xref: /dflybsd-src/sys/net/vlan/if_vlan.c (revision 78195a764d5e70464a6d4f49bc08332a2a8bb4d0)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/net/if_vlan.c,v 1.15.2.13 2003/02/14 22:25:58 fenner Exp $
30  * $DragonFly: src/sys/net/vlan/if_vlan.c,v 1.18 2005/11/28 17:13:46 dillon Exp $
31  */
32 
33 /*
34  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
35  * Might be extended some day to also handle IEEE 802.1p priority
36  * tagging.  This is sort of sneaky in the implementation, since
37  * we need to pretend to be enough of an Ethernet implementation
38  * to make arp work.  The way we do this is by telling everyone
39  * that we are an Ethernet, and then catch the packets that
40  * ether_output() left on our output queue queue when it calls
41  * if_start(), rewrite them for use by the real outgoing interface,
42  * and ask it to send them.
43  *
44  *
45  * XXX It's incorrect to assume that we must always kludge up
46  * headers on the physical device's behalf: some devices support
47  * VLAN tag insertion and extraction in firmware. For these cases,
48  * one can change the behavior of the vlan interface by setting
49  * the LINK0 flag on it (that is setting the vlan interface's LINK0
50  * flag, _not_ the parent's LINK0 flag; we try to leave the parent
51  * alone). If the interface has the LINK0 flag set, then it will
52  * not modify the ethernet header on output, because the parent
53  * can do that for itself. On input, the parent can call vlan_input_tag()
54  * directly in order to supply us with an incoming mbuf and the vlan
55  * tag value that goes with it.
56  */
57 
58 #ifndef NVLAN
59 #include "use_vlan.h"
60 #endif
61 #include "opt_inet.h"
62 
63 #include <sys/param.h>
64 #include <sys/kernel.h>
65 #include <sys/malloc.h>
66 #include <sys/mbuf.h>
67 #include <sys/module.h>
68 #include <sys/queue.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/sysctl.h>
72 #include <sys/systm.h>
73 #include <sys/thread2.h>
74 #include <machine/bus.h>	/* XXX: Shouldn't really be required! */
75 
76 #include <net/bpf.h>
77 #include <net/ethernet.h>
78 #include <net/if.h>
79 #include <net/if_arp.h>
80 #include <net/if_dl.h>
81 #include <net/if_types.h>
82 #include <net/ifq_var.h>
83 #include "if_vlan_var.h"
84 
85 #ifdef INET
86 #include <netinet/in.h>
87 #include <netinet/if_ether.h>
88 #endif
89 
90 #define VLANNAME	"vlan"
91 
92 SYSCTL_DECL(_net_link);
93 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
94 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
95 
96 static MALLOC_DEFINE(M_VLAN, "vlan", "802.1Q Virtual LAN Interface");
97 static LIST_HEAD(, ifvlan) ifv_list;
98 
99 static	int vlan_clone_create(struct if_clone *, int);
100 static	void vlan_clone_destroy(struct ifnet *);
101 static	void vlan_start(struct ifnet *ifp);
102 static	void vlan_ifinit(void *foo);
103 static	int vlan_input(struct ether_header *eh, struct mbuf *m);
104 static	int vlan_input_tag(struct mbuf *m, uint16_t t);
105 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr,
106 		struct ucred *cr);
107 static	int vlan_setmulti(struct ifnet *ifp);
108 static	int vlan_unconfig(struct ifnet *ifp);
109 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p);
110 
111 struct if_clone vlan_cloner = IF_CLONE_INITIALIZER("vlan", vlan_clone_create,
112     vlan_clone_destroy, NVLAN, IF_MAXUNIT);
113 
114 /*
115  * Program our multicast filter. What we're actually doing is
116  * programming the multicast filter of the parent. This has the
117  * side effect of causing the parent interface to receive multicast
118  * traffic that it doesn't really want, which ends up being discarded
119  * later by the upper protocol layers. Unfortunately, there's no way
120  * to avoid this: there really is only one physical interface.
