xref: /dflybsd-src/sys/net/radix.c (revision 6823c302c37b3feda6c2c8b524a99daa1bcff11f)
1 /*
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)radix.c	8.4 (Berkeley) 11/2/94
30  * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $
31  */
32 
33 /*
34  * Routines to build and maintain radix trees for routing lookups.
35  */
36 
37 #include <sys/param.h>
38 #ifdef	_KERNEL
39 #include <sys/systm.h>
40 #include <sys/domain.h>
41 #include <sys/globaldata.h>
42 #include <sys/malloc.h>
43 #include <sys/queue.h>
44 #include <sys/syslog.h>
45 #include <sys/thread.h>
46 #include <net/netisr2.h>
47 #include <net/netmsg2.h>
48 #else
49 #include <stdio.h>
50 #include <stdlib.h>
51 #include <strings.h>
52 #include <syslog.h>
53 #endif
54 #include <net/radix.h>
55 
56 #ifndef _KERNEL
57 #undef MAXCPU
58 #define MAXCPU			1
59 #define mycpuid			0
60 #define log(l, ...)		syslog(l, __VA_ARGS__)
61 #define kprintf(fmt, ...)	printf(fmt, ##__VA_ARGS__)
62 #define print_backtrace(...)	/* nothing */
63 #define panic(fmt, ...) \
64 	do { \
65 		fprintf(stderr, "PANIC: " fmt "\n", ##__VA_ARGS__); \
66 		abort(); \
67 	} while (0)
68 #endif
69 
70 /*
71  * The arguments to the radix functions are really counted byte arrays with
72  * the length in the first byte.  struct sockaddr's fit this type structurally.
73  * Cast the result to int as this is the dominant usage.
74  */
75 #define clen(c)	(int)(*(const u_char *)(c))
76 
77 
78 static struct radix_mask *rn_mkfreelist[MAXCPU];
79 static struct radix_node_head *mask_rnheads[MAXCPU];
80 
81 static const char rn_zeros[RN_MAXKEYLEN];
82 static const char rn_ones[RN_MAXKEYLEN] = RN_MAXKEYONES;
83 
84 #ifdef RN_DEBUG
85 static int rn_nodenum;
86 static struct radix_node *rn_clist;
87 static int rn_saveinfo;
88 static bool rn_debug = true;
89 #endif
90 
91 
92 static __inline struct radix_mask *
93 MKGet(struct radix_mask **l)
94 {
95 	struct radix_mask *m;
96 
97 	if (*l != NULL) {
98 		m = *l;
99 		*l = m->rm_next;
100 	} else {
101 		R_Malloc(m, struct radix_mask *, sizeof *m);
102 	}
103 	return m;
104 }
105 
106 static __inline void
107 MKFree(struct radix_mask **l, struct radix_mask *m)
108 {
109 	m->rm_next = *l;
110 	*l = m;
111 }
112 
113 /*
114  * The data structure for the keys is a radix tree with one way
115  * branching removed.  The index rn_bit at an internal node n represents a bit
116  * position to be tested.  The tree is arranged so that all descendants
117  * of a node n have keys whose bits all agree up to position rn_bit - 1.
118  * (We say the index of n is rn_bit.)
119  *
120  * There is at least one descendant which has a one bit at position rn_bit,
121  * and at least one with a zero there.
122  *
123  * A route is determined by a pair of key and mask.  We require that the
124  * bit-wise logical and of the key and mask to be the key.
125  * We define the index of a route to associated with the mask to be
126  * the first bit number in the mask where 0 occurs (with bit number 0
127  * representing the highest order bit).
128  *
129  * We say a mask is normal if every bit is 0, past the index of the mask.
130  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
131  * and m is a normal mask, then the route applies to every descendant of n.
132  * If the index(m) < rn_bit, this implies the trailing last few bits of k
133  * before bit b are all 0, (and hence consequently true of every descendant
134  * of n), so the route applies to all descendants of the node as well.
135  *
136  * Similar logic shows that a non-normal mask m such that
137  * index(m) <= index(n) could potentially apply to many children of n.
138  * Thus, for each non-host route, we attach its mask to a list at an internal
139  * node as high in the tree as we can go.
140  *
141  * The present version of the code makes use of normal routes in short-
142  * circuiting an explict mask and compare operation when testing whether
143  * a key satisfies a normal route, and also in remembering the unique leaf
144  * that governs a subtree.
