xref: /dflybsd-src/sys/netinet/ip_input.c (revision 2eb0d0694bd74032ad456be1c83b669b6b692b18)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
67  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68  * $DragonFly: src/sys/netinet/ip_input.c,v 1.115 2008/10/28 07:09:26 sephe Exp $
69  */
70 
71 #define	_IP_VHL
72 
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
96 #include <sys/lock.h>
97 
98 #include <machine/stdarg.h>
99 
100 #include <net/if.h>
101 #include <net/if_types.h>
102 #include <net/if_var.h>
103 #include <net/if_dl.h>
104 #include <net/pfil.h>
105 #include <net/route.h>
106 #include <net/netisr.h>
107 
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/in_pcb.h>
113 #include <netinet/ip_var.h>
114 #include <netinet/ip_icmp.h>
115 #include <netinet/ip_divert.h>
116 #include <netinet/ip_flow.h>
117 
118 #include <sys/thread2.h>
119 #include <sys/msgport2.h>
120 #include <net/netmsg2.h>
121 
122 #include <sys/socketvar.h>
123 
124 #include <net/ipfw/ip_fw.h>
125 #include <net/dummynet/ip_dummynet.h>
126 
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #include <netproto/key/key.h>
130 #endif
131 
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #include <netproto/ipsec/key.h>
135 #endif
136 
137 int rsvp_on = 0;
138 static int ip_rsvp_on;
139 struct socket *ip_rsvpd;
140 
141 int ip_mpsafe = 1;
142 TUNABLE_INT("net.inet.ip.mpsafe", &ip_mpsafe);
143 
144 int ipforwarding = 0;
145 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
146     &ipforwarding, 0, "Enable IP forwarding between interfaces");
147 
148 static int ipsendredirects = 1; /* XXX */
149 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
150     &ipsendredirects, 0, "Enable sending IP redirects");
151 
152 int ip_defttl = IPDEFTTL;
153 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
154     &ip_defttl, 0, "Maximum TTL on IP packets");
155 
156 static int ip_dosourceroute = 0;
157 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
158     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
159 
160 static int ip_acceptsourceroute = 0;
161 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
162     CTLFLAG_RW, &ip_acceptsourceroute, 0,
163     "Enable accepting source routed IP packets");
164 
165 static int ip_keepfaith = 0;
166 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
167     &ip_keepfaith, 0,
168     "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
169 
170 static int nipq = 0;	/* total # of reass queues */
171 static int maxnipq;
172 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
173     &maxnipq, 0,
174     "Maximum number of IPv4 fragment reassembly queue entries");
175 
176 static int maxfragsperpacket;
177 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
178     &maxfragsperpacket, 0,
179     "Maximum number of IPv4 fragments allowed per packet");
180 
181 static int ip_sendsourcequench = 0;
182 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
183     &ip_sendsourcequench, 0,
184     "Enable the transmission of source quench packets");
185 
186 int ip_do_randomid = 1;
187 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
188     &ip_do_randomid, 0,
189     "Assign random ip_id values");
190 /*
191  * XXX - Setting ip_checkinterface mostly implements the receive side of
192  * the Strong ES model described in RFC 1122, but since the routing table
193  * and transmit implementation do not implement the Strong ES model,
194  * setting this to 1 results in an odd hybrid.
195  *
196  * XXX - ip_checkinterface currently must be disabled if you use ipnat
197  * to translate the destination address to another local interface.
198  *
199  * XXX - ip_checkinterface must be disabled if you add IP aliases
200  * to the loopback interface instead of the interface where the
201  * packets for those addresses are received.
202  */
203 static int ip_checkinterface = 0;
204 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
205     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
206 
207 #ifdef DIAGNOSTIC
208 static int ipprintfs = 0;
209 #endif
210 
211 extern	int udp_mpsafe_proto;
212 extern	int tcp_mpsafe_proto;
213 
214 extern	struct domain inetdomain;
215 extern	struct protosw inetsw[];
216 u_char	ip_protox[IPPROTO_MAX];
217 struct	in_ifaddrhead in_ifaddrheads[MAXCPU];	/* first inet address */
218 struct	in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
219 						/* inet addr hash table */
220 u_long	in_ifaddrhmask;				/* mask for hash table */
221 
222 struct ip_stats ipstats_percpu[MAXCPU];
223 #ifdef SMP
224 static int
225 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
226 {
227 	int cpu, error = 0;
228 
229 	for (cpu = 0; cpu < ncpus; ++cpu) {
230 		if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
231 					sizeof(struct ip_stats))))
232 			break;
233 		if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
234 				       sizeof(struct ip_stats))))
235 			break;
236 	}
237 
238 	return (error);
239 }
240 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
241     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
242 #else
243 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
244     &ipstat, ip_stats, "IP statistics");
245 #endif
246 
247 /* Packet reassembly stuff */
248 #define	IPREASS_NHASH_LOG2	6
249 #define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
250 #define	IPREASS_HMASK		(IPREASS_NHASH - 1)
251 #define	IPREASS_HASH(x,y)						\
252     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
253 
254 static struct ipq ipq[IPREASS_NHASH];
255 
256 #ifdef IPCTL_DEFMTU
257 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
258     &ip_mtu, 0, "Default MTU");
259 #endif
260 
261 #ifdef IPSTEALTH
262 static int ipstealth = 0;
263 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
264 #else
265 static const int ipstealth = 0;
266 #endif
267 
268 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
269 
270 struct pfil_head inet_pfil_hook;
271 
272 /*
273  * struct ip_srcrt_opt is used to store packet state while it travels
274  * through the stack.
275  *
276  * XXX Note that the code even makes assumptions on the size and
277  * alignment of fields inside struct ip_srcrt so e.g. adding some
278  * fields will break the code.  This needs to be fixed.
279  *
280  * We need to save the IP options in case a protocol wants to respond
281  * to an incoming packet over the same route if the packet got here
282  * using IP source routing.  This allows connection establishment and
283  * maintenance when the remote end is on a network that is not known
284  * to us.
285  */
286 struct ip_srcrt {
287 	struct	in_addr dst;			/* final destination */
288 	char	nop;				/* one NOP to align */
289 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
290 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
291 };
292 
293 struct ip_srcrt_opt {
294 	int		ip_nhops;
295 	struct ip_srcrt	ip_srcrt;
296 };
297 
298 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
299 static struct malloc_pipe ipq_mpipe;
300 
301 static void		save_rte(struct mbuf *, u_char *, struct in_addr);
302 static int		ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
303 static void		ip_freef(struct ipq *);
304 static void		ip_input_handler(struct netmsg *);
305 
306 /*
307  * IP initialization: fill in IP protocol switch table.
308  * All protocols not implemented in kernel go to raw IP protocol handler.
309  */
310 void
311 ip_init(void)
312 {
313 	struct protosw *pr;
314 	uint32_t flags;
315 	int i;
316 #ifdef SMP
317 	int cpu;
318 #endif
319 
320 	/*
321 	 * Make sure we can handle a reasonable number of fragments but
322 	 * cap it at 4000 (XXX).
323 	 */
324 	mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
325 		    IFQ_MAXLEN, 4000, 0, NULL);
326 	for (i = 0; i < ncpus; ++i) {
327 		TAILQ_INIT(&in_ifaddrheads[i]);
328 		in_ifaddrhashtbls[i] =
329 			hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
330 	}
331 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
332 	if (pr == NULL)
333 		panic("ip_init");
334 	for (i = 0; i < IPPROTO_MAX; i++)
335 		ip_protox[i] = pr - inetsw;
336 	for (pr = inetdomain.dom_protosw;
337 	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
338 		if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
339 			if (pr->pr_protocol != IPPROTO_RAW)
340 				ip_protox[pr->pr_protocol] = pr - inetsw;
341 
342 			/* XXX */
343 			switch (pr->pr_protocol) {
344 			case IPPROTO_TCP:
345 				if (tcp_mpsafe_proto)
346 					pr->pr_flags |= PR_MPSAFE;
347 				break;
348 
349 			case IPPROTO_UDP:
350 				if (udp_mpsafe_proto)
351 					pr->pr_flags |= PR_MPSAFE;
352 				break;
353 			}
354 		}
355 	}
356 
357 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
358 	inet_pfil_hook.ph_af = AF_INET;
359 	if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
360 		kprintf("%s: WARNING: unable to register pfil hook, "
361 			"error %d\n", __func__, i);
362 	}
363 
364 	for (i = 0; i < IPREASS_NHASH; i++)
365 		ipq[i].next = ipq[i].prev = &ipq[i];
366 
367 	maxnipq = nmbclusters / 32;
368 	maxfragsperpacket = 16;
369 
370 	ip_id = time_second & 0xffff;
371 
372 	/*
373 	 * Initialize IP statistics counters for each CPU.
