xref: /dflybsd-src/sys/netinet/ip_input.c (revision 99ebfb7c19301cfdf9a5a87d225b64586998d69f)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
63  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
64  */
65 
66 #define	_IP_VHL
67 
68 #include "opt_bootp.h"
69 #include "opt_ipdn.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_ipsec.h"
73 #include "opt_rss.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/mpipe.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/time.h>
84 #include <sys/globaldata.h>
85 #include <sys/thread.h>
86 #include <sys/kernel.h>
87 #include <sys/syslog.h>
88 #include <sys/sysctl.h>
89 #include <sys/in_cksum.h>
90 #include <sys/lock.h>
91 
92 #include <sys/mplock2.h>
93 
94 #include <machine/stdarg.h>
95 
96 #include <net/if.h>
97 #include <net/if_types.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/pfil.h>
101 #include <net/route.h>
102 #include <net/netisr2.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_icmp.h>
111 #include <netinet/ip_divert.h>
112 #include <netinet/ip_flow.h>
113 
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 #include <net/netmsg2.h>
117 
118 #include <sys/socketvar.h>
119 
120 #include <net/ipfw/ip_fw.h>
121 #include <net/dummynet/ip_dummynet.h>
122 
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #endif
127 
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/key.h>
131 #endif
132 
133 int rsvp_on = 0;
134 static int ip_rsvp_on;
135 struct socket *ip_rsvpd;
136 
137 int ipforwarding = 0;
138 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
139     &ipforwarding, 0, "Enable IP forwarding between interfaces");
140 
141 static int ipsendredirects = 1; /* XXX */
142 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
143     &ipsendredirects, 0, "Enable sending IP redirects");
144 
145 int ip_defttl = IPDEFTTL;
146 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
147     &ip_defttl, 0, "Maximum TTL on IP packets");
148 
149 static int ip_dosourceroute = 0;
150 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
151     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
152 
153 static int ip_acceptsourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
155     CTLFLAG_RW, &ip_acceptsourceroute, 0,
156     "Enable accepting source routed IP packets");
157 
158 static int ip_keepfaith = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
160     &ip_keepfaith, 0,
161     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
162 
163 static int nipq = 0;	/* total # of reass queues */
164 static int maxnipq;
165 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
166     &maxnipq, 0,
167     "Maximum number of IPv4 fragment reassembly queue entries");
168 
169 static int maxfragsperpacket;
170 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
171     &maxfragsperpacket, 0,
172     "Maximum number of IPv4 fragments allowed per packet");
173 
174 static int ip_sendsourcequench = 0;
175 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
176     &ip_sendsourcequench, 0,
177     "Enable the transmission of source quench packets");
178 
179 int ip_do_randomid = 1;
180 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
181     &ip_do_randomid, 0,
182     "Assign random ip_id values");
183 /*
184  * XXX - Setting ip_checkinterface mostly implements the receive side of
185  * the Strong ES model described in RFC 1122, but since the routing table
186  * and transmit implementation do not implement the Strong ES model,
187  * setting this to 1 results in an odd hybrid.
188  *
189  * XXX - ip_checkinterface currently must be disabled if you use ipnat
190  * to translate the destination address to another local interface.
191  *
192  * XXX - ip_checkinterface must be disabled if you add IP aliases
193  * to the loopback interface instead of the interface where the
194  * packets for those addresses are received.
195  */
196 static int ip_checkinterface = 0;
197 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
198     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
199 
200 static u_long ip_hash_count = 0;
201 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
202     &ip_hash_count, 0, "Number of packets hashed by IP");
203 
204 #ifdef RSS_DEBUG
205 static u_long ip_rehash_count = 0;
206 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
207     &ip_rehash_count, 0, "Number of packets rehashed by IP");
208 
209 static u_long ip_dispatch_fast = 0;
210 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
211     &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
212 
213 static u_long ip_dispatch_slow = 0;
214 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
215     &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
216 #endif
217 
218 static struct lwkt_token ipq_token = LWKT_TOKEN_INITIALIZER(ipq_token);
219 
220 #ifdef DIAGNOSTIC
221 static int ipprintfs = 0;
222 #endif
223 
224 extern	struct domain inetdomain;
225 extern	struct protosw inetsw[];
226 u_char	ip_protox[IPPROTO_MAX];
227 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
228 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
229 						/* inet addr hash table */
230 u_long	in_ifaddrhmask;				/* mask for hash table */
231 
232 static struct mbuf *ipforward_mtemp[MAXCPU];
233 
234 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
235 
236 static int
237 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
238 {
239 	int cpu, error = 0;
240 
241 	for (cpu = 0; cpu < ncpus; ++cpu) {
242 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
243 					sizeof(struct ip_stats))))
244 			break;
245 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
246 				       sizeof(struct ip_stats))))
247 			break;
248 	}
249 
250 	return (error);
251 }
252 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
253     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
254 
255 /* Packet reassembly stuff */
256 #define	IPREASS_NHASH_LOG2	6
257 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
258 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
259 #define	IPREASS_HASH(x,y)						\
260     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
261 
262 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
263 
264 #ifdef IPCTL_DEFMTU
265 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
266     &ip_mtu, 0, "Default MTU");
267 #endif
268 
269 #ifdef IPSTEALTH
270 static int ipstealth = 0;
271 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
272 #else
273 static const int ipstealth = 0;
274 #endif
275 
276 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
277 
278 struct pfil_head inet_pfil_hook;
279 
280 /*
281  * struct ip_srcrt_opt is used to store packet state while it travels
282  * through the stack.
283  *
284  * XXX Note that the code even makes assumptions on the size and
285  * alignment of fields inside struct ip_srcrt so e.g. adding some
286  * fields will break the code.  This needs to be fixed.
287  *
288  * We need to save the IP options in case a protocol wants to respond
289  * to an incoming packet over the same route if the packet got here
290  * using IP source routing.  This allows connection establishment and
291  * maintenance when the remote end is on a network that is not known
292  * to us.
293  */
294 struct ip_srcrt {
295 	struct	in_addr dst;			/* final destination */
296 	char	nop;				/* one NOP to align */
297 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
298 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
299 };
300 
301 struct ip_srcrt_opt {
302 	int		ip_nhops;
303 	struct ip_srcrt	ip_srcrt;
304 };
305 
306 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
307 static struct malloc_pipe ipq_mpipe;
308 
309 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
310 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
311 static void		ip_freef(struct ipqhead *, struct ipq *);
312 static void		ip_input_handler(netmsg_t);
313 
314 /*
315  * IP initialization: fill in IP protocol switch table.
316  * All protocols not implemented in kernel go to raw IP protocol handler.
317  */
318 void
319 ip_init(void)
320 {
321 	struct protosw *pr;
322 	int i;
323 	int cpu;
324 
325 	/*
326 	 * Make sure we can handle a reasonable number of fragments but
327 	 * cap it at 4000 (XXX).
328 	 */
329 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
330 		    IFQ_MAXLEN, 4000, 0, NULL, NULL, NULL);
331 	for (i = 0; i < ncpus; ++i) {
332 		TAILQ_INIT(&in_ifaddrheads[i]);
333 		in_ifaddrhashtbls[i] =
334 			hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
335 	}
336 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
337 	if (pr == NULL)
338 		panic("ip_init");
339 	for (i = 0; i < IPPROTO_MAX; i++)
340 		ip_protox[i] = pr - inetsw;
341 	for (pr = inetdomain.dom_protosw;
342 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
343 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
344 			if (pr->pr_protocol != IPPROTO_RAW)
345 				ip_protox[pr->pr_protocol] = pr - inetsw;
346 		}
347 	}
348 
349 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
350 	inet_pfil_hook.ph_af = AF_INET;
351 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
352 		kprintf("%s: WARNING: unable to register pfil hook, "
353 			"error %d\n", __func__, i);
354 	}
355 
356 	for (i = 0; i < IPREASS_NHASH; i++)
357 		TAILQ_INIT(&ipq[i]);
358 
359 	maxnipq = nmbclusters / 32;
360 	maxfragsperpacket = 16;
361 
362 	ip_id = time_second & 0xffff;	/* time_second survives reboots */
363 
364 	for (cpu = 0; cpu < ncpus; ++cpu) {
365 		/*
366 		 * Initialize IP statistics counters for each CPU.
367 		 */
368 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
369 
370 		/*
371 		 * Preallocate mbuf template for forwarding
372 		 */
373 		MGETHDR(ipforward_mtemp[cpu], MB_WAIT, MT_DATA);
374 	}
375 
376 	netisr_register(NETISR_IP, ip_input_handler, ip_hashfn_in);
377 	netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
378 }
379 
380 /* Do transport protocol processing. */
381 static void
382 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
383 {
384 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
385 
386 	/*
387 	 * Switch out to protocol's input routine.
