xref: /dflybsd-src/sys/netinet/ip_input.c (revision cb8d752c91e50d49493e6841a71a3add51e2f2da)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68  * $DragonFly: src/sys/netinet/ip_input.c,v 1.84 2008/07/28 13:45:43 sephe Exp $
69  */
70 
71 #define	_IP_VHL
72 
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
96 
97 #include <machine/stdarg.h>
98 
99 #include <net/if.h>
100 #include <net/if_types.h>
101 #include <net/if_var.h>
102 #include <net/if_dl.h>
103 #include <net/pfil.h>
104 #include <net/route.h>
105 #include <net/netisr.h>
106 
107 #include <netinet/in.h>
108 #include <netinet/in_systm.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip.h>
111 #include <netinet/in_pcb.h>
112 #include <netinet/ip_var.h>
113 #include <netinet/ip_icmp.h>
114 
115 #include <sys/thread2.h>
116 #include <sys/msgport2.h>
117 #include <net/netmsg2.h>
118 
119 #include <sys/socketvar.h>
120 
121 #include <net/ipfw/ip_fw.h>
122 #include <net/dummynet/ip_dummynet.h>
123 
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #endif
128 
129 #ifdef FAST_IPSEC
130 #include <netproto/ipsec/ipsec.h>
131 #include <netproto/ipsec/key.h>
132 #endif
133 
134 int rsvp_on = 0;
135 static int ip_rsvp_on;
136 struct socket *ip_rsvpd;
137 
138 int ipforwarding = 0;
139 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
140     &ipforwarding, 0, "Enable IP forwarding between interfaces");
141 
142 static int ipsendredirects = 1; /* XXX */
143 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
144     &ipsendredirects, 0, "Enable sending IP redirects");
145 
146 int ip_defttl = IPDEFTTL;
147 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
148     &ip_defttl, 0, "Maximum TTL on IP packets");
149 
150 static int ip_dosourceroute = 0;
151 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
152     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
153 
154 static int ip_acceptsourceroute = 0;
155 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
156     CTLFLAG_RW, &ip_acceptsourceroute, 0,
157     "Enable accepting source routed IP packets");
158 
159 static int ip_keepfaith = 0;
160 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
161     &ip_keepfaith, 0,
162     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
163 
164 static int nipq = 0;	/* total # of reass queues */
165 static int maxnipq;
166 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
167     &maxnipq, 0,
168     "Maximum number of IPv4 fragment reassembly queue entries");
169 
170 static int maxfragsperpacket;
171 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
172     &maxfragsperpacket, 0,
173     "Maximum number of IPv4 fragments allowed per packet");
174 
175 static int ip_sendsourcequench = 0;
176 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
177     &ip_sendsourcequench, 0,
178     "Enable the transmission of source quench packets");
179 
180 int ip_do_randomid = 1;
181 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
182     &ip_do_randomid, 0,
183     "Assign random ip_id values");
184 /*
185  * XXX - Setting ip_checkinterface mostly implements the receive side of
186  * the Strong ES model described in RFC 1122, but since the routing table
187  * and transmit implementation do not implement the Strong ES model,
188  * setting this to 1 results in an odd hybrid.
189  *
190  * XXX - ip_checkinterface currently must be disabled if you use ipnat
191  * to translate the destination address to another local interface.
192  *
193  * XXX - ip_checkinterface must be disabled if you add IP aliases
194  * to the loopback interface instead of the interface where the
195  * packets for those addresses are received.
196  */
197 static int ip_checkinterface = 0;
198 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
199     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
200 
201 #ifdef DIAGNOSTIC
202 static int ipprintfs = 0;
203 #endif
204 
205 extern	struct domain inetdomain;
206 extern	struct protosw inetsw[];
207 u_char	ip_protox[IPPROTO_MAX];
208 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
209 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
210 						/* inet addr hash table */
211 u_long	in_ifaddrhmask;				/* mask for hash table */
212 
213 struct ip_stats ipstats_percpu[MAXCPU];
214 #ifdef SMP
215 static int
216 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
217 {
218 	int cpu, error = 0;
219 
220 	for (cpu = 0; cpu < ncpus; ++cpu) {
221 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
222 					sizeof(struct ip_stats))))
223 			break;
224 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
225 				       sizeof(struct ip_stats))))
226 			break;
227 	}
228 
229 	return (error);
230 }
231 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
232     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
233 #else
234 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
235     &ipstat, ip_stats, "IP statistics");
236 #endif
237 
238 /* Packet reassembly stuff */
239 #define	IPREASS_NHASH_LOG2	6
240 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
241 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
242 #define	IPREASS_HASH(x,y)						\
243     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
244 
245 static struct ipq ipq[IPREASS_NHASH];
246 
247 #ifdef IPCTL_DEFMTU
248 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
249     &ip_mtu, 0, "Default MTU");
250 #endif
251 
252 #ifdef IPSTEALTH
253 static int ipstealth = 0;
254 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
255 #else
256 static const int ipstealth = 0;
257 #endif
258 
259 
260 /* Firewall hooks */
261 ip_fw_chk_t *ip_fw_chk_ptr;
262 ip_fw_dn_io_t *ip_fw_dn_io_ptr;
263 int ip_fw_loaded;
264 int fw_enable = 1;
265 int fw_one_pass = 1;
266 
267 struct pfil_head inet_pfil_hook;
268 
269 /*
270  * XXX this is ugly -- the following two global variables are
271  * used to store packet state while it travels through the stack.
272  * Note that the code even makes assumptions on the size and
273  * alignment of fields inside struct ip_srcrt so e.g. adding some
274  * fields will break the code. This needs to be fixed.
275  *
276  * We need to save the IP options in case a protocol wants to respond
277  * to an incoming packet over the same route if the packet got here
278  * using IP source routing.  This allows connection establishment and
279  * maintenance when the remote end is on a network that is not known
280  * to us.
281  */
282 static int ip_nhops = 0;
283 
284 static	struct ip_srcrt {
285 	struct	in_addr dst;			/* final destination */
286 	char	nop;				/* one NOP to align */
287 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
288 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
289 } ip_srcrt;
290 
291 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
292 static struct malloc_pipe ipq_mpipe;
293 
294 static void		save_rte (u_char *, struct in_addr);
295 static int		ip_dooptions (struct mbuf *m, int,
296 					struct sockaddr_in *next_hop);
297 static void		ip_freef (struct ipq *);
298 static void		ip_input_handler (struct netmsg *);
299 static struct mbuf	*ip_reass (struct mbuf *, struct ipq *,
300 					struct ipq *, u_int32_t *);
301 
302 /*
303  * IP initialization: fill in IP protocol switch table.
304  * All protocols not implemented in kernel go to raw IP protocol handler.
305  */
306 void
307 ip_init(void)
308 {
309 	struct protosw *pr;
310 	int i;
311 #ifdef SMP
312 	int cpu;
313 #endif
314 
315 	/*
316 	 * Make sure we can handle a reasonable number of fragments but
317 	 * cap it at 4000 (XXX).
318 	 */
319 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
320 		    IFQ_MAXLEN, 4000, 0, NULL);
321 	for (i = 0; i < ncpus; ++i) {
322 		TAILQ_INIT(&in_ifaddrheads[i]);
323 		in_ifaddrhashtbls[i] =
324 			hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
325 	}
326 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
327 	if (pr == NULL)
328 		panic("ip_init");
329 	for (i = 0; i < IPPROTO_MAX; i++)
330 		ip_protox[i] = pr - inetsw;
331 	for (pr = inetdomain.dom_protosw;
332 	     pr < inetdomain.dom_protoswNPROTOSW; pr++)
333 		if (pr->pr_domain->dom_family == PF_INET &&
334 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
335 			ip_protox[pr->pr_protocol] = pr - inetsw;
336 
337 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
338 	inet_pfil_hook.ph_af = AF_INET;
339 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
340 		kprintf("%s: WARNING: unable to register pfil hook, "
341 			"error %d\n", __func__, i);
342 	}
343 
344 	for (i = 0; i < IPREASS_NHASH; i++)
345 	    ipq[i].next = ipq[i].prev = &ipq[i];
346 
347 	maxnipq = nmbclusters / 32;
348 	maxfragsperpacket = 16;
349 
350 	ip_id = time_second & 0xffff;
351 
352 	/*
353 	 * Initialize IP statistics counters for each CPU.
354 	 *
355 	 */
356 #ifdef SMP
357 	for (cpu = 0; cpu < ncpus; ++cpu) {
358 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
359 	}
360 #else
361 	bzero(&ipstat, sizeof(struct ip_stats));
362 #endif
363 
364 	netisr_register(NETISR_IP, ip_mport_in, ip_input_handler);
365 }
366 
367 /*
368  * XXX watch out this one. It is perhaps used as a cache for
369  * the most recently used route ? it is cleared in in_addroute()
370  * when a new route is successfully created.