374 	 *
375 	 */
376 #ifdef SMP
377 	for (cpu = 0; cpu < ncpus; ++cpu) {
378 		bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
379 	}
380 #else
381 	bzero(&ipstat, sizeof(struct ip_stats));
382 #endif
383 
384 #if defined(IPSEC) || defined(FAST_IPSEC)
385 	/* XXX IPSEC is not MPSAFE yet */
386 	flags = NETISR_FLAG_NOTMPSAFE;
387 #else
388 	if (ip_mpsafe) {
389 		kprintf("ip: MPSAFE\n");
390 		flags = NETISR_FLAG_MPSAFE;
391 	} else {
392 		flags = NETISR_FLAG_NOTMPSAFE;
393 	}
394 #endif
395 	netisr_register(NETISR_IP, ip_mport_in, pktinfo_portfn_notsupp,
396 			ip_input_handler, flags);
397 }
398 
399 /*
400  * XXX watch out this one. It is perhaps used as a cache for
401  * the most recently used route ? it is cleared in in_addroute()
402  * when a new route is successfully created.
403  */
404 struct route ipforward_rt[MAXCPU];
405 
406 /* Do transport protocol processing. */
407 static void
408 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
409 {
410 	const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
411 
412 	/*
413 	 * Switch out to protocol's input routine.
414 	 */
415 	PR_GET_MPLOCK(pr);
416 	pr->pr_input(m, hlen, ip->ip_p);
417 	PR_REL_MPLOCK(pr);
418 }
419 
420 static void
421 transport_processing_handler(netmsg_t netmsg)
422 {
423 	struct netmsg_packet *pmsg = (struct netmsg_packet *)netmsg;
424 	struct ip *ip;
425 	int hlen;
426 
427 	ip = mtod(pmsg->nm_packet, struct ip *);
428 	hlen = pmsg->nm_netmsg.nm_lmsg.u.ms_result;
429 
430 	transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
431 	/* netmsg was embedded in the mbuf, do not reply! */
432 }
433 
434 static void
435 ip_input_handler(struct netmsg *msg0)
436 {
437 	struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
438 
439 	ip_input(m);
440 	/* msg0 was embedded in the mbuf, do not reply! */
441 }
442 
443 /*
444  * IP input routine.  Checksum and byte swap header.  If fragmented
445  * try to reassemble.  Process options.  Pass to next level.
446  */
447 void
448 ip_input(struct mbuf *m)
449 {
450 	struct ip *ip;
451 	struct in_ifaddr *ia = NULL;
452 	struct in_ifaddr_container *iac;
453 	int hlen, checkif;
454 	u_short sum;
455 	struct in_addr pkt_dst;
456 	boolean_t using_srcrt = FALSE;		/* forward (by PFIL_HOOKS) */
457 	boolean_t needredispatch = FALSE;
458 	struct in_addr odst;			/* original dst address(NAT) */
459 	struct m_tag *mtag;
460 	struct sockaddr_in *next_hop = NULL;
461 #ifdef FAST_IPSEC
462 	struct tdb_ident *tdbi;
463 	struct secpolicy *sp;
464 	int error;
465 #endif
466 
467 	M_ASSERTPKTHDR(m);
468 
469 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
470 		/* Next hop */
471 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
472 		KKASSERT(mtag != NULL);
473 		next_hop = m_tag_data(mtag);
474 	}
475 
476 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
477 		/* dummynet already filtered us */
478 		ip = mtod(m, struct ip *);
479 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
480 		goto iphack;
481 	}
482 
483 	ipstat.ips_total++;
484 
485 	/* length checks already done in ip_mport() */
486 	KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
487 	ip = mtod(m, struct ip *);
488 
489 	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
490 		ipstat.ips_badvers++;
491 		goto bad;
492 	}
493 
494 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
495 	/* length checks already done in ip_mport() */
496 	KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
497 	KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
498 
499 	/* 127/8 must not appear on wire - RFC1122 */
500 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
501 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
502 		if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
503 			ipstat.ips_badaddr++;
504 			goto bad;
505 		}
506 	}
507 
508 	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
509 		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
510 	} else {
511 		if (hlen == sizeof(struct ip))
512 			sum = in_cksum_hdr(ip);
513 		else
514 			sum = in_cksum(m, hlen);
515 	}
516 	if (sum != 0) {
517 		ipstat.ips_badsum++;
518 		goto bad;
519 	}
520 
521 #ifdef ALTQ
522 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
523 		/* packet is dropped by traffic conditioner */
524 		return;
525 	}
526 #endif
527 	/*
528 	 * Convert fields to host representation.
529 	 */
530 	ip->ip_len = ntohs(ip->ip_len);
531 	ip->ip_off = ntohs(ip->ip_off);
532 
533 	/* length checks already done in ip_mport() */
534 	KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
535 	KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
536 
537 	/*
538 	 * Trim mbufs if longer than the IP header would have us expect.
539 	 */
540 	if (m->m_pkthdr.len > ip->ip_len) {
541 		if (m->m_len == m->m_pkthdr.len) {
542 			m->m_len = ip->ip_len;
543 			m->m_pkthdr.len = ip->ip_len;
544 		} else {
545 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
546 		}
547 	}
548 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
549 	/*
550 	 * Bypass packet filtering for packets from a tunnel (gif).
551 	 */
552 	if (ipsec_gethist(m, NULL))
553 		goto pass;
554 #endif
555 
556 	/*
557 	 * IpHack's section.
558 	 * Right now when no processing on packet has done
559 	 * and it is still fresh out of network we do our black
560 	 * deals with it.
561 	 * - Firewall: deny/allow/divert
562 	 * - Xlate: translate packet's addr/port (NAT).
563 	 * - Pipe: pass pkt through dummynet.
564 	 * - Wrap: fake packet's addr/port <unimpl.>
565 	 * - Encapsulate: put it in another IP and send out. <unimp.>
566 	 */
567 
568 iphack:
569 	/*
570 	 * If we've been forwarded from the output side, then
571 	 * skip the firewall a second time
572 	 */
573 	if (next_hop != NULL)
574 		goto ours;
575 
576 	/* No pfil hooks */
577 	if (!pfil_has_hooks(&inet_pfil_hook)) {
578 		if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
579 			/*
580 			 * Strip dummynet tags from stranded packets
581 			 */
582 			mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
583 			KKASSERT(mtag != NULL);
584 			m_tag_delete(m, mtag);
585 			m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
586 		}
587 		goto pass;
588 	}
589 
590 	/*
591 	 * Run through list of hooks for input packets.
592 	 *
593 	 * NB: Beware of the destination address changing (e.g.
594 	 *     by NAT rewriting). When this happens, tell
595 	 *     ip_forward to do the right thing.
596 	 */
597 	odst = ip->ip_dst;
598 	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
599 		return;
600 	if (m == NULL)	/* consumed by filter */
601 		return;
602 	ip = mtod(m, struct ip *);
603 	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
604 	using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
605 
606 	if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
607 		mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
608 		KKASSERT(mtag != NULL);
609 		next_hop = m_tag_data(mtag);
610 	}
611 	if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
612 		ip_dn_queue(m);
613 		return;
614 	}
615 	if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
616 		needredispatch = TRUE;
617 		m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
618 	}
619 pass:
620 	/*
621 	 * Process options and, if not destined for us,
622 	 * ship it on.  ip_dooptions returns 1 when an
623 	 * error was detected (causing an icmp message
624 	 * to be sent and the original packet to be freed).
625 	 */
626 	if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
627 		return;
628 
629 	/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
630 	 * matter if it is destined to another node, or whether it is
631 	 * a multicast one, RSVP wants it! and prevents it from being forwarded
632 	 * anywhere else. Also checks if the rsvp daemon is running before
633 	 * grabbing the packet.
634 	 */
635 	if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
636 		goto ours;
637 
638 	/*
639 	 * Check our list of addresses, to see if the packet is for us.
640 	 * If we don't have any addresses, assume any unicast packet
641 	 * we receive might be for us (and let the upper layers deal
642 	 * with it).
643 	 */
644 	if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
645 	    !(m->m_flags & (M_MCAST | M_BCAST)))
646 		goto ours;
647 
648 	/*
649 	 * Cache the destination address of the packet; this may be
650 	 * changed by use of 'ipfw fwd'.