388 	 */
389 	PR_GET_MPLOCK(pr);
390 	pr->pr_input(&m, &hlen, ip->ip_p);
391 	PR_REL_MPLOCK(pr);
392 }
393 
394 static void
395 transport_processing_handler(netmsg_t msg)
396 {
397 	struct netmsg_packet *pmsg = &msg->packet;
398 	struct ip *ip;
399 	int hlen;
400 
401 	ip = mtod(pmsg->nm_packet, struct ip *);
402 	hlen = pmsg->base.lmsg.u.ms_result;
403 
404 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
405 	/* msg was embedded in the mbuf, do not reply! */
406 }
407 
408 static void
409 ip_input_handler(netmsg_t msg)
410 {
411 	ip_input(msg->packet.nm_packet);
412 	/* msg was embedded in the mbuf, do not reply! */
413 }
414 
415 /*
416  * IP input routine.  Checksum and byte swap header.  If fragmented
417  * try to reassemble.  Process options.  Pass to next level.
418  */
419 void
420 ip_input(struct mbuf *m)
421 {
422 	struct ip *ip;
423 	struct in_ifaddr *ia = NULL;
424 	struct in_ifaddr_container *iac;
425 	int hlen, checkif;
426 	u_short sum;
427 	struct in_addr pkt_dst;
428 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
429 	struct in_addr odst;			/* original dst address(NAT) */
430 	struct m_tag *mtag;
431 	struct sockaddr_in *next_hop = NULL;
432 	lwkt_port_t port;
433 #ifdef FAST_IPSEC
434 	struct tdb_ident *tdbi;
435 	struct secpolicy *sp;
436 	int error;
437 #endif
438 
439 	M_ASSERTPKTHDR(m);
440 
441 	/*
442 	 * This routine is called from numerous places which may not have
443 	 * characterized the packet.
444 	 */
445 	if ((m->m_flags & M_HASH) == 0) {
446 		atomic_add_long(&ip_hash_count, 1);
447 		ip_hashfn(&m, 0, IP_MPORT_IN);
448 		if (m == NULL)
449 			return;
450 		KKASSERT(m->m_flags & M_HASH);
451 	}
452 	ip = mtod(m, struct ip *);
453 
454 	/*
455 	 * Pull out certain tags
456 	 */
457 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
458 		/* Next hop */
459 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
460 		KKASSERT(mtag != NULL);
461 		next_hop = m_tag_data(mtag);
462 	}
463 
464 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
465 		/* dummynet already filtered us */
466 		ip = mtod(m, struct ip *);
467 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
468 		goto iphack;
469 	}
470 
471 	ipstat.ips_total++;
472 
473 	/* length checks already done in ip_hashfn() */
474 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
475 
476 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
477 		ipstat.ips_badvers++;
478 		goto bad;
479 	}
480 
481 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
482 	/* length checks already done in ip_hashfn() */
483 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
484 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
485 
486 	/* 127/8 must not appear on wire - RFC1122 */
487 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
488 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
489 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
490 			ipstat.ips_badaddr++;
491 			goto bad;
492 		}
493 	}
494 
495 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
496 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
497 	} else {
498 		if (hlen == sizeof(struct ip))
499 			sum = in_cksum_hdr(ip);
500 		else
501 			sum = in_cksum(m, hlen);
502 	}
503 	if (sum != 0) {
504 		ipstat.ips_badsum++;
505 		goto bad;
506 	}
507 
508 #ifdef ALTQ
509 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
510 		/* packet is dropped by traffic conditioner */
511 		return;
512 	}
513 #endif
514 	/*
515 	 * Convert fields to host representation.
516 	 */
517 	ip->ip_len = ntohs(ip->ip_len);
518 	ip->ip_off = ntohs(ip->ip_off);
519 
520 	/* length checks already done in ip_hashfn() */
521 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
522 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
523 
524 	/*
525 	 * Trim mbufs if longer than the IP header would have us expect.
526 	 */
527 	if (m->m_pkthdr.len > ip->ip_len) {
528 		if (m->m_len == m->m_pkthdr.len) {
529 			m->m_len = ip->ip_len;
530 			m->m_pkthdr.len = ip->ip_len;
531 		} else {
532 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
533 		}
534 	}
535 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
536 	/*
537 	 * Bypass packet filtering for packets from a tunnel (gif).
538 	 */
539 	if (ipsec_gethist(m, NULL))
540 		goto pass;
541 #endif
542 
543 	/*
544 	 * IpHack's section.
545 	 * Right now when no processing on packet has done
546 	 * and it is still fresh out of network we do our black
547 	 * deals with it.
548 	 * - Firewall: deny/allow/divert
549 	 * - Xlate: translate packet's addr/port (NAT).
550 	 * - Pipe: pass pkt through dummynet.
551 	 * - Wrap: fake packet's addr/port <unimpl.>
552 	 * - Encapsulate: put it in another IP and send out. <unimp.>
553 	 */
554 
555 iphack:
556 	/*
557 	 * If we've been forwarded from the output side, then
558 	 * skip the firewall a second time
559 	 */
560 	if (next_hop != NULL)
561 		goto ours;
562 
563 	/* No pfil hooks */
564 	if (!pfil_has_hooks(&inet_pfil_hook)) {
565 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
566 			/*
567 			 * Strip dummynet tags from stranded packets
568 			 */
569 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
570 			KKASSERT(mtag != NULL);
571 			m_tag_delete(m, mtag);
572 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
573 		}
574 		goto pass;
575 	}
576 
577 	/*
578 	 * Run through list of hooks for input packets.
579 	 *
580 	 * NOTE!  If the packet is rewritten pf/ipfw/whoever must
581 	 *	  clear M_HASH.
582 	 */
583 	odst = ip->ip_dst;
584 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
585 		return;
586 	if (m == NULL)	/* consumed by filter */
587 		return;
588 	ip = mtod(m, struct ip *);
589 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
590 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
591 
592 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
593 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
594 		KKASSERT(mtag != NULL);
595 		next_hop = m_tag_data(mtag);
596 	}
597 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
598 		ip_dn_queue(m);
599 		return;
600 	}
601 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
602 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
603 	}
604 pass:
605 	/*
606 	 * Process options and, if not destined for us,
607 	 * ship it on.  ip_dooptions returns 1 when an
608 	 * error was detected (causing an icmp message
609 	 * to be sent and the original packet to be freed).
610 	 */
611 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
612 		return;
613 
614 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
615 	 * matter if it is destined to another node, or whether it is
616 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
617 	 * anywhere else. Also checks if the rsvp daemon is running before
618 	 * grabbing the packet.
619 	 */
620 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
621 		goto ours;
622 
623 	/*
624 	 * Check our list of addresses, to see if the packet is for us.
625 	 * If we don't have any addresses, assume any unicast packet
626 	 * we receive might be for us (and let the upper layers deal
627 	 * with it).
628 	 */
629 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
630 	    !(m->m_flags & (M_MCAST | M_BCAST)))
631 		goto ours;
632 
633 	/*
634 	 * Cache the destination address of the packet; this may be
635 	 * changed by use of 'ipfw fwd'.
636 	 */
637 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
638 
639 	/*
640 	 * Enable a consistency check between the destination address
641 	 * and the arrival interface for a unicast packet (the RFC 1122
642 	 * strong ES model) if IP forwarding is disabled and the packet
643 	 * is not locally generated and the packet is not subject to
644 	 * 'ipfw fwd'.
645 	 *
646 	 * XXX - Checking also should be disabled if the destination
647 	 * address is ipnat'ed to a different interface.
648 	 *
649 	 * XXX - Checking is incompatible with IP aliases added
650 	 * to the loopback interface instead of the interface where
651 	 * the packets are received.
652 	 */
653 	checkif = ip_checkinterface &&
654 		  !ipforwarding &&
655 		  m->m_pkthdr.rcvif != NULL &&
656 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
657 		  next_hop == NULL;
658 
659 	/*
660 	 * Check for exact addresses in the hash bucket.
661 	 */
662 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
663 		ia = iac->ia;
664 
665 		/*
666 		 * If the address matches, verify that the packet
667 		 * arrived via the correct interface if checking is
668 		 * enabled.
669 		 */
670 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
671 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
672 			goto ours;
673 	}
674 	ia = NULL;
675 
676 	/*
677 	 * Check for broadcast addresses.
