xref: /dflybsd-src/sys/netinet/ip_input.c (revision e586f31ca9899b49a4fc156613d9ecd853defcec)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
63  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
64  */
65 
66 #define	_IP_VHL
67 
68 #include "opt_bootp.h"
69 #include "opt_ipdn.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_ipsec.h"
73 #include "opt_rss.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/mpipe.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/time.h>
84 #include <sys/globaldata.h>
85 #include <sys/thread.h>
86 #include <sys/kernel.h>
87 #include <sys/syslog.h>
88 #include <sys/sysctl.h>
89 #include <sys/in_cksum.h>
90 #include <sys/lock.h>
91 
92 #include <sys/mplock2.h>
93 
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/if_types.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/pfil.h>
101 #include <net/route.h>
102 #include <net/netisr2.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_icmp.h>
111 #include <netinet/ip_divert.h>
112 #include <netinet/ip_flow.h>
113 
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 #include <net/netmsg2.h>
117 
118 #include <sys/socketvar.h>
119 
120 #include <net/ipfw/ip_fw.h>
121 #include <net/dummynet/ip_dummynet.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/key.h>
131 #endif
132 
133 int rsvp_on = 0;
134 static int ip_rsvp_on;
135 struct socket *ip_rsvpd;
136 
137 int ipforwarding = 0;
138 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
139     &ipforwarding, 0, "Enable IP forwarding between interfaces");
140 
141 static int ipsendredirects = 1; /* XXX */
142 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
143     &ipsendredirects, 0, "Enable sending IP redirects");
144 
145 int ip_defttl = IPDEFTTL;
146 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
147     &ip_defttl, 0, "Maximum TTL on IP packets");
148 
149 static int ip_dosourceroute = 0;
150 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
151     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
152 
153 static int ip_acceptsourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
155     CTLFLAG_RW, &ip_acceptsourceroute, 0,
156     "Enable accepting source routed IP packets");
157 
158 static int ip_keepfaith = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
160     &ip_keepfaith, 0,
161     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
162 
163 static int maxnipq;
164 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
165     &maxnipq, 0,
166     "Maximum number of IPv4 fragment reassembly queue entries");
167 
168 static int maxfragsperpacket;
169 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
170     &maxfragsperpacket, 0,
171     "Maximum number of IPv4 fragments allowed per packet");
172 
173 static int ip_sendsourcequench = 0;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
175     &ip_sendsourcequench, 0,
176     "Enable the transmission of source quench packets");
177 
178 int ip_do_randomid = 1;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
180     &ip_do_randomid, 0,
181     "Assign random ip_id values");
182 /*
183  * XXX - Setting ip_checkinterface mostly implements the receive side of
184  * the Strong ES model described in RFC 1122, but since the routing table
185  * and transmit implementation do not implement the Strong ES model,
186  * setting this to 1 results in an odd hybrid.
187  *
188  * XXX - ip_checkinterface currently must be disabled if you use ipnat
189  * to translate the destination address to another local interface.
190  *
191  * XXX - ip_checkinterface must be disabled if you add IP aliases
192  * to the loopback interface instead of the interface where the
193  * packets for those addresses are received.
194  */
195 static int ip_checkinterface = 0;
196 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
197     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
198 
199 static u_long ip_hash_count = 0;
200 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
201     &ip_hash_count, 0, "Number of packets hashed by IP");
202 
203 #ifdef RSS_DEBUG
204 static u_long ip_rehash_count = 0;
205 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
206     &ip_rehash_count, 0, "Number of packets rehashed by IP");
207 
208 static u_long ip_dispatch_fast = 0;
209 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
210     &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
211 
212 static u_long ip_dispatch_slow = 0;
213 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
214     &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
215 #endif
216 
217 #ifdef DIAGNOSTIC
218 static int ipprintfs = 0;
219 #endif
220 
221 extern	struct domain inetdomain;
222 extern	struct protosw inetsw[];
223 u_char	ip_protox[IPPROTO_MAX];
224 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
225 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
226 						/* inet addr hash table */
227 u_long	in_ifaddrhmask;				/* mask for hash table */
228 
229 static struct mbuf *ipforward_mtemp[MAXCPU];
230 
231 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
232 
233 static int
234 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
235 {
236 	int cpu, error = 0;
237 
238 	for (cpu = 0; cpu < ncpus; ++cpu) {
239 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
240 					sizeof(struct ip_stats))))
241 			break;
242 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
243 				       sizeof(struct ip_stats))))
244 			break;
245 	}
246 
247 	return (error);
248 }
249 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
250     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
251 
252 /* Packet reassembly stuff */
253 #define	IPREASS_NHASH_LOG2	6
254 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
255 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
256 #define	IPREASS_HASH(x,y)						\
257     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
258 
259 TAILQ_HEAD(ipqhead, ipq);
260 struct ipfrag_queue {
261 	int			nipq;
262 	int			timeo_inprog;
263 	struct netmsg_base	timeo_netmsg;
264 	struct netmsg_base	drain_netmsg;
265 	struct ipqhead		ipq[IPREASS_NHASH];
266 } __cachealign;
267 
268 static struct ipfrag_queue	ipfrag_queue_pcpu[MAXCPU];
269 
270 #ifdef IPCTL_DEFMTU
271 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
272     &ip_mtu, 0, "Default MTU");
273 #endif
274 
275 #ifdef IPSTEALTH
276 static int ipstealth = 0;
277 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
278 #else
279 static const int ipstealth = 0;
280 #endif
281 
282 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
283 
284 struct pfil_head inet_pfil_hook;
285 
286 /*
287  * struct ip_srcrt_opt is used to store packet state while it travels
288  * through the stack.
289  *
290  * XXX Note that the code even makes assumptions on the size and
291  * alignment of fields inside struct ip_srcrt so e.g. adding some
292  * fields will break the code.  This needs to be fixed.
293  *
294  * We need to save the IP options in case a protocol wants to respond
295  * to an incoming packet over the same route if the packet got here
296  * using IP source routing.  This allows connection establishment and
297  * maintenance when the remote end is on a network that is not known
298  * to us.
299  */
300 struct ip_srcrt {
301 	struct	in_addr dst;			/* final destination */
302 	char	nop;				/* one NOP to align */
303 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
304 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
305 };
306 
307 struct ip_srcrt_opt {
308 	int		ip_nhops;
309 	struct ip_srcrt	ip_srcrt;
310 };
311 
312 #define IPFRAG_MPIPE_MAX	4096
313 #define MAXIPFRAG_MIN		((IPFRAG_MPIPE_MAX * 2) / 256)
314 
315 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
316 static struct malloc_pipe ipq_mpipe;
317 
318 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
319 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
320 static void		ip_freef(struct ipfrag_queue *, struct ipqhead *,
321 			    struct ipq *);
322 static void		ip_input_handler(netmsg_t);
323 
324 static void		ipfrag_timeo_dispatch(netmsg_t);
325 static void		ipfrag_drain_dispatch(netmsg_t);
326 
327 /*
328  * IP initialization: fill in IP protocol switch table.
329  * All protocols not implemented in kernel go to raw IP protocol handler.
330  */
331 void
332 ip_init(void)
333 {
334 	struct protosw *pr;
335 	int cpu, i;
336 
337 	/*
338 	 * Make sure we can handle a reasonable number of fragments but
339 	 * cap it at IPFRAG_MPIPE_MAX.
340 	 */
341 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
342 	    IFQ_MAXLEN, IPFRAG_MPIPE_MAX, 0, NULL, NULL, NULL);
343 	for (cpu = 0; cpu < ncpus; ++cpu) {
344 		TAILQ_INIT(&in_ifaddrheads[cpu]);
345 		in_ifaddrhashtbls[cpu] =
346 		    hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
347 	}
348 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
349 	if (pr == NULL)
350 		panic("ip_init");
351 	for (i = 0; i < IPPROTO_MAX; i++)
352 		ip_protox[i] = pr - inetsw;
353 	for (pr = inetdomain.dom_protosw;
354 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
355 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
356 			if (pr->pr_protocol != IPPROTO_RAW)
357 				ip_protox[pr->pr_protocol] = pr - inetsw;
358 		}
359 	}
360 
361 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
362 	inet_pfil_hook.ph_af = AF_INET;
363 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
364 		kprintf("%s: WARNING: unable to register pfil hook, "
365 			"error %d\n", __func__, i);
366 	}
367 
368 	maxnipq = (nmbclusters / 32) / ncpus;
369 	if (maxnipq < MAXIPFRAG_MIN)
370 		maxnipq = MAXIPFRAG_MIN;
371 	maxfragsperpacket = 16;
372 
373 	ip_id = time_second & 0xffff;	/* time_second survives reboots */
374 
375 	for (cpu = 0; cpu < ncpus; ++cpu) {
376 		/*
377 		 * Initialize IP statistics counters for each CPU.
