHASH; i++) {
929 					if (ipq[i].prev != &ipq[i]) {
930 						ipstat.ips_fragtimeout +=
931 						    ipq[i].prev->ipq_nfrags;
932 						ip_freef(ipq[i].prev);
933 						break;
934 					}
935 				}
936 			} else {
937 				ipstat.ips_fragtimeout +=
938 				    ipq[sum].prev->ipq_nfrags;
939 				ip_freef(ipq[sum].prev);
940 			}
941 		}
942 found:
943 		/*
944 		 * Adjust ip_len to not reflect header,
945 		 * convert offset of this to bytes.
946 		 */
947 		ip->ip_len -= hlen;
948 		if (ip->ip_off & IP_MF) {
949 			/*
950 			 * Make sure that fragments have a data length
951 			 * that's a non-zero multiple of 8 bytes.
952 			 */
953 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
954 				ipstat.ips_toosmall++; /* XXX */
955 				goto bad;
956 			}
957 			m->m_flags |= M_FRAG;
958 		} else
959 			m->m_flags &= ~M_FRAG;
960 		ip->ip_off <<= 3;
961 
962 		/*
963 		 * Attempt reassembly; if it succeeds, proceed.
964 		 * ip_reass() will return a different mbuf, and update
965 		 * the divert info in divert_info and args.divert_rule.
966 		 */
967 		ipstat.ips_fragments++;
968 		m->m_pkthdr.header = ip;
969 		m = ip_reass(m, fp, &ipq[sum], &divert_info, &args.divert_rule);
970 		if (m == NULL)
971 			return;
972 		ipstat.ips_reassembled++;
973 		needredispatch = TRUE;
974 		ip = mtod(m, struct ip *);
975 		/* Get the header length of the reassembled packet */
976 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
977 #ifdef IPDIVERT
978 		/* Restore original checksum before diverting packet */
979 		if (divert_info != 0) {
980 			ip->ip_len += hlen;
981 			ip->ip_len = htons(ip->ip_len);
982 			ip->ip_off = htons(ip->ip_off);
983 			ip->ip_sum = 0;
984 			if (hlen == sizeof(struct ip))
985 				ip->ip_sum = in_cksum_hdr(ip);
986 			else
987 				ip->ip_sum = in_cksum(m, hlen);
988 			ip->ip_off = ntohs(ip->ip_off);
989 			ip->ip_len = ntohs(ip->ip_len);
990 			ip->ip_len -= hlen;
991 		}
992 #endif
993 	} else {
994 		ip->ip_len -= hlen;
995 	}
996 
997 #ifdef IPDIVERT
998 	/*
999 	 * Divert or tee packet to the divert protocol if required.
1000 	 */
1001 	if (divert_info != 0) {
1002 		struct mbuf *clone = NULL;
1003 
1004 		/* Clone packet if we're doing a 'tee' */
1005 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
1006 			clone = m_dup(m, MB_DONTWAIT);
1007 
1008 		/* Restore packet header fields to original values */
1009 		ip->ip_len += hlen;
1010 		ip->ip_len = htons(ip->ip_len);
1011 		ip->ip_off = htons(ip->ip_off);
1012 
1013 		/* Deliver packet to divert input routine */
1014 		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
1015 		ipstat.ips_delivered++;
1016 
1017 		/* If 'tee', continue with original packet */
1018 		if (clone == NULL)
1019 			return;
1020 		m = clone;
1021 		ip = mtod(m, struct ip *);
1022 		ip->ip_len += hlen;
1023 		/*
1024 		 * Jump backwards to complete processing of the
1025 		 * packet. But first clear divert_info to avoid
1026 		 * entering this block again.
1027 		 * We do not need to clear args.divert_rule
1028 		 * or args.next_hop as they will not be used.
1029 		 */
1030 		divert_info = 0;
1031 		goto pass;
1032 	}
1033 #endif
1034 
1035 #ifdef IPSEC
1036 	/*
1037 	 * enforce IPsec policy checking if we are seeing last header.
1038 	 * note that we do not visit this with protocols with pcb layer
1039 	 * code - like udp/tcp/raw ip.
1040 	 */
1041 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1042 	    ipsec4_in_reject(m, NULL)) {
1043 		ipsecstat.in_polvio++;
1044 		goto bad;
1045 	}
1046 #endif
1047 #if FAST_IPSEC
1048 	/*
1049 	 * enforce IPsec policy checking if we are seeing last header.
1050 	 * note that we do not visit this with protocols with pcb layer
1051 	 * code - like udp/tcp/raw ip.
1052 	 */
1053 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1054 		/*
1055 		 * Check if the packet has already had IPsec processing
1056 		 * done.  If so, then just pass it along.  This tag gets
1057 		 * set during AH, ESP, etc. input handling, before the
1058 		 * packet is returned to the ip input queue for delivery.
1059 		 */
1060 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1061 		s = splnet();
1062 		if (mtag != NULL) {
1063 			tdbi = (struct tdb_ident *)(mtag + 1);
1064 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1065 		} else {
1066 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1067 						   IP_FORWARDING, &error);
1068 		}
1069 		if (sp != NULL) {
1070 			/*
1071 			 * Check security policy against packet attributes.