121  */
122 static int
123 vlan_setmulti(struct ifnet *ifp)
124 {
125 	struct ifnet		*ifp_p;
126 	struct ifmultiaddr	*ifma, *rifma = NULL;
127 	struct ifvlan		*sc;
128 	struct vlan_mc_entry	*mc = NULL;
129 	struct sockaddr_dl	sdl;
130 	int			error;
131 
132 	/* Find the parent. */
133 	sc = ifp->if_softc;
134 	ifp_p = sc->ifv_p;
135 
136 	/*
137 	 * If we don't have a parent, just remember the membership for
138 	 * when we do.
139 	 */
140 	if (ifp_p == NULL)
141 		return(0);
142 
143 	bzero((char *)&sdl, sizeof sdl);
144 	sdl.sdl_len = sizeof sdl;
145 	sdl.sdl_family = AF_LINK;
146 	sdl.sdl_index = ifp_p->if_index;
147 	sdl.sdl_type = IFT_ETHER;
148 	sdl.sdl_alen = ETHER_ADDR_LEN;
149 
150 	/* First, remove any existing filter entries. */
151 	while(SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
152 		mc = SLIST_FIRST(&sc->vlan_mc_listhead);
153 		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
154 		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
155 		if (error)
156 			return(error);
157 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
158 		free(mc, M_VLAN);
159 	}
160 
161 	/* Now program new ones. */
162 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
163 		if (ifma->ifma_addr->sa_family != AF_LINK)
164 			continue;
165 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_WAITOK);
166 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
167 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
168 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
169 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
170 		    LLADDR(&sdl), ETHER_ADDR_LEN);
171 		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
172 		if (error)
173 			return(error);
174 	}
175 
176 	return(0);
177 }
178 
179 static int
180 vlan_modevent(module_t mod, int type, void *data)
181 {
182 
183 	switch (type) {
184 	case MOD_LOAD:
185 		LIST_INIT(&ifv_list);
186 		vlan_input_p = vlan_input;
187 		vlan_input_tag_p = vlan_input_tag;
188 		if_clone_attach(&vlan_cloner);
189 		break;
190 	case MOD_UNLOAD:
191 		if_clone_detach(&vlan_cloner);
192 		vlan_input_p = NULL;
193 		vlan_input_tag_p = NULL;
194 		while (!LIST_EMPTY(&ifv_list))
195 			vlan_clone_destroy(&LIST_FIRST(&ifv_list)->ifv_if);
196 		break;
197 	}
198 	return 0;
199 }
200 
201 static moduledata_t vlan_mod = {
202 	"if_vlan",
203 	vlan_modevent,
204 	0
205 };
206 
207 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
208 
209 static int
210 vlan_clone_create(struct if_clone *ifc, int unit)
211 {
212 	struct ifvlan *ifv;
213 	struct ifnet *ifp;
214 
215 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
216 	ifp = &ifv->ifv_if;
217 	SLIST_INIT(&ifv->vlan_mc_listhead);
218 
219 	crit_enter();
220 	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
221 	crit_exit();
222 
223 	ifp->if_softc = ifv;
224 	if_initname(ifp, "vlan", unit);
225 	/* NB: flags are not set here */
226 	ifp->if_linkmib = &ifv->ifv_mib;
227 	ifp->if_linkmiblen = sizeof ifv->ifv_mib;
228 	/* NB: mtu is not set here */
229 
230 	ifp->if_init = vlan_ifinit;
231 	ifp->if_start = vlan_start;
232 	ifp->if_ioctl = vlan_ioctl;
233 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
234 	ifq_set_ready(&ifp->if_snd);
235 	ether_ifattach(ifp, ifv->ifv_ac.ac_enaddr, NULL);
236 	/* Now undo some of the damage... */
237 	ifp->if_data.ifi_type = IFT_L2VLAN;
238 	ifp->if_data.ifi_hdrlen = EVL_ENCAPLEN;
239 
240 	return (0);
241 }
242 
243 static void
244 vlan_clone_destroy(struct ifnet *ifp)
245 {
246 	struct ifvlan *ifv = ifp->if_softc;
247 
248 	crit_enter();
249 
250 	LIST_REMOVE(ifv, ifv_list);
251 	vlan_unconfig(ifp);
252 	ether_ifdetach(ifp);
253 
254 	crit_exit();
255 
256 	free(ifv, M_VLAN);
257 }
258 
259 static void
260 vlan_ifinit(void *foo)
261 {
262 	return;
263 }
264 
265 static void
266 vlan_start(struct ifnet *ifp)
267 {
268 	struct ifvlan *ifv;
269 	struct ifnet *p;
270 	struct ether_vlan_header *evl;
271 	struct mbuf *m;
272 	int error;
273 	struct altq_pktattr pktattr;
274 
275 	ifv = ifp->if_softc;
276 	p = ifv->ifv_p;
277 
278 	ifp->if_flags |= IFF_OACTIVE;
279 	for (;;) {
280 		m = ifq_dequeue(&ifp->if_snd, NULL);
281 		if (m == NULL)
282 			break;
283 		BPF_MTAP(ifp, m);
284 
285 		/*
286 		 * Do not run parent's if_start() if the parent is not up,
287 		 * or parent's driver will cause a system crash.