378 		 */
379 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
380 
381 		/*
382 		 * Preallocate mbuf template for forwarding
383 		 */
384 		MGETHDR(ipforward_mtemp[cpu], M_WAITOK, MT_DATA);
385 
386 		/*
387 		 * Initialize per-cpu ip fragments queues
388 		 */
389 		for (i = 0; i < IPREASS_NHASH; i++) {
390 			struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[cpu];
391 
392 			TAILQ_INIT(&fragq->ipq[i]);
393 			netmsg_init(&fragq->timeo_netmsg, NULL,
394 			    &netisr_adone_rport, MSGF_PRIORITY,
395 			    ipfrag_timeo_dispatch);
396 			netmsg_init(&fragq->drain_netmsg, NULL,
397 			    &netisr_adone_rport, MSGF_PRIORITY,
398 			    ipfrag_drain_dispatch);
399 		}
400 	}
401 
402 	netisr_register(NETISR_IP, ip_input_handler, ip_hashfn);
403 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
404 }
405 
406 /* Do transport protocol processing. */
407 static void
408 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
409 {
410 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
411 
412 	/*
413 	 * Switch out to protocol's input routine.
414 	 */
415 	PR_GET_MPLOCK(pr);
416 	pr->pr_input(&m, &hlen, ip->ip_p);
417 	PR_REL_MPLOCK(pr);
418 }
419 
420 static void
421 transport_processing_handler(netmsg_t msg)
422 {
423 	struct netmsg_packet *pmsg = &msg->packet;
424 	struct ip *ip;
425 	int hlen;
426 
427 	ip = mtod(pmsg->nm_packet, struct ip *);
428 	hlen = pmsg->base.lmsg.u.ms_result;
429 
430 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
431 	/* msg was embedded in the mbuf, do not reply! */
432 }
433 
434 static void
435 ip_input_handler(netmsg_t msg)
436 {
437 	ip_input(msg->packet.nm_packet);
438 	/* msg was embedded in the mbuf, do not reply! */
439 }
440 
441 /*
442  * IP input routine.  Checksum and byte swap header.  If fragmented
443  * try to reassemble.  Process options.  Pass to next level.
444  */
445 void
446 ip_input(struct mbuf *m)
447 {
448 	struct ip *ip;
449 	struct in_ifaddr *ia = NULL;
450 	struct in_ifaddr_container *iac;
451 	int hlen, checkif;
452 	u_short sum;
453 	struct in_addr pkt_dst;
454 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
455 	struct in_addr odst;			/* original dst address(NAT) */
456 	struct m_tag *mtag;
457 	struct sockaddr_in *next_hop = NULL;
458 	lwkt_port_t port;
459 #ifdef FAST_IPSEC
460 	struct tdb_ident *tdbi;
461 	struct secpolicy *sp;
462 	int error;
463 #endif
464 
465 	M_ASSERTPKTHDR(m);
466 
467 	/*
468 	 * This routine is called from numerous places which may not have
469 	 * characterized the packet.
470 	 */
471 	ip = mtod(m, struct ip *);
472 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
473 	    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK))) {
474 		/*
475 		 * Force hash recalculation for fragments and multicast
476 		 * packets; hardware may not do it correctly.
477 		 * XXX add flag to indicate the hash is from hardware
478 		 */
479 		m->m_flags &= ~M_HASH;
480 	}
481 	if ((m->m_flags & M_HASH) == 0) {
482 		ip_hashfn(&m, 0);
483 		if (m == NULL)
484 			return;
485 		KKASSERT(m->m_flags & M_HASH);
486 
487 		if (&curthread->td_msgport !=
488 		    netisr_hashport(m->m_pkthdr.hash)) {
489 			netisr_queue(NETISR_IP, m);
490 			/* Requeued to other netisr msgport; done */
491 			return;
492 		}
493 
494 		/* mbuf could have been changed */
495 		ip = mtod(m, struct ip *);
496 	}
497 
498 	/*
499 	 * Pull out certain tags
500 	 */
501 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
502 		/* Next hop */
503 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
504 		KKASSERT(mtag != NULL);
505 		next_hop = m_tag_data(mtag);
506 	}
507 
508 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
509 		/* dummynet already filtered us */
510 		ip = mtod(m, struct ip *);
511 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
512 		goto iphack;
513 	}
514 
515 	ipstat.ips_total++;
516 
517 	/* length checks already done in ip_hashfn() */
518 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
519 
520 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
521 		ipstat.ips_badvers++;
522 		goto bad;
523 	}
524 
525 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
526 	/* length checks already done in ip_hashfn() */
527 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
528 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
529 
530 	/* 127/8 must not appear on wire - RFC1122 */
531 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
532 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
533 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
534 			ipstat.ips_badaddr++;
535 			goto bad;
536 		}
537 	}
538 
539 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
540 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
541 	} else {
542 		if (hlen == sizeof(struct ip))
543 			sum = in_cksum_hdr(ip);
544 		else
545 			sum = in_cksum(m, hlen);
546 	}
547 	if (sum != 0) {
548 		ipstat.ips_badsum++;
549 		goto bad;
550 	}
551 
552 #ifdef ALTQ
553 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
554 		/* packet is dropped by traffic conditioner */
555 		return;
556 	}
557 #endif
558 	/*
559 	 * Convert fields to host representation.
560 	 */
561 	ip->ip_len = ntohs(ip->ip_len);
562 	ip->ip_off = ntohs(ip->ip_off);
563 
564 	/* length checks already done in ip_hashfn() */
565 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
566 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
567 
568 	/*
569 	 * Trim mbufs if longer than the IP header would have us expect.
570 	 */
571 	if (m->m_pkthdr.len > ip->ip_len) {
572 		if (m->m_len == m->m_pkthdr.len) {
573 			m->m_len = ip->ip_len;
574 			m->m_pkthdr.len = ip->ip_len;
575 		} else {
576 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
577 		}
578 	}
579 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
580 	/*
581 	 * Bypass packet filtering for packets from a tunnel (gif).
582 	 */
583 	if (ipsec_gethist(m, NULL))
584 		goto pass;
585 #endif
586 
587 	/*
588 	 * IpHack's section.
589 	 * Right now when no processing on packet has done
590 	 * and it is still fresh out of network we do our black
591 	 * deals with it.
592 	 * - Firewall: deny/allow/divert
593 	 * - Xlate: translate packet's addr/port (NAT).
594 	 * - Pipe: pass pkt through dummynet.
595 	 * - Wrap: fake packet's addr/port <unimpl.>
596 	 * - Encapsulate: put it in another IP and send out. <unimp.>
597 	 */
598 
599 iphack:
600 	/*
601 	 * If we've been forwarded from the output side, then
602 	 * skip the firewall a second time
603 	 */
604 	if (next_hop != NULL)
605 		goto ours;
606 
607 	/* No pfil hooks */
608 	if (!pfil_has_hooks(&inet_pfil_hook)) {
609 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
610 			/*
611 			 * Strip dummynet tags from stranded packets
612 			 */
613 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
614 			KKASSERT(mtag != NULL);
615 			m_tag_delete(m, mtag);
616 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
617 		}
618 		goto pass;
619 	}
620 
621 	/*
622 	 * Run through list of hooks for input packets.
623 	 *
624 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
625 	 *	  clear M_HASH.
626 	 */
627 	odst = ip->ip_dst;
628 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
629 		return;
630 	if (m == NULL)	/* consumed by filter */
631 		return;
632 	ip = mtod(m, struct ip *);
633 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
634 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
635 
636 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
637 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
638 		KKASSERT(mtag != NULL);
639 		next_hop = m_tag_data(mtag);
640 	}
641 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
642 		ip_dn_queue(m);
643 		return;
644 	}
645 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
646 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
647 	}
648 pass:
649 	/*
650 	 * Process options and, if not destined for us,
651 	 * ship it on.  ip_dooptions returns 1 when an
652 	 * error was detected (causing an icmp message
653 	 * to be sent and the original packet to be freed).
654 	 */
655 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
656 		return;
657 
658 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
659 	 * matter if it is destined to another node, or whether it is
660 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
661 	 * anywhere else. Also checks if the rsvp daemon is running before
662 	 * grabbing the packet.
663 	 */
664 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
665 		goto ours;
666 
667 	/*
668 	 * Check our list of addresses, to see if the packet is for us.
669 	 * If we don't have any addresses, assume any unicast packet
670 	 * we receive might be for us (and let the upper layers deal
671 	 * with it).
672 	 */
673 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
674 	    !(m->m_flags & (M_MCAST | M_BCAST)))
675 		goto ours;
676 
677 	/*
678 	 * Cache the destination address of the packet; this may be
679 	 * changed by use of 'ipfw fwd'.
680 	 */
681 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
682 
683 	/*
684 	 * Enable a consistency check between the destination address
685 	 * and the arrival interface for a unicast packet (the RFC 1122
686 	 * strong ES model) if IP forwarding is disabled and the packet
687 	 * is not locally generated and the packet is not subject to
688 	 * 'ipfw fwd'.
689 	 *
690 	 * XXX - Checking also should be disabled if the destination
691 	 * address is ipnat'ed to a different interface.
692 	 *
693 	 * XXX - Checking is incompatible with IP aliases added
694 	 * to the loopback interface instead of the interface where
695 	 * the packets are received.