1072 			 */
1073 			error = ipsec_in_reject(sp, m);
1074 			KEY_FREESP(&sp);
1075 		} else {
1076 			/* XXX error stat??? */
1077 			error = EINVAL;
1078 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1079 			goto bad;
1080 		}
1081 		splx(s);
1082 		if (error)
1083 			goto bad;
1084 	}
1085 #endif /* FAST_IPSEC */
1086 
1087 	ipstat.ips_delivered++;
1088 	if (needredispatch) {
1089 		struct netmsg_transport_packet *msg;
1090 		lwkt_port_t port;
1091 
1092 		msg = malloc(sizeof(struct netmsg_transport_packet),
1093 				M_LWKTMSG, M_INTWAIT | M_NULLOK);
1094 		if (msg == NULL)
1095 			goto bad;
1096 
1097 		lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1098 			lwkt_cmd_func(transport_processing_handler),
1099 			lwkt_cmd_op_none);
1100 		msg->nm_hlen = hlen;
1101 		msg->nm_hasnexthop = (args.next_hop != NULL);
1102 		if (msg->nm_hasnexthop)
1103 			msg->nm_nexthop = *args.next_hop;  /* structure copy */
1104 
1105 		ip->ip_off = htons(ip->ip_off);
1106 		ip->ip_len = htons(ip->ip_len);
1107 		port = ip_mport(&m);
1108 		if (port) {
1109 		    msg->nm_mbuf = m;
1110 		    ip = mtod(m, struct ip *);
1111 		    ip->ip_len = ntohs(ip->ip_len);
1112 		    ip->ip_off = ntohs(ip->ip_off);
1113 		    lwkt_sendmsg(port, &msg->nm_lmsg);
1114 		}
1115 	} else {
1116 		transport_processing_oncpu(m, hlen, ip, args.next_hop);
1117 	}
1118 	return;
1119 
1120 bad:
1121 	m_freem(m);
1122 }
1123 
1124 /*
1125  * Take incoming datagram fragment and try to reassemble it into
1126  * whole datagram.  If a chain for reassembly of this datagram already
1127  * exists, then it is given as fp; otherwise have to make a chain.
1128  *
1129  * When IPDIVERT enabled, keep additional state with each packet that
1130  * tells us if we need to divert or tee the packet we're building.
1131  * In particular, *divinfo includes the port and TEE flag,
1132  * *divert_rule is the number of the matching rule.
1133  */
1134 
1135 static struct mbuf *
1136 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1137 	 u_int32_t *divinfo, u_int16_t *divert_rule)
1138 {
1139 	struct ip *ip = mtod(m, struct ip *);
1140 	struct mbuf *p = NULL, *q, *nq;
1141 	struct mbuf *n;
1142 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1143 	int i, next;
1144 
1145 	/*
1146 	 * Presence of header sizes in mbufs
1147 	 * would confuse code below.
1148 	 */
1149 	m->m_data += hlen;
1150 	m->m_len -= hlen;
1151 
1152 	/*
1153 	 * If first fragment to arrive, create a reassembly queue.
1154 	 */
1155 	if (fp == NULL) {
1156 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1157 			goto dropfrag;
1158 		insque(fp, where);
1159 		nipq++;
1160 		fp->ipq_nfrags = 1;
1161 		fp->ipq_ttl = IPFRAGTTL;
1162 		fp->ipq_p = ip->ip_p;
1163 		fp->ipq_id = ip->ip_id;
1164 		fp->ipq_src = ip->ip_src;
1165 		fp->ipq_dst = ip->ip_dst;
1166 		fp->ipq_frags = m;
1167 		m->m_nextpkt = NULL;
1168 #ifdef IPDIVERT
1169 		fp->ipq_div_info = 0;
1170 		fp->ipq_div_cookie = 0;
1171 #endif
1172 		goto inserted;
1173 	} else {
1174 		fp->ipq_nfrags++;
1175 	}
1176 
1177 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1178 
1179 	/*
1180 	 * Find a segment which begins after this one does.
1181 	 */
1182 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1183 		if (GETIP(q)->ip_off > ip->ip_off)
1184 			break;
1185 
1186 	/*
1187 	 * If there is a preceding segment, it may provide some of
1188 	 * our data already.  If so, drop the data from the incoming
1189 	 * segment.  If it provides all of our data, drop us, otherwise
1190 	 * stick new segment in the proper place.
1191 	 *
1192 	 * If some of the data is dropped from the the preceding
1193 	 * segment, then it's checksum is invalidated.
1194 	 */
1195 	if (p) {
1196 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1197 		if (i > 0) {
1198 			if (i >= ip->ip_len)
1199 				goto dropfrag;
1200 			m_adj(m, i);
1201 			m->m_pkthdr.csum_flags = 0;
1202 			ip->ip_off += i;
1203 			ip->ip_len -= i;
1204 		}
1205 		m->m_nextpkt = p->m_nextpkt;
1206 		p->m_nextpkt = m;
1207 	} else {
1208 		m->m_nextpkt = fp->ipq_frags;
1209 		fp->ipq_frags = m;
1210 	}
1211 
1212 	/*
1213 	 * While we overlap succeeding segments trim them or,
1214 	 * if they are completely covered, dequeue them.
1215 	 */
1216 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1217 	     q = nq) {
1218 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1219 		if (i < GETIP(q)->ip_len) {
1220 			GETIP(q)->ip_len -= i;
1221 			GETIP(q)->ip_off += i;
1222 			m_adj(q, i);
1223 			q->m_pkthdr.csum_flags = 0;
1224 			break;
1225 		}
1226 		nq = q->m_nextpkt;
1227 		m->m_nextpkt = nq;
1228 		ipstat.ips_fragdropped++;
1229 		fp->ipq_nfrags--;
1230 		m_freem(q);
1231 	}
1232 
1233 inserted:
1234 
1235 #ifdef IPDIVERT
1236 	/*
1237 	 * Transfer firewall instructions to the fragment structure.
1238 	 * Only trust info in the fragment at offset 0.
1239 	 */
1240 	if (ip->ip_off == 0) {
1241 		fp->ipq_div_info = *divinfo;
1242 		fp->ipq_div_cookie = *divert_rule;
1243 	}
1244 	*divinfo = 0;
1245 	*divert_rule = 0;
1246 #endif
1247 
1248 	/*
1249 	 * Check for complete reassembly and perform frag per packet
1250 	 * limiting.
1251 	 *
1252 	 * Frag limiting is performed here so that the nth frag has
1253 	 * a chance to complete the packet before we drop the packet.
1254 	 * As a result, n+1 frags are actually allowed per packet, but
1255 	 * only n will ever be stored. (n = maxfragsperpacket.)