371  */
372 struct route ipforward_rt[MAXCPU];
373 
374 /* Do transport protocol processing. */
375 static void
376 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
377 			   struct sockaddr_in *nexthop)
378 {
379 	/*
380 	 * Switch out to protocol's input routine.
381 	 */
382 	if (nexthop && ip->ip_p == IPPROTO_TCP) {
383 		/* TCP needs IPFORWARD info if available */
384 		struct m_hdr tag;
385 
386 		tag.mh_type = MT_TAG;
387 		tag.mh_flags = PACKET_TAG_IPFORWARD;
388 		tag.mh_data = (caddr_t)nexthop;
389 		tag.mh_next = m;
390 
391 		(*inetsw[ip_protox[ip->ip_p]].pr_input)
392 		    ((struct mbuf *)&tag, hlen, ip->ip_p);
393 	} else {
394 		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
395 	}
396 }
397 
398 struct netmsg_transport_packet {
399 	struct netmsg		nm_netmsg;
400 	struct mbuf		*nm_mbuf;
401 	int			nm_hlen;
402 	boolean_t		nm_hasnexthop;
403 	struct sockaddr_in	nm_nexthop;
404 };
405 
406 static void
407 transport_processing_handler(netmsg_t netmsg)
408 {
409 	struct netmsg_transport_packet *msg = (void *)netmsg;
410 	struct sockaddr_in *nexthop;
411 	struct ip *ip;
412 
413 	ip = mtod(msg->nm_mbuf, struct ip *);
414 	nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
415 	transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
416 	lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
417 }
418 
419 static void
420 ip_input_handler(struct netmsg *msg0)
421 {
422 	struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
423 
424 	ip_input(m);
425 	/* msg0 was embedded in the mbuf, do not reply! */
426 }
427 
428 /*
429  * IP input routine.  Checksum and byte swap header.  If fragmented
430  * try to reassemble.  Process options.  Pass to next level.
431  */
432 void
433 ip_input(struct mbuf *m)
434 {
435 	struct ip *ip;
436 	struct ipq *fp;
437 	struct in_ifaddr *ia = NULL;
438 	struct in_ifaddr_container *iac;
439 	int i, hlen, checkif;
440 	u_short sum;
441 	struct in_addr pkt_dst;
442 	u_int32_t divert_info = 0;		/* packet divert/tee info */
443 	struct ip_fw_args args;
444 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
445 	boolean_t needredispatch = FALSE;
446 	struct in_addr odst;			/* original dst address(NAT) */
447 	struct m_tag *mtag;
448 #ifdef FAST_IPSEC
449 	struct tdb_ident *tdbi;
450 	struct secpolicy *sp;
451 	int error;
452 #endif
453 
454 	args.eh = NULL;
455 	args.oif = NULL;
456 	args.rule = NULL;
457 	args.next_hop = NULL;
458 
459 	/* Grab info from MT_TAG mbufs prepended to the chain. */
460 	while (m != NULL && m->m_type == MT_TAG) {
461 		switch(m->_m_tag_id) {
462 		case PACKET_TAG_IPFORWARD:
463 			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
464 			break;
465 		default:
466 			kprintf("ip_input: unrecognised MT_TAG tag %d\n",
467 			    m->_m_tag_id);
468 			break;
469 		}
470 		m = m->m_next;
471 	}
472 	M_ASSERTPKTHDR(m);
473 
474 	/* Extract info from dummynet tag */
475 	mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
476 	if (mtag != NULL) {
477 		args.rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
478 
479 		m_tag_delete(m, mtag);
480 		mtag = NULL;
481 	}
482 
483 	if (args.rule != NULL) {	/* dummynet already filtered us */
484 		ip = mtod(m, struct ip *);
485 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
486 		goto iphack;
487 	}
488 
489 	ipstat.ips_total++;
490 
491 	/* length checks already done in ip_demux() */
492 	KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
493 
494 	ip = mtod(m, struct ip *);
495 
496 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
497 		ipstat.ips_badvers++;
498 		goto bad;
499 	}
500 
501 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
502 	/* length checks already done in ip_demux() */
503 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
504 	KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
505 
506 	/* 127/8 must not appear on wire - RFC1122 */
507 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
508 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
509 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
510 			ipstat.ips_badaddr++;
511 			goto bad;
512 		}
513 	}
514 
515 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
516 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
517 	} else {
518 		if (hlen == sizeof(struct ip)) {
519 			sum = in_cksum_hdr(ip);
520 		} else {
521 			sum = in_cksum(m, hlen);
522 		}
523 	}
524 	if (sum != 0) {
525 		ipstat.ips_badsum++;
526 		goto bad;
527 	}
528 
529 #ifdef ALTQ
530 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
531 		/* packet is dropped by traffic conditioner */
532 		return;
533 	}
534 #endif
535 	/*
536 	 * Convert fields to host representation.
537 	 */
538 	ip->ip_len = ntohs(ip->ip_len);
539 	if (ip->ip_len < hlen) {
540 		ipstat.ips_badlen++;
541 		goto bad;
542 	}
543 	ip->ip_off = ntohs(ip->ip_off);
544 
545 	/*
546 	 * Check that the amount of data in the buffers
547 	 * is as at least much as the IP header would have us expect.
548 	 * Trim mbufs if longer than we expect.
549 	 * Drop packet if shorter than we expect.
550 	 */
551 	if (m->m_pkthdr.len < ip->ip_len) {
552 		ipstat.ips_tooshort++;
553 		goto bad;
554 	}
555 	if (m->m_pkthdr.len > ip->ip_len) {
556 		if (m->m_len == m->m_pkthdr.len) {
557 			m->m_len = ip->ip_len;
558 			m->m_pkthdr.len = ip->ip_len;
559 		} else
560 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
561 	}
562 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
563 	/*
564 	 * Bypass packet filtering for packets from a tunnel (gif).
565 	 */
566 	if (ipsec_gethist(m, NULL))
567 		goto pass;
568 #endif
569 
570 	/*
571 	 * IpHack's section.
572 	 * Right now when no processing on packet has done
573 	 * and it is still fresh out of network we do our black
574 	 * deals with it.
575 	 * - Firewall: deny/allow/divert
576 	 * - Xlate: translate packet's addr/port (NAT).
577 	 * - Pipe: pass pkt through dummynet.
578 	 * - Wrap: fake packet's addr/port <unimpl.>
579 	 * - Encapsulate: put it in another IP and send out. <unimp.>
580 	 */
581 
582 iphack:
583 
584 	/*
585 	 * Run through list of hooks for input packets.
586 	 *
587 	 * NB: Beware of the destination address changing (e.g.
588 	 *     by NAT rewriting). When this happens, tell
589 	 *     ip_forward to do the right thing.
590 	 */
591 	if (pfil_has_hooks(&inet_pfil_hook)) {
592 		odst = ip->ip_dst;
593 		if (pfil_run_hooks(&inet_pfil_hook, &m,
594 		    m->m_pkthdr.rcvif, PFIL_IN)) {
595 			return;
596 		}
597 		if (m == NULL)			/* consumed by filter */
598 			return;
599 		ip = mtod(m, struct ip *);
600 		using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
601 	}
602 
603 	if (fw_enable && IPFW_LOADED) {
604 		/*
605 		 * If we've been forwarded from the output side, then
606 		 * skip the firewall a second time
607 		 */
608 		if (args.next_hop != NULL)
609 			goto ours;
610 
611 		args.m = m;
612 		i = ip_fw_chk_ptr(&args);
613 		m = args.m;
614 
615 		if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) {	/* drop */
616 			if (m != NULL)
617 				m_freem(m);
618 			return;
619 		}
620 		ip = mtod(m, struct ip *);	/* just in case m changed */
621 		if (i == 0 && args.next_hop == NULL)	/* common case */
622 			goto pass;
623 		if (i & IP_FW_PORT_DYNT_FLAG) {
624 			/* Send packet to the appropriate pipe */
625 			ip_fw_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
626 			return;
627 		}
628 #ifdef IPDIVERT
629 		if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
630 			/* Divert or tee packet */
631 			divert_info = i;
632 			goto ours;
633 		}
634 #endif
635 		if (i == 0 && args.next_hop != NULL)
636 			goto pass;
637 		/*
638 		 * if we get here, the packet must be dropped
639 		 */
640 		m_freem(m);
641 		return;
642 	}
643 pass:
644 
645 	/*
646 	 * Process options and, if not destined for us,
647 	 * ship it on.  ip_dooptions returns 1 when an
648 	 * error was detected (causing an icmp message
649 	 * to be sent and the original packet to be freed).
650 	 */
651 	ip_nhops = 0;		/* for source routed packets */
652 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
653 		return;
654 
655 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
656 	 * matter if it is destined to another node, or whether it is
657 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
658 	 * anywhere else. Also checks if the rsvp daemon is running before
659 	 * grabbing the packet.
660 	 */
661 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
662 		goto ours;
663 
664 	/*
665 	 * Check our list of addresses, to see if the packet is for us.
666 	 * If we don't have any addresses, assume any unicast packet
667 	 * we receive might be for us (and let the upper layers deal
668 	 * with it).