678 	 *
679 	 * Only accept broadcast packets that arrive via the matching
680 	 * interface.  Reception of forwarded directed broadcasts would
681 	 * be handled via ip_forward() and ether_output() with the loopback
682 	 * into the stack for SIMPLEX interfaces handled by ether_output().
683 	 */
684 	if (m->m_pkthdr.rcvif != NULL &&
685 	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
686 		struct ifaddr_container *ifac;
687 
688 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
689 			      ifa_link) {
690 			struct ifaddr *ifa = ifac->ifa;
691 
692 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
693 				continue;
694 			if (ifa->ifa_addr->sa_family != AF_INET)
695 				continue;
696 			ia = ifatoia(ifa);
697 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
698 								pkt_dst.s_addr)
699 				goto ours;
700 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
701 				goto ours;
702 #ifdef BOOTP_COMPAT
703 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
704 				goto ours;
705 #endif
706 		}
707 	}
708 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
709 		struct in_multi *inm;
710 
711 		/* XXX Multicast is not MPSAFE yet */
712 		get_mplock();
713 
714 		if (ip_mrouter != NULL) {
715 			/*
716 			 * If we are acting as a multicast router, all
717 			 * incoming multicast packets are passed to the
718 			 * kernel-level multicast forwarding function.
719 			 * The packet is returned (relatively) intact; if
720 			 * ip_mforward() returns a non-zero value, the packet
721 			 * must be discarded, else it may be accepted below.
722 			 */
723 			if (ip_mforward != NULL &&
724 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
725 				rel_mplock();
726 				ipstat.ips_cantforward++;
727 				m_freem(m);
728 				return;
729 			}
730 
731 			/*
732 			 * The process-level routing daemon needs to receive
733 			 * all multicast IGMP packets, whether or not this
734 			 * host belongs to their destination groups.
735 			 */
736 			if (ip->ip_p == IPPROTO_IGMP) {
737 				rel_mplock();
738 				goto ours;
739 			}
740 			ipstat.ips_forward++;
741 		}
742 		/*
743 		 * See if we belong to the destination multicast group on the
744 		 * arrival interface.
745 		 */
746 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
747 		if (inm == NULL) {
748 			rel_mplock();
749 			ipstat.ips_notmember++;
750 			m_freem(m);
751 			return;
752 		}
753 
754 		rel_mplock();
755 		goto ours;
756 	}
757 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
758 		goto ours;
759 	if (ip->ip_dst.s_addr == INADDR_ANY)
760 		goto ours;
761 
762 	/*
763 	 * FAITH(Firewall Aided Internet Translator)
764 	 */
765 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
766 		if (ip_keepfaith) {
767 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
768 				goto ours;
769 		}
770 		m_freem(m);
771 		return;
772 	}
773 
774 	/*
775 	 * Not for us; forward if possible and desirable.
776 	 */
777 	if (!ipforwarding) {
778 		ipstat.ips_cantforward++;
779 		m_freem(m);
780 	} else {
781 #ifdef IPSEC
782 		/*
783 		 * Enforce inbound IPsec SPD.
784 		 */
785 		if (ipsec4_in_reject(m, NULL)) {
786 			ipsecstat.in_polvio++;
787 			goto bad;
788 		}
789 #endif
790 #ifdef FAST_IPSEC
791 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
792 		crit_enter();
793 		if (mtag != NULL) {
794 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
795 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
796 		} else {
797 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
798 						   IP_FORWARDING, &error);
799 		}
800 		if (sp == NULL) {	/* NB: can happen if error */
801 			crit_exit();
802 			/*XXX error stat???*/
803 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
804 			goto bad;
805 		}
806 
807 		/*
808 		 * Check security policy against packet attributes.
809 		 */
810 		error = ipsec_in_reject(sp, m);
811 		KEY_FREESP(&sp);
812 		crit_exit();
813 		if (error) {
814 			ipstat.ips_cantforward++;
815 			goto bad;
816 		}
817 #endif
818 		ip_forward(m, using_srcrt, next_hop);
819 	}
820 	return;
821 
822 ours:
823 
824 	/*
825 	 * IPSTEALTH: Process non-routing options only
826 	 * if the packet is destined for us.
827 	 */
828 	if (ipstealth &&
829 	    hlen > sizeof(struct ip) &&
830 	    ip_dooptions(m, 1, next_hop))
831 		return;
832 
833 	/* Count the packet in the ip address stats */
834 	if (ia != NULL) {
835 		IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
836 		IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
837 	}
838 
839 	/*
840 	 * If offset or IP_MF are set, must reassemble.
841 	 * Otherwise, nothing need be done.
842 	 * (We could look in the reassembly queue to see
843 	 * if the packet was previously fragmented,
844 	 * but it's not worth the time; just let them time out.)
845 	 */
846 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
847 		/*
848 		 * Attempt reassembly; if it succeeds, proceed.  ip_reass()
849 		 * will return a different mbuf.
850 		 *
851 		 * NOTE: ip_reass() returns m with M_HASH cleared to force
852 		 *	 us to recharacterize the packet.
853 		 */
854 		m = ip_reass(m);
855 		if (m == NULL)
856 			return;
857 		ip = mtod(m, struct ip *);
858 
859 		/* Get the header length of the reassembled packet */
860 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
861 	} else {
862 		ip->ip_len -= hlen;
863 	}
864 
865 #ifdef IPSEC
866 	/*
867 	 * enforce IPsec policy checking if we are seeing last header.
868 	 * note that we do not visit this with protocols with pcb layer
869 	 * code - like udp/tcp/raw ip.
870 	 */
871 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
872 	    ipsec4_in_reject(m, NULL)) {
873 		ipsecstat.in_polvio++;
874 		goto bad;
875 	}
876 #endif
877 #if FAST_IPSEC
878 	/*
879 	 * enforce IPsec policy checking if we are seeing last header.
880 	 * note that we do not visit this with protocols with pcb layer
881 	 * code - like udp/tcp/raw ip.
882 	 */
883 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
884 		/*
885 		 * Check if the packet has already had IPsec processing
886 		 * done.  If so, then just pass it along.  This tag gets
887 		 * set during AH, ESP, etc. input handling, before the
888 		 * packet is returned to the ip input queue for delivery.
889 		 */
890 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
891 		crit_enter();
892 		if (mtag != NULL) {
893 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
894 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
895 		} else {
896 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
897 						   IP_FORWARDING, &error);
898 		}
899 		if (sp != NULL) {
900 			/*
901 			 * Check security policy against packet attributes.
902 			 */
903 			error = ipsec_in_reject(sp, m);
904 			KEY_FREESP(&sp);
905 		} else {
906 			/* XXX error stat??? */
907 			error = EINVAL;
908 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
909 			goto bad;
910 		}
911 		crit_exit();
912 		if (error)
913 			goto bad;
914 	}
915 #endif /* FAST_IPSEC */
916 
917 	/*
918 	 * We must forward the packet to the correct protocol thread if
919 	 * we are not already in it.
920 	 *
921 	 * NOTE: ip_len is now in host form.  ip_len is not adjusted
922 	 *	 further for protocol processing, instead we pass hlen
923 	 *	 to the protosw and let it deal with it.
924 	 */
925 	ipstat.ips_delivered++;
926 
927 	if ((m->m_flags & M_HASH) == 0) {
928 #ifdef RSS_DEBUG
929 		atomic_add_long(&ip_rehash_count, 1);
930 #endif
931 		ip->ip_len = htons(ip->ip_len + hlen);
932 		ip->ip_off = htons(ip->ip_off);
933 
934 		ip_hashfn(&m, 0, IP_MPORT_IN);
935 		if (m == NULL)
936 			return;
937 
938 		ip = mtod(m, struct ip *);
939 		ip->ip_len = ntohs(ip->ip_len) - hlen;
940 		ip->ip_off = ntohs(ip->ip_off);
941 		KKASSERT(m->m_flags & M_HASH);
942 	}
943 	port = netisr_hashport(m->m_pkthdr.hash);
944 
945 	if (port != &curthread->td_msgport) {
946 		struct netmsg_packet *pmsg;
947 
948 #ifdef RSS_DEBUG
949 		atomic_add_long(&ip_dispatch_slow, 1);
950 #endif
951 
952 		pmsg = &m->m_hdr.mh_netmsg;
953 		netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
954 			    0, transport_processing_handler);
955 		pmsg->nm_packet = m;
956 		pmsg->base.lmsg.u.ms_result = hlen;
957 		lwkt_sendmsg(port, &pmsg->base.lmsg);
958 	} else {
959 #ifdef RSS_DEBUG
960 		atomic_add_long(&ip_dispatch_fast, 1);
961 #endif
962 		transport_processing_oncpu(m, hlen, ip);
963 	}
964 	return;
965 
966 bad:
967 	m_freem(m);
968 }
969 
970 /*
971  * Take incoming datagram fragment and try to reassemble it into
972  * whole datagram.  If a chain for reassembly of this datagram already
973  * exists, then it is given as fp; otherwise have to make a chain.