696 	 */
697 	checkif = ip_checkinterface &&
698 		  !ipforwarding &&
699 		  m->m_pkthdr.rcvif != NULL &&
700 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
701 		  next_hop == NULL;
702 
703 	/*
704 	 * Check for exact addresses in the hash bucket.
705 	 */
706 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
707 		ia = iac->ia;
708 
709 		/*
710 		 * If the address matches, verify that the packet
711 		 * arrived via the correct interface if checking is
712 		 * enabled.
713 		 */
714 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
715 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
716 			goto ours;
717 	}
718 	ia = NULL;
719 
720 	/*
721 	 * Check for broadcast addresses.
722 	 *
723 	 * Only accept broadcast packets that arrive via the matching
724 	 * interface.  Reception of forwarded directed broadcasts would
725 	 * be handled via ip_forward() and ether_output() with the loopback
726 	 * into the stack for SIMPLEX interfaces handled by ether_output().
727 	 */
728 	if (m->m_pkthdr.rcvif != NULL &&
729 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
730 		struct ifaddr_container *ifac;
731 
732 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
733 			      ifa_link) {
734 			struct ifaddr *ifa = ifac->ifa;
735 
736 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
737 				continue;
738 			if (ifa->ifa_addr->sa_family != AF_INET)
739 				continue;
740 			ia = ifatoia(ifa);
741 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
742 								pkt_dst.s_addr)
743 				goto ours;
744 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
745 				goto ours;
746 #ifdef BOOTP_COMPAT
747 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
748 				goto ours;
749 #endif
750 		}
751 	}
752 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
753 		struct in_multi *inm;
754 
755 		if (ip_mrouter != NULL) {
756 			/* XXX Multicast routing is not MPSAFE yet */
757 			get_mplock();
758 
759 			/*
760 			 * If we are acting as a multicast router, all
761 			 * incoming multicast packets are passed to the
762 			 * kernel-level multicast forwarding function.
763 			 * The packet is returned (relatively) intact; if
764 			 * ip_mforward() returns a non-zero value, the packet
765 			 * must be discarded, else it may be accepted below.
766 			 */
767 			if (ip_mforward != NULL &&
768 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
769 				rel_mplock();
770 				ipstat.ips_cantforward++;
771 				m_freem(m);
772 				return;
773 			}
774 
775 			rel_mplock();
776 
777 			/*
778 			 * The process-level routing daemon needs to receive
779 			 * all multicast IGMP packets, whether or not this
780 			 * host belongs to their destination groups.
781 			 */
782 			if (ip->ip_p == IPPROTO_IGMP)
783 				goto ours;
784 			ipstat.ips_forward++;
785 		}
786 		/*
787 		 * See if we belong to the destination multicast group on the
788 		 * arrival interface.
789 		 */
790 		inm = IN_LOOKUP_MULTI(&ip->ip_dst, m->m_pkthdr.rcvif);
791 		if (inm == NULL) {
792 			ipstat.ips_notmember++;
793 			m_freem(m);
794 			return;
795 		}
796 		goto ours;
797 	}
798 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
799 		goto ours;
800 	if (ip->ip_dst.s_addr == INADDR_ANY)
801 		goto ours;
802 
803 	/*
804 	 * FAITH(Firewall Aided Internet Translator)
805 	 */
806 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
807 		if (ip_keepfaith) {
808 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
809 				goto ours;
810 		}
811 		m_freem(m);
812 		return;
813 	}
814 
815 	/*
816 	 * Not for us; forward if possible and desirable.
817 	 */
818 	if (!ipforwarding) {
819 		ipstat.ips_cantforward++;
820 		m_freem(m);
821 	} else {
822 #ifdef IPSEC
823 		/*
824 		 * Enforce inbound IPsec SPD.
825 		 */
826 		if (ipsec4_in_reject(m, NULL)) {
827 			ipsecstat.in_polvio++;
828 			goto bad;
829 		}
830 #endif
831 #ifdef FAST_IPSEC
832 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
833 		crit_enter();
834 		if (mtag != NULL) {
835 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
836 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
837 		} else {
838 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
839 						   IP_FORWARDING, &error);
840 		}
841 		if (sp == NULL) {	/* NB: can happen if error */
842 			crit_exit();
843 			/*XXX error stat???*/
844 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
845 			goto bad;
846 		}
847 
848 		/*
849 		 * Check security policy against packet attributes.
850 		 */
851 		error = ipsec_in_reject(sp, m);
852 		KEY_FREESP(&sp);
853 		crit_exit();
854 		if (error) {
855 			ipstat.ips_cantforward++;
856 			goto bad;
857 		}
858 #endif
859 		ip_forward(m, using_srcrt, next_hop);
860 	}
861 	return;
862 
863 ours:
864 
865 	/*
866 	 * IPSTEALTH: Process non-routing options only
867 	 * if the packet is destined for us.
868 	 */
869 	if (ipstealth &&
870 	    hlen > sizeof(struct ip) &&
871 	    ip_dooptions(m, 1, next_hop))
872 		return;
873 
874 	/* Count the packet in the ip address stats */
875 	if (ia != NULL) {
876 		IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
877 		IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
878 	}
879 
880 	/*
881 	 * If offset or IP_MF are set, must reassemble.
882 	 * Otherwise, nothing need be done.
883 	 * (We could look in the reassembly queue to see
884 	 * if the packet was previously fragmented,
885 	 * but it's not worth the time; just let them time out.)
886 	 */
887 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
888 		/*
889 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
890 		 * will return a different mbuf.
891 		 *
892 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
893 		 *	 us to recharacterize the packet.
894 		 */
895 		m = ip_reass(m);
896 		if (m == NULL)
897 			return;
898 		ip = mtod(m, struct ip *);
899 
900 		/* Get the header length of the reassembled packet */
901 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
902 	} else {
903 		ip->ip_len -= hlen;
904 	}
905 
906 #ifdef IPSEC
907 	/*
908 	 * enforce IPsec policy checking if we are seeing last header.
909 	 * note that we do not visit this with protocols with pcb layer
910 	 * code - like udp/tcp/raw ip.
911 	 */
912 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
913 	    ipsec4_in_reject(m, NULL)) {
914 		ipsecstat.in_polvio++;
915 		goto bad;
916 	}
917 #endif
918 #ifdef FAST_IPSEC
919 	/*
920 	 * enforce IPsec policy checking if we are seeing last header.
921 	 * note that we do not visit this with protocols with pcb layer
922 	 * code - like udp/tcp/raw ip.
923 	 */
924 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
925 		/*
926 		 * Check if the packet has already had IPsec processing
927 		 * done.  If so, then just pass it along.  This tag gets
928 		 * set during AH, ESP, etc. input handling, before the
929 		 * packet is returned to the ip input queue for delivery.
930 		 */
931 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
932 		crit_enter();
933 		if (mtag != NULL) {
934 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
935 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
936 		} else {
937 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
938 						   IP_FORWARDING, &error);
939 		}
940 		if (sp != NULL) {
941 			/*
942 			 * Check security policy against packet attributes.
943 			 */
944 			error = ipsec_in_reject(sp, m);
945 			KEY_FREESP(&sp);
946 		} else {
947 			/* XXX error stat??? */
948 			error = EINVAL;
949 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
950 			crit_exit();
951 			goto bad;
952 		}
953 		crit_exit();
954 		if (error)
955 			goto bad;
956 	}
957 #endif /* FAST_IPSEC */
958 
959 	/*
960 	 * We must forward the packet to the correct protocol thread if
961 	 * we are not already in it.
962 	 *
963 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
964 	 *	 further for protocol processing, instead we pass hlen
965 	 *	 to the protosw and let it deal with it.
966 	 */
967 	ipstat.ips_delivered++;
968 
969 	if ((m->m_flags & M_HASH) == 0) {
970 #ifdef RSS_DEBUG
971 		atomic_add_long(&ip_rehash_count, 1);
972 #endif
973 		ip->ip_len = htons(ip->ip_len + hlen);
974 		ip->ip_off = htons(ip->ip_off);
975 
976 		ip_hashfn(&m, 0);
977 		if (m == NULL)
978 			return;
979 
980 		ip = mtod(m, struct ip *);
981 		ip->ip_len = ntohs(ip->ip_len) - hlen;
982 		ip->ip_off = ntohs(ip->ip_off);
983 		KKASSERT(m->m_flags & M_HASH);
984 	}
985 	port = netisr_hashport(m->m_pkthdr.hash);
986 
987 	if (port != &curthread->td_msgport) {
988 		struct netmsg_packet *pmsg;
989 
990 #ifdef RSS_DEBUG
991 		atomic_add_long(&ip_dispatch_slow, 1);
992 #endif
993 
994 		pmsg = &m->m_hdr.mh_netmsg;
995 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
996 			    0, transport_processing_handler);
997 		pmsg->nm_packet = m;
998 		pmsg->base.lmsg.u.ms_result = hlen;
999 		lwkt_sendmsg(port, &pmsg->base.lmsg);
1000 	} else {
1001 #ifdef RSS_DEBUG
1002 		atomic_add_long(&ip_dispatch_fast, 1);
1003 #endif
1004 		transport_processing_oncpu(m, hlen, ip);
1005 	}
1006 	return;
1007 
1008 bad:
1009 	m_freem(m);
1010 }
1011 
1012 /*
1013  * Take incoming datagram fragment and try to reassemble it into
1014  * whole datagram.  If a chain for reassembly of this datagram already
1015  * exists, then it is given as fp; otherwise have to make a chain.