669 	 */
670 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
671 	    !(m->m_flags & (M_MCAST | M_BCAST)))
672 		goto ours;
673 
674 	/*
675 	 * Cache the destination address of the packet; this may be
676 	 * changed by use of 'ipfw fwd'.
677 	 */
678 	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
679 
680 	/*
681 	 * Enable a consistency check between the destination address
682 	 * and the arrival interface for a unicast packet (the RFC 1122
683 	 * strong ES model) if IP forwarding is disabled and the packet
684 	 * is not locally generated and the packet is not subject to
685 	 * 'ipfw fwd'.
686 	 *
687 	 * XXX - Checking also should be disabled if the destination
688 	 * address is ipnat'ed to a different interface.
689 	 *
690 	 * XXX - Checking is incompatible with IP aliases added
691 	 * to the loopback interface instead of the interface where
692 	 * the packets are received.
693 	 */
694 	checkif = ip_checkinterface &&
695 		  !ipforwarding &&
696 		  m->m_pkthdr.rcvif != NULL &&
697 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
698 		  (args.next_hop == NULL);
699 
700 	/*
701 	 * Check for exact addresses in the hash bucket.
702 	 */
703 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
704 		ia = iac->ia;
705 
706 		/*
707 		 * If the address matches, verify that the packet
708 		 * arrived via the correct interface if checking is
709 		 * enabled.
710 		 */
711 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
712 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
713 			goto ours;
714 	}
715 	ia = NULL;
716 
717 	/*
718 	 * Check for broadcast addresses.
719 	 *
720 	 * Only accept broadcast packets that arrive via the matching
721 	 * interface.  Reception of forwarded directed broadcasts would
722 	 * be handled via ip_forward() and ether_output() with the loopback
723 	 * into the stack for SIMPLEX interfaces handled by ether_output().
724 	 */
725 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
726 		struct ifaddr_container *ifac;
727 
728 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
729 			      ifa_link) {
730 			struct ifaddr *ifa = ifac->ifa;
731 
732 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
733 				continue;
734 			if (ifa->ifa_addr->sa_family != AF_INET)
735 				continue;
736 			ia = ifatoia(ifa);
737 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
738 								pkt_dst.s_addr)
739 				goto ours;
740 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
741 				goto ours;
742 #ifdef BOOTP_COMPAT
743 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
744 				goto ours;
745 #endif
746 		}
747 	}
748 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
749 		struct in_multi *inm;
750 
751 		if (ip_mrouter != NULL) {
752 			/*
753 			 * If we are acting as a multicast router, all
754 			 * incoming multicast packets are passed to the
755 			 * kernel-level multicast forwarding function.
756 			 * The packet is returned (relatively) intact; if
757 			 * ip_mforward() returns a non-zero value, the packet
758 			 * must be discarded, else it may be accepted below.
759 			 */
760 			if (ip_mforward != NULL &&
761 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
762 				ipstat.ips_cantforward++;
763 				m_freem(m);
764 				return;
765 			}
766 
767 			/*
768 			 * The process-level routing daemon needs to receive
769 			 * all multicast IGMP packets, whether or not this
770 			 * host belongs to their destination groups.
771 			 */
772 			if (ip->ip_p == IPPROTO_IGMP)
773 				goto ours;
774 			ipstat.ips_forward++;
775 		}
776 		/*
777 		 * See if we belong to the destination multicast group on the
778 		 * arrival interface.
779 		 */
780 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
781 		if (inm == NULL) {
782 			ipstat.ips_notmember++;
783 			m_freem(m);
784 			return;
785 		}
786 		goto ours;
787 	}
788 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
789 		goto ours;
790 	if (ip->ip_dst.s_addr == INADDR_ANY)
791 		goto ours;
792 
793 	/*
794 	 * FAITH(Firewall Aided Internet Translator)
795 	 */
796 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
797 		if (ip_keepfaith) {
798 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
799 				goto ours;
800 		}
801 		m_freem(m);
802 		return;
803 	}
804 
805 	/*
806 	 * Not for us; forward if possible and desirable.
807 	 */
808 	if (!ipforwarding) {
809 		ipstat.ips_cantforward++;
810 		m_freem(m);
811 	} else {
812 #ifdef IPSEC
813 		/*
814 		 * Enforce inbound IPsec SPD.
815 		 */
816 		if (ipsec4_in_reject(m, NULL)) {
817 			ipsecstat.in_polvio++;
818 			goto bad;
819 		}
820 #endif
821 #ifdef FAST_IPSEC
822 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
823 		crit_enter();
824 		if (mtag != NULL) {
825 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
826 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
827 		} else {
828 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
829 						   IP_FORWARDING, &error);
830 		}
831 		if (sp == NULL) {	/* NB: can happen if error */
832 			crit_exit();
833 			/*XXX error stat???*/
834 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
835 			goto bad;
836 		}
837 
838 		/*
839 		 * Check security policy against packet attributes.
840 		 */
841 		error = ipsec_in_reject(sp, m);
842 		KEY_FREESP(&sp);
843 		crit_exit();
844 		if (error) {
845 			ipstat.ips_cantforward++;
846 			goto bad;
847 		}
848 #endif
849 		ip_forward(m, using_srcrt, args.next_hop);
850 	}
851 	return;
852 
853 ours:
854 
855 	/*
856 	 * IPSTEALTH: Process non-routing options only
857 	 * if the packet is destined for us.
858 	 */
859 	if (ipstealth &&
860 	    hlen > sizeof(struct ip) &&
861 	    ip_dooptions(m, 1, args.next_hop))
862 		return;
863 
864 	/* Count the packet in the ip address stats */
865 	if (ia != NULL) {
866 		ia->ia_ifa.if_ipackets++;
867 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
868 	}
869 
870 	/*
871 	 * If offset or IP_MF are set, must reassemble.
872 	 * Otherwise, nothing need be done.
873 	 * (We could look in the reassembly queue to see
874 	 * if the packet was previously fragmented,
875 	 * but it's not worth the time; just let them time out.)
876 	 */
877 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
878 
879 		/* If maxnipq is 0, never accept fragments. */
880 		if (maxnipq == 0) {
881 			ipstat.ips_fragments++;
882 			ipstat.ips_fragdropped++;
883 			goto bad;
884 		}
885 
886 		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
887 		/*
888 		 * Look for queue of fragments
889 		 * of this datagram.
890 		 */
891 		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
892 			if (ip->ip_id == fp->ipq_id &&
893 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
894 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
895 			    ip->ip_p == fp->ipq_p)
896 				goto found;
897 
898 		fp = NULL;
899 
900 		/*
901 		 * Enforce upper bound on number of fragmented packets
902 		 * for which we attempt reassembly;
903 		 * If maxnipq is -1, accept all fragments without limitation.
904 		 */
905 		if ((nipq > maxnipq) && (maxnipq > 0)) {
906 			/*
907 			 * drop something from the tail of the current queue
908 			 * before proceeding further
909 			 */
910 			if (ipq[sum].prev == &ipq[sum]) {   /* gak */
911 				for (i = 0; i < IPREASS_NHASH; i++) {
912 					if (ipq[i].prev != &ipq[i]) {
913 						ipstat.ips_fragtimeout +=
914 						    ipq[i].prev->ipq_nfrags;
915 						ip_freef(ipq[i].prev);
916 						break;
917 					}
918 				}
919 			} else {
920 				ipstat.ips_fragtimeout +=
921 				    ipq[sum].prev->ipq_nfrags;
922 				ip_freef(ipq[sum].prev);
923 			}
924 		}
925 found:
926 		/*
927 		 * Adjust ip_len to not reflect header,
928 		 * convert offset of this to bytes.
929 		 */
930 		ip->ip_len -= hlen;
931 		if (ip->ip_off & IP_MF) {
932 			/*
933 			 * Make sure that fragments have a data length
934 			 * that's a non-zero multiple of 8 bytes.
935 			 */
936 			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
937 				ipstat.ips_toosmall++; /* XXX */
938 				goto bad;
939 			}
940 			m->m_flags |= M_FRAG;
941 		} else
942 			m->m_flags &= ~M_FRAG;
943 		ip->ip_off <<= 3;
944 
945 		/*
946 		 * Attempt reassembly; if it succeeds, proceed.
947 		 * ip_reass() will return a different mbuf, and update
948 		 * the divert info in divert_info.