651 	 */
652 	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
653 
654 	/*
655 	 * Enable a consistency check between the destination address
656 	 * and the arrival interface for a unicast packet (the RFC 1122
657 	 * strong ES model) if IP forwarding is disabled and the packet
658 	 * is not locally generated and the packet is not subject to
659 	 * 'ipfw fwd'.
660 	 *
661 	 * XXX - Checking also should be disabled if the destination
662 	 * address is ipnat'ed to a different interface.
663 	 *
664 	 * XXX - Checking is incompatible with IP aliases added
665 	 * to the loopback interface instead of the interface where
666 	 * the packets are received.
667 	 */
668 	checkif = ip_checkinterface &&
669 		  !ipforwarding &&
670 		  m->m_pkthdr.rcvif != NULL &&
671 		  !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
672 		  next_hop == NULL;
673 
674 	/*
675 	 * Check for exact addresses in the hash bucket.
676 	 */
677 	LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
678 		ia = iac->ia;
679 
680 		/*
681 		 * If the address matches, verify that the packet
682 		 * arrived via the correct interface if checking is
683 		 * enabled.
684 		 */
685 		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
686 		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
687 			goto ours;
688 	}
689 	ia = NULL;
690 
691 	/*
692 	 * Check for broadcast addresses.
693 	 *
694 	 * Only accept broadcast packets that arrive via the matching
695 	 * interface.  Reception of forwarded directed broadcasts would
696 	 * be handled via ip_forward() and ether_output() with the loopback
697 	 * into the stack for SIMPLEX interfaces handled by ether_output().
698 	 */
699 	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
700 		struct ifaddr_container *ifac;
701 
702 		TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
703 			      ifa_link) {
704 			struct ifaddr *ifa = ifac->ifa;
705 
706 			if (ifa->ifa_addr == NULL) /* shutdown/startup race */
707 				continue;
708 			if (ifa->ifa_addr->sa_family != AF_INET)
709 				continue;
710 			ia = ifatoia(ifa);
711 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
712 								pkt_dst.s_addr)
713 				goto ours;
714 			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
715 				goto ours;
716 #ifdef BOOTP_COMPAT
717 			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
718 				goto ours;
719 #endif
720 		}
721 	}
722 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
723 		struct in_multi *inm;
724 
725 		/* XXX Multicast is not MPSAFE yet */
726 		get_mplock();
727 
728 		if (ip_mrouter != NULL) {
729 			/*
730 			 * If we are acting as a multicast router, all
731 			 * incoming multicast packets are passed to the
732 			 * kernel-level multicast forwarding function.
733 			 * The packet is returned (relatively) intact; if
734 			 * ip_mforward() returns a non-zero value, the packet
735 			 * must be discarded, else it may be accepted below.
736 			 */
737 			if (ip_mforward != NULL &&
738 			    ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
739 				rel_mplock();
740 				ipstat.ips_cantforward++;
741 				m_freem(m);
742 				return;
743 			}
744 
745 			/*
746 			 * The process-level routing daemon needs to receive
747 			 * all multicast IGMP packets, whether or not this
748 			 * host belongs to their destination groups.
749 			 */
750 			if (ip->ip_p == IPPROTO_IGMP) {
751 				rel_mplock();
752 				goto ours;
753 			}
754 			ipstat.ips_forward++;
755 		}
756 		/*
757 		 * See if we belong to the destination multicast group on the
758 		 * arrival interface.
759 		 */
760 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
761 		if (inm == NULL) {
762 			rel_mplock();
763 			ipstat.ips_notmember++;
764 			m_freem(m);
765 			return;
766 		}
767 
768 		rel_mplock();
769 		goto ours;
770 	}
771 	if (ip->ip_dst.s_addr == INADDR_BROADCAST)
772 		goto ours;
773 	if (ip->ip_dst.s_addr == INADDR_ANY)
774 		goto ours;
775 
776 	/*
777 	 * FAITH(Firewall Aided Internet Translator)
778 	 */
779 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
780 		if (ip_keepfaith) {
781 			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
782 				goto ours;
783 		}
784 		m_freem(m);
785 		return;
786 	}
787 
788 	/*
789 	 * Not for us; forward if possible and desirable.
790 	 */
791 	if (!ipforwarding) {
792 		ipstat.ips_cantforward++;
793 		m_freem(m);
794 	} else {
795 #ifdef IPSEC
796 		/*
797 		 * Enforce inbound IPsec SPD.
798 		 */
799 		if (ipsec4_in_reject(m, NULL)) {
800 			ipsecstat.in_polvio++;
801 			goto bad;
802 		}
803 #endif
804 #ifdef FAST_IPSEC
805 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
806 		crit_enter();
807 		if (mtag != NULL) {
808 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
809 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
810 		} else {
811 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
812 						   IP_FORWARDING, &error);
813 		}
814 		if (sp == NULL) {	/* NB: can happen if error */
815 			crit_exit();
816 			/*XXX error stat???*/
817 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
818 			goto bad;
819 		}
820 
821 		/*
822 		 * Check security policy against packet attributes.
823 		 */
824 		error = ipsec_in_reject(sp, m);
825 		KEY_FREESP(&sp);
826 		crit_exit();
827 		if (error) {
828 			ipstat.ips_cantforward++;
829 			goto bad;
830 		}
831 #endif
832 		ip_forward(m, using_srcrt, next_hop);
833 	}
834 	return;
835 
836 ours:
837 
838 	/*
839 	 * IPSTEALTH: Process non-routing options only
840 	 * if the packet is destined for us.
841 	 */
842 	if (ipstealth &&
843 	    hlen > sizeof(struct ip) &&
844 	    ip_dooptions(m, 1, next_hop))
845 		return;
846 
847 	/* Count the packet in the ip address stats */
848 	if (ia != NULL) {
849 		ia->ia_ifa.if_ipackets++;
850 		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
851 	}
852 
853 	/*
854 	 * If offset or IP_MF are set, must reassemble.
855 	 * Otherwise, nothing need be done.
856 	 * (We could look in the reassembly queue to see
857 	 * if the packet was previously fragmented,
858 	 * but it's not worth the time; just let them time out.)
859 	 */
860 	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
861 		/*
862 		 * Attempt reassembly; if it succeeds, proceed.
863 		 * ip_reass() will return a different mbuf.
864 		 */
865 		m = ip_reass(m);
866 		if (m == NULL)
867 			return;
868 		ip = mtod(m, struct ip *);
869 
870 		/* Get the header length of the reassembled packet */
871 		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
872 
873 		needredispatch = TRUE;
874 	} else {
875 		ip->ip_len -= hlen;
876 	}
877 
878 #ifdef IPSEC
879 	/*
880 	 * enforce IPsec policy checking if we are seeing last header.
881 	 * note that we do not visit this with protocols with pcb layer
882 	 * code - like udp/tcp/raw ip.
883 	 */
884 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
885 	    ipsec4_in_reject(m, NULL)) {
886 		ipsecstat.in_polvio++;
887 		goto bad;
888 	}
889 #endif
890 #if FAST_IPSEC
891 	/*
892 	 * enforce IPsec policy checking if we are seeing last header.
893 	 * note that we do not visit this with protocols with pcb layer
894 	 * code - like udp/tcp/raw ip.
895 	 */
896 	if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
897 		/*
898 		 * Check if the packet has already had IPsec processing
899 		 * done.  If so, then just pass it along.  This tag gets
900 		 * set during AH, ESP, etc. input handling, before the
901 		 * packet is returned to the ip input queue for delivery.
902 		 */
903 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
904 		crit_enter();
905 		if (mtag != NULL) {
906 			tdbi = (struct tdb_ident *)m_tag_data(mtag);
907 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
908 		} else {
909 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
910 						   IP_FORWARDING, &error);
911 		}
912 		if (sp != NULL) {
913 			/*
914 			 * Check security policy against packet attributes.
915 			 */
916 			error = ipsec_in_reject(sp, m);
917 			KEY_FREESP(&sp);
918 		} else {
919 			/* XXX error stat??? */
920 			error = EINVAL;
921 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
922 			goto bad;
923 		}
924 		crit_exit();
925 		if (error)
926 			goto bad;
927 	}
928 #endif /* FAST_IPSEC */
929 
930 	ipstat.ips_delivered++;
931 	if (needredispatch) {
932 		struct netmsg_packet *pmsg;
933 		lwkt_port_t port;
934 
935 		ip->ip_off = htons(ip->ip_off);
936 		ip->ip_len = htons(ip->ip_len);
937 		port = ip_mport_in(&m);
938 		if (port == NULL)
939 			return;
940 
941 		pmsg = &m->m_hdr.mh_netmsg;
942 		netmsg_init(&pmsg->nm_netmsg, &netisr_apanic_rport, MSGF_MPSAFE,
943 			    transport_processing_handler);
944 		pmsg->nm_packet = m;
945 		pmsg->nm_netmsg.nm_lmsg.u.ms_result = hlen;
946 
947 		ip = mtod(m, struct ip *);
948 		ip->ip_len = ntohs(ip->ip_len);
949 		ip->ip_off = ntohs(ip->ip_off);
950 		lwkt_sendmsg(port, &pmsg->nm_netmsg.nm_lmsg);
951 	} else {
952 		transport_processing_oncpu(m, hlen, ip);
953 	}
954 	return;
955 
956 bad:
957 	m_freem(m);
958 }
959 
960 /*
961  * Take incoming datagram fragment and try to reassemble it into
962  * whole datagram.  If a chain for reassembly of this datagram already
963  * exists, then it is given as fp; otherwise have to make a chain.