1256 	 *
1257 	 */
1258 	next = 0;
1259 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1260 		if (GETIP(q)->ip_off != next) {
1261 			if (fp->ipq_nfrags > maxfragsperpacket) {
1262 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1263 				ip_freef(fp);
1264 			}
1265 			return (NULL);
1266 		}
1267 		next += GETIP(q)->ip_len;
1268 	}
1269 	/* Make sure the last packet didn't have the IP_MF flag */
1270 	if (p->m_flags & M_FRAG) {
1271 		if (fp->ipq_nfrags > maxfragsperpacket) {
1272 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1273 			ip_freef(fp);
1274 		}
1275 		return (NULL);
1276 	}
1277 
1278 	/*
1279 	 * Reassembly is complete.  Make sure the packet is a sane size.
1280 	 */
1281 	q = fp->ipq_frags;
1282 	ip = GETIP(q);
1283 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1284 		ipstat.ips_toolong++;
1285 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1286 		ip_freef(fp);
1287 		return (NULL);
1288 	}
1289 
1290 	/*
1291 	 * Concatenate fragments.
1292 	 */
1293 	m = q;
1294 	n = m->m_next;
1295 	m->m_next = NULL;
1296 	m_cat(m, n);
1297 	nq = q->m_nextpkt;
1298 	q->m_nextpkt = NULL;
1299 	for (q = nq; q != NULL; q = nq) {
1300 		nq = q->m_nextpkt;
1301 		q->m_nextpkt = NULL;
1302 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1303 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1304 		m_cat(m, q);
1305 	}
1306 
1307 #ifdef IPDIVERT
1308 	/*
1309 	 * Extract firewall instructions from the fragment structure.
1310 	 */
1311 	*divinfo = fp->ipq_div_info;
1312 	*divert_rule = fp->ipq_div_cookie;
1313 #endif
1314 
1315 	/*
1316 	 * Create header for new ip packet by
1317 	 * modifying header of first packet;
1318 	 * dequeue and discard fragment reassembly header.
1319 	 * Make header visible.
1320 	 */
1321 	ip->ip_len = next;
1322 	ip->ip_src = fp->ipq_src;
1323 	ip->ip_dst = fp->ipq_dst;
1324 	remque(fp);
1325 	nipq--;
1326 	mpipe_free(&ipq_mpipe, fp);
1327 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1328 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1329 	/* some debugging cruft by sklower, below, will go away soon */
1330 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1331 		int plen = 0;
1332 
1333 		for (n = m; n; n = n->m_next)
1334 			plen += n->m_len;
1335 		m->m_pkthdr.len = plen;
1336 	}
1337 	return (m);
1338 
1339 dropfrag:
1340 #ifdef IPDIVERT
1341 	*divinfo = 0;
1342 	*divert_rule = 0;
1343 #endif
1344 	ipstat.ips_fragdropped++;
1345 	if (fp != NULL)
1346 		fp->ipq_nfrags--;
1347 	m_freem(m);
1348 	return (NULL);
1349 
1350 #undef GETIP
1351 }
1352 
1353 /*
1354  * Free a fragment reassembly header and all
1355  * associated datagrams.
1356  */
1357 static void
1358 ip_freef(struct ipq *fp)
1359 {
1360 	struct mbuf *q;
1361 
1362 	while (fp->ipq_frags) {
1363 		q = fp->ipq_frags;
1364 		fp->ipq_frags = q->m_nextpkt;
1365 		m_freem(q);
1366 	}
1367 	remque(fp);
1368 	mpipe_free(&ipq_mpipe, fp);
1369 	nipq--;
1370 }
1371 
1372 /*
1373  * IP timer processing;
1374  * if a timer expires on a reassembly
1375  * queue, discard it.
1376  */
1377 void
1378 ip_slowtimo(void)
1379 {
1380 	struct ipq *fp;
1381 	int s = splnet();
1382 	int i;
1383 
1384 	for (i = 0; i < IPREASS_NHASH; i++) {
1385 		fp = ipq[i].next;
1386 		if (fp == NULL)
1387 			continue;
1388 		while (fp != &ipq[i]) {
1389 			--fp->ipq_ttl;
1390 			fp = fp->next;
1391 			if (fp->prev->ipq_ttl == 0) {
1392 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1393 				ip_freef(fp->prev);
1394 			}
1395 		}
1396 	}
1397 	/*
1398 	 * If we are over the maximum number of fragments
1399 	 * (due to the limit being lowered), drain off
1400 	 * enough to get down to the new limit.
1401 	 */
1402 	if (maxnipq >= 0 && nipq > maxnipq) {
1403 		for (i = 0; i < IPREASS_NHASH; i++) {
1404 			while (nipq > maxnipq &&
1405 				(ipq[i].next != &ipq[i])) {
1406 				ipstat.ips_fragdropped +=
1407 				    ipq[i].next->ipq_nfrags;
1408 				ip_freef(ipq[i].next);
1409 			}
1410 		}
1411 	}
1412 	ipflow_slowtimo();
1413 	splx(s);
1414 }
1415 
1416 /*
1417  * Drain off all datagram fragments.
1418  */
1419 void
1420 ip_drain(void)
1421 {
1422 	int i;
1423 
1424 	for (i = 0; i < IPREASS_NHASH; i++) {
1425 		while (ipq[i].next != &ipq[i]) {
1426 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1427 			ip_freef(ipq[i].next);
1428 		}
1429 	}
1430 	in_rtqdrain();
1431 }
1432 
1433 /*
1434  * Do option processing on a datagram,
1435  * possibly discarding it if bad options are encountered,
1436  * or forwarding it if source-routed.
1437  * The pass argument is used when operating in the IPSTEALTH
1438  * mode to tell what options to process:
1439  * [LS]SRR (pass 0) or the others (pass 1).