949 		 */
950 		ipstat.ips_fragments++;
951 		m->m_pkthdr.header = ip;
952 		m = ip_reass(m, fp, &ipq[sum], &divert_info);
953 		if (m == NULL)
954 			return;
955 		ipstat.ips_reassembled++;
956 		needredispatch = TRUE;
957 		ip = mtod(m, struct ip *);
958 		/* Get the header length of the reassembled packet */
959 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
960 #ifdef IPDIVERT
961 		/* Restore original checksum before diverting packet */
962 		if (divert_info != 0) {
963 			ip->ip_len += hlen;
964 			ip->ip_len = htons(ip->ip_len);
965 			ip->ip_off = htons(ip->ip_off);
966 			ip->ip_sum = 0;
967 			if (hlen == sizeof(struct ip))
968 				ip->ip_sum = in_cksum_hdr(ip);
969 			else
970 				ip->ip_sum = in_cksum(m, hlen);
971 			ip->ip_off = ntohs(ip->ip_off);
972 			ip->ip_len = ntohs(ip->ip_len);
973 			ip->ip_len -= hlen;
974 		}
975 #endif
976 	} else {
977 		ip->ip_len -= hlen;
978 	}
979 
980 #ifdef IPDIVERT
981 	/*
982 	 * Divert or tee packet to the divert protocol if required.
983 	 */
984 	if (divert_info != 0) {
985 		struct mbuf *clone = NULL;
986 
987 		/* Clone packet if we're doing a 'tee' */
988 		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
989 			clone = m_dup(m, MB_DONTWAIT);
990 
991 		/* Restore packet header fields to original values */
992 		ip->ip_len += hlen;
993 		ip->ip_len = htons(ip->ip_len);
994 		ip->ip_off = htons(ip->ip_off);
995 
996 		/* Deliver packet to divert input routine */
997 		divert_packet(m, 1, divert_info & 0xffff);
998 		ipstat.ips_delivered++;
999 
1000 		/* If 'tee', continue with original packet */
1001 		if (clone == NULL)
1002 			return;
1003 		m = clone;
1004 		ip = mtod(m, struct ip *);
1005 		ip->ip_len += hlen;
1006 		/*
1007 		 * Jump backwards to complete processing of the
1008 		 * packet. But first clear divert_info to avoid
1009 		 * entering this block again.
1010 		 * We do not need to clear args.divert_rule
1011 		 * or args.next_hop as they will not be used.
1012 		 *
1013 		 * XXX Better safe than sorry, remove the DIVERT tag.
1014 		 */
1015 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1016 		if (mtag != NULL)
1017 			m_tag_delete(m, mtag);
1018 
1019 		divert_info = 0;
1020 		goto pass;
1021 	}
1022 #endif
1023 
1024 #ifdef IPSEC
1025 	/*
1026 	 * enforce IPsec policy checking if we are seeing last header.
1027 	 * note that we do not visit this with protocols with pcb layer
1028 	 * code - like udp/tcp/raw ip.
1029 	 */
1030 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1031 	    ipsec4_in_reject(m, NULL)) {
1032 		ipsecstat.in_polvio++;
1033 		goto bad;
1034 	}
1035 #endif
1036 #if FAST_IPSEC
1037 	/*
1038 	 * enforce IPsec policy checking if we are seeing last header.
1039 	 * note that we do not visit this with protocols with pcb layer
1040 	 * code - like udp/tcp/raw ip.
1041 	 */
1042 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1043 		/*
1044 		 * Check if the packet has already had IPsec processing
1045 		 * done.  If so, then just pass it along.  This tag gets
1046 		 * set during AH, ESP, etc. input handling, before the
1047 		 * packet is returned to the ip input queue for delivery.
1048 		 */
1049 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1050 		crit_enter();
1051 		if (mtag != NULL) {
1052 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
1053 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1054 		} else {
1055 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1056 						   IP_FORWARDING, &error);
1057 		}
1058 		if (sp != NULL) {
1059 			/*
1060 			 * Check security policy against packet attributes.
1061 			 */
1062 			error = ipsec_in_reject(sp, m);
1063 			KEY_FREESP(&sp);
1064 		} else {
1065 			/* XXX error stat??? */
1066 			error = EINVAL;
1067 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1068 			goto bad;
1069 		}
1070 		crit_exit();
1071 		if (error)
1072 			goto bad;
1073 	}
1074 #endif /* FAST_IPSEC */
1075 
1076 	ipstat.ips_delivered++;
1077 	if (needredispatch) {
1078 		struct netmsg_transport_packet *msg;
1079 		lwkt_port_t port;
1080 
1081 		ip->ip_off = htons(ip->ip_off);
1082 		ip->ip_len = htons(ip->ip_len);
1083 		port = ip_mport_in(&m);
1084 		if (port == NULL)
1085 			return;
1086 
1087 		msg = kmalloc(sizeof(struct netmsg_transport_packet), M_LWKTMSG,
1088 			     M_INTWAIT | M_NULLOK);
1089 		if (msg == NULL)
1090 			goto bad;
1091 
1092 		netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1093 			    transport_processing_handler);
1094 		msg->nm_hlen = hlen;
1095 		msg->nm_hasnexthop = (args.next_hop != NULL);
1096 		if (msg->nm_hasnexthop)
1097 			msg->nm_nexthop = *args.next_hop;  /* structure copy */
1098 
1099 		msg->nm_mbuf = m;
1100 		ip = mtod(m, struct ip *);
1101 		ip->ip_len = ntohs(ip->ip_len);
1102 		ip->ip_off = ntohs(ip->ip_off);
1103 		lwkt_sendmsg(port, &msg->nm_netmsg.nm_lmsg);
1104 	} else {
1105 		transport_processing_oncpu(m, hlen, ip, args.next_hop);
1106 	}
1107 	return;
1108 
1109 bad:
1110 	m_freem(m);
1111 }
1112 
1113 /*
1114  * Take incoming datagram fragment and try to reassemble it into
1115  * whole datagram.  If a chain for reassembly of this datagram already
1116  * exists, then it is given as fp; otherwise have to make a chain.
1117  *
1118  * When IPDIVERT enabled, keep additional state with each packet that
1119  * tells us if we need to divert or tee the packet we're building.
1120  * In particular, *divinfo includes the port and TEE flag.
1121  */
1122 
1123 static struct mbuf *
1124 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1125 	 u_int32_t *divinfo)
1126 {
1127 	struct ip *ip = mtod(m, struct ip *);
1128 	struct mbuf *p = NULL, *q, *nq;
1129 	struct mbuf *n;
1130 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1131 	int i, next;
1132 #ifdef IPDIVERT
1133 	struct m_tag *mtag;
1134 #endif
1135 
1136 	/*
1137 	 * If the hardware has not done csum over this fragment
1138 	 * then csum_data is not valid at all.
1139 	 */
1140 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1141 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1142 		m->m_pkthdr.csum_data = 0;
1143 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1144 	}
1145 
1146 	/*
1147 	 * Presence of header sizes in mbufs
1148 	 * would confuse code below.
1149 	 */
1150 	m->m_data += hlen;
1151 	m->m_len -= hlen;
1152 
1153 	/*
1154 	 * If first fragment to arrive, create a reassembly queue.
1155 	 */
1156 	if (fp == NULL) {
1157 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1158 			goto dropfrag;
1159 		insque(fp, where);
1160 		nipq++;
1161 		fp->ipq_nfrags = 1;
1162 		fp->ipq_ttl = IPFRAGTTL;
1163 		fp->ipq_p = ip->ip_p;
1164 		fp->ipq_id = ip->ip_id;
1165 		fp->ipq_src = ip->ip_src;
1166 		fp->ipq_dst = ip->ip_dst;
1167 		fp->ipq_frags = m;
1168 		m->m_nextpkt = NULL;
1169 #ifdef IPDIVERT
1170 		fp->ipq_div_info = 0;
1171 #endif
1172 		goto inserted;
1173 	} else {
1174 		fp->ipq_nfrags++;
1175 	}
1176 
1177 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1178 
1179 	/*
1180 	 * Find a segment which begins after this one does.
1181 	 */
1182 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1183 		if (GETIP(q)->ip_off > ip->ip_off)
1184 			break;
1185 
1186 	/*
1187 	 * If there is a preceding segment, it may provide some of
1188 	 * our data already.  If so, drop the data from the incoming
1189 	 * segment.  If it provides all of our data, drop us, otherwise
1190 	 * stick new segment in the proper place.
1191 	 *
1192 	 * If some of the data is dropped from the the preceding
1193 	 * segment, then it's checksum is invalidated.
1194 	 */
1195 	if (p) {
1196 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1197 		if (i > 0) {
1198 			if (i >= ip->ip_len)
1199 				goto dropfrag;
1200 			m_adj(m, i);
1201 			m->m_pkthdr.csum_flags = 0;
1202 			ip->ip_off += i;
1203 			ip->ip_len -= i;
1204 		}
1205 		m->m_nextpkt = p->m_nextpkt;
1206 		p->m_nextpkt = m;
1207 	} else {
1208 		m->m_nextpkt = fp->ipq_frags;
1209 		fp->ipq_frags = m;
1210 	}
1211 
1212 	/*
1213 	 * While we overlap succeeding segments trim them or,
1214 	 * if they are completely covered, dequeue them.