1016  */
1017 struct mbuf *
1018 ip_reass(struct mbuf *m)
1019 {
1020 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1021 	struct ip *ip = mtod(m, struct ip *);
1022 	struct mbuf *p = NULL, *q, *nq;
1023 	struct mbuf *n;
1024 	struct ipq *fp = NULL;
1025 	struct ipqhead *head;
1026 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1027 	int i, next;
1028 	u_short sum;
1029 
1030 	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
1031 	if (maxnipq == 0 || maxfragsperpacket == 0) {
1032 		ipstat.ips_fragments++;
1033 		ipstat.ips_fragdropped++;
1034 		m_freem(m);
1035 		return NULL;
1036 	}
1037 
1038 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1039 	/*
1040 	 * Look for queue of fragments of this datagram.
1041 	 */
1042 	head = &fragq->ipq[sum];
1043 	TAILQ_FOREACH(fp, head, ipq_list) {
1044 		if (ip->ip_id == fp->ipq_id &&
1045 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1046 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1047 		    ip->ip_p == fp->ipq_p)
1048 			goto found;
1049 	}
1050 
1051 	fp = NULL;
1052 
1053 	/*
1054 	 * Enforce upper bound on number of fragmented packets
1055 	 * for which we attempt reassembly;
1056 	 * If maxnipq is -1, accept all fragments without limitation.
1057 	 */
1058 	if (fragq->nipq > maxnipq && maxnipq > 0) {
1059 		/*
1060 		 * drop something from the tail of the current queue
1061 		 * before proceeding further
1062 		 */
1063 		struct ipq *q = TAILQ_LAST(head, ipqhead);
1064 		if (q == NULL) {
1065 			/*
1066 			 * The current queue is empty,
1067 			 * so drop from one of the others.
1068 			 */
1069 			for (i = 0; i < IPREASS_NHASH; i++) {
1070 				struct ipq *r = TAILQ_LAST(&fragq->ipq[i],
1071 				    ipqhead);
1072 				if (r) {
1073 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1074 					ip_freef(fragq, &fragq->ipq[i], r);
1075 					break;
1076 				}
1077 			}
1078 		} else {
1079 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1080 			ip_freef(fragq, head, q);
1081 		}
1082 	}
1083 found:
1084 	/*
1085 	 * Adjust ip_len to not reflect header,
1086 	 * convert offset of this to bytes.
1087 	 */
1088 	ip->ip_len -= hlen;
1089 	if (ip->ip_off & IP_MF) {
1090 		/*
1091 		 * Make sure that fragments have a data length
1092 		 * that's a non-zero multiple of 8 bytes.
1093 		 */
1094 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1095 			ipstat.ips_toosmall++; /* XXX */
1096 			m_freem(m);
1097 			goto done;
1098 		}
1099 		m->m_flags |= M_FRAG;
1100 	} else {
1101 		m->m_flags &= ~M_FRAG;
1102 	}
1103 	ip->ip_off <<= 3;
1104 
1105 	ipstat.ips_fragments++;
1106 	m->m_pkthdr.header = ip;
1107 
1108 	/*
1109 	 * If the hardware has not done csum over this fragment
1110 	 * then csum_data is not valid at all.
1111 	 */
1112 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1113 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1114 		m->m_pkthdr.csum_data = 0;
1115 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1116 	}
1117 
1118 	/*
1119 	 * Presence of header sizes in mbufs
1120 	 * would confuse code below.
1121 	 */
1122 	m->m_data += hlen;
1123 	m->m_len -= hlen;
1124 
1125 	/*
1126 	 * If first fragment to arrive, create a reassembly queue.
1127 	 */
1128 	if (fp == NULL) {
1129 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1130 			goto dropfrag;
1131 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1132 		fragq->nipq++;
1133 		fp->ipq_nfrags = 1;
1134 		fp->ipq_ttl = IPFRAGTTL;
1135 		fp->ipq_p = ip->ip_p;
1136 		fp->ipq_id = ip->ip_id;
1137 		fp->ipq_src = ip->ip_src;
1138 		fp->ipq_dst = ip->ip_dst;
1139 		fp->ipq_frags = m;
1140 		m->m_nextpkt = NULL;
1141 		goto inserted;
1142 	}
1143 	fp->ipq_nfrags++;
1144 
1145 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1146 
1147 	/*
1148 	 * Find a segment which begins after this one does.
1149 	 */
1150 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1151 		if (GETIP(q)->ip_off > ip->ip_off)
1152 			break;
1153 	}
1154 
1155 	/*
1156 	 * If there is a preceding segment, it may provide some of
1157 	 * our data already.  If so, drop the data from the incoming
1158 	 * segment.  If it provides all of our data, drop us, otherwise
1159 	 * stick new segment in the proper place.
1160 	 *
1161 	 * If some of the data is dropped from the the preceding
1162 	 * segment, then it's checksum is invalidated.
1163 	 */
1164 	if (p) {
1165 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1166 		if (i > 0) {
1167 			if (i >= ip->ip_len)
1168 				goto dropfrag;
1169 			m_adj(m, i);
1170 			m->m_pkthdr.csum_flags = 0;
1171 			ip->ip_off += i;
1172 			ip->ip_len -= i;
1173 		}
1174 		m->m_nextpkt = p->m_nextpkt;
1175 		p->m_nextpkt = m;
1176 	} else {
1177 		m->m_nextpkt = fp->ipq_frags;
1178 		fp->ipq_frags = m;
1179 	}
1180 
1181 	/*
1182 	 * While we overlap succeeding segments trim them or,
1183 	 * if they are completely covered, dequeue them.
1184 	 */
1185 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1186 	     q = nq) {
1187 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1188 		if (i < GETIP(q)->ip_len) {
1189 			GETIP(q)->ip_len -= i;
1190 			GETIP(q)->ip_off += i;
1191 			m_adj(q, i);
1192 			q->m_pkthdr.csum_flags = 0;
1193 			break;
1194 		}
1195 		nq = q->m_nextpkt;
1196 		m->m_nextpkt = nq;
1197 		ipstat.ips_fragdropped++;
1198 		fp->ipq_nfrags--;
1199 		q->m_nextpkt = NULL;
1200 		m_freem(q);
1201 	}
1202 
1203 inserted:
1204 	/*
1205 	 * Check for complete reassembly and perform frag per packet
1206 	 * limiting.
1207 	 *
1208 	 * Frag limiting is performed here so that the nth frag has
1209 	 * a chance to complete the packet before we drop the packet.
1210 	 * As a result, n+1 frags are actually allowed per packet, but
1211 	 * only n will ever be stored. (n = maxfragsperpacket.)
1212 	 *
1213 	 */
1214 	next = 0;
1215 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1216 		if (GETIP(q)->ip_off != next) {
1217 			if (fp->ipq_nfrags > maxfragsperpacket) {
1218 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1219 				ip_freef(fragq, head, fp);
1220 			}
1221 			goto done;
1222 		}
1223 		next += GETIP(q)->ip_len;
1224 	}
1225 	/* Make sure the last packet didn't have the IP_MF flag */
1226 	if (p->m_flags & M_FRAG) {
1227 		if (fp->ipq_nfrags > maxfragsperpacket) {
1228 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1229 			ip_freef(fragq, head, fp);
1230 		}
1231 		goto done;
1232 	}
1233 
1234 	/*
1235 	 * Reassembly is complete.  Make sure the packet is a sane size.
1236 	 */
1237 	q = fp->ipq_frags;
1238 	ip = GETIP(q);
1239 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1240 		ipstat.ips_toolong++;
1241 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1242 		ip_freef(fragq, head, fp);
1243 		goto done;
1244 	}
1245 
1246 	/*
1247 	 * Concatenate fragments.
1248 	 */
1249 	m = q;
1250 	n = m->m_next;
1251 	m->m_next = NULL;
1252 	m_cat(m, n);
1253 	nq = q->m_nextpkt;
1254 	q->m_nextpkt = NULL;
1255 	for (q = nq; q != NULL; q = nq) {
1256 		nq = q->m_nextpkt;
1257 		q->m_nextpkt = NULL;
1258 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1259 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1260 		m_cat(m, q);
1261 	}
1262 
1263 	/*
1264 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1265 	 * be added back.  This assumes no more then 65535 packet fragments
1266 	 * were reassembled.  A second carry can also occur (but not a third).
1267 	 */
1268 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1269 				(m->m_pkthdr.csum_data >> 16);
1270 	if (m->m_pkthdr.csum_data > 0xFFFF)
1271 		m->m_pkthdr.csum_data -= 0xFFFF;
1272 
1273 	/*
1274 	 * Create header for new ip packet by
1275 	 * modifying header of first packet;
1276 	 * dequeue and discard fragment reassembly header.