1440  * The reason for as many as two passes is that when doing IPSTEALTH,
1441  * non-routing options should be processed only if the packet is for us.
1442  * Returns 1 if packet has been forwarded/freed,
1443  * 0 if the packet should be processed further.
1444  */
1445 static int
1446 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1447 {
1448 	struct ip *ip = mtod(m, struct ip *);
1449 	u_char *cp;
1450 	struct in_ifaddr *ia;
1451 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1452 	boolean_t forward = FALSE;
1453 	struct in_addr *sin, dst;
1454 	n_time ntime;
1455 
1456 	dst = ip->ip_dst;
1457 	cp = (u_char *)(ip + 1);
1458 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1459 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1460 		opt = cp[IPOPT_OPTVAL];
1461 		if (opt == IPOPT_EOL)
1462 			break;
1463 		if (opt == IPOPT_NOP)
1464 			optlen = 1;
1465 		else {
1466 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1467 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1468 				goto bad;
1469 			}
1470 			optlen = cp[IPOPT_OLEN];
1471 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1472 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1473 				goto bad;
1474 			}
1475 		}
1476 		switch (opt) {
1477 
1478 		default:
1479 			break;
1480 
1481 		/*
1482 		 * Source routing with record.
1483 		 * Find interface with current destination address.
1484 		 * If none on this machine then drop if strictly routed,
1485 		 * or do nothing if loosely routed.
1486 		 * Record interface address and bring up next address
1487 		 * component.  If strictly routed make sure next
1488 		 * address is on directly accessible net.
1489 		 */
1490 		case IPOPT_LSRR:
1491 		case IPOPT_SSRR:
1492 			if (ipstealth && pass > 0)
1493 				break;
1494 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1495 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1496 				goto bad;
1497 			}
1498 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1499 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1500 				goto bad;
1501 			}
1502 			ipaddr.sin_addr = ip->ip_dst;
1503 			ia = (struct in_ifaddr *)
1504 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1505 			if (ia == NULL) {
1506 				if (opt == IPOPT_SSRR) {
1507 					type = ICMP_UNREACH;
1508 					code = ICMP_UNREACH_SRCFAIL;
1509 					goto bad;
1510 				}
1511 				if (!ip_dosourceroute)
1512 					goto nosourcerouting;
1513 				/*
1514 				 * Loose routing, and not at next destination
1515 				 * yet; nothing to do except forward.
1516 				 */
1517 				break;
1518 			}
1519 			off--;			/* 0 origin */
1520 			if (off > optlen - (int)sizeof(struct in_addr)) {
1521 				/*
1522 				 * End of source route.  Should be for us.
1523 				 */
1524 				if (!ip_acceptsourceroute)
1525 					goto nosourcerouting;
1526 				save_rte(cp, ip->ip_src);
1527 				break;
1528 			}
1529 			if (ipstealth)
1530 				goto dropit;
1531 			if (!ip_dosourceroute) {
1532 				if (ipforwarding) {
1533 					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1534 					/*
1535 					 * Acting as a router, so generate ICMP
1536 					 */
1537 nosourcerouting:
1538 					strcpy(buf, inet_ntoa(ip->ip_dst));
1539 					log(LOG_WARNING,
1540 					    "attempted source route from %s to %s\n",
1541 					    inet_ntoa(ip->ip_src), buf);
1542 					type = ICMP_UNREACH;
1543 					code = ICMP_UNREACH_SRCFAIL;
1544 					goto bad;
1545 				} else {
1546 					/*
1547 					 * Not acting as a router,
1548 					 * so silently drop.
1549 					 */
1550 dropit:
1551 					ipstat.ips_cantforward++;
1552 					m_freem(m);
1553 					return (1);
1554 				}
1555 			}
1556 
1557 			/*
1558 			 * locate outgoing interface
1559 			 */
1560 			memcpy(&ipaddr.sin_addr, cp + off,
1561 			    sizeof ipaddr.sin_addr);
1562 
1563 			if (opt == IPOPT_SSRR) {
1564 #define	INA	struct in_ifaddr *
1565 #define	SA	struct sockaddr *
1566 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1567 									== NULL)
1568 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1569 			} else
1570 				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1571 			if (ia == NULL) {
1572 				type = ICMP_UNREACH;
1573 				code = ICMP_UNREACH_SRCFAIL;
1574 				goto bad;
1575 			}
1576 			ip->ip_dst = ipaddr.sin_addr;
1577 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1578 			    sizeof(struct in_addr));
1579 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1580 			/*
1581 			 * Let ip_intr's mcast routing check handle mcast pkts
1582 			 */
1583 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1584 			break;
1585 
1586 		case IPOPT_RR:
1587 			if (ipstealth && pass == 0)
1588 				break;
1589 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1590 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1591 				goto bad;
1592 			}
1593 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1594 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1595 				goto bad;
1596 			}
1597 			/*
1598 			 * If no space remains, ignore.
1599 			 */
1600 			off--;			/* 0 origin */
1601 			if (off > optlen - (int)sizeof(struct in_addr))
1602 				break;
1603 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1604 			    sizeof ipaddr.sin_addr);
1605 			/*
1606 			 * locate outgoing interface; if we're the destination,
1607 			 * use the incoming interface (should be same).