1215 	 */
1216 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1217 	     q = nq) {
1218 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1219 		if (i < GETIP(q)->ip_len) {
1220 			GETIP(q)->ip_len -= i;
1221 			GETIP(q)->ip_off += i;
1222 			m_adj(q, i);
1223 			q->m_pkthdr.csum_flags = 0;
1224 			break;
1225 		}
1226 		nq = q->m_nextpkt;
1227 		m->m_nextpkt = nq;
1228 		ipstat.ips_fragdropped++;
1229 		fp->ipq_nfrags--;
1230 		q->m_nextpkt = NULL;
1231 		m_freem(q);
1232 	}
1233 
1234 inserted:
1235 
1236 #ifdef IPDIVERT
1237 	/*
1238 	 * Transfer firewall instructions to the fragment structure.
1239 	 * Only trust info in the fragment at offset 0.
1240 	 */
1241 	if (ip->ip_off == 0) {
1242 		fp->ipq_div_info = *divinfo;
1243 	} else {
1244 		mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1245 		if (mtag != NULL)
1246 			m_tag_delete(m, mtag);
1247 	}
1248 	*divinfo = 0;
1249 #endif
1250 
1251 	/*
1252 	 * Check for complete reassembly and perform frag per packet
1253 	 * limiting.
1254 	 *
1255 	 * Frag limiting is performed here so that the nth frag has
1256 	 * a chance to complete the packet before we drop the packet.
1257 	 * As a result, n+1 frags are actually allowed per packet, but
1258 	 * only n will ever be stored. (n = maxfragsperpacket.)
1259 	 *
1260 	 */
1261 	next = 0;
1262 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1263 		if (GETIP(q)->ip_off != next) {
1264 			if (fp->ipq_nfrags > maxfragsperpacket) {
1265 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1266 				ip_freef(fp);
1267 			}
1268 			return (NULL);
1269 		}
1270 		next += GETIP(q)->ip_len;
1271 	}
1272 	/* Make sure the last packet didn't have the IP_MF flag */
1273 	if (p->m_flags & M_FRAG) {
1274 		if (fp->ipq_nfrags > maxfragsperpacket) {
1275 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1276 			ip_freef(fp);
1277 		}
1278 		return (NULL);
1279 	}
1280 
1281 	/*
1282 	 * Reassembly is complete.  Make sure the packet is a sane size.
1283 	 */
1284 	q = fp->ipq_frags;
1285 	ip = GETIP(q);
1286 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1287 		ipstat.ips_toolong++;
1288 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1289 		ip_freef(fp);
1290 		return (NULL);
1291 	}
1292 
1293 	/*
1294 	 * Concatenate fragments.
1295 	 */
1296 	m = q;
1297 	n = m->m_next;
1298 	m->m_next = NULL;
1299 	m_cat(m, n);
1300 	nq = q->m_nextpkt;
1301 	q->m_nextpkt = NULL;
1302 	for (q = nq; q != NULL; q = nq) {
1303 		nq = q->m_nextpkt;
1304 		q->m_nextpkt = NULL;
1305 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1306 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1307 		m_cat(m, q);
1308 	}
1309 
1310 	/*
1311 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1312 	 * be added back.  This assumes no more then 65535 packet fragments
1313 	 * were reassembled.  A second carry can also occur (but not a third).
1314 	 */
1315 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1316 				(m->m_pkthdr.csum_data >> 16);
1317 	if (m->m_pkthdr.csum_data > 0xFFFF)
1318 		m->m_pkthdr.csum_data -= 0xFFFF;
1319 
1320 
1321 #ifdef IPDIVERT
1322 	/*
1323 	 * Extract firewall instructions from the fragment structure.
1324 	 */
1325 	*divinfo = fp->ipq_div_info;
1326 #endif
1327 
1328 	/*
1329 	 * Create header for new ip packet by
1330 	 * modifying header of first packet;
1331 	 * dequeue and discard fragment reassembly header.
1332 	 * Make header visible.
1333 	 */
1334 	ip->ip_len = next;
1335 	ip->ip_src = fp->ipq_src;
1336 	ip->ip_dst = fp->ipq_dst;
1337 	remque(fp);
1338 	nipq--;
1339 	mpipe_free(&ipq_mpipe, fp);
1340 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1341 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1342 	/* some debugging cruft by sklower, below, will go away soon */
1343 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1344 		int plen = 0;
1345 
1346 		for (n = m; n; n = n->m_next)
1347 			plen += n->m_len;
1348 		m->m_pkthdr.len = plen;
1349 	}
1350 	return (m);
1351 
1352 dropfrag:
1353 #ifdef IPDIVERT
1354 	*divinfo = 0;
1355 #endif
1356 	ipstat.ips_fragdropped++;
1357 	if (fp != NULL)
1358 		fp->ipq_nfrags--;
1359 	m_freem(m);
1360 	return (NULL);
1361 
1362 #undef GETIP
1363 }
1364 
1365 /*
1366  * Free a fragment reassembly header and all
1367  * associated datagrams.
1368  */
1369 static void
1370 ip_freef(struct ipq *fp)
1371 {
1372 	struct mbuf *q;
1373 
1374 	while (fp->ipq_frags) {
1375 		q = fp->ipq_frags;
1376 		fp->ipq_frags = q->m_nextpkt;
1377 		q->m_nextpkt = NULL;
1378 		m_freem(q);
1379 	}
1380 	remque(fp);
1381 	mpipe_free(&ipq_mpipe, fp);
1382 	nipq--;
1383 }
1384 
1385 /*
1386  * IP timer processing;
1387  * if a timer expires on a reassembly
1388  * queue, discard it.
1389  */
1390 void
1391 ip_slowtimo(void)
1392 {
1393 	struct ipq *fp;
1394 	int i;
1395 
1396 	crit_enter();
1397 	for (i = 0; i < IPREASS_NHASH; i++) {
1398 		fp = ipq[i].next;
1399 		if (fp == NULL)
1400 			continue;
1401 		while (fp != &ipq[i]) {
1402 			--fp->ipq_ttl;
1403 			fp = fp->next;
1404 			if (fp->prev->ipq_ttl == 0) {
1405 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1406 				ip_freef(fp->prev);
1407 			}
1408 		}
1409 	}
1410 	/*
1411 	 * If we are over the maximum number of fragments
1412 	 * (due to the limit being lowered), drain off
1413 	 * enough to get down to the new limit.
1414 	 */
1415 	if (maxnipq >= 0 && nipq > maxnipq) {
1416 		for (i = 0; i < IPREASS_NHASH; i++) {
1417 			while (nipq > maxnipq &&
1418 				(ipq[i].next != &ipq[i])) {
1419 				ipstat.ips_fragdropped +=
1420 				    ipq[i].next->ipq_nfrags;
1421 				ip_freef(ipq[i].next);
1422 			}
1423 		}
1424 	}
1425 	ipflow_slowtimo();
1426 	crit_exit();
1427 }
1428 
1429 /*
1430  * Drain off all datagram fragments.
1431  */
1432 void
1433 ip_drain(void)
1434 {
1435 	int i;
1436 
1437 	for (i = 0; i < IPREASS_NHASH; i++) {
1438 		while (ipq[i].next != &ipq[i]) {
1439 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1440 			ip_freef(ipq[i].next);
1441 		}
1442 	}
1443 	in_rtqdrain();
1444 }
1445 
1446 /*
1447  * Do option processing on a datagram,
1448  * possibly discarding it if bad options are encountered,
1449  * or forwarding it if source-routed.
1450  * The pass argument is used when operating in the IPSTEALTH
1451  * mode to tell what options to process:
1452  * [LS]SRR (pass 0) or the others (pass 1).
1453  * The reason for as many as two passes is that when doing IPSTEALTH,
1454  * non-routing options should be processed only if the packet is for us.
1455  * Returns 1 if packet has been forwarded/freed,
1456  * 0 if the packet should be processed further.
1457  */
1458 static int
1459 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1460 {
1461 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1462 	struct ip *ip = mtod(m, struct ip *);
1463 	u_char *cp;
1464 	struct in_ifaddr *ia;
1465 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1466 	boolean_t forward = FALSE;
1467 	struct in_addr *sin, dst;
1468 	n_time ntime;
1469 
1470 	dst = ip->ip_dst;
1471 	cp = (u_char *)(ip + 1);
1472 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1473 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1474 		opt = cp[IPOPT_OPTVAL];
1475 		if (opt == IPOPT_EOL)
1476 			break;
1477 		if (opt == IPOPT_NOP)
1478 			optlen = 1;
1479 		else {
1480 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1481 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1482 				goto bad;
1483 			}
1484 			optlen = cp[IPOPT_OLEN];
1485 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1486 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1487 				goto bad;
1488 			}
1489 		}
1490 		switch (opt) {
1491 
1492 		default:
1493 			break;
1494 
1495 		/*
1496 		 * Source routing with record.
1497 		 * Find interface with current destination address.
1498 		 * If none on this machine then drop if strictly routed,
1499 		 * or do nothing if loosely routed.
1500 		 * Record interface address and bring up next address
1501 		 * component.  If strictly routed make sure next
1502 		 * address is on directly accessible net.