964  */
965 struct mbuf *
966 ip_reass(struct mbuf *m)
967 {
968 	struct ip *ip = mtod(m, struct ip *);
969 	struct mbuf *p = NULL, *q, *nq;
970 	struct mbuf *n;
971 	struct ipq *fp = NULL;
972 	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
973 	int i, next;
974 	u_short sum;
975 
976 	/* If maxnipq is 0, never accept fragments. */
977 	if (maxnipq == 0) {
978 		ipstat.ips_fragments++;
979 		ipstat.ips_fragdropped++;
980 		m_freem(m);
981 		return NULL;
982 	}
983 
984 	sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
985 	/*
986 	 * Look for queue of fragments of this datagram.
987 	 */
988 	for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
989 		if (ip->ip_id == fp->ipq_id &&
990 		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
991 		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
992 		    ip->ip_p == fp->ipq_p)
993 			goto found;
994 
995 	fp = NULL;
996 
997 	/*
998 	 * Enforce upper bound on number of fragmented packets
999 	 * for which we attempt reassembly;
1000 	 * If maxnipq is -1, accept all fragments without limitation.
1001 	 */
1002 	if (nipq > maxnipq && maxnipq > 0) {
1003 		/*
1004 		 * drop something from the tail of the current queue
1005 		 * before proceeding further
1006 		 */
1007 		if (ipq[sum].prev == &ipq[sum]) {   /* gak */
1008 			for (i = 0; i < IPREASS_NHASH; i++) {
1009 				if (ipq[i].prev != &ipq[i]) {
1010 					ipstat.ips_fragtimeout +=
1011 					    ipq[i].prev->ipq_nfrags;
1012 					ip_freef(ipq[i].prev);
1013 					break;
1014 				}
1015 			}
1016 		} else {
1017 			ipstat.ips_fragtimeout +=
1018 			    ipq[sum].prev->ipq_nfrags;
1019 			ip_freef(ipq[sum].prev);
1020 		}
1021 	}
1022 found:
1023 	/*
1024 	 * Adjust ip_len to not reflect header,
1025 	 * convert offset of this to bytes.
1026 	 */
1027 	ip->ip_len -= hlen;
1028 	if (ip->ip_off & IP_MF) {
1029 		/*
1030 		 * Make sure that fragments have a data length
1031 		 * that's a non-zero multiple of 8 bytes.
1032 		 */
1033 		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1034 			ipstat.ips_toosmall++; /* XXX */
1035 			m_freem(m);
1036 			return NULL;
1037 		}
1038 		m->m_flags |= M_FRAG;
1039 	} else
1040 		m->m_flags &= ~M_FRAG;
1041 	ip->ip_off <<= 3;
1042 
1043 	ipstat.ips_fragments++;
1044 	m->m_pkthdr.header = ip;
1045 
1046 	/*
1047 	 * If the hardware has not done csum over this fragment
1048 	 * then csum_data is not valid at all.
1049 	 */
1050 	if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1051 	    == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1052 		m->m_pkthdr.csum_data = 0;
1053 		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1054 	}
1055 
1056 	/*
1057 	 * Presence of header sizes in mbufs
1058 	 * would confuse code below.
1059 	 */
1060 	m->m_data += hlen;
1061 	m->m_len -= hlen;
1062 
1063 	/*
1064 	 * If first fragment to arrive, create a reassembly queue.
1065 	 */
1066 	if (fp == NULL) {
1067 		if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1068 			goto dropfrag;
1069 		insque(fp, &ipq[sum]);
1070 		nipq++;
1071 		fp->ipq_nfrags = 1;
1072 		fp->ipq_ttl = IPFRAGTTL;
1073 		fp->ipq_p = ip->ip_p;
1074 		fp->ipq_id = ip->ip_id;
1075 		fp->ipq_src = ip->ip_src;
1076 		fp->ipq_dst = ip->ip_dst;
1077 		fp->ipq_frags = m;
1078 		m->m_nextpkt = NULL;
1079 		goto inserted;
1080 	} else {
1081 		fp->ipq_nfrags++;
1082 	}
1083 
1084 #define	GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1085 
1086 	/*
1087 	 * Find a segment which begins after this one does.
1088 	 */
1089 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1090 		if (GETIP(q)->ip_off > ip->ip_off)
1091 			break;
1092 
1093 	/*
1094 	 * If there is a preceding segment, it may provide some of
1095 	 * our data already.  If so, drop the data from the incoming
1096 	 * segment.  If it provides all of our data, drop us, otherwise
1097 	 * stick new segment in the proper place.
1098 	 *
1099 	 * If some of the data is dropped from the the preceding
1100 	 * segment, then it's checksum is invalidated.
1101 	 */
1102 	if (p) {
1103 		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1104 		if (i > 0) {
1105 			if (i >= ip->ip_len)
1106 				goto dropfrag;
1107 			m_adj(m, i);
1108 			m->m_pkthdr.csum_flags = 0;
1109 			ip->ip_off += i;
1110 			ip->ip_len -= i;
1111 		}
1112 		m->m_nextpkt = p->m_nextpkt;
1113 		p->m_nextpkt = m;
1114 	} else {
1115 		m->m_nextpkt = fp->ipq_frags;
1116 		fp->ipq_frags = m;
1117 	}
1118 
1119 	/*
1120 	 * While we overlap succeeding segments trim them or,
1121 	 * if they are completely covered, dequeue them.
1122 	 */
1123 	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1124 	     q = nq) {
1125 		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1126 		if (i < GETIP(q)->ip_len) {
1127 			GETIP(q)->ip_len -= i;
1128 			GETIP(q)->ip_off += i;
1129 			m_adj(q, i);
1130 			q->m_pkthdr.csum_flags = 0;
1131 			break;
1132 		}
1133 		nq = q->m_nextpkt;
1134 		m->m_nextpkt = nq;
1135 		ipstat.ips_fragdropped++;
1136 		fp->ipq_nfrags--;
1137 		q->m_nextpkt = NULL;
1138 		m_freem(q);
1139 	}
1140 
1141 inserted:
1142 	/*
1143 	 * Check for complete reassembly and perform frag per packet
1144 	 * limiting.
1145 	 *
1146 	 * Frag limiting is performed here so that the nth frag has
1147 	 * a chance to complete the packet before we drop the packet.
1148 	 * As a result, n+1 frags are actually allowed per packet, but
1149 	 * only n will ever be stored. (n = maxfragsperpacket.)
1150 	 *
1151 	 */
1152 	next = 0;
1153 	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1154 		if (GETIP(q)->ip_off != next) {
1155 			if (fp->ipq_nfrags > maxfragsperpacket) {
1156 				ipstat.ips_fragdropped += fp->ipq_nfrags;
1157 				ip_freef(fp);
1158 			}
1159 			return (NULL);
1160 		}
1161 		next += GETIP(q)->ip_len;
1162 	}
1163 	/* Make sure the last packet didn't have the IP_MF flag */
1164 	if (p->m_flags & M_FRAG) {
1165 		if (fp->ipq_nfrags > maxfragsperpacket) {
1166 			ipstat.ips_fragdropped += fp->ipq_nfrags;
1167 			ip_freef(fp);
1168 		}
1169 		return (NULL);
1170 	}
1171 
1172 	/*
1173 	 * Reassembly is complete.  Make sure the packet is a sane size.
1174 	 */
1175 	q = fp->ipq_frags;
1176 	ip = GETIP(q);
1177 	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1178 		ipstat.ips_toolong++;
1179 		ipstat.ips_fragdropped += fp->ipq_nfrags;
1180 		ip_freef(fp);
1181 		return (NULL);
1182 	}
1183 
1184 	/*
1185 	 * Concatenate fragments.