974  */
975 struct mbuf *
976 ip_reass(struct mbuf *m)
977 {
978 	struct ip *ip = mtod(m, struct ip *);
979 	struct mbuf *p = NULL, *q, *nq;
980 	struct mbuf *n;
981 	struct ipq *fp = NULL;
982 	struct ipqhead *head;
983 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
984 	int i, next;
985 	u_short sum;
986 
987 	/* If maxnipq is 0, never accept fragments. */
988 	if (maxnipq == 0) {
989 		ipstat.ips_fragments++;
990 		ipstat.ips_fragdropped++;
991 		m_freem(m);
992 		return NULL;
993 	}
994 
995 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
996 	/*
997 	 * Look for queue of fragments of this datagram.
998 	 */
999 	lwkt_gettoken(&ipq_token);
1000 	head = &ipq[sum];
1001 	TAILQ_FOREACH(fp, head, ipq_list) {
1002 		if (ip->ip_id == fp->ipq_id &&
1003 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1004 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1005 		    ip->ip_p == fp->ipq_p)
1006 			goto found;
1007 	}
1008 
1009 	fp = NULL;
1010 
1011 	/*
1012 	 * Enforce upper bound on number of fragmented packets
1013 	 * for which we attempt reassembly;
1014 	 * If maxnipq is -1, accept all fragments without limitation.
1015 	 */
1016 	if (nipq > maxnipq && maxnipq > 0) {
1017 		/*
1018 		 * drop something from the tail of the current queue
1019 		 * before proceeding further
1020 		 */
1021 		struct ipq *q = TAILQ_LAST(head, ipqhead);
1022 		if (q == NULL) {
1023 			/*
1024 			 * The current queue is empty,
1025 			 * so drop from one of the others.
1026 			 */
1027 			for (i = 0; i < IPREASS_NHASH; i++) {
1028 				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
1029 				if (r) {
1030 					ipstat.ips_fragtimeout += r->ipq_nfrags;
1031 					ip_freef(&ipq[i], r);
1032 					break;
1033 				}
1034 			}
1035 		} else {
1036 			ipstat.ips_fragtimeout += q->ipq_nfrags;
1037 			ip_freef(head, q);
1038 		}
1039 	}
1040 found:
1041 	/*
1042 	 * Adjust ip_len to not reflect header,
1043 	 * convert offset of this to bytes.
1044 	 */
1045 	ip->ip_len -= hlen;
1046 	if (ip->ip_off & IP_MF) {
1047 		/*
1048 		 * Make sure that fragments have a data length
1049 		 * that's a non-zero multiple of 8 bytes.
1050 		 */
1051 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1052 			ipstat.ips_toosmall++; /* XXX */
1053 			m_freem(m);
1054 			goto done;
1055 		}
1056 		m->m_flags |= M_FRAG;
1057 	} else {
1058 		m->m_flags &= ~M_FRAG;
1059 	}
1060 	ip->ip_off <<= 3;
1061 
1062 	ipstat.ips_fragments++;
1063 	m->m_pkthdr.header = ip;
1064 
1065 	/*
1066 	 * If the hardware has not done csum over this fragment
1067 	 * then csum_data is not valid at all.
1068 	 */
1069 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1070 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1071 		m->m_pkthdr.csum_data = 0;
1072 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1073 	}
1074 
1075 	/*
1076 	 * Presence of header sizes in mbufs
1077 	 * would confuse code below.
1078 	 */
1079 	m->m_data += hlen;
1080 	m->m_len -= hlen;
1081 
1082 	/*
1083 	 * If first fragment to arrive, create a reassembly queue.
1084 	 */
1085 	if (fp == NULL) {
1086 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1087 			goto dropfrag;
1088 		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1089 		nipq++;
1090 		fp->ipq_nfrags = 1;
1091 		fp->ipq_ttl = IPFRAGTTL;
1092 		fp->ipq_p = ip->ip_p;
1093 		fp->ipq_id = ip->ip_id;
1094 		fp->ipq_src = ip->ip_src;
1095 		fp->ipq_dst = ip->ip_dst;
1096 		fp->ipq_frags = m;
1097 		m->m_nextpkt = NULL;
1098 		goto inserted;
1099 	} else {
1100 		fp->ipq_nfrags++;
1101 	}
1102 
1103 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1104 
1105 	/*
1106 	 * Find a segment which begins after this one does.
1107 	 */
1108 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1109 		if (GETIP(q)->ip_off > ip->ip_off)
1110 			break;
1111 	}
1112 
1113 	/*
1114 	 * If there is a preceding segment, it may provide some of
1115 	 * our data already.  If so, drop the data from the incoming
1116 	 * segment.  If it provides all of our data, drop us, otherwise
1117 	 * stick new segment in the proper place.
1118 	 *
1119 	 * If some of the data is dropped from the the preceding
1120 	 * segment, then it's checksum is invalidated.
1121 	 */
1122 	if (p) {
1123 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1124 		if (i > 0) {
1125 			if (i >= ip->ip_len)
1126 				goto dropfrag;
1127 			m_adj(m, i);
1128 			m->m_pkthdr.csum_flags = 0;
1129 			ip->ip_off += i;
1130 			ip->ip_len -= i;
1131 		}
1132 		m->m_nextpkt = p->m_nextpkt;
1133 		p->m_nextpkt = m;
1134 	} else {
1135 		m->m_nextpkt = fp->ipq_frags;
1136 		fp->ipq_frags = m;
1137 	}
1138 
1139 	/*
1140 	 * While we overlap succeeding segments trim them or,
1141 	 * if they are completely covered, dequeue them.
1142 	 */
1143 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1144 	     q = nq) {
1145 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1146 		if (i < GETIP(q)->ip_len) {
1147 			GETIP(q)->ip_len -= i;
1148 			GETIP(q)->ip_off += i;
1149 			m_adj(q, i);
1150 			q->m_pkthdr.csum_flags = 0;
1151 			break;
1152 		}
1153 		nq = q->m_nextpkt;
1154 		m->m_nextpkt = nq;
1155 		ipstat.ips_fragdropped++;
1156 		fp->ipq_nfrags--;
1157 		q->m_nextpkt = NULL;
1158 		m_freem(q);
1159 	}
1160 
1161 inserted:
1162 	/*
1163 	 * Check for complete reassembly and perform frag per packet
1164 	 * limiting.
1165 	 *
1166 	 * Frag limiting is performed here so that the nth frag has
1167 	 * a chance to complete the packet before we drop the packet.
1168 	 * As a result, n+1 frags are actually allowed per packet, but
1169 	 * only n will ever be stored. (n = maxfragsperpacket.)
1170 	 *
1171 	 */
1172 	next = 0;
1173 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1174 		if (GETIP(q)->ip_off != next) {
1175 			if (fp->ipq_nfrags > maxfragsperpacket) {
1176 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1177 				ip_freef(head, fp);
1178 			}
1179 			goto done;
1180 		}
1181 		next += GETIP(q)->ip_len;
1182 	}
1183 	/* Make sure the last packet didn't have the IP_MF flag */
1184 	if (p->m_flags & M_FRAG) {
1185 		if (fp->ipq_nfrags > maxfragsperpacket) {
1186 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1187 			ip_freef(head, fp);
1188 		}
1189 		goto done;
1190 	}
1191 
1192 	/*
1193 	 * Reassembly is complete.  Make sure the packet is a sane size.
1194 	 */
1195 	q = fp->ipq_frags;
1196 	ip = GETIP(q);
1197 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1198 		ipstat.ips_toolong++;
1199 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1200 		ip_freef(head, fp);
1201 		goto done;
1202 	}
1203 
1204 	/*
1205 	 * Concatenate fragments.
1206 	 */
1207 	m = q;
1208 	n = m->m_next;
1209 	m->m_next = NULL;
1210 	m_cat(m, n);
1211 	nq = q->m_nextpkt;
1212 	q->m_nextpkt = NULL;
1213 	for (q = nq; q != NULL; q = nq) {
1214 		nq = q->m_nextpkt;
1215 		q->m_nextpkt = NULL;
1216 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1217 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1218 		m_cat(m, q);
1219 	}
1220 
1221 	/*
1222 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1223 	 * be added back.  This assumes no more then 65535 packet fragments
1224 	 * were reassembled.  A second carry can also occur (but not a third).