1503 		 */
1504 		case IPOPT_LSRR:
1505 		case IPOPT_SSRR:
1506 			if (ipstealth && pass > 0)
1507 				break;
1508 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1509 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1510 				goto bad;
1511 			}
1512 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1513 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1514 				goto bad;
1515 			}
1516 			ipaddr.sin_addr = ip->ip_dst;
1517 			ia = (struct in_ifaddr *)
1518 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1519 			if (ia == NULL) {
1520 				if (opt == IPOPT_SSRR) {
1521 					type = ICMP_UNREACH;
1522 					code = ICMP_UNREACH_SRCFAIL;
1523 					goto bad;
1524 				}
1525 				if (!ip_dosourceroute)
1526 					goto nosourcerouting;
1527 				/*
1528 				 * Loose routing, and not at next destination
1529 				 * yet; nothing to do except forward.
1530 				 */
1531 				break;
1532 			}
1533 			off--;			/* 0 origin */
1534 			if (off > optlen - (int)sizeof(struct in_addr)) {
1535 				/*
1536 				 * End of source route.  Should be for us.
1537 				 */
1538 				if (!ip_acceptsourceroute)
1539 					goto nosourcerouting;
1540 				save_rte(cp, ip->ip_src);
1541 				break;
1542 			}
1543 			if (ipstealth)
1544 				goto dropit;
1545 			if (!ip_dosourceroute) {
1546 				if (ipforwarding) {
1547 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1548 
1549 					/*
1550 					 * Acting as a router, so generate ICMP
1551 					 */
1552 nosourcerouting:
1553 					strcpy(buf, inet_ntoa(ip->ip_dst));
1554 					log(LOG_WARNING,
1555 					    "attempted source route from %s to %s\n",
1556 					    inet_ntoa(ip->ip_src), buf);
1557 					type = ICMP_UNREACH;
1558 					code = ICMP_UNREACH_SRCFAIL;
1559 					goto bad;
1560 				} else {
1561 					/*
1562 					 * Not acting as a router,
1563 					 * so silently drop.
1564 					 */
1565 dropit:
1566 					ipstat.ips_cantforward++;
1567 					m_freem(m);
1568 					return (1);
1569 				}
1570 			}
1571 
1572 			/*
1573 			 * locate outgoing interface
1574 			 */
1575 			memcpy(&ipaddr.sin_addr, cp + off,
1576 			    sizeof ipaddr.sin_addr);
1577 
1578 			if (opt == IPOPT_SSRR) {
1579 #define	INA	struct in_ifaddr *
1580 #define	SA	struct sockaddr *
1581 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1582 									== NULL)
1583 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1584 			} else
1585 				ia = ip_rtaddr(ipaddr.sin_addr,
1586 					       &ipforward_rt[mycpuid]);
1587 			if (ia == NULL) {
1588 				type = ICMP_UNREACH;
1589 				code = ICMP_UNREACH_SRCFAIL;
1590 				goto bad;
1591 			}
1592 			ip->ip_dst = ipaddr.sin_addr;
1593 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1594 			    sizeof(struct in_addr));
1595 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1596 			/*
1597 			 * Let ip_intr's mcast routing check handle mcast pkts
1598 			 */
1599 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1600 			break;
1601 
1602 		case IPOPT_RR:
1603 			if (ipstealth && pass == 0)
1604 				break;
1605 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1606 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1607 				goto bad;
1608 			}
1609 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1610 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1611 				goto bad;
1612 			}
1613 			/*
1614 			 * If no space remains, ignore.
1615 			 */
1616 			off--;			/* 0 origin */
1617 			if (off > optlen - (int)sizeof(struct in_addr))
1618 				break;
1619 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1620 			    sizeof ipaddr.sin_addr);
1621 			/*
1622 			 * locate outgoing interface; if we're the destination,
1623 			 * use the incoming interface (should be same).
1624 			 */
1625 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1626 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1627 			    		    &ipforward_rt[mycpuid]))
1628 								     == NULL) {
1629 				type = ICMP_UNREACH;
1630 				code = ICMP_UNREACH_HOST;
1631 				goto bad;
1632 			}
1633 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1634 			    sizeof(struct in_addr));
1635 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1636 			break;
1637 
1638 		case IPOPT_TS:
1639 			if (ipstealth && pass == 0)
1640 				break;
1641 			code = cp - (u_char *)ip;
1642 			if (optlen < 4 || optlen > 40) {
1643 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1644 				goto bad;
1645 			}
1646 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1647 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1648 				goto bad;
1649 			}
1650 			if (off > optlen - (int)sizeof(int32_t)) {
1651 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1652 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1653 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1654 					goto bad;
1655 				}
1656 				break;
1657 			}
1658 			off--;				/* 0 origin */
1659 			sin = (struct in_addr *)(cp + off);
1660 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1661 
1662 			case IPOPT_TS_TSONLY:
1663 				break;
1664 
1665 			case IPOPT_TS_TSANDADDR:
1666 				if (off + sizeof(n_time) +
1667 				    sizeof(struct in_addr) > optlen) {
1668 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1669 					goto bad;
1670 				}
1671 				ipaddr.sin_addr = dst;
1672 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1673 							    m->m_pkthdr.rcvif);
1674 				if (ia == NULL)
1675 					continue;
1676 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1677 				    sizeof(struct in_addr));
1678 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1679 				off += sizeof(struct in_addr);
1680 				break;
1681 
1682 			case IPOPT_TS_PRESPEC:
1683 				if (off + sizeof(n_time) +
1684 				    sizeof(struct in_addr) > optlen) {
1685 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1686 					goto bad;
1687 				}
1688 				memcpy(&ipaddr.sin_addr, sin,
1689 				    sizeof(struct in_addr));
1690 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1691 					continue;
1692 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1693 				off += sizeof(struct in_addr);
1694 				break;
1695 
1696 			default:
1697 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1698 				goto bad;
1699 			}
1700 			ntime = iptime();
1701 			memcpy(cp + off, &ntime, sizeof(n_time));
1702 			cp[IPOPT_OFFSET] += sizeof(n_time);
1703 		}
1704 	}
1705 	if (forward && ipforwarding) {
1706 		ip_forward(m, TRUE, next_hop);
1707 		return (1);
1708 	}
1709 	return (0);
1710 bad:
1711 	icmp_error(m, type, code, 0, 0);
1712 	ipstat.ips_badoptions++;
1713 	return (1);
1714 }
1715 
1716 /*
1717  * Given address of next destination (final or next hop),
1718  * return internet address info of interface to be used to get there.
1719  */
1720 struct in_ifaddr *
1721 ip_rtaddr(struct in_addr dst, struct route *ro)
1722 {
1723 	struct sockaddr_in *sin;
1724 
1725 	sin = (struct sockaddr_in *)&ro->ro_dst;
1726 
1727 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1728 		if (ro->ro_rt != NULL) {
1729 			RTFREE(ro->ro_rt);
1730 			ro->ro_rt = NULL;
1731 		}
1732 		sin->sin_family = AF_INET;
1733 		sin->sin_len = sizeof *sin;
1734 		sin->sin_addr = dst;
1735 		rtalloc_ign(ro, RTF_PRCLONING);
1736 	}
1737 
1738 	if (ro->ro_rt == NULL)
1739 		return (NULL);
1740 
1741 	return (ifatoia(ro->ro_rt->rt_ifa));
1742 }
1743 
1744 /*
1745  * Save incoming source route for use in replies,
1746  * to be picked up later by ip_srcroute if the receiver is interested.
1747  */
1748 void
1749 save_rte(u_char *option, struct in_addr dst)
1750 {
1751 	unsigned olen;
1752 
1753 	olen = option[IPOPT_OLEN];
1754 #ifdef DIAGNOSTIC
1755 	if (ipprintfs)
1756 		kprintf("save_rte: olen %d\n", olen);
1757 #endif
1758 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1759 		return;
1760 	bcopy(option, ip_srcrt.srcopt, olen);
1761 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1762 	ip_srcrt.dst = dst;
1763 }
1764 
1765 /*
1766  * Retrieve incoming source route for use in replies,
1767  * in the same form used by setsockopt.
1768  * The first hop is placed before the options, will be removed later.
1769  */
1770 struct mbuf *
1771 ip_srcroute(void)
1772 {
1773 	struct in_addr *p, *q;
1774 	struct mbuf *m;
1775 
1776 	if (ip_nhops == 0)
1777 		return (NULL);
1778 	m = m_get(MB_DONTWAIT, MT_HEADER);
1779 	if (m == NULL)
1780 		return (NULL);
1781 
1782 #define	OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1783 
1784 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1785 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1786 	    OPTSIZ;
1787 #ifdef DIAGNOSTIC
1788 	if (ipprintfs)
1789 		kprintf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1790 #endif
1791 
1792 	/*
1793 	 * First save first hop for return route
1794 	 */
1795 	p = &ip_srcrt.route[ip_nhops - 1];
1796 	*(mtod(m, struct in_addr *)) = *p--;
1797 #ifdef DIAGNOSTIC
1798 	if (ipprintfs)
1799 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1800 #endif
1801 
1802 	/*
1803 	 * Copy option fields and padding (nop) to mbuf.