1277 	 * Make header visible.
1278 	 */
1279 	ip->ip_len = next;
1280 	ip->ip_src = fp->ipq_src;
1281 	ip->ip_dst = fp->ipq_dst;
1282 	TAILQ_REMOVE(head, fp, ipq_list);
1283 	fragq->nipq--;
1284 	mpipe_free(&ipq_mpipe, fp);
1285 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1286 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1287 	/* some debugging cruft by sklower, below, will go away soon */
1288 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1289 		int plen = 0;
1290 
1291 		for (n = m; n; n = n->m_next)
1292 			plen += n->m_len;
1293 		m->m_pkthdr.len = plen;
1294 	}
1295 
1296 	/*
1297 	 * Reassembly complete, return the next protocol.
1298 	 *
1299 	 * Be sure to clear M_HASH to force the packet
1300 	 * to be re-characterized.
1301 	 *
1302 	 * Clear M_FRAG, we are no longer a fragment.
1303 	 */
1304 	m->m_flags &= ~(M_HASH | M_FRAG);
1305 
1306 	ipstat.ips_reassembled++;
1307 	return (m);
1308 
1309 dropfrag:
1310 	ipstat.ips_fragdropped++;
1311 	if (fp != NULL)
1312 		fp->ipq_nfrags--;
1313 	m_freem(m);
1314 done:
1315 	return (NULL);
1316 
1317 #undef GETIP
1318 }
1319 
1320 /*
1321  * Free a fragment reassembly header and all
1322  * associated datagrams.
1323  */
1324 static void
1325 ip_freef(struct ipfrag_queue *fragq, struct ipqhead *fhp, struct ipq *fp)
1326 {
1327 	struct mbuf *q;
1328 
1329 	/*
1330 	 * Remove first to protect against blocking
1331 	 */
1332 	TAILQ_REMOVE(fhp, fp, ipq_list);
1333 
1334 	/*
1335 	 * Clean out at our leisure
1336 	 */
1337 	while (fp->ipq_frags) {
1338 		q = fp->ipq_frags;
1339 		fp->ipq_frags = q->m_nextpkt;
1340 		q->m_nextpkt = NULL;
1341 		m_freem(q);
1342 	}
1343 	mpipe_free(&ipq_mpipe, fp);
1344 	fragq->nipq--;
1345 }
1346 
1347 /*
1348  * If a timer expires on a reassembly queue, discard it.
1349  */
1350 static void
1351 ipfrag_timeo_dispatch(netmsg_t nmsg)
1352 {
1353 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1354 	struct ipq *fp, *fp_temp;
1355 	struct ipqhead *head;
1356 	int i;
1357 
1358 	crit_enter();
1359 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1360 	crit_exit();
1361 
1362 	for (i = 0; i < IPREASS_NHASH; i++) {
1363 		head = &fragq->ipq[i];
1364 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1365 			if (--fp->ipq_ttl == 0) {
1366 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1367 				ip_freef(fragq, head, fp);
1368 			}
1369 		}
1370 	}
1371 	/*
1372 	 * If we are over the maximum number of fragments
1373 	 * (due to the limit being lowered), drain off
1374 	 * enough to get down to the new limit.
1375 	 */
1376 	if (maxnipq >= 0 && fragq->nipq > maxnipq) {
1377 		for (i = 0; i < IPREASS_NHASH; i++) {
1378 			head = &fragq->ipq[i];
1379 			while (fragq->nipq > maxnipq && !TAILQ_EMPTY(head)) {
1380 				ipstat.ips_fragdropped +=
1381 				    TAILQ_FIRST(head)->ipq_nfrags;
1382 				ip_freef(fragq, head, TAILQ_FIRST(head));
1383 			}
1384 		}
1385 	}
1386 }
1387 
1388 static void
1389 ipfrag_timeo_ipi(void *arg __unused)
1390 {
1391 	int cpu = mycpuid;
1392 	struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].timeo_netmsg.lmsg;
1393 
1394 	ipfrag_queue_pcpu[cpu].timeo_inprog = 0;
1395 	crit_enter();
1396 	if (msg->ms_flags & MSGF_DONE)
1397 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1398 	crit_exit();
1399 }
1400 
1401 static void
1402 ipfrag_slowtimo(void)
1403 {
1404 	cpumask_t mask;
1405 	int i;
1406 
1407 	CPUMASK_ASSZERO(mask);
1408 	for (i = 0; i < ncpus; ++i) {
1409 		if (ipfrag_queue_pcpu[i].nipq &&
1410 		    ipfrag_queue_pcpu[i].timeo_inprog == 0) {
1411 			ipfrag_queue_pcpu[i].timeo_inprog = 1;
1412 			CPUMASK_ORBIT(mask, i);
1413 		}
1414 	}
1415 	CPUMASK_ANDMASK(mask, smp_active_mask);
1416 	if (CPUMASK_TESTNZERO(mask))
1417 		lwkt_send_ipiq_mask(mask, ipfrag_timeo_ipi, NULL);
1418 }
1419 
1420 /*
1421  * IP timer processing
1422  */
1423 void
1424 ip_slowtimo(void)
1425 {
1426 	ipfrag_slowtimo();
1427 	ipflow_slowtimo();
1428 }
1429 
1430 /*
1431  * Drain off all datagram fragments.
1432  */
1433 static void
1434 ipfrag_drain_dispatch(netmsg_t nmsg)
1435 {
1436 	struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1437 	struct ipqhead *head;
1438 	int i;
1439 
1440 	crit_enter();
1441 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1442 	crit_exit();
1443 
1444 	for (i = 0; i < IPREASS_NHASH; i++) {
1445 		head = &fragq->ipq[i];
1446 		while (!TAILQ_EMPTY(head)) {
1447 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1448 			ip_freef(fragq, head, TAILQ_FIRST(head));
1449 		}
1450 	}
1451 }
1452 
1453 static void
1454 ipfrag_drain_ipi(void *arg __unused)
1455 {
1456 	int cpu = mycpuid;
1457 	struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].drain_netmsg.lmsg;
1458 
1459 	crit_enter();
1460 	if (msg->ms_flags & MSGF_DONE)
1461 		lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1462 	crit_exit();
1463 }
1464 
1465 static void
1466 ipfrag_drain(void)
1467 {
1468 	cpumask_t mask;
1469 
1470 	CPUMASK_ASSBMASK(mask, ncpus);
1471 	CPUMASK_ANDMASK(mask, smp_active_mask);
1472 	if (CPUMASK_TESTNZERO(mask))
1473 		lwkt_send_ipiq_mask(mask, ipfrag_drain_ipi, NULL);
1474 }
1475 
1476 void
1477 ip_drain(void)
1478 {
1479 	ipfrag_drain();
1480 	in_rtqdrain();
1481 }
1482 
1483 /*
1484  * Do option processing on a datagram,
1485  * possibly discarding it if bad options are encountered,
1486  * or forwarding it if source-routed.
1487  * The pass argument is used when operating in the IPSTEALTH
1488  * mode to tell what options to process:
1489  * [LS]SRR (pass 0) or the others (pass 1).
1490  * The reason for as many as two passes is that when doing IPSTEALTH,
1491  * non-routing options should be processed only if the packet is for us.
1492  * Returns 1 if packet has been forwarded/freed,
1493  * 0 if the packet should be processed further.
1494  */
1495 static int
1496 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1497 {
1498 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1499 	struct ip *ip = mtod(m, struct ip *);
1500 	u_char *cp;
1501 	struct in_ifaddr *ia;
1502 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1503 	boolean_t forward = FALSE;
1504 	struct in_addr *sin, dst;
1505 	n_time ntime;
1506 
1507 	dst = ip->ip_dst;
1508 	cp = (u_char *)(ip + 1);
1509 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1510 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1511 		opt = cp[IPOPT_OPTVAL];
1512 		if (opt == IPOPT_EOL)
1513 			break;
1514 		if (opt == IPOPT_NOP)
1515 			optlen = 1;
1516 		else {
1517 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1518 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1519 				goto bad;
1520 			}
1521 			optlen = cp[IPOPT_OLEN];
1522 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1523 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1524 				goto bad;
1525 			}
1526 		}
1527 		switch (opt) {
1528 
1529 		default:
1530 			break;
1531 
1532 		/*
1533 		 * Source routing with record.
1534 		 * Find interface with current destination address.
1535 		 * If none on this machine then drop if strictly routed,
1536 		 * or do nothing if loosely routed.
1537 		 * Record interface address and bring up next address
1538 		 * component.  If strictly routed make sure next
1539 		 * address is on directly accessible net.
1540 		 */
1541 		case IPOPT_LSRR:
1542 		case IPOPT_SSRR:
1543 			if (ipstealth && pass > 0)
1544 				break;
1545 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1546 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1547 				goto bad;
1548 			}
1549 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1550 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1551 				goto bad;
1552 			}
1553 			ipaddr.sin_addr = ip->ip_dst;
1554 			ia = (struct in_ifaddr *)
1555 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1556 			if (ia == NULL) {
1557 				if (opt == IPOPT_SSRR) {
1558 					type = ICMP_UNREACH;
1559 					code = ICMP_UNREACH_SRCFAIL;
1560 					goto bad;
1561 				}
1562 				if (!ip_dosourceroute)
1563 					goto nosourcerouting;
1564 				/*
1565 				 * Loose routing, and not at next destination
1566 				 * yet; nothing to do except forward.