1225 	 */
1226 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1227 				(m->m_pkthdr.csum_data >> 16);
1228 	if (m->m_pkthdr.csum_data > 0xFFFF)
1229 		m->m_pkthdr.csum_data -= 0xFFFF;
1230 
1231 	/*
1232 	 * Create header for new ip packet by
1233 	 * modifying header of first packet;
1234 	 * dequeue and discard fragment reassembly header.
1235 	 * Make header visible.
1236 	 */
1237 	ip->ip_len = next;
1238 	ip->ip_src = fp->ipq_src;
1239 	ip->ip_dst = fp->ipq_dst;
1240 	TAILQ_REMOVE(head, fp, ipq_list);
1241 	nipq--;
1242 	mpipe_free(&ipq_mpipe, fp);
1243 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1244 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1245 	/* some debugging cruft by sklower, below, will go away soon */
1246 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1247 		int plen = 0;
1248 
1249 		for (n = m; n; n = n->m_next)
1250 			plen += n->m_len;
1251 		m->m_pkthdr.len = plen;
1252 	}
1253 
1254 	/*
1255 	 * Reassembly complete, return the next protocol.
1256 	 *
1257 	 * Be sure to clear M_HASH to force the packet
1258 	 * to be re-characterized.
1259 	 *
1260 	 * Clear M_FRAG, we are no longer a fragment.
1261 	 */
1262 	m->m_flags &= ~(M_HASH | M_FRAG);
1263 
1264 	ipstat.ips_reassembled++;
1265 	lwkt_reltoken(&ipq_token);
1266 	return (m);
1267 
1268 dropfrag:
1269 	ipstat.ips_fragdropped++;
1270 	if (fp != NULL)
1271 		fp->ipq_nfrags--;
1272 	m_freem(m);
1273 done:
1274 	lwkt_reltoken(&ipq_token);
1275 	return (NULL);
1276 
1277 #undef GETIP
1278 }
1279 
1280 /*
1281  * Free a fragment reassembly header and all
1282  * associated datagrams.
1283  *
1284  * Called with ipq_token held.
1285  */
1286 static void
1287 ip_freef(struct ipqhead *fhp, struct ipq *fp)
1288 {
1289 	struct mbuf *q;
1290 
1291 	/*
1292 	 * Remove first to protect against blocking
1293 	 */
1294 	TAILQ_REMOVE(fhp, fp, ipq_list);
1295 
1296 	/*
1297 	 * Clean out at our leisure
1298 	 */
1299 	while (fp->ipq_frags) {
1300 		q = fp->ipq_frags;
1301 		fp->ipq_frags = q->m_nextpkt;
1302 		q->m_nextpkt = NULL;
1303 		m_freem(q);
1304 	}
1305 	mpipe_free(&ipq_mpipe, fp);
1306 	nipq--;
1307 }
1308 
1309 /*
1310  * IP timer processing;
1311  * if a timer expires on a reassembly
1312  * queue, discard it.
1313  */
1314 void
1315 ip_slowtimo(void)
1316 {
1317 	struct ipq *fp, *fp_temp;
1318 	struct ipqhead *head;
1319 	int i;
1320 
1321 	lwkt_gettoken(&ipq_token);
1322 	for (i = 0; i < IPREASS_NHASH; i++) {
1323 		head = &ipq[i];
1324 		TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1325 			if (--fp->ipq_ttl == 0) {
1326 				ipstat.ips_fragtimeout += fp->ipq_nfrags;
1327 				ip_freef(head, fp);
1328 			}
1329 		}
1330 	}
1331 	/*
1332 	 * If we are over the maximum number of fragments
1333 	 * (due to the limit being lowered), drain off
1334 	 * enough to get down to the new limit.
1335 	 */
1336 	if (maxnipq >= 0 && nipq > maxnipq) {
1337 		for (i = 0; i < IPREASS_NHASH; i++) {
1338 			head = &ipq[i];
1339 			while (nipq > maxnipq && !TAILQ_EMPTY(head)) {
1340 				ipstat.ips_fragdropped +=
1341 				    TAILQ_FIRST(head)->ipq_nfrags;
1342 				ip_freef(head, TAILQ_FIRST(head));
1343 			}
1344 		}
1345 	}
1346 	lwkt_reltoken(&ipq_token);
1347 	ipflow_slowtimo();
1348 }
1349 
1350 /*
1351  * Drain off all datagram fragments.
1352  */
1353 void
1354 ip_drain(void)
1355 {
1356 	struct ipqhead *head;
1357 	int i;
1358 
1359 	lwkt_gettoken(&ipq_token);
1360 	for (i = 0; i < IPREASS_NHASH; i++) {
1361 		head = &ipq[i];
1362 		while (!TAILQ_EMPTY(head)) {
1363 			ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1364 			ip_freef(head, TAILQ_FIRST(head));
1365 		}
1366 	}
1367 	lwkt_reltoken(&ipq_token);
1368 	in_rtqdrain();
1369 }
1370 
1371 /*
1372  * Do option processing on a datagram,
1373  * possibly discarding it if bad options are encountered,
1374  * or forwarding it if source-routed.
1375  * The pass argument is used when operating in the IPSTEALTH
1376  * mode to tell what options to process:
1377  * [LS]SRR (pass 0) or the others (pass 1).
1378  * The reason for as many as two passes is that when doing IPSTEALTH,
1379  * non-routing options should be processed only if the packet is for us.
1380  * Returns 1 if packet has been forwarded/freed,
1381  * 0 if the packet should be processed further.
1382  */
1383 static int
1384 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1385 {
1386 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1387 	struct ip *ip = mtod(m, struct ip *);
1388 	u_char *cp;
1389 	struct in_ifaddr *ia;
1390 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1391 	boolean_t forward = FALSE;
1392 	struct in_addr *sin, dst;
1393 	n_time ntime;
1394 
1395 	dst = ip->ip_dst;
1396 	cp = (u_char *)(ip + 1);
1397 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1398 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1399 		opt = cp[IPOPT_OPTVAL];
1400 		if (opt == IPOPT_EOL)
1401 			break;
1402 		if (opt == IPOPT_NOP)
1403 			optlen = 1;
1404 		else {
1405 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1406 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1407 				goto bad;
1408 			}
1409 			optlen = cp[IPOPT_OLEN];
1410 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1411 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1412 				goto bad;
1413 			}
1414 		}
1415 		switch (opt) {
1416 
1417 		default:
1418 			break;
1419 
1420 		/*
1421 		 * Source routing with record.
1422 		 * Find interface with current destination address.
1423 		 * If none on this machine then drop if strictly routed,
1424 		 * or do nothing if loosely routed.
1425 		 * Record interface address and bring up next address
1426 		 * component.  If strictly routed make sure next
1427 		 * address is on directly accessible net.
1428 		 */
1429 		case IPOPT_LSRR:
1430 		case IPOPT_SSRR:
1431 			if (ipstealth && pass > 0)
1432 				break;
1433 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1434 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1435 				goto bad;
1436 			}
1437 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1438 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1439 				goto bad;
1440 			}
1441 			ipaddr.sin_addr = ip->ip_dst;
1442 			ia = (struct in_ifaddr *)
1443 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1444 			if (ia == NULL) {
1445 				if (opt == IPOPT_SSRR) {
1446 					type = ICMP_UNREACH;
1447 					code = ICMP_UNREACH_SRCFAIL;
1448 					goto bad;
1449 				}
1450 				if (!ip_dosourceroute)
1451 					goto nosourcerouting;
1452 				/*
1453 				 * Loose routing, and not at next destination
1454 				 * yet; nothing to do except forward.
1455 				 */
1456 				break;
1457 			}
1458 			off--;			/* 0 origin */
1459 			if (off > optlen - (int)sizeof(struct in_addr)) {
1460 				/*
1461 				 * End of source route.  Should be for us.
1462 				 */
1463 				if (!ip_acceptsourceroute)
1464 					goto nosourcerouting;
1465 				save_rte(m, cp, ip->ip_src);
1466 				break;
1467 			}
1468 			if (ipstealth)
1469 				goto dropit;
1470 			if (!ip_dosourceroute) {
1471 				if (ipforwarding) {
1472 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1473 
1474 					/*
1475 					 * Acting as a router, so generate ICMP
1476 					 */
1477 nosourcerouting:
1478 					strcpy(buf, inet_ntoa(ip->ip_dst));
1479 					log(LOG_WARNING,
1480 					    "attempted source route from %s to %s\n",
1481 					    inet_ntoa(ip->ip_src), buf);
1482 					type = ICMP_UNREACH;
1483 					code = ICMP_UNREACH_SRCFAIL;
1484 					goto bad;
1485 				} else {
1486 					/*
1487 					 * Not acting as a router,
1488 					 * so silently drop.