288 		 */
289 		if ((p->if_flags & (IFF_UP | IFF_RUNNING)) !=
290 					(IFF_UP | IFF_RUNNING)) {
291 			m_freem(m);
292 			ifp->if_data.ifi_collisions++;
293 			continue;
294 		}
295 
296 		/*
297 		 * If ALTQ is enabled on the parent interface, do
298 		 * classification; the queueing discipline might
299 		 * not require classification, but might require
300 		 * the address family/header pointer in the pktattr.
301 		 */
302 		if (ifq_is_enabled(&p->if_snd))
303 			altq_etherclassify(&p->if_snd, m, &pktattr);
304 
305 		/*
306 		 * If the LINK0 flag is set, it means the underlying interface
307 		 * can do VLAN tag insertion itself and doesn't require us to
308 	 	 * create a special header for it. In this case, we just pass
309 		 * the packet along. However, we need some way to tell the
310 		 * interface where the packet came from so that it knows how
311 		 * to find the VLAN tag to use, so we set the rcvif in the
312 		 * mbuf header to our ifnet.
313 		 *
314 		 * Note: we also set the M_PROTO1 flag in the mbuf to let
315 		 * the parent driver know that the rcvif pointer is really
316 		 * valid. We need to do this because sometimes mbufs will
317 		 * be allocated by other parts of the system that contain
318 		 * garbage in the rcvif pointer. Using the M_PROTO1 flag
319 		 * lets the driver perform a proper sanity check and avoid
320 		 * following potentially bogus rcvif pointers off into
321 		 * never-never land.
322 		 */
323 		if (ifp->if_flags & IFF_LINK0) {
324 			m->m_pkthdr.rcvif = ifp;
325 			m->m_flags |= M_PROTO1;
326 		} else {
327 			M_PREPEND(m, EVL_ENCAPLEN, MB_DONTWAIT);
328 			if (m == NULL) {
329 				printf("%s: M_PREPEND failed", ifp->if_xname);
330 				ifp->if_ierrors++;
331 				continue;
332 			}
333 			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
334 
335 			m = m_pullup(m, ETHER_HDR_LEN + EVL_ENCAPLEN);
336 			if (m == NULL) {
337 				printf("%s: m_pullup failed", ifp->if_xname);
338 				ifp->if_ierrors++;
339 				continue;
340 			}
341 
342 			/*
343 			 * Transform the Ethernet header into an Ethernet header
344 			 * with 802.1Q encapsulation.
345 			 */
346 			bcopy(mtod(m, char *) + EVL_ENCAPLEN, mtod(m, char *),
347 			      sizeof(struct ether_header));
348 			evl = mtod(m, struct ether_vlan_header *);
349 			evl->evl_proto = evl->evl_encap_proto;
350 			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
351 			evl->evl_tag = htons(ifv->ifv_tag);
352 #ifdef DEBUG
353 			printf("vlan_start: %*D\n", sizeof *evl,
354 			    (unsigned char *)evl, ":");
355 #endif
356 		}
357 
358 		/*
359 		 * Send it, precisely as ether_output() would have.
360 		 * We are already running at splimp.