1567 				 */
1568 				break;
1569 			}
1570 			off--;			/* 0 origin */
1571 			if (off > optlen - (int)sizeof(struct in_addr)) {
1572 				/*
1573 				 * End of source route.  Should be for us.
1574 				 */
1575 				if (!ip_acceptsourceroute)
1576 					goto nosourcerouting;
1577 				save_rte(m, cp, ip->ip_src);
1578 				break;
1579 			}
1580 			if (ipstealth)
1581 				goto dropit;
1582 			if (!ip_dosourceroute) {
1583 				if (ipforwarding) {
1584 					char sbuf[INET_ADDRSTRLEN];
1585 					char dbuf[INET_ADDRSTRLEN];
1586 
1587 					/*
1588 					 * Acting as a router, so generate ICMP
1589 					 */
1590 nosourcerouting:
1591 					log(LOG_WARNING,
1592 					    "attempted source route from %s to %s\n",
1593 					    kinet_ntoa(ip->ip_src, sbuf),
1594 					    kinet_ntoa(ip->ip_dst, dbuf));
1595 					type = ICMP_UNREACH;
1596 					code = ICMP_UNREACH_SRCFAIL;
1597 					goto bad;
1598 				} else {
1599 					/*
1600 					 * Not acting as a router,
1601 					 * so silently drop.
1602 					 */
1603 dropit:
1604 					ipstat.ips_cantforward++;
1605 					m_freem(m);
1606 					return (1);
1607 				}
1608 			}
1609 
1610 			/*
1611 			 * locate outgoing interface
1612 			 */
1613 			memcpy(&ipaddr.sin_addr, cp + off,
1614 			    sizeof ipaddr.sin_addr);
1615 
1616 			if (opt == IPOPT_SSRR) {
1617 #define	INA	struct in_ifaddr *
1618 #define	SA	struct sockaddr *
1619 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1620 									== NULL)
1621 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1622 			} else {
1623 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1624 			}
1625 			if (ia == NULL) {
1626 				type = ICMP_UNREACH;
1627 				code = ICMP_UNREACH_SRCFAIL;
1628 				goto bad;
1629 			}
1630 			ip->ip_dst = ipaddr.sin_addr;
1631 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1632 			    sizeof(struct in_addr));
1633 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1634 			/*
1635 			 * Let ip_intr's mcast routing check handle mcast pkts
1636 			 */
1637 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1638 			break;
1639 
1640 		case IPOPT_RR:
1641 			if (ipstealth && pass == 0)
1642 				break;
1643 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1644 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1645 				goto bad;
1646 			}
1647 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1648 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1649 				goto bad;
1650 			}
1651 			/*
1652 			 * If no space remains, ignore.
1653 			 */
1654 			off--;			/* 0 origin */
1655 			if (off > optlen - (int)sizeof(struct in_addr))
1656 				break;
1657 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1658 			    sizeof ipaddr.sin_addr);
1659 			/*
1660 			 * locate outgoing interface; if we're the destination,
1661 			 * use the incoming interface (should be same).
1662 			 */
1663 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1664 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1665 				type = ICMP_UNREACH;
1666 				code = ICMP_UNREACH_HOST;
1667 				goto bad;
1668 			}
1669 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1670 			    sizeof(struct in_addr));
1671 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1672 			break;
1673 
1674 		case IPOPT_TS:
1675 			if (ipstealth && pass == 0)
1676 				break;
1677 			code = cp - (u_char *)ip;
1678 			if (optlen < 4 || optlen > 40) {
1679 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1680 				goto bad;
1681 			}
1682 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1683 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1684 				goto bad;
1685 			}
1686 			if (off > optlen - (int)sizeof(int32_t)) {
1687 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1688 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1689 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1690 					goto bad;
1691 				}
1692 				break;
1693 			}
1694 			off--;				/* 0 origin */
1695 			sin = (struct in_addr *)(cp + off);
1696 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1697 
1698 			case IPOPT_TS_TSONLY:
1699 				break;
1700 
1701 			case IPOPT_TS_TSANDADDR:
1702 				if (off + sizeof(n_time) +
1703 				    sizeof(struct in_addr) > optlen) {
1704 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1705 					goto bad;
1706 				}
1707 				ipaddr.sin_addr = dst;
1708 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1709 							    m->m_pkthdr.rcvif);
1710 				if (ia == NULL)
1711 					continue;
1712 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1713 				    sizeof(struct in_addr));
1714 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1715 				off += sizeof(struct in_addr);
1716 				break;
1717 
1718 			case IPOPT_TS_PRESPEC:
1719 				if (off + sizeof(n_time) +
1720 				    sizeof(struct in_addr) > optlen) {
1721 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1722 					goto bad;
1723 				}
1724 				memcpy(&ipaddr.sin_addr, sin,
1725 				    sizeof(struct in_addr));
1726 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1727 					continue;
1728 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1729 				off += sizeof(struct in_addr);
1730 				break;
1731 
1732 			default:
1733 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1734 				goto bad;
1735 			}
1736 			ntime = iptime();
1737 			memcpy(cp + off, &ntime, sizeof(n_time));
1738 			cp[IPOPT_OFFSET] += sizeof(n_time);
1739 		}
1740 	}
1741 	if (forward && ipforwarding) {
1742 		ip_forward(m, TRUE, next_hop);
1743 		return (1);
1744 	}
1745 	return (0);
1746 bad:
1747 	icmp_error(m, type, code, 0, 0);
1748 	ipstat.ips_badoptions++;
1749 	return (1);
1750 }
1751 
1752 /*
1753  * Given address of next destination (final or next hop),
1754  * return internet address info of interface to be used to get there.
1755  */
1756 struct in_ifaddr *
1757 ip_rtaddr(struct in_addr dst, struct route *ro0)
1758 {
1759 	struct route sro, *ro;
1760 	struct sockaddr_in *sin;
1761 	struct in_ifaddr *ia;
1762 
1763 	if (ro0 != NULL) {
1764 		ro = ro0;
1765 	} else {
1766 		bzero(&sro, sizeof(sro));
1767 		ro = &sro;
1768 	}
1769 
1770 	sin = (struct sockaddr_in *)&ro->ro_dst;
1771 
1772 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1773 		if (ro->ro_rt != NULL) {
1774 			RTFREE(ro->ro_rt);
1775 			ro->ro_rt = NULL;
1776 		}
1777 		sin->sin_family = AF_INET;
1778 		sin->sin_len = sizeof *sin;
1779 		sin->sin_addr = dst;
1780 		rtalloc_ign(ro, RTF_PRCLONING);
1781 	}
1782 
1783 	if (ro->ro_rt == NULL)
1784 		return (NULL);
1785 
1786 	ia = ifatoia(ro->ro_rt->rt_ifa);
1787 
1788 	if (ro == &sro)
1789 		RTFREE(ro->ro_rt);
1790 	return ia;
1791 }
1792 
1793 /*
1794  * Save incoming source route for use in replies,
1795  * to be picked up later by ip_srcroute if the receiver is interested.
1796  */
1797 static void
1798 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1799 {
1800 	struct m_tag *mtag;
1801 	struct ip_srcrt_opt *opt;
1802 	unsigned olen;
1803 
1804 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), M_NOWAIT);
1805 	if (mtag == NULL)
1806 		return;
1807 	opt = m_tag_data(mtag);
1808 
1809 	olen = option[IPOPT_OLEN];
1810 #ifdef DIAGNOSTIC
1811 	if (ipprintfs)
1812 		kprintf("save_rte: olen %d\n", olen);
1813 #endif
1814 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1815 		m_tag_free(mtag);
1816 		return;
1817 	}
1818 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1819 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1820 	opt->ip_srcrt.dst = dst;
1821 	m_tag_prepend(m, mtag);
1822 }
1823 
1824 /*
1825  * Retrieve incoming source route for use in replies,
1826  * in the same form used by setsockopt.
1827  * The first hop is placed before the options, will be removed later.
1828  */
1829 struct mbuf *
1830 ip_srcroute(struct mbuf *m0)
1831 {
1832 	struct in_addr *p, *q;
1833 	struct mbuf *m;
1834 	struct m_tag *mtag;
1835 	struct ip_srcrt_opt *opt;
1836 
1837 	if (m0 == NULL)
1838 		return NULL;
1839 
1840 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1841 	if (mtag == NULL)
1842 		return NULL;
1843 	opt = m_tag_data(mtag);
1844 
1845 	if (opt->ip_nhops == 0)
1846 		return (NULL);
1847 	m = m_get(M_NOWAIT, MT_HEADER);
1848 	if (m == NULL)
1849 		return (NULL);
1850 
1851 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1852 
1853 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1854 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1855 		   sizeof(struct in_addr) + OPTSIZ;
1856 #ifdef DIAGNOSTIC
1857 	if (ipprintfs) {
1858 		kprintf("ip_srcroute: nhops %d mlen %d",
1859 			opt->ip_nhops, m->m_len);
1860 	}
1861 #endif
1862 
1863 	/*
1864 	 * First save first hop for return route
1865 	 */
1866 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1867 	*(mtod(m, struct in_addr *)) = *p--;
1868 #ifdef DIAGNOSTIC
1869 	if (ipprintfs)
1870 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1871 #endif
1872 
1873 	/*
1874 	 * Copy option fields and padding (nop) to mbuf.