1608 			 */
1609 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1610 			    (ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt))
1611 								     == NULL) {
1612 				type = ICMP_UNREACH;
1613 				code = ICMP_UNREACH_HOST;
1614 				goto bad;
1615 			}
1616 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1617 			    sizeof(struct in_addr));
1618 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1619 			break;
1620 
1621 		case IPOPT_TS:
1622 			if (ipstealth && pass == 0)
1623 				break;
1624 			code = cp - (u_char *)ip;
1625 			if (optlen < 4 || optlen > 40) {
1626 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1627 				goto bad;
1628 			}
1629 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1630 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1631 				goto bad;
1632 			}
1633 			if (off > optlen - (int)sizeof(int32_t)) {
1634 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1635 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1636 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1637 					goto bad;
1638 				}
1639 				break;
1640 			}
1641 			off--;				/* 0 origin */
1642 			sin = (struct in_addr *)(cp + off);
1643 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1644 
1645 			case IPOPT_TS_TSONLY:
1646 				break;
1647 
1648 			case IPOPT_TS_TSANDADDR:
1649 				if (off + sizeof(n_time) +
1650 				    sizeof(struct in_addr) > optlen) {
1651 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1652 					goto bad;
1653 				}
1654 				ipaddr.sin_addr = dst;
1655 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1656 							    m->m_pkthdr.rcvif);
1657 				if (ia == NULL)
1658 					continue;
1659 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1660 				    sizeof(struct in_addr));
1661 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1662 				off += sizeof(struct in_addr);
1663 				break;
1664 
1665 			case IPOPT_TS_PRESPEC:
1666 				if (off + sizeof(n_time) +
1667 				    sizeof(struct in_addr) > optlen) {
1668 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1669 					goto bad;
1670 				}
1671 				memcpy(&ipaddr.sin_addr, sin,
1672 				    sizeof(struct in_addr));
1673 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1674 					continue;
1675 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1676 				off += sizeof(struct in_addr);
1677 				break;
1678 
1679 			default:
1680 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1681 				goto bad;
1682 			}
1683 			ntime = iptime();
1684 			memcpy(cp + off, &ntime, sizeof(n_time));
1685 			cp[IPOPT_OFFSET] += sizeof(n_time);
1686 		}
1687 	}
1688 	if (forward && ipforwarding) {
1689 		ip_forward(m, 1, next_hop);
1690 		return (1);
1691 	}
1692 	return (0);
1693 bad:
1694 	icmp_error(m, type, code, 0, NULL);
1695 	ipstat.ips_badoptions++;
1696 	return (1);
1697 }
1698 
1699 /*
1700  * Given address of next destination (final or next hop),
1701  * return internet address info of interface to be used to get there.
1702  */
1703 struct in_ifaddr *
1704 ip_rtaddr(struct in_addr dst, struct route *rt)
1705 {
1706 	struct sockaddr_in *sin;
1707 
1708 	sin = (struct sockaddr_in *)&rt->ro_dst;
1709 
1710 	if (rt->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1711 		if (rt->ro_rt != NULL) {
1712 			RTFREE(rt->ro_rt);
1713 			rt->ro_rt = NULL;
1714 		}
1715 		sin->sin_family = AF_INET;
1716 		sin->sin_len = sizeof(*sin);
1717 		sin->sin_addr = dst;
1718 		rtalloc_ign(rt, RTF_PRCLONING);
1719 	}
1720 
1721 	if (rt->ro_rt == NULL)
1722 		return (NULL);
1723 
1724 	return (ifatoia(rt->ro_rt->rt_ifa));
1725 }
1726 
1727 /*
1728  * Save incoming source route for use in replies,
1729  * to be picked up later by ip_srcroute if the receiver is interested.
1730  */
1731 void
1732 save_rte(u_char *option, struct in_addr dst)
1733 {
1734 	unsigned olen;
1735 
1736 	olen = option[IPOPT_OLEN];
1737 #ifdef DIAGNOSTIC
1738 	if (ipprintfs)
1739 		printf("save_rte: olen %d\n", olen);
1740 #endif
1741 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1742 		return;
1743 	bcopy(option, ip_srcrt.srcopt, olen);
1744 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1745 	ip_srcrt.dst = dst;
1746 }
1747 
1748 /*
1749  * Retrieve incoming source route for use in replies,
1750  * in the same form used by setsockopt.
1751  * The first hop is placed before the options, will be removed later.
1752  */
1753 struct mbuf *
1754 ip_srcroute(void)
1755 {
1756 	struct in_addr *p, *q;
1757 	struct mbuf *m;
1758 
1759 	if (ip_nhops == 0)
1760 		return (NULL);
1761 	m = m_get(MB_DONTWAIT, MT_HEADER);
1762 	if (m == NULL)
1763 		return (NULL);
1764 
1765 #define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1766 
1767 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1768 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1769 	    OPTSIZ;
1770 #ifdef DIAGNOSTIC
1771 	if (ipprintfs)
1772 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1773 #endif
1774 
1775 	/*
1776 	 * First save first hop for return route
1777 	 */
1778 	p = &ip_srcrt.route[ip_nhops - 1];
1779 	*(mtod(m, struct in_addr *)) = *p--;
1780 #ifdef DIAGNOSTIC
1781 	if (ipprintfs)
1782 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1783 #endif
1784 
1785 	/*
1786 	 * Copy option fields and padding (nop) to mbuf.
1787 	 */
1788 	ip_srcrt.nop = IPOPT_NOP;
1789 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1790 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1791 	    OPTSIZ);
1792 	q = (struct in_addr *)(mtod(m, caddr_t) +
1793 	    sizeof(struct in_addr) + OPTSIZ);
1794 #undef OPTSIZ
1795 	/*
1796 	 * Record return path as an IP source route,
1797 	 * reversing the path (pointers are now aligned).
1798 	 */
1799 	while (p >= ip_srcrt.route) {
1800 #ifdef DIAGNOSTIC
1801 		if (ipprintfs)
1802 			printf(" %x", ntohl(q->s_addr));
1803 #endif
1804 		*q++ = *p--;
1805 	}
1806 	/*
1807 	 * Last hop goes to final destination.
1808 	 */
1809 	*q = ip_srcrt.dst;
1810 #ifdef DIAGNOSTIC
1811 	if (ipprintfs)
1812 		printf(" %x\n", ntohl(q->s_addr));
1813 #endif
1814 	return (m);
1815 }
1816 
1817 /*
1818  * Strip out IP options.