361 		 */
362 		lwkt_serialize_exit(ifp->if_serializer);
363 		lwkt_serialize_enter(p->if_serializer);
364 		error = ifq_handoff(p, m, &pktattr);
365 		lwkt_serialize_exit(p->if_serializer);
366 		lwkt_serialize_enter(ifp->if_serializer);
367 		if (error)
368 			ifp->if_oerrors++;
369 		else
370 			ifp->if_opackets++;
371 	}
372 	ifp->if_flags &= ~IFF_OACTIVE;
373 
374 	return;
375 }
376 
377 static int
378 vlan_input_tag( struct mbuf *m, uint16_t t)
379 {
380 	struct bpf_if *bif;
381 	struct ifvlan *ifv;
382 	struct ether_header *eh = mtod(m, struct ether_header *);
383 	struct ifnet *rcvif;
384 
385 	m_adj(m, ETHER_HDR_LEN);
386 	rcvif = m->m_pkthdr.rcvif;
387 
388 	ASSERT_SERIALIZED(rcvif->if_serializer);
389 
390 	/*
391 	 * Fake up a header and send the packet to the physical interface's
392 	 * bpf tap if active.
393 	 */
394 	if ((bif = rcvif->if_bpf) != NULL) {
395 		struct ether_vlan_header evh;
396 
397 		bcopy(eh, &evh, 2*ETHER_ADDR_LEN);
398 		evh.evl_encap_proto = htons(ETHERTYPE_VLAN);
399 		evh.evl_tag = htons(t);
400 		evh.evl_proto = eh->ether_type;
401 
402 		bpf_ptap(bif, m, &evh, ETHER_HDR_LEN + EVL_ENCAPLEN);
403 	}
404 
405 	for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
406 	    ifv = LIST_NEXT(ifv, ifv_list)) {
407 		if (rcvif == ifv->ifv_p && ifv->ifv_tag == t)
408 			break;
409 	}
410 
411 	if (ifv == NULL || (ifv->ifv_if.if_flags & IFF_UP) == 0) {
412 		m_freem(m);
413 		return -1;	/* So the parent can take note */
414 	}
415 
416 	/*
417 	 * Having found a valid vlan interface corresponding to
418 	 * the given source interface and vlan tag, run the
419 	 * the real packet through ether_input().
420 	 */
421 	m->m_pkthdr.rcvif = &ifv->ifv_if;
422 
423 	ifv->ifv_if.if_ipackets++;
424 	lwkt_serialize_exit(rcvif->if_serializer);
425 	lwkt_serialize_enter(ifv->ifv_if.if_serializer);
426 	ether_input(&ifv->ifv_if, eh, m);
427 	lwkt_serialize_exit(ifv->ifv_if.if_serializer);
428 	lwkt_serialize_enter(rcvif->if_serializer);
429 	return 0;
430 }
431 
432 static int
433 vlan_input(struct ether_header *eh, struct mbuf *m)
434 {
435 	struct ifvlan *ifv;
436 	struct ifnet *rcvif;
437 
438 	rcvif = m->m_pkthdr.rcvif;
439 	ASSERT_SERIALIZED(rcvif->if_serializer);
440 
441 	for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
442 	    ifv = LIST_NEXT(ifv, ifv_list)) {
443 		if (rcvif == ifv->ifv_p
444 		    && (EVL_VLANOFTAG(ntohs(*mtod(m, u_int16_t *)))
445 			== ifv->ifv_tag))
446 			break;
447 	}
448 
449 	if (ifv == NULL || (ifv->ifv_if.if_flags & IFF_UP) == 0) {
450 		rcvif->if_noproto++;
451 		m_freem(m);
452 		return -1;	/* so ether_input can take note */
453 	}
454 
455 	/*
456 	 * Having found a valid vlan interface corresponding to
457 	 * the given source interface and vlan tag, remove the
458 	 * encapsulation, and run the real packet through
459 	 * ether_input() a second time (it had better be
460 	 * reentrant!).