1186 	 */
1187 	m = q;
1188 	n = m->m_next;
1189 	m->m_next = NULL;
1190 	m_cat(m, n);
1191 	nq = q->m_nextpkt;
1192 	q->m_nextpkt = NULL;
1193 	for (q = nq; q != NULL; q = nq) {
1194 		nq = q->m_nextpkt;
1195 		q->m_nextpkt = NULL;
1196 		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1197 		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1198 		m_cat(m, q);
1199 	}
1200 
1201 	/*
1202 	 * Clean up the 1's complement checksum.  Carry over 16 bits must
1203 	 * be added back.  This assumes no more then 65535 packet fragments
1204 	 * were reassembled.  A second carry can also occur (but not a third).
1205 	 */
1206 	m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1207 				(m->m_pkthdr.csum_data >> 16);
1208 	if (m->m_pkthdr.csum_data > 0xFFFF)
1209 		m->m_pkthdr.csum_data -= 0xFFFF;
1210 
1211 	/*
1212 	 * Create header for new ip packet by
1213 	 * modifying header of first packet;
1214 	 * dequeue and discard fragment reassembly header.
1215 	 * Make header visible.
1216 	 */
1217 	ip->ip_len = next;
1218 	ip->ip_src = fp->ipq_src;
1219 	ip->ip_dst = fp->ipq_dst;
1220 	remque(fp);
1221 	nipq--;
1222 	mpipe_free(&ipq_mpipe, fp);
1223 	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1224 	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1225 	/* some debugging cruft by sklower, below, will go away soon */
1226 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1227 		int plen = 0;
1228 
1229 		for (n = m; n; n = n->m_next)
1230 			plen += n->m_len;
1231 		m->m_pkthdr.len = plen;
1232 	}
1233 
1234 	ipstat.ips_reassembled++;
1235 	return (m);
1236 
1237 dropfrag:
1238 	ipstat.ips_fragdropped++;
1239 	if (fp != NULL)
1240 		fp->ipq_nfrags--;
1241 	m_freem(m);
1242 	return (NULL);
1243 
1244 #undef GETIP
1245 }
1246 
1247 /*
1248  * Free a fragment reassembly header and all
1249  * associated datagrams.
1250  */
1251 static void
1252 ip_freef(struct ipq *fp)
1253 {
1254 	struct mbuf *q;
1255 
1256 	while (fp->ipq_frags) {
1257 		q = fp->ipq_frags;
1258 		fp->ipq_frags = q->m_nextpkt;
1259 		q->m_nextpkt = NULL;
1260 		m_freem(q);
1261 	}
1262 	remque(fp);
1263 	mpipe_free(&ipq_mpipe, fp);
1264 	nipq--;
1265 }
1266 
1267 /*
1268  * IP timer processing;
1269  * if a timer expires on a reassembly
1270  * queue, discard it.
1271  */
1272 void
1273 ip_slowtimo(void)
1274 {
1275 	struct ipq *fp;
1276 	int i;
1277 
1278 	crit_enter();
1279 	for (i = 0; i < IPREASS_NHASH; i++) {
1280 		fp = ipq[i].next;
1281 		if (fp == NULL)
1282 			continue;
1283 		while (fp != &ipq[i]) {
1284 			--fp->ipq_ttl;
1285 			fp = fp->next;
1286 			if (fp->prev->ipq_ttl == 0) {
1287 				ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1288 				ip_freef(fp->prev);
1289 			}
1290 		}
1291 	}
1292 	/*
1293 	 * If we are over the maximum number of fragments
1294 	 * (due to the limit being lowered), drain off
1295 	 * enough to get down to the new limit.
1296 	 */
1297 	if (maxnipq >= 0 && nipq > maxnipq) {
1298 		for (i = 0; i < IPREASS_NHASH; i++) {
1299 			while (nipq > maxnipq &&
1300 				(ipq[i].next != &ipq[i])) {
1301 				ipstat.ips_fragdropped +=
1302 				    ipq[i].next->ipq_nfrags;
1303 				ip_freef(ipq[i].next);
1304 			}
1305 		}
1306 	}
1307 	ipflow_slowtimo();
1308 	crit_exit();
1309 }
1310 
1311 /*
1312  * Drain off all datagram fragments.
1313  */
1314 void
1315 ip_drain(void)
1316 {
1317 	int i;
1318 
1319 	for (i = 0; i < IPREASS_NHASH; i++) {
1320 		while (ipq[i].next != &ipq[i]) {
1321 			ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1322 			ip_freef(ipq[i].next);
1323 		}
1324 	}
1325 	in_rtqdrain();
1326 }
1327 
1328 /*
1329  * Do option processing on a datagram,
1330  * possibly discarding it if bad options are encountered,
1331  * or forwarding it if source-routed.
1332  * The pass argument is used when operating in the IPSTEALTH
1333  * mode to tell what options to process:
1334  * [LS]SRR (pass 0) or the others (pass 1).
1335  * The reason for as many as two passes is that when doing IPSTEALTH,
1336  * non-routing options should be processed only if the packet is for us.
1337  * Returns 1 if packet has been forwarded/freed,
1338  * 0 if the packet should be processed further.
1339  */
1340 static int
1341 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1342 {
1343 	struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1344 	struct ip *ip = mtod(m, struct ip *);
1345 	u_char *cp;
1346 	struct in_ifaddr *ia;
1347 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1348 	boolean_t forward = FALSE;
1349 	struct in_addr *sin, dst;
1350 	n_time ntime;
1351 
1352 	dst = ip->ip_dst;
1353 	cp = (u_char *)(ip + 1);
1354 	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1355 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1356 		opt = cp[IPOPT_OPTVAL];
1357 		if (opt == IPOPT_EOL)
1358 			break;
1359 		if (opt == IPOPT_NOP)
1360 			optlen = 1;
1361 		else {
1362 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1363 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1364 				goto bad;
1365 			}
1366 			optlen = cp[IPOPT_OLEN];
1367 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1368 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1369 				goto bad;
1370 			}
1371 		}
1372 		switch (opt) {
1373 
1374 		default:
1375 			break;
1376 
1377 		/*
1378 		 * Source routing with record.
1379 		 * Find interface with current destination address.
1380 		 * If none on this machine then drop if strictly routed,
1381 		 * or do nothing if loosely routed.
1382 		 * Record interface address and bring up next address
1383 		 * component.  If strictly routed make sure next
1384 		 * address is on directly accessible net.
1385 		 */
1386 		case IPOPT_LSRR:
1387 		case IPOPT_SSRR:
1388 			if (ipstealth && pass > 0)
1389 				break;
1390 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1391 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1392 				goto bad;
1393 			}
1394 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1395 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1396 				goto bad;
1397 			}
1398 			ipaddr.sin_addr = ip->ip_dst;
1399 			ia = (struct in_ifaddr *)
1400 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1401 			if (ia == NULL) {
1402 				if (opt == IPOPT_SSRR) {
1403 					type = ICMP_UNREACH;
1404 					code = ICMP_UNREACH_SRCFAIL;
1405 					goto bad;
1406 				}
1407 				if (!ip_dosourceroute)
1408 					goto nosourcerouting;
1409 				/*
1410 				 * Loose routing, and not at next destination
1411 				 * yet; nothing to do except forward.
1412 				 */
1413 				break;
1414 			}
1415 			off--;			/* 0 origin */
1416 			if (off > optlen - (int)sizeof(struct in_addr)) {
1417 				/*
1418 				 * End of source route.  Should be for us.
1419 				 */
1420 				if (!ip_acceptsourceroute)
1421 					goto nosourcerouting;
1422 				save_rte(m, cp, ip->ip_src);
1423 				break;
1424 			}
1425 			if (ipstealth)
1426 				goto dropit;
1427 			if (!ip_dosourceroute) {
1428 				if (ipforwarding) {
1429 					char buf[sizeof "aaa.bbb.ccc.ddd"];
1430 
1431 					/*
1432 					 * Acting as a router, so generate ICMP
1433 					 */
1434 nosourcerouting:
1435 					strcpy(buf, inet_ntoa(ip->ip_dst));
1436 					log(LOG_WARNING,
1437 					    "attempted source route from %s to %s\n",
1438 					    inet_ntoa(ip->ip_src), buf);
1439 					type = ICMP_UNREACH;
1440 					code = ICMP_UNREACH_SRCFAIL;
1441 					goto bad;
1442 				} else {
1443 					/*
1444 					 * Not acting as a router,
1445 					 * so silently drop.