145  */
146 
147 static struct radix_node *
148 rn_search(const char *v, struct radix_node *head)
149 {
150 	struct radix_node *x;
151 
152 	x = head;
153 	while (x->rn_bit >= 0) {
154 		if (x->rn_bmask & v[x->rn_offset])
155 			x = x->rn_right;
156 		else
157 			x = x->rn_left;
158 	}
159 	return (x);
160 }
161 
162 static struct radix_node *
163 rn_search_m(const char *v, struct radix_node *head, const char *m)
164 {
165 	struct radix_node *x;
166 
167 	x = head;
168 	while (x->rn_bit >= 0) {
169 		if ((x->rn_bmask & m[x->rn_offset]) &&
170 		    (x->rn_bmask & v[x->rn_offset]))
171 			x = x->rn_right;
172 		else
173 			x = x->rn_left;
174 	}
175 	return x;
176 }
177 
178 /*
179  * Compare the two netmasks and return true if netmask <m> is strictly more
180  * specific than netmask <n>.
181  *
182  * NOTE: Non-contiguous netmask is supported.
183  */
184 bool
185 rn_refines(const char *m, const char *n)
186 {
187 	const char *lim, *lim2;
188 	int longer;
189 	bool equal;
190 
191 	equal = true;
192 	lim2 = lim = n + clen(n);
193 	longer = clen(n++) - clen(m++);
194 	if (longer > 0)
195 		lim -= longer;
196 
197 	while (n < lim) {
198 		if (*n & ~(*m))
199 			return false;
200 		if (*n++ != *m++)
201 			equal = false;
202 	}
203 	while (n < lim2) {
204 		if (*n++) /* n is longer and more specific */
205 			return false;
206 	}
207 	if (equal && (longer < 0)) {
208 		lim2 = m - longer;
209 		while (m < lim2) {
210 			if (*m++) /* m is longer and more specific */
211 				return true;
212 		}
213 	}
214 
215 	return (!equal);
216 }
217 
218 struct radix_node *
219 rn_lookup(const char *key, const char *mask, struct radix_node_head *head)
220 {
221 	struct radix_node *x;
222 	const char *netmask = NULL;
223 
224 	if (mask != NULL) {
225 		x = rn_addmask(mask, true, head->rnh_treetop->rn_offset,
226 			       head->rnh_maskhead);
227 		if (x == NULL)
228 			return (NULL);
229 		netmask = x->rn_key;
230 	}
231 
232 	x = rn_match(key, head);
233 	if (x != NULL && netmask != NULL) {
234 		while (x != NULL && x->rn_mask != netmask)
235 			x = x->rn_dupedkey;
236 	}
237 
238 	return x;
239 }
240 
241 static bool
242 rn_satisfies_leaf(const char *trial, struct radix_node *leaf, int skip)
243 {
244 	const char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
245 	const char *cplim;
246 	int length;
247 
248 	length = MIN(clen(cp), clen(cp2));
249 	if (cp3 == NULL)
250 		cp3 = rn_ones;
251 	else
252 		length = MIN(length, clen(cp3));
253 
254 	cplim = cp + length;
255 	cp2 += skip;
256 	cp3 += skip;
257 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++) {
258 		if ((*cp ^ *cp2) & *cp3)
259 			return false;
260 	}
261 
262 	return true;
263 }
264 
265 struct radix_node *
266 rn_match(const char *key, struct radix_node_head *head)
267 {
268 	struct radix_node *t, *x;
269 	const char *cp = key, *cp2;
270 	const char *cplim;
271 	struct radix_node *saved_t, *top = head->rnh_treetop;
272 	int off = top->rn_offset, klen, matched_off;
273 	int test, b, rn_bit;
274 
275 	t = rn_search(key, top);
276 	/*
277 	 * See if we match exactly as a host destination
278 	 * or at least learn how many bits match, for normal mask finesse.
279 	 *
280 	 * It doesn't hurt us to limit how many bytes to check
281 	 * to the length of the mask, since if it matches we had a genuine
282 	 * match and the leaf we have is the most specific one anyway;
283 	 * if it didn't match with a shorter length it would fail
284 	 * with a long one.  This wins big for class B&C netmasks which
285 	 * are probably the most common case...