461 	 */
462 	m->m_pkthdr.rcvif = &ifv->ifv_if;
463 	eh->ether_type = mtod(m, u_int16_t *)[1];
464 	m->m_data += EVL_ENCAPLEN;
465 	m->m_len -= EVL_ENCAPLEN;
466 	m->m_pkthdr.len -= EVL_ENCAPLEN;
467 
468 	ifv->ifv_if.if_ipackets++;
469 	lwkt_serialize_exit(rcvif->if_serializer);
470 	lwkt_serialize_enter(ifv->ifv_if.if_serializer);
471 	ether_input(&ifv->ifv_if, eh, m);
472 	lwkt_serialize_exit(ifv->ifv_if.if_serializer);
473 	lwkt_serialize_enter(rcvif->if_serializer);
474 	return 0;
475 }
476 
477 static int
478 vlan_config(struct ifvlan *ifv, struct ifnet *p)
479 {
480 	struct sockaddr_dl *sdl1, *sdl2;
481 
482 	if (p->if_data.ifi_type != IFT_ETHER)
483 		return EPROTONOSUPPORT;
484 	if (ifv->ifv_p)
485 		return EBUSY;
486 	ifv->ifv_p = p;
487 	if (p->if_data.ifi_hdrlen == sizeof(struct ether_vlan_header))
488 		ifv->ifv_if.if_mtu = p->if_mtu;
489 	else
490 		ifv->ifv_if.if_mtu = p->if_data.ifi_mtu - EVL_ENCAPLEN;
491 
492 	/*
493 	 * Copy only a selected subset of flags from the parent.
494 	 * Other flags are none of our business.
495 	 */
496 	ifv->ifv_if.if_flags = (p->if_flags &
497 	    (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_POINTOPOINT));
498 
499 	/*
500 	 * Set up our ``Ethernet address'' to reflect the underlying
501 	 * physical interface's.
502 	 */
503 	sdl1 = IF_LLSOCKADDR(&ifv->ifv_if);
504 	sdl2 = IF_LLSOCKADDR(p);
505 	sdl1->sdl_type = IFT_ETHER;
506 	sdl1->sdl_alen = ETHER_ADDR_LEN;
507 	bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
508 	bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
509 
510 	/*
511 	 * Configure multicast addresses that may already be
512 	 * joined on the vlan device.
513 	 */
514 	(void)vlan_setmulti(&ifv->ifv_if);
515 
516 	return 0;
517 }
518 
519 static int
520 vlan_unconfig(struct ifnet *ifp)
521 {
522 	struct sockaddr_dl *sdl;
523 	struct vlan_mc_entry *mc;
524 	struct ifvlan *ifv;
525 	struct ifnet *p;
526 	int error;
527 
528 	ifv = ifp->if_softc;
529 	p = ifv->ifv_p;
530 
531 	if (p) {
532 		struct sockaddr_dl sdl;
533 
534 		/*
535 		 * Since the interface is being unconfigured, we need to
536 		 * empty the list of multicast groups that we may have joined
537 		 * while we were alive from the parent's list.
538 		 */
539 		bzero((char *)&sdl, sizeof sdl);
540 		sdl.sdl_len = sizeof sdl;
541 		sdl.sdl_family = AF_LINK;
542 		sdl.sdl_index = p->if_index;
543 		sdl.sdl_type = IFT_ETHER;
544 		sdl.sdl_alen = ETHER_ADDR_LEN;
545 
546 		while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
547 			mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
548 			bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
549 			error = if_delmulti(p, (struct sockaddr *)&sdl);
550 			if (error)
551 				return(error);
552 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
553 			free(mc, M_VLAN);
554 		}
555 	}
556 
557 	/* Disconnect from parent. */
558 	ifv->ifv_p = NULL;
559 	ifv->ifv_if.if_mtu = ETHERMTU;
560 
561 	/* Clear our MAC address. */
562 	sdl = IF_LLSOCKADDR(&ifv->ifv_if);
563 	sdl->sdl_type = IFT_ETHER;
564 	sdl->sdl_alen = ETHER_ADDR_LEN;
565 	bzero(LLADDR(sdl), ETHER_ADDR_LEN);
566 	bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
567 
568 	return 0;
569 }
570 
571 static int
572 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
573 {
574 	struct ifaddr *ifa;