1446 					 */
1447 dropit:
1448 					ipstat.ips_cantforward++;
1449 					m_freem(m);
1450 					return (1);
1451 				}
1452 			}
1453 
1454 			/*
1455 			 * locate outgoing interface
1456 			 */
1457 			memcpy(&ipaddr.sin_addr, cp + off,
1458 			    sizeof ipaddr.sin_addr);
1459 
1460 			if (opt == IPOPT_SSRR) {
1461 #define	INA	struct in_ifaddr *
1462 #define	SA	struct sockaddr *
1463 				if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1464 									== NULL)
1465 					ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1466 			} else
1467 				ia = ip_rtaddr(ipaddr.sin_addr,
1468 					       &ipforward_rt[mycpuid]);
1469 			if (ia == NULL) {
1470 				type = ICMP_UNREACH;
1471 				code = ICMP_UNREACH_SRCFAIL;
1472 				goto bad;
1473 			}
1474 			ip->ip_dst = ipaddr.sin_addr;
1475 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1476 			    sizeof(struct in_addr));
1477 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1478 			/*
1479 			 * Let ip_intr's mcast routing check handle mcast pkts
1480 			 */
1481 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1482 			break;
1483 
1484 		case IPOPT_RR:
1485 			if (ipstealth && pass == 0)
1486 				break;
1487 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1488 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1489 				goto bad;
1490 			}
1491 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1492 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1493 				goto bad;
1494 			}
1495 			/*
1496 			 * If no space remains, ignore.
1497 			 */
1498 			off--;			/* 0 origin */
1499 			if (off > optlen - (int)sizeof(struct in_addr))
1500 				break;
1501 			memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1502 			    sizeof ipaddr.sin_addr);
1503 			/*
1504 			 * locate outgoing interface; if we're the destination,
1505 			 * use the incoming interface (should be same).
1506 			 */
1507 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1508 			    (ia = ip_rtaddr(ipaddr.sin_addr,
1509 			    		    &ipforward_rt[mycpuid]))
1510 								     == NULL) {
1511 				type = ICMP_UNREACH;
1512 				code = ICMP_UNREACH_HOST;
1513 				goto bad;
1514 			}
1515 			memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1516 			    sizeof(struct in_addr));
1517 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1518 			break;
1519 
1520 		case IPOPT_TS:
1521 			if (ipstealth && pass == 0)
1522 				break;
1523 			code = cp - (u_char *)ip;
1524 			if (optlen < 4 || optlen > 40) {
1525 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1526 				goto bad;
1527 			}
1528 			if ((off = cp[IPOPT_OFFSET]) < 5) {
1529 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1530 				goto bad;
1531 			}
1532 			if (off > optlen - (int)sizeof(int32_t)) {
1533 				cp[IPOPT_OFFSET + 1] += (1 << 4);
1534 				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1535 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1536 					goto bad;
1537 				}
1538 				break;
1539 			}
1540 			off--;				/* 0 origin */
1541 			sin = (struct in_addr *)(cp + off);
1542 			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1543 
1544 			case IPOPT_TS_TSONLY:
1545 				break;
1546 
1547 			case IPOPT_TS_TSANDADDR:
1548 				if (off + sizeof(n_time) +
1549 				    sizeof(struct in_addr) > optlen) {
1550 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1551 					goto bad;
1552 				}
1553 				ipaddr.sin_addr = dst;
1554 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1555 							    m->m_pkthdr.rcvif);
1556 				if (ia == NULL)
1557 					continue;
1558 				memcpy(sin, &IA_SIN(ia)->sin_addr,
1559 				    sizeof(struct in_addr));
1560 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1561 				off += sizeof(struct in_addr);
1562 				break;
1563 
1564 			case IPOPT_TS_PRESPEC:
1565 				if (off + sizeof(n_time) +
1566 				    sizeof(struct in_addr) > optlen) {
1567 					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1568 					goto bad;
1569 				}
1570 				memcpy(&ipaddr.sin_addr, sin,
1571 				    sizeof(struct in_addr));
1572 				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1573 					continue;
1574 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1575 				off += sizeof(struct in_addr);
1576 				break;
1577 
1578 			default:
1579 				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1580 				goto bad;
1581 			}
1582 			ntime = iptime();
1583 			memcpy(cp + off, &ntime, sizeof(n_time));
1584 			cp[IPOPT_OFFSET] += sizeof(n_time);
1585 		}
1586 	}
1587 	if (forward && ipforwarding) {
1588 		ip_forward(m, TRUE, next_hop);
1589 		return (1);
1590 	}
1591 	return (0);
1592 bad:
1593 	icmp_error(m, type, code, 0, 0);
1594 	ipstat.ips_badoptions++;
1595 	return (1);
1596 }
1597 
1598 /*
1599  * Given address of next destination (final or next hop),
1600  * return internet address info of interface to be used to get there.
1601  */
1602 struct in_ifaddr *
1603 ip_rtaddr(struct in_addr dst, struct route *ro)
1604 {
1605 	struct sockaddr_in *sin;
1606 
1607 	sin = (struct sockaddr_in *)&ro->ro_dst;
1608 
1609 	if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1610 		if (ro->ro_rt != NULL) {
1611 			RTFREE(ro->ro_rt);
1612 			ro->ro_rt = NULL;
1613 		}
1614 		sin->sin_family = AF_INET;
1615 		sin->sin_len = sizeof *sin;
1616 		sin->sin_addr = dst;
1617 		rtalloc_ign(ro, RTF_PRCLONING);
1618 	}
1619 
1620 	if (ro->ro_rt == NULL)
1621 		return (NULL);
1622 
1623 	return (ifatoia(ro->ro_rt->rt_ifa));
1624 }
1625 
1626 /*
1627  * Save incoming source route for use in replies,
1628  * to be picked up later by ip_srcroute if the receiver is interested.
1629  */
1630 static void
1631 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1632 {
1633 	struct m_tag *mtag;
1634 	struct ip_srcrt_opt *opt;
1635 	unsigned olen;
1636 
1637 	mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), MB_DONTWAIT);
1638 	if (mtag == NULL)
1639 		return;
1640 	opt = m_tag_data(mtag);
1641 
1642 	olen = option[IPOPT_OLEN];
1643 #ifdef DIAGNOSTIC
1644 	if (ipprintfs)
1645 		kprintf("save_rte: olen %d\n", olen);
1646 #endif
1647 	if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1648 		m_tag_free(mtag);
1649 		return;
1650 	}
1651 	bcopy(option, opt->ip_srcrt.srcopt, olen);
1652 	opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1653 	opt->ip_srcrt.dst = dst;
1654 	m_tag_prepend(m, mtag);
1655 }
1656 
1657 /*
1658  * Retrieve incoming source route for use in replies,
1659  * in the same form used by setsockopt.
1660  * The first hop is placed before the options, will be removed later.
1661  */
1662 struct mbuf *
1663 ip_srcroute(struct mbuf *m0)
1664 {
1665 	struct in_addr *p, *q;
1666 	struct mbuf *m;
1667 	struct m_tag *mtag;
1668 	struct ip_srcrt_opt *opt;
1669 
1670 	if (m0 == NULL)
1671 		return NULL;
1672 
1673 	mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1674 	if (mtag == NULL)
1675 		return NULL;
1676 	opt = m_tag_data(mtag);
1677 
1678 	if (opt->ip_nhops == 0)
1679 		return (NULL);
1680 	m = m_get(MB_DONTWAIT, MT_HEADER);
1681 	if (m == NULL)
1682 		return (NULL);
1683 
1684 #define	OPTSIZ	(sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1685 
1686 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1687 	m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1688 		   sizeof(struct in_addr) + OPTSIZ;
1689 #ifdef DIAGNOSTIC
1690 	if (ipprintfs) {
1691 		kprintf("ip_srcroute: nhops %d mlen %d",
1692 			opt->ip_nhops, m->m_len);
1693 	}
1694 #endif
1695 
1696 	/*
1697 	 * First save first hop for return route
1698 	 */
1699 	p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1700 	*(mtod(m, struct in_addr *)) = *p--;
1701 #ifdef DIAGNOSTIC
1702 	if (ipprintfs)
1703 		kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1704 #endif
1705 
1706 	/*
1707 	 * Copy option fields and padding (nop) to mbuf.
1708 	 */
1709 	opt->ip_srcrt.nop = IPOPT_NOP;
1710 	opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1711 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1712 	    OPTSIZ);
1713 	q = (struct in_addr *)(mtod(m, caddr_t) +
1714 	    sizeof(struct in_addr) + OPTSIZ);
1715 #undef OPTSIZ
1716 	/*
1717 	 * Record return path as an IP source route,
1718 	 * reversing the path (pointers are now aligned).