286 	 */
287 	if (t->rn_mask != NULL)
288 		klen = clen(t->rn_mask);
289 	else
290 		klen = clen(key);
291 	cp += off; cp2 = t->rn_key + off; cplim = key + klen;
292 	for (; cp < cplim; cp++, cp2++)
293 		if (*cp != *cp2)
294 			goto on1;
295 
296 	/*
297 	 * This extra grot is in case we are explicitly asked
298 	 * to look up the default.  Ugh!
299 	 *
300 	 * Never return the root node itself, it seems to cause a
301 	 * lot of confusion.
302 	 */
303 	if (t->rn_flags & RNF_ROOT)
304 		t = t->rn_dupedkey;
305 	return t;
306 
307 on1:
308 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
309 	for (b = 7; (test >>= 1) > 0;)
310 		b--;
311 	matched_off = cp - key;
312 	b += matched_off << 3;
313 	rn_bit = -1 - b;
314 
315 	/*
316 	 * If there is a host route in a duped-key chain, it will be first.
317 	 */
318 	saved_t = t;
319 	if (t->rn_mask == NULL)
320 		t = t->rn_dupedkey;
321 	for (; t != NULL; t = t->rn_dupedkey) {
322 		/*
323 		 * Even if we don't match exactly as a host,
324 		 * we may match if the leaf we wound up at is
325 		 * a route to a net.
326 		 */
327 		if (t->rn_flags & RNF_NORMAL) {
328 			if (rn_bit <= t->rn_bit)
329 				return t;
330 		} else if (rn_satisfies_leaf(key, t, matched_off))
331 			return t;
332 	}
333 	t = saved_t;
334 
335 	/* start searching up the tree */
336 	do {
337 		struct radix_mask *m;
338 
339 		t = t->rn_parent;
340 		/*
341 		 * If non-contiguous masks ever become important
342 		 * we can restore the masking and open coding of
343 		 * the search and satisfaction test and put the
344 		 * calculation of "off" back before the "do".
345 		 */
346 		m = t->rn_mklist;
347 		while (m != NULL) {
348 			if (m->rm_flags & RNF_NORMAL) {
349 				if (rn_bit <= m->rm_bit)
350 					return (m->rm_leaf);
351 			} else {
352 				off = MIN(t->rn_offset, matched_off);
353 				x = rn_search_m(key, t, m->rm_mask);
354 				while (x != NULL && x->rn_mask != m->rm_mask)
355 					x = x->rn_dupedkey;
356 				if (x != NULL && rn_satisfies_leaf(key, x, off))
357 					return x;
358 			}
359 			m = m->rm_next;
360 		}
361 	} while (t != top);
362 
363 	return NULL;
364 }
365 
366 /*
367  * Whenever to add a new leaf to the tree, another parant node is needed.
368  * So they are allocated as an array of two elements: the first element is
369  * the leaf, the second one is the parant node.
370  *
371  * This function initializes the given pair of nodes <nodes>, so that the
372  * leaf is the left child of the parent node.
373  */
374 static struct radix_node *
375 rn_newpair(const char *key, int bit, struct radix_node nodes[2])
376 {
377 	struct radix_node *left, *parent;
378 
379 	left = &nodes[0];
380 	parent = &nodes[1];
381 
382 	parent->rn_bit = (short)bit;
383 	parent->rn_bmask = 0x80 >> (bit & 0x7);
384 	parent->rn_offset = bit >> 3;
385 	parent->rn_left = left;
386 	parent->rn_flags = RNF_ACTIVE;
387 	parent->rn_mklist = NULL;
388 
389 	left->rn_bit = -1;
390 	left->rn_key = key;
391 	left->rn_parent = parent;
392 	left->rn_flags = parent->rn_flags;
393 	left->rn_mklist = NULL;
394 
395 #ifdef RN_DEBUG
396 	left->rn_info = rn_nodenum++;
397 	parent->rn_info = rn_nodenum++;
398 	left->rn_twin = parent;
399 	left->rn_ybro = rn_clist;
400 	rn_clist = left;
401 #endif
402 
403 	return parent;
404 }
405 
406 static struct radix_node *
407 rn_insert(const char *key, struct radix_node_head *head, bool *dupentry,
408 	  struct radix_node nodes[2])
409 {