575 	struct ifnet *p;
576 	struct ifreq *ifr;
577 	struct ifvlan *ifv;
578 	struct vlanreq vlr;
579 	int error = 0;
580 
581 	ifr = (struct ifreq *)data;
582 	ifa = (struct ifaddr *)data;
583 	ifv = ifp->if_softc;
584 
585 	ASSERT_SERIALIZED(ifp->if_serializer);
586 	crit_enter();
587 
588 	switch (cmd) {
589 	case SIOCSIFADDR:
590 		ifp->if_flags |= IFF_UP;
591 
592 		switch (ifa->ifa_addr->sa_family) {
593 #ifdef INET
594 		case AF_INET:
595 			arp_ifinit(&ifv->ifv_if, ifa);
596 			break;
597 #endif
598 		default:
599 			break;
600 		}
601 		break;
602 
603 	case SIOCGIFADDR:
604 		{
605 			struct sockaddr *sa;
606 
607 			sa = (struct sockaddr *) &ifr->ifr_data;
608 			bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr,
609 			      (caddr_t) sa->sa_data, ETHER_ADDR_LEN);
610 		}
611 		break;
612 
613 	case SIOCGIFMEDIA:
614 		if (ifv->ifv_p != NULL) {
615 			lwkt_serialize_exit(ifp->if_serializer);
616 			lwkt_serialize_enter(ifv->ifv_p->if_serializer);
617 			error = ifv->ifv_p->if_ioctl(ifv->ifv_p,
618 						     SIOCGIFMEDIA, data, cr);
619 			lwkt_serialize_exit(ifv->ifv_p->if_serializer);
620 			lwkt_serialize_enter(ifp->if_serializer);
621 			/* Limit the result to the parent's current config. */
622 			if (error == 0) {
623 				struct ifmediareq *ifmr;
624 
625 				ifmr = (struct ifmediareq *) data;
626 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
627 					ifmr->ifm_count = 1;
628 					error = copyout(&ifmr->ifm_current,
629 						ifmr->ifm_ulist,
630 						sizeof(int));
631 				}
632 			}
633 		} else
634 			error = EINVAL;
635 		break;
636 
637 	case SIOCSIFMEDIA:
638 		error = EINVAL;
639 		break;
640 
641 	case SIOCSIFMTU:
642 		/*
643 		 * Set the interface MTU.
644 		 * This is bogus. The underlying interface might support
645 	 	 * jumbo frames.
646 		 */
647 		if (ifr->ifr_mtu > ETHERMTU) {
648 			error = EINVAL;
649 		} else {
650 			ifp->if_mtu = ifr->ifr_mtu;
651 		}
652 		break;
653 
654 	case SIOCSETVLAN:
655 		error = copyin(ifr->ifr_data, &vlr, sizeof vlr);
656 		if (error)
657 			break;
658 		if (vlr.vlr_parent[0] == '\0') {
659 			vlan_unconfig(ifp);
660 			if (ifp->if_flags & IFF_UP)
661 				if_down(ifp);
662 			ifp->if_flags &= ~IFF_RUNNING;
663 			break;
664 		}
665 		p = ifunit(vlr.vlr_parent);
666 		if (p == 0) {
667 			error = ENOENT;
668 			break;
669 		}
670 		error = vlan_config(ifv, p);
671 		if (error)
672 			break;
673 		ifv->ifv_tag = vlr.vlr_tag;
674 		ifp->if_flags |= IFF_RUNNING;
675 		break;
676 
677 	case SIOCGETVLAN:
678 		bzero(&vlr, sizeof vlr);
679 		if (ifv->ifv_p) {
680 			strlcpy(vlr.vlr_parent, ifv->ifv_p->if_xname,
681 			    sizeof(vlr.vlr_parent));
682 			vlr.vlr_tag = ifv->ifv_tag;
683 		}
684 		error = copyout(&vlr, ifr->ifr_data, sizeof vlr);
685 		break;
686 
687 	case SIOCSIFFLAGS:
688 		/*
689 		 * We don't support promiscuous mode
690 		 * right now because it would require help from the
691 		 * underlying drivers, which hasn't been implemented.
692 		 */
693 		if (ifr->ifr_flags & (IFF_PROMISC)) {
694 			ifp->if_flags &= ~(IFF_PROMISC);
695 			error = EINVAL;
696 		}
697 		break;
698 	case SIOCADDMULTI:
699 	case SIOCDELMULTI:
700 		error = vlan_setmulti(ifp);
701 		break;
702 	default:
703 		error = EINVAL;
704 	}
705 
706 	crit_exit();
707 
708 	return error;
709 }
710