1719 	 */
1720 	while (p >= opt->ip_srcrt.route) {
1721 #ifdef DIAGNOSTIC
1722 		if (ipprintfs)
1723 			kprintf(" %x", ntohl(q->s_addr));
1724 #endif
1725 		*q++ = *p--;
1726 	}
1727 	/*
1728 	 * Last hop goes to final destination.
1729 	 */
1730 	*q = opt->ip_srcrt.dst;
1731 	m_tag_delete(m0, mtag);
1732 #ifdef DIAGNOSTIC
1733 	if (ipprintfs)
1734 		kprintf(" %x\n", ntohl(q->s_addr));
1735 #endif
1736 	return (m);
1737 }
1738 
1739 /*
1740  * Strip out IP options.
1741  */
1742 void
1743 ip_stripoptions(struct mbuf *m)
1744 {
1745 	int datalen;
1746 	struct ip *ip = mtod(m, struct ip *);
1747 	caddr_t opts;
1748 	int optlen;
1749 
1750 	optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1751 	opts = (caddr_t)(ip + 1);
1752 	datalen = m->m_len - (sizeof(struct ip) + optlen);
1753 	bcopy(opts + optlen, opts, datalen);
1754 	m->m_len -= optlen;
1755 	if (m->m_flags & M_PKTHDR)
1756 		m->m_pkthdr.len -= optlen;
1757 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1758 }
1759 
1760 u_char inetctlerrmap[PRC_NCMDS] = {
1761 	0,		0,		0,		0,
1762 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1763 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1764 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1765 	0,		0,		0,		0,
1766 	ENOPROTOOPT,	ECONNREFUSED
1767 };
1768 
1769 /*
1770  * Forward a packet.  If some error occurs return the sender
1771  * an icmp packet.  Note we can't always generate a meaningful
1772  * icmp message because icmp doesn't have a large enough repertoire
1773  * of codes and types.
1774  *
1775  * If not forwarding, just drop the packet.  This could be confusing
1776  * if ipforwarding was zero but some routing protocol was advancing
1777  * us as a gateway to somewhere.  However, we must let the routing
1778  * protocol deal with that.
1779  *
1780  * The using_srcrt parameter indicates whether the packet is being forwarded
1781  * via a source route.
1782  */
1783 void
1784 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1785 {
1786 	struct ip *ip = mtod(m, struct ip *);
1787 	struct sockaddr_in *ipforward_rtaddr;
1788 	struct rtentry *rt;
1789 	int error, type = 0, code = 0, destmtu = 0;
1790 	struct mbuf *mcopy;
1791 	n_long dest;
1792 	struct in_addr pkt_dst;
1793 	struct route *cache_rt = &ipforward_rt[mycpuid];
1794 
1795 	dest = INADDR_ANY;
1796 	/*
1797 	 * Cache the destination address of the packet; this may be
1798 	 * changed by use of 'ipfw fwd'.
1799 	 */
1800 	pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1801 
1802 #ifdef DIAGNOSTIC
1803 	if (ipprintfs)
1804 		kprintf("forward: src %x dst %x ttl %x\n",
1805 		       ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1806 #endif
1807 
1808 	if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1809 		ipstat.ips_cantforward++;
1810 		m_freem(m);
1811 		return;
1812 	}
1813 	if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1814 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1815 		return;
1816 	}
1817 
1818 	ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1819 	if (cache_rt->ro_rt == NULL ||
1820 	    ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1821 		if (cache_rt->ro_rt != NULL) {
1822 			RTFREE(cache_rt->ro_rt);
1823 			cache_rt->ro_rt = NULL;
1824 		}
1825 		ipforward_rtaddr->sin_family = AF_INET;
1826 		ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1827 		ipforward_rtaddr->sin_addr = pkt_dst;
1828 		rtalloc_ign(cache_rt, RTF_PRCLONING);
1829 		if (cache_rt->ro_rt == NULL) {
1830 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1831 			return;
1832 		}
1833 	}
1834 	rt = cache_rt->ro_rt;
1835 
1836 	/*
1837 	 * Save the IP header and at most 8 bytes of the payload,
1838 	 * in case we need to generate an ICMP message to the src.
1839 	 *
1840 	 * XXX this can be optimized a lot by saving the data in a local
1841 	 * buffer on the stack (72 bytes at most), and only allocating the
1842 	 * mbuf if really necessary. The vast majority of the packets
1843 	 * are forwarded without having to send an ICMP back (either
1844 	 * because unnecessary, or because rate limited), so we are
1845 	 * really we are wasting a lot of work here.
1846 	 *
1847 	 * We don't use m_copy() because it might return a reference
1848 	 * to a shared cluster. Both this function and ip_output()
1849 	 * assume exclusive access to the IP header in `m', so any
1850 	 * data in a cluster may change before we reach icmp_error().
1851 	 */
1852 	MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1853 	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1854 		/*
1855 		 * It's probably ok if the pkthdr dup fails (because
1856 		 * the deep copy of the tag chain failed), but for now
1857 		 * be conservative and just discard the copy since
1858 		 * code below may some day want the tags.
1859 		 */
1860 		m_free(mcopy);
1861 		mcopy = NULL;
1862 	}
1863 	if (mcopy != NULL) {
1864 		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1865 		    (int)ip->ip_len);
1866 		mcopy->m_pkthdr.len = mcopy->m_len;
1867 		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1868 	}
1869 
1870 	if (!ipstealth)
1871 		ip->ip_ttl -= IPTTLDEC;
1872 
1873 	/*
1874 	 * If forwarding packet using same interface that it came in on,
1875 	 * perhaps should send a redirect to sender to shortcut a hop.
1876 	 * Only send redirect if source is sending directly to us,
1877 	 * and if packet was not source routed (or has any options).
1878 	 * Also, don't send redirect if forwarding using a default route
1879 	 * or a route modified by a redirect.
1880 	 */
1881 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1882 	    !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1883 	    satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1884 	    ipsendredirects && !using_srcrt && next_hop == NULL) {
1885 		u_long src = ntohl(ip->ip_src.s_addr);
1886 		struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1887 
1888 		if (rt_ifa != NULL &&
1889 		    (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1890 			if (rt->rt_flags & RTF_GATEWAY)
1891 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1892 			else
1893 				dest = pkt_dst.s_addr;
1894 			/*
1895 			 * Router requirements says to only send
1896 			 * host redirects.
1897 			 */
1898 			type = ICMP_REDIRECT;
1899 			code = ICMP_REDIRECT_HOST;
1900 #ifdef DIAGNOSTIC
1901 			if (ipprintfs)
1902 				kprintf("redirect (%d) to %x\n", code, dest);
1903 #endif
1904 		}
1905 	}
1906 
1907 	error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL, NULL);
1908 	if (error == 0) {
1909 		ipstat.ips_forward++;
1910 		if (type == 0) {
1911 			if (mcopy) {
1912 				ipflow_create(cache_rt, mcopy);
1913 				m_freem(mcopy);
1914 			}
1915 			return;		/* most common case */
1916 		} else {
1917 			ipstat.ips_redirectsent++;
1918 		}
1919 	} else {
1920 		ipstat.ips_cantforward++;
1921 	}
1922 
1923 	if (mcopy == NULL)
1924 		return;
1925 
1926 	/*
1927 	 * Send ICMP message.
1928 	 */
1929 
1930 	switch (error) {
1931 
1932 	case 0:				/* forwarded, but need redirect */
1933 		/* type, code set above */
1934 		break;
1935 
1936 	case ENETUNREACH:		/* shouldn't happen, checked above */
1937 	case EHOSTUNREACH:
1938 	case ENETDOWN:
1939 	case EHOSTDOWN:
1940 	default:
1941 		type = ICMP_UNREACH;
1942 		code = ICMP_UNREACH_HOST;
1943 		break;
1944 
1945 	case EMSGSIZE:
1946 		type = ICMP_UNREACH;
1947 		code = ICMP_UNREACH_NEEDFRAG;
1948 #ifdef IPSEC
1949 		/*
1950 		 * If the packet is routed over IPsec tunnel, tell the
1951 		 * originator the tunnel MTU.
1952 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1953 		 * XXX quickhack!!!
1954 		 */
1955 		if (cache_rt->ro_rt != NULL) {
1956 			struct secpolicy *sp = NULL;
1957 			int ipsecerror;
1958 			int ipsechdr;
1959 			struct route *ro;
1960 
1961 			sp = ipsec4_getpolicybyaddr(mcopy,
1962 						    IPSEC_DIR_OUTBOUND,
1963 						    IP_FORWARDING,
1964 						    &ipsecerror);
1965 
1966 			if (sp == NULL)
1967 				destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
1968 			else {
1969 				/* count IPsec header size */
1970 				ipsechdr = ipsec4_hdrsiz(mcopy,
1971 							 IPSEC_DIR_OUTBOUND,
1972 							 NULL);
1973 
1974 				/*
1975 				 * find the correct route for outer IPv4
1976 				 * header, compute tunnel MTU.