1804 	 */
1805 	ip_srcrt.nop = IPOPT_NOP;
1806 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1807 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1808 	    OPTSIZ);
1809 	q = (struct in_addr *)(mtod(m, caddr_t) +
1810 	    sizeof(struct in_addr) + OPTSIZ);
1811 #undef OPTSIZ
1812 	/*
1813 	 * Record return path as an IP source route,
1814 	 * reversing the path (pointers are now aligned).
1815 	 */
1816 	while (p >= ip_srcrt.route) {
1817 #ifdef DIAGNOSTIC
1818 		if (ipprintfs)
1819 			kprintf(" %x", ntohl(q->s_addr));
1820 #endif
1821 		*q++ = *p--;
1822 	}
1823 	/*
1824 	 * Last hop goes to final destination.
1825 	 */
1826 	*q = ip_srcrt.dst;
1827 #ifdef DIAGNOSTIC
1828 	if (ipprintfs)
1829 		kprintf(" %x\n", ntohl(q->s_addr));
1830 #endif
1831 	return (m);
1832 }
1833 
1834 /*
1835  * Strip out IP options.
1836  */
1837 void
1838 ip_stripoptions(struct mbuf *m)
1839 {
1840 	int datalen;
1841 	struct ip *ip = mtod(m, struct ip *);
1842 	caddr_t opts;
1843 	int optlen;
1844 
1845 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1846 	opts = (caddr_t)(ip + 1);
1847 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1848 	bcopy(opts + optlen, opts, datalen);
1849 	m->m_len -= optlen;
1850 	if (m->m_flags & M_PKTHDR)
1851 		m->m_pkthdr.len -= optlen;
1852 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1853 }
1854 
1855 u_char inetctlerrmap[PRC_NCMDS] = {
1856 	0,		0,		0,		0,
1857 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1858 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1859 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1860 	0,		0,		0,		0,
1861 	ENOPROTOOPT,	ECONNREFUSED
1862 };
1863 
1864 /*
1865  * Forward a packet.  If some error occurs return the sender
1866  * an icmp packet.  Note we can't always generate a meaningful
1867  * icmp message because icmp doesn't have a large enough repertoire
1868  * of codes and types.
1869  *
1870  * If not forwarding, just drop the packet.  This could be confusing
1871  * if ipforwarding was zero but some routing protocol was advancing
1872  * us as a gateway to somewhere.  However, we must let the routing
1873  * protocol deal with that.
1874  *
1875  * The using_srcrt parameter indicates whether the packet is being forwarded
1876  * via a source route.
1877  */
1878 void
1879 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1880 {
1881 	struct ip *ip = mtod(m, struct ip *);
1882 	struct sockaddr_in *ipforward_rtaddr;
1883 	struct rtentry *rt;
1884 	int error, type = 0, code = 0, destmtu = 0;
1885 	struct mbuf *mcopy;
1886 	n_long dest;
1887 	struct in_addr pkt_dst;
1888 	struct m_hdr tag;
1889 	struct route *cache_rt = &ipforward_rt[mycpuid];
1890 
1891 	dest = INADDR_ANY;
1892 	/*
1893 	 * Cache the destination address of the packet; this may be
1894 	 * changed by use of 'ipfw fwd'.
1895 	 */
1896 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1897 
1898 #ifdef DIAGNOSTIC
1899 	if (ipprintfs)
1900 		kprintf("forward: src %x dst %x ttl %x\n",
1901 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1902 #endif
1903 
1904 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1905 		ipstat.ips_cantforward++;
1906 		m_freem(m);
1907 		return;
1908 	}
1909 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1910 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1911 		return;
1912 	}
1913 
1914 	ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1915 	if (cache_rt->ro_rt == NULL ||
1916 	    ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1917 		if (cache_rt->ro_rt != NULL) {
1918 			RTFREE(cache_rt->ro_rt);
1919 			cache_rt->ro_rt = NULL;
1920 		}
1921 		ipforward_rtaddr->sin_family = AF_INET;
1922 		ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1923 		ipforward_rtaddr->sin_addr = pkt_dst;
1924 		rtalloc_ign(cache_rt, RTF_PRCLONING);
1925 		if (cache_rt->ro_rt == NULL) {
1926 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1927 			return;
1928 		}
1929 	}
1930 	rt = cache_rt->ro_rt;
1931 
1932 	/*
1933 	 * Save the IP header and at most 8 bytes of the payload,
1934 	 * in case we need to generate an ICMP message to the src.
1935 	 *
1936 	 * XXX this can be optimized a lot by saving the data in a local
1937 	 * buffer on the stack (72 bytes at most), and only allocating the
1938 	 * mbuf if really necessary. The vast majority of the packets
1939 	 * are forwarded without having to send an ICMP back (either
1940 	 * because unnecessary, or because rate limited), so we are
1941 	 * really we are wasting a lot of work here.
1942 	 *
1943 	 * We don't use m_copy() because it might return a reference
1944 	 * to a shared cluster. Both this function and ip_output()
1945 	 * assume exclusive access to the IP header in `m', so any
1946 	 * data in a cluster may change before we reach icmp_error().
1947 	 */
1948 	MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1949 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1950 		/*
1951 		 * It's probably ok if the pkthdr dup fails (because
1952 		 * the deep copy of the tag chain failed), but for now
1953 		 * be conservative and just discard the copy since
1954 		 * code below may some day want the tags.
1955 		 */
1956 		m_free(mcopy);
1957 		mcopy = NULL;
1958 	}
1959 	if (mcopy != NULL) {
1960 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1961 		    (int)ip->ip_len);
1962 		mcopy->m_pkthdr.len = mcopy->m_len;
1963 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1964 	}
1965 
1966 	if (!ipstealth)
1967 		ip->ip_ttl -= IPTTLDEC;
1968 
1969 	/*
1970 	 * If forwarding packet using same interface that it came in on,
1971 	 * perhaps should send a redirect to sender to shortcut a hop.
1972 	 * Only send redirect if source is sending directly to us,
1973 	 * and if packet was not source routed (or has any options).
1974 	 * Also, don't send redirect if forwarding using a default route
1975 	 * or a route modified by a redirect.
1976 	 */
1977 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1978 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1979 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1980 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1981 		u_long src = ntohl(ip->ip_src.s_addr);
1982 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1983 
1984 		if (rt_ifa != NULL &&
1985 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1986 			if (rt->rt_flags & RTF_GATEWAY)
1987 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1988 			else
1989 				dest = pkt_dst.s_addr;
1990 			/*
1991 			 * Router requirements says to only send
1992 			 * host redirects.
1993 			 */
1994 			type = ICMP_REDIRECT;
1995 			code = ICMP_REDIRECT_HOST;
1996 #ifdef DIAGNOSTIC
1997 			if (ipprintfs)
1998 				kprintf("redirect (%d) to %x\n", code, dest);
1999 #endif
2000 		}
2001 	}
2002 
2003 	if (next_hop != NULL) {
2004 		/* Pass IPFORWARD info if available */
2005 		tag.mh_type = MT_TAG;
2006 		tag.mh_flags = PACKET_TAG_IPFORWARD;
2007 		tag.mh_data = (caddr_t)next_hop;
2008 		tag.mh_next = m;
2009 		m = (struct mbuf *)&tag;
2010 	}
2011 
2012 	error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL,
2013 			  NULL);
2014 	if (error == 0) {
2015 		ipstat.ips_forward++;
2016 		if (type == 0) {
2017 			if (mcopy) {
2018 				ipflow_create(cache_rt, mcopy);
2019 				m_freem(mcopy);
2020 			}
2021 			return;		/* most common case */
2022 		} else {
2023 			ipstat.ips_redirectsent++;
2024 		}
2025 	} else {
2026 		ipstat.ips_cantforward++;
2027 	}
2028 
2029 	if (mcopy == NULL)
2030 		return;
2031 
2032 	/*
2033 	 * Send ICMP message.
2034 	 */
2035 
2036 	switch (error) {
2037 
2038 	case 0:				/* forwarded, but need redirect */
2039 		/* type, code set above */
2040 		break;
2041 
2042 	case ENETUNREACH:		/* shouldn't happen, checked above */
2043 	case EHOSTUNREACH:
2044 	case ENETDOWN:
2045 	case EHOSTDOWN:
2046 	default:
2047 		type = ICMP_UNREACH;
2048 		code = ICMP_UNREACH_HOST;
2049 		break;
2050 
2051 	case EMSGSIZE:
2052 		type = ICMP_UNREACH;
2053 		code = ICMP_UNREACH_NEEDFRAG;
2054 #ifdef IPSEC
2055 		/*
2056 		 * If the packet is routed over IPsec tunnel, tell the
2057 		 * originator the tunnel MTU.
2058 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2059 		 * XXX quickhack!!!