1819  */
1820 void
1821 ip_stripoptions(struct mbuf *m)
1822 {
1823 	int datalen;
1824 	struct ip *ip = mtod(m, struct ip *);
1825 	caddr_t opts;
1826 	int optlen;
1827 
1828 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1829 	opts = (caddr_t)(ip + 1);
1830 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1831 	bcopy(opts + optlen, opts, datalen);
1832 	m->m_len -= optlen;
1833 	if (m->m_flags & M_PKTHDR)
1834 		m->m_pkthdr.len -= optlen;
1835 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1836 }
1837 
1838 u_char inetctlerrmap[PRC_NCMDS] = {
1839 	0,		0,		0,		0,
1840 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1841 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1842 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1843 	0,		0,		0,		0,
1844 	ENOPROTOOPT,	ECONNREFUSED
1845 };
1846 
1847 /*
1848  * Forward a packet.  If some error occurs return the sender
1849  * an icmp packet.  Note we can't always generate a meaningful
1850  * icmp message because icmp doesn't have a large enough repertoire
1851  * of codes and types.
1852  *
1853  * If not forwarding, just drop the packet.  This could be confusing
1854  * if ipforwarding was zero but some routing protocol was advancing
1855  * us as a gateway to somewhere.  However, we must let the routing
1856  * protocol deal with that.
1857  *
1858  * The using_srcrt parameter indicates whether the packet is being forwarded
1859  * via a source route.
1860  */
1861 static void
1862 ip_forward(struct mbuf *m, int using_srcrt, struct sockaddr_in *next_hop)
1863 {
1864 	struct ip *ip = mtod(m, struct ip *);
1865 	struct sockaddr_in *sin;
1866 	struct rtentry *rt;
1867 	int error, type = 0, code = 0;
1868 	struct mbuf *mcopy;
1869 	n_long dest;
1870 	struct in_addr pkt_dst;
1871 	struct ifnet *destifp;
1872 	struct m_hdr tag;
1873 #if defined(IPSEC) || defined(FAST_IPSEC)
1874 	struct ifnet dummyifp;
1875 #endif
1876 
1877 	dest = 0;
1878 	/*
1879 	 * Cache the destination address of the packet; this may be
1880 	 * changed by use of 'ipfw fwd'.
1881 	 */
1882 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1883 
1884 #ifdef DIAGNOSTIC
1885 	if (ipprintfs)
1886 		printf("forward: src %x dst %x ttl %x\n",
1887 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1888 #endif
1889 
1890 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1891 		ipstat.ips_cantforward++;
1892 		m_freem(m);
1893 		return;
1894 	}
1895 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1896 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, NULL);
1897 		return;
1898 	}
1899 
1900 	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1901 	if ((rt = ipforward_rt.ro_rt) == NULL ||
1902 	    pkt_dst.s_addr != sin->sin_addr.s_addr) {
1903 		if (ipforward_rt.ro_rt != NULL) {
1904 			RTFREE(ipforward_rt.ro_rt);
1905 			ipforward_rt.ro_rt = NULL;
1906 		}
1907 		sin->sin_family = AF_INET;
1908 		sin->sin_len = sizeof(*sin);
1909 		sin->sin_addr = pkt_dst;
1910 
1911 		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1912 		if (ipforward_rt.ro_rt == NULL) {
1913 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest,
1914 				   NULL);
1915 			return;
1916 		}
1917 		rt = ipforward_rt.ro_rt;
1918 	}
1919 
1920 	/*
1921 	 * Save the IP header and at most 8 bytes of the payload,
1922 	 * in case we need to generate an ICMP message to the src.
1923 	 *
1924 	 * XXX this can be optimized a lot by saving the data in a local
1925 	 * buffer on the stack (72 bytes at most), and only allocating the
1926 	 * mbuf if really necessary. The vast majority of the packets
1927 	 * are forwarded without having to send an ICMP back (either
1928 	 * because unnecessary, or because rate limited), so we are
1929 	 * really we are wasting a lot of work here.
1930 	 *
1931 	 * We don't use m_copy() because it might return a reference
1932 	 * to a shared cluster. Both this function and ip_output()
1933 	 * assume exclusive access to the IP header in `m', so any
1934 	 * data in a cluster may change before we reach icmp_error().
1935 	 */
1936 	MGET(mcopy, MB_DONTWAIT, m->m_type);
1937 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1938 		/*
1939 		 * It's probably ok if the pkthdr dup fails (because
1940 		 * the deep copy of the tag chain failed), but for now
1941 		 * be conservative and just discard the copy since
1942 		 * code below may some day want the tags.
1943 		 */
1944 		m_free(mcopy);
1945 		mcopy = NULL;
1946 	}
1947 	if (mcopy != NULL) {
1948 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1949 		    (int)ip->ip_len);
1950 		mcopy->m_pkthdr.len = mcopy->m_len;
1951 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1952 	}
1953 
1954 	if (!ipstealth)
1955 		ip->ip_ttl -= IPTTLDEC;
1956 
1957 	/*
1958 	 * If forwarding packet using same interface that it came in on,
1959 	 * perhaps should send a redirect to sender to shortcut a hop.
1960 	 * Only send redirect if source is sending directly to us,
1961 	 * and if packet was not source routed (or has any options).
1962 	 * Also, don't send redirect if forwarding using a default route
1963 	 * or a route modified by a redirect.
1964 	 */
1965 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1966 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1967 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1968 	    ipsendredirects && !using_srcrt && next_hop != NULL) {
1969 		u_long src = ntohl(ip->ip_src.s_addr);
1970 
1971 #define	RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1972 		if (RTA(rt) != NULL &&
1973 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1974 			if (rt->rt_flags & RTF_GATEWAY)
1975 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1976 			else
1977 				dest = pkt_dst.s_addr;
1978 			/*
1979 			 * Router requirements says to only send
1980 			 * host redirects.