410 	struct radix_node *top = head->rnh_treetop;
411 	int head_off = top->rn_offset, klen = clen(key);
412 	struct radix_node *t = rn_search(key, top);
413 	const char *cp = key + head_off;
414 	unsigned int b;
415 	struct radix_node *tt;
416 
417 	/*
418 	 * Find first bit at which the key and t->rn_key differ
419 	 */
420     {
421 	const char *cp2 = t->rn_key + head_off;
422 	int cmp_res;
423 	const char *cplim = key + klen;
424 
425 	while (cp < cplim) {
426 		if (*cp2++ != *cp++)
427 			goto on1;
428 	}
429 
430 	*dupentry = true;
431 	return t;
432 
433 on1:
434 	*dupentry = false;
435 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
436 	for (b = (cp - key) << 3; cmp_res; b--)
437 		cmp_res >>= 1;
438     }
439     {
440 	struct radix_node *p, *x = top;
441 
442 	cp = key;
443 	do {
444 		p = x;
445 		if (cp[x->rn_offset] & x->rn_bmask)
446 			x = x->rn_right;
447 		else
448 			x = x->rn_left;
449 	} while (b > (unsigned) x->rn_bit);
450 				/* x->rn_bit < b && x->rn_bit >= 0 */
451 #ifdef RN_DEBUG
452 	if (rn_debug) {
453 		log(LOG_DEBUG, "%s: Going In:\n", __func__);
454 		traverse(p);
455 	}
456 #endif
457 	t = rn_newpair(key, b, nodes);
458 	tt = t->rn_left;
459 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
460 		p->rn_left = t;
461 	else
462 		p->rn_right = t;
463 	x->rn_parent = t;
464 	t->rn_parent = p; /* frees x, p as temp vars below */
465 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
466 		t->rn_right = x;
467 	} else {
468 		t->rn_right = tt;
469 		t->rn_left = x;
470 	}
471 #ifdef RN_DEBUG
472 	if (rn_debug) {
473 		log(LOG_DEBUG, "%s: Coming Out:\n", __func__);
474 		traverse(p);
475 	}
476 #endif
477     }
478 	return (tt);
479 }
480 
481 struct radix_node *
482 rn_addmask(const char *netmask, bool search, int skip,
483 	   struct radix_node_head *mask_rnh)
484 {
485 	struct radix_node *x, *saved_x;
486 	const char *cp, *cplim;
487 	char *p;
488 	int b = 0, mlen, j;
489 	bool maskduplicated, isnormal;
490 	char addmask_key[RN_MAXKEYLEN];
491 
492 	if ((mlen = clen(netmask)) > RN_MAXKEYLEN)
493 		mlen = RN_MAXKEYLEN;
494 	if (skip == 0)
495 		skip = 1;
496 	if (mlen <= skip)
497 		return (mask_rnh->rnh_nodes); /* all-zero key */
498 
499 	bzero(addmask_key, sizeof(addmask_key));
500 	if (skip > 1)
501 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
502 	bcopy(netmask + skip, addmask_key + skip, mlen - skip);
503 	/* Trim trailing zeroes. */
504 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
505 		cp--;
506 	mlen = cp - addmask_key;
507 	if (mlen <= skip)
508 		return (mask_rnh->rnh_nodes); /* all-zero key */
509 
510 	*addmask_key = mlen;
511 	x = rn_search(addmask_key, mask_rnh->rnh_treetop);
512 	if (x->rn_key == NULL) {
513 		kprintf("WARNING: radix_node->rn_key is NULL rn=%p\n", x);
514 		print_backtrace(-1);
515 		x = NULL;
516 	} else if (bcmp(addmask_key, x->rn_key, mlen) != 0) {
517 		x = NULL;
518 	}
519 	if (x != NULL || search)
520 		return (x);
521 
522 	R_Malloc(x, struct radix_node *, RN_MAXKEYLEN + 2 * (sizeof *x));
523 	if ((saved_x = x) == NULL)
524 		return (NULL);
525 
526 	bzero(x, RN_MAXKEYLEN + 2 * (sizeof *x));
527 	netmask = p = (char *)(x + 2);
528 	bcopy(addmask_key, p, mlen);
529 	x = rn_insert(netmask, mask_rnh, &maskduplicated, x);
530 	if (maskduplicated) {
531 		log(LOG_ERR, "%s: mask impossibly already in tree", __func__);
532 		R_Free(saved_x);
533 		return (x);
534 	}
535 
536 	/*
537 	 * Calculate index of mask, and check for normalcy.