1875 	 */
1876 	opt->ip_srcrt.nop = IPOPT_NOP;
1877 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1878 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1879 	    OPTSIZ);
1880 	q = (struct in_addr *)(mtod(m, caddr_t) +
1881 	    sizeof(struct in_addr) + OPTSIZ);
1882 #undef OPTSIZ
1883 	/*
1884 	 * Record return path as an IP source route,
1885 	 * reversing the path (pointers are now aligned).
1886 	 */
1887 	while (p >= opt->ip_srcrt.route) {
1888 #ifdef DIAGNOSTIC
1889 		if (ipprintfs)
1890 			kprintf(" %x", ntohl(q->s_addr));
1891 #endif
1892 		*q++ = *p--;
1893 	}
1894 	/*
1895 	 * Last hop goes to final destination.
1896 	 */
1897 	*q = opt->ip_srcrt.dst;
1898 	m_tag_delete(m0, mtag);
1899 #ifdef DIAGNOSTIC
1900 	if (ipprintfs)
1901 		kprintf(" %x\n", ntohl(q->s_addr));
1902 #endif
1903 	return (m);
1904 }
1905 
1906 /*
1907  * Strip out IP options.
1908  */
1909 void
1910 ip_stripoptions(struct mbuf *m)
1911 {
1912 	int datalen;
1913 	struct ip *ip = mtod(m, struct ip *);
1914 	caddr_t opts;
1915 	int optlen;
1916 
1917 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1918 	opts = (caddr_t)(ip + 1);
1919 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1920 	bcopy(opts + optlen, opts, datalen);
1921 	m->m_len -= optlen;
1922 	if (m->m_flags & M_PKTHDR)
1923 		m->m_pkthdr.len -= optlen;
1924 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1925 }
1926 
1927 u_char inetctlerrmap[PRC_NCMDS] = {
1928 	0,		0,		0,		0,
1929 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1930 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1931 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1932 	0,		0,		0,		0,
1933 	ENOPROTOOPT,	ECONNREFUSED
1934 };
1935 
1936 /*
1937  * Forward a packet.  If some error occurs return the sender
1938  * an icmp packet.  Note we can't always generate a meaningful
1939  * icmp message because icmp doesn't have a large enough repertoire
1940  * of codes and types.
1941  *
1942  * If not forwarding, just drop the packet.  This could be confusing
1943  * if ipforwarding was zero but some routing protocol was advancing
1944  * us as a gateway to somewhere.  However, we must let the routing
1945  * protocol deal with that.
1946  *
1947  * The using_srcrt parameter indicates whether the packet is being forwarded
1948  * via a source route.
1949  */
1950 void
1951 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1952 {
1953 	struct ip *ip = mtod(m, struct ip *);
1954 	struct rtentry *rt;
1955 	struct route fwd_ro;
1956 	int error, type = 0, code = 0, destmtu = 0;
1957 	struct mbuf *mcopy, *mtemp = NULL;
1958 	n_long dest;
1959 	struct in_addr pkt_dst;
1960 
1961 	dest = INADDR_ANY;
1962 	/*
1963 	 * Cache the destination address of the packet; this may be
1964 	 * changed by use of 'ipfw fwd'.
1965 	 */
1966 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1967 
1968 #ifdef DIAGNOSTIC
1969 	if (ipprintfs)
1970 		kprintf("forward: src %x dst %x ttl %x\n",
1971 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1972 #endif
1973 
1974 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1975 		ipstat.ips_cantforward++;
1976 		m_freem(m);
1977 		return;
1978 	}
1979 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1980 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1981 		return;
1982 	}
1983 
1984 	bzero(&fwd_ro, sizeof(fwd_ro));
1985 	ip_rtaddr(pkt_dst, &fwd_ro);
1986 	if (fwd_ro.ro_rt == NULL) {
1987 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1988 		return;
1989 	}
1990 	rt = fwd_ro.ro_rt;
1991 
1992 	if (curthread->td_type == TD_TYPE_NETISR) {
1993 		/*
1994 		 * Save the IP header and at most 8 bytes of the payload,
1995 		 * in case we need to generate an ICMP message to the src.
1996 		 */
1997 		mtemp = ipforward_mtemp[mycpuid];
1998 		KASSERT((mtemp->m_flags & M_EXT) == 0 &&
1999 		    mtemp->m_data == mtemp->m_pktdat &&
2000 		    m_tag_first(mtemp) == NULL,
2001 		    ("ip_forward invalid mtemp1"));
2002 
2003 		if (!m_dup_pkthdr(mtemp, m, M_NOWAIT)) {
2004 			/*
2005 			 * It's probably ok if the pkthdr dup fails (because
2006 			 * the deep copy of the tag chain failed), but for now
2007 			 * be conservative and just discard the copy since
2008 			 * code below may some day want the tags.
2009 			 */
2010 			mtemp = NULL;
2011 		} else {
2012 			mtemp->m_type = m->m_type;
2013 			mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2014 			    (int)ip->ip_len);
2015 			mtemp->m_pkthdr.len = mtemp->m_len;
2016 			m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
2017 		}
2018 	}
2019 
2020 	if (!ipstealth)
2021 		ip->ip_ttl -= IPTTLDEC;
2022 
2023 	/*
2024 	 * If forwarding packet using same interface that it came in on,
2025 	 * perhaps should send a redirect to sender to shortcut a hop.
2026 	 * Only send redirect if source is sending directly to us,
2027 	 * and if packet was not source routed (or has any options).
2028 	 * Also, don't send redirect if forwarding using a default route
2029 	 * or a route modified by a redirect.
2030 	 */
2031 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2032 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
2033 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
2034 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
2035 		u_long src = ntohl(ip->ip_src.s_addr);
2036 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
2037 
2038 		if (rt_ifa != NULL &&
2039 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
2040 			if (rt->rt_flags & RTF_GATEWAY)
2041 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2042 			else
2043 				dest = pkt_dst.s_addr;
2044 			/*
2045 			 * Router requirements says to only send
2046 			 * host redirects.
2047 			 */
2048 			type = ICMP_REDIRECT;
2049 			code = ICMP_REDIRECT_HOST;
2050 #ifdef DIAGNOSTIC
2051 			if (ipprintfs)
2052 				kprintf("redirect (%d) to %x\n", code, dest);
2053 #endif
2054 		}
2055 	}
2056 
2057 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
2058 	if (error == 0) {
2059 		ipstat.ips_forward++;
2060 		if (type == 0) {
2061 			if (mtemp)
2062 				ipflow_create(&fwd_ro, mtemp);
2063 			goto done;
2064 		}
2065 		ipstat.ips_redirectsent++;
2066 	} else {
2067 		ipstat.ips_cantforward++;
2068 	}
2069 
2070 	if (mtemp == NULL)
2071 		goto done;
2072 
2073 	/*
2074 	 * Errors that do not require generating ICMP message
2075 	 */
2076 	switch (error) {
2077 	case ENOBUFS:
2078 		/*
2079 		 * A router should not generate ICMP_SOURCEQUENCH as
2080 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2081 		 * Source quench could be a big problem under DoS attacks,
2082 		 * or if the underlying interface is rate-limited.
2083 		 * Those who need source quench packets may re-enable them
2084 		 * via the net.inet.ip.sendsourcequench sysctl.
2085 		 */
2086 		if (!ip_sendsourcequench)
2087 			goto done;
2088 		break;
2089 
2090 	case EACCES:			/* ipfw denied packet */
2091 		goto done;
2092 	}
2093 
2094 	KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2095 	    mtemp->m_data == mtemp->m_pktdat,
2096 	    ("ip_forward invalid mtemp2"));
2097 	mcopy = m_copym(mtemp, 0, mtemp->m_len, M_NOWAIT);
2098 	if (mcopy == NULL)
2099 		goto done;
2100 
2101 	/*
2102 	 * Send ICMP message.
2103 	 */
2104 	switch (error) {
2105 	case 0:				/* forwarded, but need redirect */
2106 		/* type, code set above */
2107 		break;
2108 
2109 	case ENETUNREACH:		/* shouldn't happen, checked above */
2110 	case EHOSTUNREACH:
2111 	case ENETDOWN:
2112 	case EHOSTDOWN:
2113 	default:
2114 		type = ICMP_UNREACH;
2115 		code = ICMP_UNREACH_HOST;
2116 		break;
2117 
2118 	case EMSGSIZE:
2119 		type = ICMP_UNREACH;
2120 		code = ICMP_UNREACH_NEEDFRAG;
2121 #ifdef IPSEC
2122 		/*
2123 		 * If the packet is routed over IPsec tunnel, tell the
2124 		 * originator the tunnel MTU.