1977 				 *
1978 				 */
1979 				if (sp->req != NULL && sp->req->sav != NULL &&
1980 				    sp->req->sav->sah != NULL) {
1981 					ro = &sp->req->sav->sah->sa_route;
1982 					if (ro->ro_rt != NULL &&
1983 					    ro->ro_rt->rt_ifp != NULL) {
1984 						destmtu =
1985 						    ro->ro_rt->rt_ifp->if_mtu;
1986 						destmtu -= ipsechdr;
1987 					}
1988 				}
1989 
1990 				key_freesp(sp);
1991 			}
1992 		}
1993 #elif FAST_IPSEC
1994 		/*
1995 		 * If the packet is routed over IPsec tunnel, tell the
1996 		 * originator the tunnel MTU.
1997 		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1998 		 * XXX quickhack!!!
1999 		 */
2000 		if (cache_rt->ro_rt != NULL) {
2001 			struct secpolicy *sp = NULL;
2002 			int ipsecerror;
2003 			int ipsechdr;
2004 			struct route *ro;
2005 
2006 			sp = ipsec_getpolicybyaddr(mcopy,
2007 						   IPSEC_DIR_OUTBOUND,
2008 						   IP_FORWARDING,
2009 						   &ipsecerror);
2010 
2011 			if (sp == NULL)
2012 				destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2013 			else {
2014 				/* count IPsec header size */
2015 				ipsechdr = ipsec4_hdrsiz(mcopy,
2016 							 IPSEC_DIR_OUTBOUND,
2017 							 NULL);
2018 
2019 				/*
2020 				 * find the correct route for outer IPv4
2021 				 * header, compute tunnel MTU.
2022 				 */
2023 
2024 				if (sp->req != NULL &&
2025 				    sp->req->sav != NULL &&
2026 				    sp->req->sav->sah != NULL) {
2027 					ro = &sp->req->sav->sah->sa_route;
2028 					if (ro->ro_rt != NULL &&
2029 					    ro->ro_rt->rt_ifp != NULL) {
2030 						destmtu =
2031 						    ro->ro_rt->rt_ifp->if_mtu;
2032 						destmtu -= ipsechdr;
2033 					}
2034 				}
2035 
2036 				KEY_FREESP(&sp);
2037 			}
2038 		}
2039 #else /* !IPSEC && !FAST_IPSEC */
2040 		if (cache_rt->ro_rt != NULL)
2041 			destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2042 #endif /*IPSEC*/
2043 		ipstat.ips_cantfrag++;
2044 		break;
2045 
2046 	case ENOBUFS:
2047 		/*
2048 		 * A router should not generate ICMP_SOURCEQUENCH as
2049 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2050 		 * Source quench could be a big problem under DoS attacks,
2051 		 * or if the underlying interface is rate-limited.
2052 		 * Those who need source quench packets may re-enable them
2053 		 * via the net.inet.ip.sendsourcequench sysctl.
2054 		 */
2055 		if (!ip_sendsourcequench) {
2056 			m_freem(mcopy);
2057 			return;
2058 		} else {
2059 			type = ICMP_SOURCEQUENCH;
2060 			code = 0;
2061 		}
2062 		break;
2063 
2064 	case EACCES:			/* ipfw denied packet */
2065 		m_freem(mcopy);
2066 		return;
2067 	}
2068 	icmp_error(mcopy, type, code, dest, destmtu);
2069 }
2070 
2071 void
2072 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2073 	       struct mbuf *m)
2074 {
2075 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2076 		struct timeval tv;
2077 
2078 		microtime(&tv);
2079 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2080 		    SCM_TIMESTAMP, SOL_SOCKET);
2081 		if (*mp)
2082 			mp = &(*mp)->m_next;
2083 	}
2084 	if (inp->inp_flags & INP_RECVDSTADDR) {
2085 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2086 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2087 		if (*mp)
2088 			mp = &(*mp)->m_next;
2089 	}
2090 	if (inp->inp_flags & INP_RECVTTL) {
2091 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2092 		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2093 		if (*mp)
2094 			mp = &(*mp)->m_next;
2095 	}
2096 #ifdef notyet
2097 	/* XXX
2098 	 * Moving these out of udp_input() made them even more broken
2099 	 * than they already were.
2100 	 */
2101 	/* options were tossed already */
2102 	if (inp->inp_flags & INP_RECVOPTS) {
2103 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2104 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2105 		if (*mp)
2106 			mp = &(*mp)->m_next;
2107 	}
2108 	/* ip_srcroute doesn't do what we want here, need to fix */
2109 	if (inp->inp_flags & INP_RECVRETOPTS) {
2110 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2111 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2112 		if (*mp)
2113 			mp = &(*mp)->m_next;
2114 	}
2115 #endif
2116 	if (inp->inp_flags & INP_RECVIF) {
2117 		struct ifnet *ifp;
2118 		struct sdlbuf {
2119 			struct sockaddr_dl sdl;
2120 			u_char	pad[32];
2121 		} sdlbuf;
2122 		struct sockaddr_dl *sdp;
2123 		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2124 
2125 		if (((ifp = m->m_pkthdr.rcvif)) &&
2126 		    ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2127 			sdp = IF_LLSOCKADDR(ifp);
2128 			/*
2129 			 * Change our mind and don't try copy.
2130 			 */
2131 			if ((sdp->sdl_family != AF_LINK) ||
2132 			    (sdp->sdl_len > sizeof(sdlbuf))) {
2133 				goto makedummy;
2134 			}
2135 			bcopy(sdp, sdl2, sdp->sdl_len);
2136 		} else {
2137 makedummy:
2138 			sdl2->sdl_len =
2139 			    offsetof(struct sockaddr_dl, sdl_data[0]);
2140 			sdl2->sdl_family = AF_LINK;
2141 			sdl2->sdl_index = 0;
2142 			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2143 		}
2144 		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2145 			IP_RECVIF, IPPROTO_IP);
2146 		if (*mp)
2147 			mp = &(*mp)->m_next;
2148 	}
2149 }
2150 
2151 /*
2152  * XXX these routines are called from the upper part of the kernel.
2153  *
2154  * They could also be moved to ip_mroute.c, since all the RSVP
2155  *  handling is done there already.
2156  */
2157 int
2158 ip_rsvp_init(struct socket *so)
2159 {
2160 	if (so->so_type != SOCK_RAW ||
2161 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2162 		return EOPNOTSUPP;
2163 
2164 	if (ip_rsvpd != NULL)
2165 		return EADDRINUSE;
2166 
2167 	ip_rsvpd = so;
2168 	/*
2169 	 * This may seem silly, but we need to be sure we don't over-increment
2170 	 * the RSVP counter, in case something slips up.
2171 	 */
2172 	if (!ip_rsvp_on) {
2173 		ip_rsvp_on = 1;
2174 		rsvp_on++;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 int
2181 ip_rsvp_done(void)
2182 {
2183 	ip_rsvpd = NULL;
2184 	/*
2185 	 * This may seem silly, but we need to be sure we don't over-decrement
2186 	 * the RSVP counter, in case something slips up.
2187 	 */
2188 	if (ip_rsvp_on) {
2189 		ip_rsvp_on = 0;
2190 		rsvp_on--;
2191 	}
2192 	return 0;
2193 }
2194 
2195 void
2196 rsvp_input(struct mbuf *m, ...)	/* XXX must fixup manually */
2197 {
2198 	int off, proto;
2199 	__va_list ap;
2200 
2201 	__va_start(ap, m);
2202 	off = __va_arg(ap, int);
2203 	proto = __va_arg(ap, int);
2204 	__va_end(ap);
2205 
2206 	if (rsvp_input_p) { /* call the real one if loaded */
2207 		rsvp_input_p(m, off, proto);
2208 		return;
2209 	}
2210 
2211 	/* Can still get packets with rsvp_on = 0 if there is a local member
2212 	 * of the group to which the RSVP packet is addressed.  But in this
2213 	 * case we want to throw the packet away.
2214 	 */
2215 
2216 	if (!rsvp_on) {
2217 		m_freem(m);
2218 		return;
2219 	}
2220 
2221 	if (ip_rsvpd != NULL) {
2222 		rip_input(m, off, proto);
2223 		return;
2224 	}
2225 	/* Drop the packet */
2226 	m_freem(m);
2227 }
2228