1489 					 */
1490 dropit:
1491 					ipstat.ips_cantforward++;
1492 					m_freem(m);
1493 					return (1);
1494 				}
1495 			}
1496 
1497 			/*
1498 			 * locate outgoing interface
1499 			 */
1500 			memcpy(&ipaddr.sin_addr, cp + off,
1501 			    sizeof ipaddr.sin_addr);
1502 
1503 			if (opt == IPOPT_SSRR) {
1504 #define	INA	struct in_ifaddr *
1505 #define	SA	struct sockaddr *
1506 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1507 									== NULL)
1508 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1509 			} else {
1510 				ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1511 			}
1512 			if (ia == NULL) {
1513 				type = ICMP_UNREACH;
1514 				code = ICMP_UNREACH_SRCFAIL;
1515 				goto bad;
1516 			}
1517 			ip->ip_dst = ipaddr.sin_addr;
1518 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1519 			    sizeof(struct in_addr));
1520 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1521 			/*
1522 			 * Let ip_intr's mcast routing check handle mcast pkts
1523 			 */
1524 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1525 			break;
1526 
1527 		case IPOPT_RR:
1528 			if (ipstealth && pass == 0)
1529 				break;
1530 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1531 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1532 				goto bad;
1533 			}
1534 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1535 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1536 				goto bad;
1537 			}
1538 			/*
1539 			 * If no space remains, ignore.
1540 			 */
1541 			off--;			/* 0 origin */
1542 			if (off > optlen - (int)sizeof(struct in_addr))
1543 				break;
1544 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1545 			    sizeof ipaddr.sin_addr);
1546 			/*
1547 			 * locate outgoing interface; if we're the destination,
1548 			 * use the incoming interface (should be same).
1549 			 */
1550 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1551 			    (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1552 				type = ICMP_UNREACH;
1553 				code = ICMP_UNREACH_HOST;
1554 				goto bad;
1555 			}
1556 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1557 			    sizeof(struct in_addr));
1558 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1559 			break;
1560 
1561 		case IPOPT_TS:
1562 			if (ipstealth && pass == 0)
1563 				break;
1564 			code = cp - (u_char *)ip;
1565 			if (optlen < 4 || optlen > 40) {
1566 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1567 				goto bad;
1568 			}
1569 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1570 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1571 				goto bad;
1572 			}
1573 			if (off > optlen - (int)sizeof(int32_t)) {
1574 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1575 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1576 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1577 					goto bad;
1578 				}
1579 				break;
1580 			}
1581 			off--;				/* 0 origin */
1582 			sin = (struct in_addr *)(cp + off);
1583 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1584 
1585 			case IPOPT_TS_TSONLY:
1586 				break;
1587 
1588 			case IPOPT_TS_TSANDADDR:
1589 				if (off + sizeof(n_time) +
1590 				    sizeof(struct in_addr) > optlen) {
1591 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1592 					goto bad;
1593 				}
1594 				ipaddr.sin_addr = dst;
1595 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1596 							    m->m_pkthdr.rcvif);
1597 				if (ia == NULL)
1598 					continue;
1599 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1600 				    sizeof(struct in_addr));
1601 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1602 				off += sizeof(struct in_addr);
1603 				break;
1604 
1605 			case IPOPT_TS_PRESPEC:
1606 				if (off + sizeof(n_time) +
1607 				    sizeof(struct in_addr) > optlen) {
1608 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1609 					goto bad;
1610 				}
1611 				memcpy(&ipaddr.sin_addr, sin,
1612 				    sizeof(struct in_addr));
1613 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1614 					continue;
1615 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1616 				off += sizeof(struct in_addr);
1617 				break;
1618 
1619 			default:
1620 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1621 				goto bad;
1622 			}
1623 			ntime = iptime();
1624 			memcpy(cp + off, &ntime, sizeof(n_time));
1625 			cp[IPOPT_OFFSET] += sizeof(n_time);
1626 		}
1627 	}
1628 	if (forward && ipforwarding) {
1629 		ip_forward(m, TRUE, next_hop);
1630 		return (1);
1631 	}
1632 	return (0);
1633 bad:
1634 	icmp_error(m, type, code, 0, 0);
1635 	ipstat.ips_badoptions++;
1636 	return (1);
1637 }
1638 
1639 /*
1640  * Given address of next destination (final or next hop),
1641  * return internet address info of interface to be used to get there.
1642  */
1643 struct in_ifaddr *
1644 ip_rtaddr(struct in_addr dst, struct route *ro0)
1645 {
1646 	struct route sro, *ro;
1647 	struct sockaddr_in *sin;
1648 	struct in_ifaddr *ia;
1649 
1650 	if (ro0 != NULL) {
1651 		ro = ro0;
1652 	} else {
1653 		bzero(&sro, sizeof(sro));
1654 		ro = &sro;
1655 	}
1656 
1657 	sin = (struct sockaddr_in *)&ro->ro_dst;
1658 
1659 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1660 		if (ro->ro_rt != NULL) {
1661 			RTFREE(ro->ro_rt);
1662 			ro->ro_rt = NULL;
1663 		}
1664 		sin->sin_family = AF_INET;
1665 		sin->sin_len = sizeof *sin;
1666 		sin->sin_addr = dst;
1667 		rtalloc_ign(ro, RTF_PRCLONING);
1668 	}
1669 
1670 	if (ro->ro_rt == NULL)
1671 		return (NULL);
1672 
1673 	ia = ifatoia(ro->ro_rt->rt_ifa);
1674 
1675 	if (ro == &sro)
1676 		RTFREE(ro->ro_rt);
1677 	return ia;
1678 }
1679 
1680 /*
1681  * Save incoming source route for use in replies,
1682  * to be picked up later by ip_srcroute if the receiver is interested.
1683  */
1684 static void
1685 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1686 {
1687 	struct m_tag *mtag;
1688 	struct ip_srcrt_opt *opt;
1689 	unsigned olen;
1690 
1691 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), MB_DONTWAIT);
1692 	if (mtag == NULL)
1693 		return;
1694 	opt = m_tag_data(mtag);
1695 
1696 	olen = option[IPOPT_OLEN];
1697 #ifdef DIAGNOSTIC
1698 	if (ipprintfs)
1699 		kprintf("save_rte: olen %d\n", olen);
1700 #endif
1701 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1702 		m_tag_free(mtag);
1703 		return;
1704 	}
1705 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1706 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1707 	opt->ip_srcrt.dst = dst;
1708 	m_tag_prepend(m, mtag);
1709 }
1710 
1711 /*
1712  * Retrieve incoming source route for use in replies,
1713  * in the same form used by setsockopt.
1714  * The first hop is placed before the options, will be removed later.
1715  */
1716 struct mbuf *
1717 ip_srcroute(struct mbuf *m0)
1718 {
1719 	struct in_addr *p, *q;
1720 	struct mbuf *m;
1721 	struct m_tag *mtag;
1722 	struct ip_srcrt_opt *opt;
1723 
1724 	if (m0 == NULL)
1725 		return NULL;
1726 
1727 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1728 	if (mtag == NULL)
1729 		return NULL;
1730 	opt = m_tag_data(mtag);
1731 
1732 	if (opt->ip_nhops == 0)
1733 		return (NULL);
1734 	m = m_get(MB_DONTWAIT, MT_HEADER);
1735 	if (m == NULL)
1736 		return (NULL);
1737 
1738 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1739 
1740 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1741 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1742 		   sizeof(struct in_addr) + OPTSIZ;
1743 #ifdef DIAGNOSTIC
1744 	if (ipprintfs) {
1745 		kprintf("ip_srcroute: nhops %d mlen %d",
1746 			opt->ip_nhops, m->m_len);
1747 	}
1748 #endif
1749 
1750 	/*
1751 	 * First save first hop for return route
1752 	 */
1753 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1754 	*(mtod(m, struct in_addr *)) = *p--;
1755 #ifdef DIAGNOSTIC
1756 	if (ipprintfs)
1757 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1758 #endif
1759 
1760 	/*
1761 	 * Copy option fields and padding (nop) to mbuf.
1762 	 */
1763 	opt->ip_srcrt.nop = IPOPT_NOP;
1764 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1765 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1766 	    OPTSIZ);
1767 	q = (struct in_addr *)(mtod(m, caddr_t) +
1768 	    sizeof(struct in_addr) + OPTSIZ);
1769 #undef OPTSIZ
1770 	/*
1771 	 * Record return path as an IP source route,
1772 	 * reversing the path (pointers are now aligned).