538 	 */
539 	isnormal = true;
540 	cplim = netmask + mlen;
541 	for (cp = netmask + skip; cp < cplim && clen(cp) == 0xff;)
542 		cp++;
543 	if (cp != cplim) {
544 		static const char normal_chars[] = {
545 			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
546 		};
547 
548 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
549 			b++;
550 		if (*cp != normal_chars[b] || cp != (cplim - 1))
551 			isnormal = false;
552 	}
553 	b += (cp - netmask) << 3;
554 	x->rn_bit = -1 - b;
555 	if (isnormal)
556 		x->rn_flags |= RNF_NORMAL;
557 	return (x);
558 }
559 
560 /*
561  * Compare the two netmasks and return true if netmask <m> is more
562  * specific than netmask <n>.
563  *
564  * NOTE: arbitrary ordering for non-contiguous masks.
565  */
566 static bool
567 rn_lexobetter(const char *mp, const char *np)
568 {
569 	const char *lim;
570 
571 	if (clen(mp) > clen(np))
572 		return true; /* not really, but need to check longer one first */
573 
574 	if (clen(mp) == clen(np)) {
575 		for (lim = mp + clen(mp); mp < lim; mp++, np++) {
576 			if ((unsigned)*mp > (unsigned)*np)
577 				return true;
578 		}
579 	}
580 
581 	return false;
582 }
583 
584 static struct radix_mask *
585 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask)
586 {
587 	struct radix_mask *m;
588 
589 	m = MKGet(&rn_mkfreelist[mycpuid]);
590 	if (m == NULL) {
591 		log(LOG_ERR, "Mask for route not entered\n");
592 		return (NULL);
593 	}
594 
595 	bzero(m, sizeof *m);
596 	m->rm_bit = tt->rn_bit;
597 	m->rm_flags = tt->rn_flags;
598 	if (tt->rn_flags & RNF_NORMAL)
599 		m->rm_leaf = tt;
600 	else
601 		m->rm_mask = tt->rn_mask;
602 	m->rm_next = nextmask;
603 	tt->rn_mklist = m;
604 
605 	return m;
606 }
607 
608 struct radix_node *
609 rn_addroute(const char *key, const char *netmask,
610 	    struct radix_node_head *head, struct radix_node treenodes[2])
611 {
612 	struct radix_node *t, *x = NULL, *tt;
613 	struct radix_node *saved_tt, *top = head->rnh_treetop;
614 	short b = 0, b_leaf = 0;
615 	bool keyduplicated;
616 	const char *mmask;
617 	struct radix_mask *m, **mp;
618 
619 	/*
620 	 * In dealing with non-contiguous masks, there may be
621 	 * many different routes which have the same mask.
622 	 * We will find it useful to have a unique pointer to
623 	 * the mask to speed avoiding duplicate references at
624 	 * nodes and possibly save time in calculating indices.
625 	 */
626 	if (netmask != NULL) {
627 		if ((x = rn_addmask(netmask, false, top->rn_offset,
628 				    head->rnh_maskhead)) == NULL)
629 			return (NULL);
630 		b_leaf = x->rn_bit;
631 		b = -1 - x->rn_bit;
632 		netmask = x->rn_key;
633 	}
634 	/*
635 	 * Deal with duplicated keys: attach node to previous instance
636 	 */
637 	saved_tt = tt = rn_insert(key, head, &keyduplicated, treenodes);
638 	if (keyduplicated) {
639 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
640 			if (tt->rn_mask == netmask)
641 				return (NULL);
642 			if (netmask == NULL ||
643 			    (tt->rn_mask &&
644 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
645 			      || rn_refines(netmask, tt->rn_mask)
646 			      || rn_lexobetter(netmask, tt->rn_mask))))
647 				break;
648 		}
649 		/*
650 		 * If the mask is not duplicated, we wouldn't
651 		 * find it among possible duplicate key entries
652 		 * anyway, so the above test doesn't hurt.
653 		 *
654 		 * We sort the masks for a duplicated key the same way as
655 		 * in a masklist -- most specific to least specific.
656 		 * This may require the unfortunate nuisance of relocating
657 		 * the head of the list.