1981 			 */
1982 			type = ICMP_REDIRECT;
1983 			code = ICMP_REDIRECT_HOST;
1984 #ifdef DIAGNOSTIC
1985 			if (ipprintfs)
1986 				printf("redirect (%d) to %x\n", code, dest);
1987 #endif
1988 		}
1989 	}
1990 
1991 	if (next_hop) {
1992 		/* Pass IPFORWARD info if available */
1993 		tag.mh_type = MT_TAG;
1994 		tag.mh_flags = PACKET_TAG_IPFORWARD;
1995 		tag.mh_data = (caddr_t)next_hop;
1996 		tag.mh_next = m;
1997 		m = (struct mbuf *)&tag;
1998 	}
1999 
2000 	error = ip_output(m, NULL, &ipforward_rt, IP_FORWARDING, NULL, NULL);
2001 
2002 	if (error)
2003 		ipstat.ips_cantforward++;
2004 	else {
2005 		ipstat.ips_forward++;
2006 		if (type)
2007 			ipstat.ips_redirectsent++;
2008 		else {
2009 			if (mcopy) {
2010 				ipflow_create(&ipforward_rt, mcopy);
2011 				m_freem(mcopy);
2012 			}
2013 			return;
2014 		}
2015 	}
2016 	if (mcopy == NULL)
2017 		return;
2018 	destifp = NULL;
2019 
2020 	switch (error) {
2021 
2022 	case 0:				/* forwarded, but need redirect */
2023 		/* type, code set above */
2024 		break;
2025 
2026 	case ENETUNREACH:		/* shouldn't happen, checked above */
2027 	case EHOSTUNREACH:
2028 	case ENETDOWN:
2029 	case EHOSTDOWN:
2030 	default:
2031 		type = ICMP_UNREACH;
2032 		code = ICMP_UNREACH_HOST;
2033 		break;
2034 
2035 	case EMSGSIZE:
2036 		type = ICMP_UNREACH;
2037 		code = ICMP_UNREACH_NEEDFRAG;
2038 #ifdef IPSEC
2039 		/*
2040 		 * If the packet is routed over IPsec tunnel, tell the
2041 		 * originator the tunnel MTU.
2042 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2043 		 * XXX quickhack!!!
2044 		 */
2045 		if (ipforward_rt.ro_rt != NULL) {
2046 			struct secpolicy *sp = NULL;
2047 			int ipsecerror;
2048 			int ipsechdr;
2049 			struct route *ro;
2050 
2051 			sp = ipsec4_getpolicybyaddr(mcopy,
2052 						    IPSEC_DIR_OUTBOUND,
2053 						    IP_FORWARDING,
2054 						    &ipsecerror);
2055 
2056 			if (sp == NULL)
2057 				destifp = ipforward_rt.ro_rt->rt_ifp;
2058 			else {
2059 				/* count IPsec header size */
2060 				ipsechdr = ipsec4_hdrsiz(mcopy,
2061 							 IPSEC_DIR_OUTBOUND,
2062 							 NULL);
2063 
2064 				/*
2065 				 * find the correct route for outer IPv4
2066 				 * header, compute tunnel MTU.
2067 				 *
2068 				 * XXX BUG ALERT
2069 				 * The "dummyifp" code relies upon the fact
2070 				 * that icmp_error() touches only ifp->if_mtu.
2071 				 */
2072 				/*XXX*/
2073 				destifp = NULL;
2074 				if (sp->req != NULL && sp->req->sav != NULL &&
2075 				    sp->req->sav->sah != NULL) {
2076 					ro = &sp->req->sav->sah->sa_route;
2077 					if (ro->ro_rt != NULL &&
2078 					    ro->ro_rt->rt_ifp != NULL) {
2079 						dummyifp.if_mtu =
2080 						    ro->ro_rt->rt_ifp->if_mtu;
2081 						dummyifp.if_mtu -= ipsechdr;
2082 						destifp = &dummyifp;
2083 					}
2084 				}
2085 
2086 				key_freesp(sp);
2087 			}
2088 		}
2089 #elif FAST_IPSEC
2090 		/*
2091 		 * If the packet is routed over IPsec tunnel, tell the
2092 		 * originator the tunnel MTU.
2093 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2094 		 * XXX quickhack!!!
2095 		 */
2096 		if (ipforward_rt.ro_rt != NULL) {
2097 			struct secpolicy *sp = NULL;
2098 			int ipsecerror;
2099 			int ipsechdr;
2100 			struct route *ro;
2101 
2102 			sp = ipsec_getpolicybyaddr(mcopy,
2103 						   IPSEC_DIR_OUTBOUND,
2104 						   IP_FORWARDING,
2105 						   &ipsecerror);
2106 
2107 			if (sp == NULL)
2108 				destifp = ipforward_rt.ro_rt->rt_ifp;
2109 			else {
2110 				/* count IPsec header size */
2111 				ipsechdr = ipsec4_hdrsiz(mcopy,
2112 							 IPSEC_DIR_OUTBOUND,
2113 							 NULL);
2114 
2115 				/*
2116 				 * find the correct route for outer IPv4
2117 				 * header, compute tunnel MTU.
2118 				 *
2119 				 * XXX BUG ALERT
2120 				 * The "dummyifp" code relies upon the fact
2121 				 * that icmp_error() touches only ifp->if_mtu.
2122 				 */
2123 				/*XXX*/
2124 				destifp = NULL;
2125 				if (sp->req != NULL &&
2126 				    sp->req->sav != NULL &&
2127 				    sp->req->sav->sah != NULL) {
2128 					ro = &sp->req->sav->sah->sa_route;
2129 					if (ro->ro_rt != NULL &&
2130 					    ro->ro_rt->rt_ifp != NULL) {
2131 						dummyifp.if_mtu =
2132 						    ro->ro_rt->rt_ifp->if_mtu;
2133 						dummyifp.if_mtu -= ipsechdr;
2134 						destifp = &dummyifp;
2135 					}
2136 				}
2137 
2138 				KEY_FREESP(&sp);
2139 			}
2140 		}
2141 #else /* !IPSEC && !FAST_IPSEC */
2142 		if (ipforward_rt.ro_rt != NULL)
2143 			destifp = ipforward_rt.ro_rt->rt_ifp;
2144 #endif /*IPSEC*/
2145 		ipstat.ips_cantfrag++;
2146 		break;
2147 
2148 	case ENOBUFS:
2149 		/*
2150 		 * A router should not generate ICMP_SOURCEQUENCH as
2151 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2152 		 * Source quench could be a big problem under DoS attacks,
2153 		 * or if the underlying interface is rate-limited.