1773 	 */
1774 	while (p >= opt->ip_srcrt.route) {
1775 #ifdef DIAGNOSTIC
1776 		if (ipprintfs)
1777 			kprintf(" %x", ntohl(q->s_addr));
1778 #endif
1779 		*q++ = *p--;
1780 	}
1781 	/*
1782 	 * Last hop goes to final destination.
1783 	 */
1784 	*q = opt->ip_srcrt.dst;
1785 	m_tag_delete(m0, mtag);
1786 #ifdef DIAGNOSTIC
1787 	if (ipprintfs)
1788 		kprintf(" %x\n", ntohl(q->s_addr));
1789 #endif
1790 	return (m);
1791 }
1792 
1793 /*
1794  * Strip out IP options.
1795  */
1796 void
1797 ip_stripoptions(struct mbuf *m)
1798 {
1799 	int datalen;
1800 	struct ip *ip = mtod(m, struct ip *);
1801 	caddr_t opts;
1802 	int optlen;
1803 
1804 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1805 	opts = (caddr_t)(ip + 1);
1806 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1807 	bcopy(opts + optlen, opts, datalen);
1808 	m->m_len -= optlen;
1809 	if (m->m_flags & M_PKTHDR)
1810 		m->m_pkthdr.len -= optlen;
1811 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1812 }
1813 
1814 u_char inetctlerrmap[PRC_NCMDS] = {
1815 	0,		0,		0,		0,
1816 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1817 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1818 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1819 	0,		0,		0,		0,
1820 	ENOPROTOOPT,	ECONNREFUSED
1821 };
1822 
1823 /*
1824  * Forward a packet.  If some error occurs return the sender
1825  * an icmp packet.  Note we can't always generate a meaningful
1826  * icmp message because icmp doesn't have a large enough repertoire
1827  * of codes and types.
1828  *
1829  * If not forwarding, just drop the packet.  This could be confusing
1830  * if ipforwarding was zero but some routing protocol was advancing
1831  * us as a gateway to somewhere.  However, we must let the routing
1832  * protocol deal with that.
1833  *
1834  * The using_srcrt parameter indicates whether the packet is being forwarded
1835  * via a source route.
1836  */
1837 void
1838 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1839 {
1840 	struct ip *ip = mtod(m, struct ip *);
1841 	struct rtentry *rt;
1842 	struct route fwd_ro;
1843 	int error, type = 0, code = 0, destmtu = 0;
1844 	struct mbuf *mcopy, *mtemp = NULL;
1845 	n_long dest;
1846 	struct in_addr pkt_dst;
1847 
1848 	dest = INADDR_ANY;
1849 	/*
1850 	 * Cache the destination address of the packet; this may be
1851 	 * changed by use of 'ipfw fwd'.
1852 	 */
1853 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1854 
1855 #ifdef DIAGNOSTIC
1856 	if (ipprintfs)
1857 		kprintf("forward: src %x dst %x ttl %x\n",
1858 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1859 #endif
1860 
1861 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1862 		ipstat.ips_cantforward++;
1863 		m_freem(m);
1864 		return;
1865 	}
1866 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1867 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1868 		return;
1869 	}
1870 
1871 	bzero(&fwd_ro, sizeof(fwd_ro));
1872 	ip_rtaddr(pkt_dst, &fwd_ro);
1873 	if (fwd_ro.ro_rt == NULL) {
1874 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1875 		return;
1876 	}
1877 	rt = fwd_ro.ro_rt;
1878 
1879 	if (curthread->td_type == TD_TYPE_NETISR) {
1880 		/*
1881 		 * Save the IP header and at most 8 bytes of the payload,
1882 		 * in case we need to generate an ICMP message to the src.
1883 		 */
1884 		mtemp = ipforward_mtemp[mycpuid];
1885 		KASSERT((mtemp->m_flags & M_EXT) == 0 &&
1886 		    mtemp->m_data == mtemp->m_pktdat &&
1887 		    m_tag_first(mtemp) == NULL,
1888 		    ("ip_forward invalid mtemp1"));
1889 
1890 		if (!m_dup_pkthdr(mtemp, m, MB_DONTWAIT)) {
1891 			/*
1892 			 * It's probably ok if the pkthdr dup fails (because
1893 			 * the deep copy of the tag chain failed), but for now
1894 			 * be conservative and just discard the copy since
1895 			 * code below may some day want the tags.
1896 			 */
1897 			mtemp = NULL;
1898 		} else {
1899 			mtemp->m_type = m->m_type;
1900 			mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1901 			    (int)ip->ip_len);
1902 			mtemp->m_pkthdr.len = mtemp->m_len;
1903 			m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
1904 		}
1905 	}
1906 
1907 	if (!ipstealth)
1908 		ip->ip_ttl -= IPTTLDEC;
1909 
1910 	/*
1911 	 * If forwarding packet using same interface that it came in on,
1912 	 * perhaps should send a redirect to sender to shortcut a hop.
1913 	 * Only send redirect if source is sending directly to us,
1914 	 * and if packet was not source routed (or has any options).
1915 	 * Also, don't send redirect if forwarding using a default route
1916 	 * or a route modified by a redirect.
1917 	 */
1918 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1919 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1920 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1921 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1922 		u_long src = ntohl(ip->ip_src.s_addr);
1923 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1924 
1925 		if (rt_ifa != NULL &&
1926 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1927 			if (rt->rt_flags & RTF_GATEWAY)
1928 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1929 			else
1930 				dest = pkt_dst.s_addr;
1931 			/*
1932 			 * Router requirements says to only send
1933 			 * host redirects.
1934 			 */
1935 			type = ICMP_REDIRECT;
1936 			code = ICMP_REDIRECT_HOST;
1937 #ifdef DIAGNOSTIC
1938 			if (ipprintfs)
1939 				kprintf("redirect (%d) to %x\n", code, dest);
1940 #endif
1941 		}
1942 	}
1943 
1944 	error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
1945 	if (error == 0) {
1946 		ipstat.ips_forward++;
1947 		if (type == 0) {
1948 			if (mtemp)
1949 				ipflow_create(&fwd_ro, mtemp);
1950 			goto done;
1951 		} else {
1952 			ipstat.ips_redirectsent++;
1953 		}
1954 	} else {
1955 		ipstat.ips_cantforward++;
1956 	}
1957 
1958 	if (mtemp == NULL)
1959 		goto done;
1960 
1961 	/*
1962 	 * Errors that do not require generating ICMP message
1963 	 */
1964 	switch (error) {
1965 	case ENOBUFS:
1966 		/*
1967 		 * A router should not generate ICMP_SOURCEQUENCH as
1968 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1969 		 * Source quench could be a big problem under DoS attacks,
1970 		 * or if the underlying interface is rate-limited.
1971 		 * Those who need source quench packets may re-enable them
1972 		 * via the net.inet.ip.sendsourcequench sysctl.
1973 		 */
1974 		if (!ip_sendsourcequench)
1975 			goto done;
1976 		break;
1977 
1978 	case EACCES:			/* ipfw denied packet */
1979 		goto done;
1980 	}
1981 
1982 	KASSERT((mtemp->m_flags & M_EXT) == 0 &&
1983 	    mtemp->m_data == mtemp->m_pktdat,
1984 	    ("ip_forward invalid mtemp2"));
1985 	mcopy = m_copym(mtemp, 0, mtemp->m_len, MB_DONTWAIT);
1986 	if (mcopy == NULL)
1987 		goto done;
1988 
1989 	/*
1990 	 * Send ICMP message.
1991 	 */
1992 	switch (error) {
1993 	case 0:				/* forwarded, but need redirect */
1994 		/* type, code set above */
1995 		break;
1996 
1997 	case ENETUNREACH:		/* shouldn't happen, checked above */
1998 	case EHOSTUNREACH:
1999 	case ENETDOWN:
2000 	case EHOSTDOWN:
2001 	default:
2002 		type = ICMP_UNREACH;
2003 		code = ICMP_UNREACH_HOST;
2004 		break;
2005 
2006 	case EMSGSIZE:
2007 		type = ICMP_UNREACH;
2008 		code = ICMP_UNREACH_NEEDFRAG;
2009 #ifdef IPSEC
2010 		/*
2011 		 * If the packet is routed over IPsec tunnel, tell the
2012 		 * originator the tunnel MTU.
2013 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2014 		 * XXX quickhack!!!