2125 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2126 		 * XXX quickhack!!!
2127 		 */
2128 		if (fwd_ro.ro_rt != NULL) {
2129 			struct secpolicy *sp = NULL;
2130 			int ipsecerror;
2131 			int ipsechdr;
2132 			struct route *ro;
2133 
2134 			sp = ipsec4_getpolicybyaddr(mcopy,
2135 						    IPSEC_DIR_OUTBOUND,
2136 						    IP_FORWARDING,
2137 						    &ipsecerror);
2138 
2139 			if (sp == NULL)
2140 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2141 			else {
2142 				/* count IPsec header size */
2143 				ipsechdr = ipsec4_hdrsiz(mcopy,
2144 							 IPSEC_DIR_OUTBOUND,
2145 							 NULL);
2146 
2147 				/*
2148 				 * find the correct route for outer IPv4
2149 				 * header, compute tunnel MTU.
2150 				 *
2151 				 */
2152 				if (sp->req != NULL && sp->req->sav != NULL &&
2153 				    sp->req->sav->sah != NULL) {
2154 					ro = &sp->req->sav->sah->sa_route;
2155 					if (ro->ro_rt != NULL &&
2156 					    ro->ro_rt->rt_ifp != NULL) {
2157 						destmtu =
2158 						    ro->ro_rt->rt_ifp->if_mtu;
2159 						destmtu -= ipsechdr;
2160 					}
2161 				}
2162 
2163 				key_freesp(sp);
2164 			}
2165 		}
2166 #elif defined(FAST_IPSEC)
2167 		/*
2168 		 * If the packet is routed over IPsec tunnel, tell the
2169 		 * originator the tunnel MTU.
2170 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2171 		 * XXX quickhack!!!
2172 		 */
2173 		if (fwd_ro.ro_rt != NULL) {
2174 			struct secpolicy *sp = NULL;
2175 			int ipsecerror;
2176 			int ipsechdr;
2177 			struct route *ro;
2178 
2179 			sp = ipsec_getpolicybyaddr(mcopy,
2180 						   IPSEC_DIR_OUTBOUND,
2181 						   IP_FORWARDING,
2182 						   &ipsecerror);
2183 
2184 			if (sp == NULL)
2185 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2186 			else {
2187 				/* count IPsec header size */
2188 				ipsechdr = ipsec4_hdrsiz(mcopy,
2189 							 IPSEC_DIR_OUTBOUND,
2190 							 NULL);
2191 
2192 				/*
2193 				 * find the correct route for outer IPv4
2194 				 * header, compute tunnel MTU.
2195 				 */
2196 
2197 				if (sp->req != NULL &&
2198 				    sp->req->sav != NULL &&
2199 				    sp->req->sav->sah != NULL) {
2200 					ro = &sp->req->sav->sah->sa_route;
2201 					if (ro->ro_rt != NULL &&
2202 					    ro->ro_rt->rt_ifp != NULL) {
2203 						destmtu =
2204 						    ro->ro_rt->rt_ifp->if_mtu;
2205 						destmtu -= ipsechdr;
2206 					}
2207 				}
2208 
2209 				KEY_FREESP(&sp);
2210 			}
2211 		}
2212 #else /* !IPSEC && !FAST_IPSEC */
2213 		if (fwd_ro.ro_rt != NULL)
2214 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2215 #endif /*IPSEC*/
2216 		ipstat.ips_cantfrag++;
2217 		break;
2218 
2219 	case ENOBUFS:
2220 		type = ICMP_SOURCEQUENCH;
2221 		code = 0;
2222 		break;
2223 
2224 	case EACCES:			/* ipfw denied packet */
2225 		panic("ip_forward EACCES should not reach");
2226 	}
2227 	icmp_error(mcopy, type, code, dest, destmtu);
2228 done:
2229 	if (mtemp != NULL)
2230 		m_tag_delete_chain(mtemp);
2231 	if (fwd_ro.ro_rt != NULL)
2232 		RTFREE(fwd_ro.ro_rt);
2233 }
2234 
2235 void
2236 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2237 	       struct mbuf *m)
2238 {
2239 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2240 		struct timeval tv;
2241 
2242 		microtime(&tv);
2243 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2244 		    SCM_TIMESTAMP, SOL_SOCKET);
2245 		if (*mp)
2246 			mp = &(*mp)->m_next;
2247 	}
2248 	if (inp->inp_flags & INP_RECVDSTADDR) {
2249 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2250 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2251 		if (*mp)
2252 			mp = &(*mp)->m_next;
2253 	}
2254 	if (inp->inp_flags & INP_RECVTTL) {
2255 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2256 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2257 		if (*mp)
2258 			mp = &(*mp)->m_next;
2259 	}
2260 #ifdef notyet
2261 	/* XXX
2262 	 * Moving these out of udp_input() made them even more broken
2263 	 * than they already were.
2264 	 */
2265 	/* options were tossed already */
2266 	if (inp->inp_flags & INP_RECVOPTS) {
2267 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2268 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2269 		if (*mp)
2270 			mp = &(*mp)->m_next;
2271 	}
2272 	/* ip_srcroute doesn't do what we want here, need to fix */
2273 	if (inp->inp_flags & INP_RECVRETOPTS) {
2274 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2275 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2276 		if (*mp)
2277 			mp = &(*mp)->m_next;
2278 	}
2279 #endif
2280 	if (inp->inp_flags & INP_RECVIF) {
2281 		struct ifnet *ifp;
2282 		struct sdlbuf {
2283 			struct sockaddr_dl sdl;
2284 			u_char	pad[32];
2285 		} sdlbuf;
2286 		struct sockaddr_dl *sdp;
2287 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2288 
2289 		if (((ifp = m->m_pkthdr.rcvif)) &&
2290 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2291 			sdp = IF_LLSOCKADDR(ifp);
2292 			/*
2293 			 * Change our mind and don't try copy.
2294 			 */
2295 			if ((sdp->sdl_family != AF_LINK) ||
2296 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2297 				goto makedummy;
2298 			}
2299 			bcopy(sdp, sdl2, sdp->sdl_len);
2300 		} else {
2301 makedummy:
2302 			sdl2->sdl_len =
2303 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2304 			sdl2->sdl_family = AF_LINK;
2305 			sdl2->sdl_index = 0;
2306 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2307 		}
2308 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2309 			IP_RECVIF, IPPROTO_IP);
2310 		if (*mp)
2311 			mp = &(*mp)->m_next;
2312 	}
2313 }
2314 
2315 /*
2316  * XXX these routines are called from the upper part of the kernel.
2317  *
2318  * They could also be moved to ip_mroute.c, since all the RSVP
2319  *  handling is done there already.
2320  */
2321 int
2322 ip_rsvp_init(struct socket *so)
2323 {
2324 	if (so->so_type != SOCK_RAW ||
2325 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2326 		return EOPNOTSUPP;
2327 
2328 	if (ip_rsvpd != NULL)
2329 		return EADDRINUSE;
2330 
2331 	ip_rsvpd = so;
2332 	/*
2333 	 * This may seem silly, but we need to be sure we don't over-increment
2334 	 * the RSVP counter, in case something slips up.
2335 	 */
2336 	if (!ip_rsvp_on) {
2337 		ip_rsvp_on = 1;
2338 		rsvp_on++;
2339 	}
2340 
2341 	return 0;
2342 }
2343 
2344 int
2345 ip_rsvp_done(void)
2346 {
2347 	ip_rsvpd = NULL;
2348 	/*
2349 	 * This may seem silly, but we need to be sure we don't over-decrement
2350 	 * the RSVP counter, in case something slips up.
2351 	 */
2352 	if (ip_rsvp_on) {
2353 		ip_rsvp_on = 0;
2354 		rsvp_on--;
2355 	}
2356 	return 0;
2357 }
2358 
2359 int
2360 rsvp_input(struct mbuf **mp, int *offp, int proto)
2361 {
2362 	struct mbuf *m = *mp;
2363 
2364 	*mp = NULL;
2365 
2366 	if (rsvp_input_p) { /* call the real one if loaded */
2367 		*mp = m;
2368 		rsvp_input_p(mp, offp, proto);
2369 		return(IPPROTO_DONE);
2370 	}
2371 
2372 	/* Can still get packets with rsvp_on = 0 if there is a local member
2373 	 * of the group to which the RSVP packet is addressed.  But in this
2374 	 * case we want to throw the packet away.
2375 	 */
2376 
2377 	if (!rsvp_on) {
2378 		m_freem(m);
2379 		return(IPPROTO_DONE);
2380 	}
2381 
2382 	if (ip_rsvpd != NULL) {
2383 		*mp = m;
2384 		rip_input(mp, offp, proto);
2385 		return(IPPROTO_DONE);
2386 	}
2387 	/* Drop the packet */
2388 	m_freem(m);
2389 	return(IPPROTO_DONE);
2390 }
2391