2154 		 * Those who need source quench packets may re-enable them
2155 		 * via the net.inet.ip.sendsourcequench sysctl.
2156 		 */
2157 		if (!ip_sendsourcequench) {
2158 			m_freem(mcopy);
2159 			return;
2160 		} else {
2161 			type = ICMP_SOURCEQUENCH;
2162 			code = 0;
2163 		}
2164 		break;
2165 
2166 	case EACCES:			/* ipfw denied packet */
2167 		m_freem(mcopy);
2168 		return;
2169 	}
2170 	icmp_error(mcopy, type, code, dest, destifp);
2171 }
2172 
2173 void
2174 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2175 	       struct mbuf *m)
2176 {
2177 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2178 		struct timeval tv;
2179 
2180 		microtime(&tv);
2181 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2182 		    SCM_TIMESTAMP, SOL_SOCKET);
2183 		if (*mp)
2184 			mp = &(*mp)->m_next;
2185 	}
2186 	if (inp->inp_flags & INP_RECVDSTADDR) {
2187 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2188 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2189 		if (*mp)
2190 			mp = &(*mp)->m_next;
2191 	}
2192 #ifdef notyet
2193 	/* XXX
2194 	 * Moving these out of udp_input() made them even more broken
2195 	 * than they already were.
2196 	 */
2197 	/* options were tossed already */
2198 	if (inp->inp_flags & INP_RECVOPTS) {
2199 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2200 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2201 		if (*mp)
2202 			mp = &(*mp)->m_next;
2203 	}
2204 	/* ip_srcroute doesn't do what we want here, need to fix */
2205 	if (inp->inp_flags & INP_RECVRETOPTS) {
2206 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2207 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2208 		if (*mp)
2209 			mp = &(*mp)->m_next;
2210 	}
2211 #endif
2212 	if (inp->inp_flags & INP_RECVIF) {
2213 		struct ifnet *ifp;
2214 		struct sdlbuf {
2215 			struct sockaddr_dl sdl;
2216 			u_char	pad[32];
2217 		} sdlbuf;
2218 		struct sockaddr_dl *sdp;
2219 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2220 
2221 		if (((ifp = m->m_pkthdr.rcvif)) &&
2222 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2223 			sdp = (struct sockaddr_dl *)
2224 			    ifnet_addrs[ifp->if_index - 1]->ifa_addr;
2225 			/*
2226 			 * Change our mind and don't try copy.
2227 			 */
2228 			if ((sdp->sdl_family != AF_LINK) ||
2229 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2230 				goto makedummy;
2231 			}
2232 			bcopy(sdp, sdl2, sdp->sdl_len);
2233 		} else {
2234 makedummy:
2235 			sdl2->sdl_len =
2236 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2237 			sdl2->sdl_family = AF_LINK;
2238 			sdl2->sdl_index = 0;
2239 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2240 		}
2241 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2242 			IP_RECVIF, IPPROTO_IP);
2243 		if (*mp)
2244 			mp = &(*mp)->m_next;
2245 	}
2246 }
2247 
2248 /*
2249  * XXX these routines are called from the upper part of the kernel.
2250  *
2251  * They could also be moved to ip_mroute.c, since all the RSVP
2252  *  handling is done there already.
2253  */
2254 int
2255 ip_rsvp_init(struct socket *so)
2256 {
2257 	if (so->so_type != SOCK_RAW ||
2258 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2259 		return EOPNOTSUPP;
2260 
2261 	if (ip_rsvpd != NULL)
2262 		return EADDRINUSE;
2263 
2264 	ip_rsvpd = so;
2265 	/*
2266 	 * This may seem silly, but we need to be sure we don't over-increment
2267 	 * the RSVP counter, in case something slips up.
2268 	 */
2269 	if (!ip_rsvp_on) {
2270 		ip_rsvp_on = 1;
2271 		rsvp_on++;
2272 	}
2273 
2274 	return 0;
2275 }
2276 
2277 int
2278 ip_rsvp_done(void)
2279 {
2280 	ip_rsvpd = NULL;
2281 	/*
2282 	 * This may seem silly, but we need to be sure we don't over-decrement
2283 	 * the RSVP counter, in case something slips up.
2284 	 */
2285 	if (ip_rsvp_on) {
2286 		ip_rsvp_on = 0;
2287 		rsvp_on--;
2288 	}
2289 	return 0;
2290 }
2291 
2292 void
2293 rsvp_input(struct mbuf *m, ...)	/* XXX must fixup manually */
2294 {
2295 	int off, proto;
2296 	__va_list ap;
2297 
2298 	__va_start(ap, m);
2299 	off = __va_arg(ap, int);
2300 	proto = __va_arg(ap, int);
2301 	__va_end(ap);
2302 
2303 	if (rsvp_input_p) { /* call the real one if loaded */
2304 		rsvp_input_p(m, off, proto);
2305 		return;
2306 	}
2307 
2308 	/* Can still get packets with rsvp_on = 0 if there is a local member
2309 	 * of the group to which the RSVP packet is addressed.  But in this
2310 	 * case we want to throw the packet away.
2311 	 */
2312 
2313 	if (!rsvp_on) {
2314 		m_freem(m);
2315 		return;
2316 	}
2317 
2318 	if (ip_rsvpd != NULL) {
2319 		rip_input(m, off, proto);
2320 		return;
2321 	}
2322 	/* Drop the packet */
2323 	m_freem(m);
2324 }
2325