2015 		 */
2016 		if (fwd_ro.ro_rt != NULL) {
2017 			struct secpolicy *sp = NULL;
2018 			int ipsecerror;
2019 			int ipsechdr;
2020 			struct route *ro;
2021 
2022 			sp = ipsec4_getpolicybyaddr(mcopy,
2023 						    IPSEC_DIR_OUTBOUND,
2024 						    IP_FORWARDING,
2025 						    &ipsecerror);
2026 
2027 			if (sp == NULL)
2028 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2029 			else {
2030 				/* count IPsec header size */
2031 				ipsechdr = ipsec4_hdrsiz(mcopy,
2032 							 IPSEC_DIR_OUTBOUND,
2033 							 NULL);
2034 
2035 				/*
2036 				 * find the correct route for outer IPv4
2037 				 * header, compute tunnel MTU.
2038 				 *
2039 				 */
2040 				if (sp->req != NULL && sp->req->sav != NULL &&
2041 				    sp->req->sav->sah != NULL) {
2042 					ro = &sp->req->sav->sah->sa_route;
2043 					if (ro->ro_rt != NULL &&
2044 					    ro->ro_rt->rt_ifp != NULL) {
2045 						destmtu =
2046 						    ro->ro_rt->rt_ifp->if_mtu;
2047 						destmtu -= ipsechdr;
2048 					}
2049 				}
2050 
2051 				key_freesp(sp);
2052 			}
2053 		}
2054 #elif FAST_IPSEC
2055 		/*
2056 		 * If the packet is routed over IPsec tunnel, tell the
2057 		 * originator the tunnel MTU.
2058 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2059 		 * XXX quickhack!!!
2060 		 */
2061 		if (fwd_ro.ro_rt != NULL) {
2062 			struct secpolicy *sp = NULL;
2063 			int ipsecerror;
2064 			int ipsechdr;
2065 			struct route *ro;
2066 
2067 			sp = ipsec_getpolicybyaddr(mcopy,
2068 						   IPSEC_DIR_OUTBOUND,
2069 						   IP_FORWARDING,
2070 						   &ipsecerror);
2071 
2072 			if (sp == NULL)
2073 				destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2074 			else {
2075 				/* count IPsec header size */
2076 				ipsechdr = ipsec4_hdrsiz(mcopy,
2077 							 IPSEC_DIR_OUTBOUND,
2078 							 NULL);
2079 
2080 				/*
2081 				 * find the correct route for outer IPv4
2082 				 * header, compute tunnel MTU.
2083 				 */
2084 
2085 				if (sp->req != NULL &&
2086 				    sp->req->sav != NULL &&
2087 				    sp->req->sav->sah != NULL) {
2088 					ro = &sp->req->sav->sah->sa_route;
2089 					if (ro->ro_rt != NULL &&
2090 					    ro->ro_rt->rt_ifp != NULL) {
2091 						destmtu =
2092 						    ro->ro_rt->rt_ifp->if_mtu;
2093 						destmtu -= ipsechdr;
2094 					}
2095 				}
2096 
2097 				KEY_FREESP(&sp);
2098 			}
2099 		}
2100 #else /* !IPSEC && !FAST_IPSEC */
2101 		if (fwd_ro.ro_rt != NULL)
2102 			destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2103 #endif /*IPSEC*/
2104 		ipstat.ips_cantfrag++;
2105 		break;
2106 
2107 	case ENOBUFS:
2108 		type = ICMP_SOURCEQUENCH;
2109 		code = 0;
2110 		break;
2111 
2112 	case EACCES:			/* ipfw denied packet */
2113 		panic("ip_forward EACCES should not reach");
2114 	}
2115 	icmp_error(mcopy, type, code, dest, destmtu);
2116 done:
2117 	if (mtemp != NULL)
2118 		m_tag_delete_chain(mtemp);
2119 	if (fwd_ro.ro_rt != NULL)
2120 		RTFREE(fwd_ro.ro_rt);
2121 }
2122 
2123 void
2124 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2125 	       struct mbuf *m)
2126 {
2127 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2128 		struct timeval tv;
2129 
2130 		microtime(&tv);
2131 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2132 		    SCM_TIMESTAMP, SOL_SOCKET);
2133 		if (*mp)
2134 			mp = &(*mp)->m_next;
2135 	}
2136 	if (inp->inp_flags & INP_RECVDSTADDR) {
2137 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2138 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2139 		if (*mp)
2140 			mp = &(*mp)->m_next;
2141 	}
2142 	if (inp->inp_flags & INP_RECVTTL) {
2143 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2144 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2145 		if (*mp)
2146 			mp = &(*mp)->m_next;
2147 	}
2148 #ifdef notyet
2149 	/* XXX
2150 	 * Moving these out of udp_input() made them even more broken
2151 	 * than they already were.
2152 	 */
2153 	/* options were tossed already */
2154 	if (inp->inp_flags & INP_RECVOPTS) {
2155 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2156 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2157 		if (*mp)
2158 			mp = &(*mp)->m_next;
2159 	}
2160 	/* ip_srcroute doesn't do what we want here, need to fix */
2161 	if (inp->inp_flags & INP_RECVRETOPTS) {
2162 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2163 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2164 		if (*mp)
2165 			mp = &(*mp)->m_next;
2166 	}
2167 #endif
2168 	if (inp->inp_flags & INP_RECVIF) {
2169 		struct ifnet *ifp;
2170 		struct sdlbuf {
2171 			struct sockaddr_dl sdl;
2172 			u_char	pad[32];
2173 		} sdlbuf;
2174 		struct sockaddr_dl *sdp;
2175 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2176 
2177 		if (((ifp = m->m_pkthdr.rcvif)) &&
2178 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2179 			sdp = IF_LLSOCKADDR(ifp);
2180 			/*
2181 			 * Change our mind and don't try copy.
2182 			 */
2183 			if ((sdp->sdl_family != AF_LINK) ||
2184 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2185 				goto makedummy;
2186 			}
2187 			bcopy(sdp, sdl2, sdp->sdl_len);
2188 		} else {
2189 makedummy:
2190 			sdl2->sdl_len =
2191 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2192 			sdl2->sdl_family = AF_LINK;
2193 			sdl2->sdl_index = 0;
2194 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2195 		}
2196 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2197 			IP_RECVIF, IPPROTO_IP);
2198 		if (*mp)
2199 			mp = &(*mp)->m_next;
2200 	}
2201 }
2202 
2203 /*
2204  * XXX these routines are called from the upper part of the kernel.
2205  *
2206  * They could also be moved to ip_mroute.c, since all the RSVP
2207  *  handling is done there already.
2208  */
2209 int
2210 ip_rsvp_init(struct socket *so)
2211 {
2212 	if (so->so_type != SOCK_RAW ||
2213 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2214 		return EOPNOTSUPP;
2215 
2216 	if (ip_rsvpd != NULL)
2217 		return EADDRINUSE;
2218 
2219 	ip_rsvpd = so;
2220 	/*
2221 	 * This may seem silly, but we need to be sure we don't over-increment
2222 	 * the RSVP counter, in case something slips up.
2223 	 */
2224 	if (!ip_rsvp_on) {
2225 		ip_rsvp_on = 1;
2226 		rsvp_on++;
2227 	}
2228 
2229 	return 0;
2230 }
2231 
2232 int
2233 ip_rsvp_done(void)
2234 {
2235 	ip_rsvpd = NULL;
2236 	/*
2237 	 * This may seem silly, but we need to be sure we don't over-decrement
2238 	 * the RSVP counter, in case something slips up.
2239 	 */
2240 	if (ip_rsvp_on) {
2241 		ip_rsvp_on = 0;
2242 		rsvp_on--;
2243 	}
2244 	return 0;
2245 }
2246 
2247 int
2248 rsvp_input(struct mbuf **mp, int *offp, int proto)
2249 {
2250 	struct mbuf *m = *mp;
2251 
2252 	*mp = NULL;
2253 
2254 	if (rsvp_input_p) { /* call the real one if loaded */
2255 		*mp = m;
2256 		rsvp_input_p(mp, offp, proto);
2257 		return(IPPROTO_DONE);
2258 	}
2259 
2260 	/* Can still get packets with rsvp_on = 0 if there is a local member
2261 	 * of the group to which the RSVP packet is addressed.  But in this
2262 	 * case we want to throw the packet away.
2263 	 */
2264 
2265 	if (!rsvp_on) {
2266 		m_freem(m);
2267 		return(IPPROTO_DONE);
2268 	}
2269 
2270 	if (ip_rsvpd != NULL) {
2271 		*mp = m;
2272 		rip_input(mp, offp, proto);
2273 		return(IPPROTO_DONE);
2274 	}
2275 	/* Drop the packet */
2276 	m_freem(m);
2277 	return(IPPROTO_DONE);
2278 }
2279