2060 		 */
2061 		if (cache_rt->ro_rt != NULL) {
2062 			struct secpolicy *sp = NULL;
2063 			int ipsecerror;
2064 			int ipsechdr;
2065 			struct route *ro;
2066 
2067 			sp = ipsec4_getpolicybyaddr(mcopy,
2068 						    IPSEC_DIR_OUTBOUND,
2069 						    IP_FORWARDING,
2070 						    &ipsecerror);
2071 
2072 			if (sp == NULL)
2073 				destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2074 			else {
2075 				/* count IPsec header size */
2076 				ipsechdr = ipsec4_hdrsiz(mcopy,
2077 							 IPSEC_DIR_OUTBOUND,
2078 							 NULL);
2079 
2080 				/*
2081 				 * find the correct route for outer IPv4
2082 				 * header, compute tunnel MTU.
2083 				 *
2084 				 */
2085 				if (sp->req != NULL && sp->req->sav != NULL &&
2086 				    sp->req->sav->sah != NULL) {
2087 					ro = &sp->req->sav->sah->sa_route;
2088 					if (ro->ro_rt != NULL &&
2089 					    ro->ro_rt->rt_ifp != NULL) {
2090 						destmtu =
2091 						    ro->ro_rt->rt_ifp->if_mtu;
2092 						destmtu -= ipsechdr;
2093 					}
2094 				}
2095 
2096 				key_freesp(sp);
2097 			}
2098 		}
2099 #elif FAST_IPSEC
2100 		/*
2101 		 * If the packet is routed over IPsec tunnel, tell the
2102 		 * originator the tunnel MTU.
2103 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2104 		 * XXX quickhack!!!
2105 		 */
2106 		if (cache_rt->ro_rt != NULL) {
2107 			struct secpolicy *sp = NULL;
2108 			int ipsecerror;
2109 			int ipsechdr;
2110 			struct route *ro;
2111 
2112 			sp = ipsec_getpolicybyaddr(mcopy,
2113 						   IPSEC_DIR_OUTBOUND,
2114 						   IP_FORWARDING,
2115 						   &ipsecerror);
2116 
2117 			if (sp == NULL)
2118 				destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2119 			else {
2120 				/* count IPsec header size */
2121 				ipsechdr = ipsec4_hdrsiz(mcopy,
2122 							 IPSEC_DIR_OUTBOUND,
2123 							 NULL);
2124 
2125 				/*
2126 				 * find the correct route for outer IPv4
2127 				 * header, compute tunnel MTU.
2128 				 */
2129 
2130 				if (sp->req != NULL &&
2131 				    sp->req->sav != NULL &&
2132 				    sp->req->sav->sah != NULL) {
2133 					ro = &sp->req->sav->sah->sa_route;
2134 					if (ro->ro_rt != NULL &&
2135 					    ro->ro_rt->rt_ifp != NULL) {
2136 						destmtu =
2137 						    ro->ro_rt->rt_ifp->if_mtu;
2138 						destmtu -= ipsechdr;
2139 					}
2140 				}
2141 
2142 				KEY_FREESP(&sp);
2143 			}
2144 		}
2145 #else /* !IPSEC && !FAST_IPSEC */
2146 		if (cache_rt->ro_rt != NULL)
2147 			destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2148 #endif /*IPSEC*/
2149 		ipstat.ips_cantfrag++;
2150 		break;
2151 
2152 	case ENOBUFS:
2153 		/*
2154 		 * A router should not generate ICMP_SOURCEQUENCH as
2155 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2156 		 * Source quench could be a big problem under DoS attacks,
2157 		 * or if the underlying interface is rate-limited.
2158 		 * Those who need source quench packets may re-enable them
2159 		 * via the net.inet.ip.sendsourcequench sysctl.
2160 		 */
2161 		if (!ip_sendsourcequench) {
2162 			m_freem(mcopy);
2163 			return;
2164 		} else {
2165 			type = ICMP_SOURCEQUENCH;
2166 			code = 0;
2167 		}
2168 		break;
2169 
2170 	case EACCES:			/* ipfw denied packet */
2171 		m_freem(mcopy);
2172 		return;
2173 	}
2174 	icmp_error(mcopy, type, code, dest, destmtu);
2175 }
2176 
2177 void
2178 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2179 	       struct mbuf *m)
2180 {
2181 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2182 		struct timeval tv;
2183 
2184 		microtime(&tv);
2185 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2186 		    SCM_TIMESTAMP, SOL_SOCKET);
2187 		if (*mp)
2188 			mp = &(*mp)->m_next;
2189 	}
2190 	if (inp->inp_flags & INP_RECVDSTADDR) {
2191 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2192 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2193 		if (*mp)
2194 			mp = &(*mp)->m_next;
2195 	}
2196 	if (inp->inp_flags & INP_RECVTTL) {
2197 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2198 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2199 		if (*mp)
2200 			mp = &(*mp)->m_next;
2201 	}
2202 #ifdef notyet
2203 	/* XXX
2204 	 * Moving these out of udp_input() made them even more broken
2205 	 * than they already were.
2206 	 */
2207 	/* options were tossed already */
2208 	if (inp->inp_flags & INP_RECVOPTS) {
2209 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2210 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2211 		if (*mp)
2212 			mp = &(*mp)->m_next;
2213 	}
2214 	/* ip_srcroute doesn't do what we want here, need to fix */
2215 	if (inp->inp_flags & INP_RECVRETOPTS) {
2216 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2217 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2218 		if (*mp)
2219 			mp = &(*mp)->m_next;
2220 	}
2221 #endif
2222 	if (inp->inp_flags & INP_RECVIF) {
2223 		struct ifnet *ifp;
2224 		struct sdlbuf {
2225 			struct sockaddr_dl sdl;
2226 			u_char	pad[32];
2227 		} sdlbuf;
2228 		struct sockaddr_dl *sdp;
2229 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2230 
2231 		if (((ifp = m->m_pkthdr.rcvif)) &&
2232 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2233 			sdp = IF_LLSOCKADDR(ifp);
2234 			/*
2235 			 * Change our mind and don't try copy.
2236 			 */
2237 			if ((sdp->sdl_family != AF_LINK) ||
2238 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2239 				goto makedummy;
2240 			}
2241 			bcopy(sdp, sdl2, sdp->sdl_len);
2242 		} else {
2243 makedummy:
2244 			sdl2->sdl_len =
2245 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2246 			sdl2->sdl_family = AF_LINK;
2247 			sdl2->sdl_index = 0;
2248 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2249 		}
2250 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2251 			IP_RECVIF, IPPROTO_IP);
2252 		if (*mp)
2253 			mp = &(*mp)->m_next;
2254 	}
2255 }
2256 
2257 /*
2258  * XXX these routines are called from the upper part of the kernel.
2259  *
2260  * They could also be moved to ip_mroute.c, since all the RSVP
2261  *  handling is done there already.
2262  */
2263 int
2264 ip_rsvp_init(struct socket *so)
2265 {
2266 	if (so->so_type != SOCK_RAW ||
2267 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2268 		return EOPNOTSUPP;
2269 
2270 	if (ip_rsvpd != NULL)
2271 		return EADDRINUSE;
2272 
2273 	ip_rsvpd = so;
2274 	/*
2275 	 * This may seem silly, but we need to be sure we don't over-increment
2276 	 * the RSVP counter, in case something slips up.
2277 	 */
2278 	if (!ip_rsvp_on) {
2279 		ip_rsvp_on = 1;
2280 		rsvp_on++;
2281 	}
2282 
2283 	return 0;
2284 }
2285 
2286 int
2287 ip_rsvp_done(void)
2288 {
2289 	ip_rsvpd = NULL;
2290 	/*
2291 	 * This may seem silly, but we need to be sure we don't over-decrement
2292 	 * the RSVP counter, in case something slips up.
2293 	 */
2294 	if (ip_rsvp_on) {
2295 		ip_rsvp_on = 0;
2296 		rsvp_on--;
2297 	}
2298 	return 0;
2299 }
2300 
2301 void
2302 rsvp_input(struct mbuf *m, ...)	/* XXX must fixup manually */
2303 {
2304 	int off, proto;
2305 	__va_list ap;
2306 
2307 	__va_start(ap, m);
2308 	off = __va_arg(ap, int);
2309 	proto = __va_arg(ap, int);
2310 	__va_end(ap);
2311 
2312 	if (rsvp_input_p) { /* call the real one if loaded */
2313 		rsvp_input_p(m, off, proto);
2314 		return;
2315 	}
2316 
2317 	/* Can still get packets with rsvp_on = 0 if there is a local member
2318 	 * of the group to which the RSVP packet is addressed.  But in this
2319 	 * case we want to throw the packet away.
2320 	 */
2321 
2322 	if (!rsvp_on) {
2323 		m_freem(m);
2324 		return;
2325 	}
2326 
2327 	if (ip_rsvpd != NULL) {
2328 		rip_input(m, off, proto);
2329 		return;
2330 	}
2331 	/* Drop the packet */
2332 	m_freem(m);
2333 }
2334