658 		 */
659 		if (tt == saved_tt) {
660 			struct	radix_node *xx = x;
661 			/* link in at head of list */
662 			(tt = treenodes)->rn_dupedkey = t;
663 			tt->rn_flags = t->rn_flags;
664 			tt->rn_parent = x = t->rn_parent;
665 			t->rn_parent = tt;			/* parent */
666 			if (x->rn_left == t)
667 				x->rn_left = tt;
668 			else
669 				x->rn_right = tt;
670 			saved_tt = tt; x = xx;
671 		} else {
672 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
673 			t->rn_dupedkey = tt;
674 			tt->rn_parent = t;			/* parent */
675 			if (tt->rn_dupedkey != NULL)		/* parent */
676 				tt->rn_dupedkey->rn_parent = tt; /* parent */
677 		}
678 #ifdef RN_DEBUG
679 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
680 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
681 #endif
682 		tt->rn_key = key;
683 		tt->rn_bit = -1;
684 		tt->rn_flags = RNF_ACTIVE;
685 	}
686 	/*
687 	 * Put mask in tree.
688 	 */
689 	if (netmask != NULL) {
690 		tt->rn_mask = netmask;
691 		tt->rn_bit = x->rn_bit;
692 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
693 	}
694 	t = saved_tt->rn_parent;
695 	if (keyduplicated)
696 		goto on2;
697 	b_leaf = -1 - t->rn_bit;
698 	if (t->rn_right == saved_tt)
699 		x = t->rn_left;
700 	else
701 		x = t->rn_right;
702 	/* Promote general routes from below */
703 	if (x->rn_bit < 0) {
704 		mp = &t->rn_mklist;
705 		while (x != NULL) {
706 			if (x->rn_mask != NULL &&
707 			    x->rn_bit >= b_leaf &&
708 			    x->rn_mklist == NULL) {
709 				*mp = m = rn_new_radix_mask(x, NULL);
710 				if (m != NULL)
711 					mp = &m->rm_next;
712 			}
713 			x = x->rn_dupedkey;
714 		}
715 	} else if (x->rn_mklist != NULL) {
716 		/*
717 		 * Skip over masks whose index is > that of new node
718 		 */
719 		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_next) {
720 			if (m->rm_bit >= b_leaf)
721 				break;
722 		}
723 		t->rn_mklist = m;
724 		*mp = NULL;
725 	}
726 on2:
727 	/* Add new route to highest possible ancestor's list */
728 	if ((netmask == NULL) || (b > t->rn_bit ))
729 		return tt; /* can't lift at all */
730 	b_leaf = tt->rn_bit;
731 	do {
732 		x = t;
733 		t = t->rn_parent;
734 	} while (b <= t->rn_bit && x != top);
735 	/*
736 	 * Search through routes associated with node to
737 	 * insert new route according to index.
738 	 * Need same criteria as when sorting dupedkeys to avoid
739 	 * double loop on deletion.
740 	 */
741 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_next) {
742 		if (m->rm_bit < b_leaf)
743 			continue;
744 		if (m->rm_bit > b_leaf)
745 			break;
746 		if (m->rm_flags & RNF_NORMAL) {
747 			mmask = m->rm_leaf->rn_mask;
748 			if (tt->rn_flags & RNF_NORMAL) {
749 			    log(LOG_ERR,
750 			        "Non-unique normal route, mask not entered\n");
751 				return tt;
752 			}
753 		} else
754 			mmask = m->rm_mask;
755 		if (mmask == netmask) {
756 			m->rm_refs++;
757 			tt->rn_mklist = m;
758 			return tt;
759 		}
760 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
761 			break;
762 	}
763 	*mp = rn_new_radix_mask(tt, *mp);
764 	return tt;
765 }
766 
767 struct radix_node *
768 rn_delete(const char *key, const char *netmask, struct radix_node_head *head)
769 {
770 	struct radix_node *t, *p, *x, *tt;
771 	struct radix_mask *m, *saved_m, **mp;
772 	struct radix_node *dupedkey, *saved_tt, *top;
773 	int b, head_off, klen;
774 	int cpu = mycpuid;
775 
776 	x = head->rnh_treetop;
777 	tt = rn_search(key, x);
778 	head_off = x->rn_offset;
779 	klen =  clen(key);
780 	saved_tt = tt;
781 	top = x;
782 	if (tt == NULL ||
783 	    bcmp(key + head_off, tt->rn_key + head_off, klen - head_off))
784 		return (NULL);
785 
786 	/*
787 	 * Delete our route from mask lists.
788 	 */
789 	if (netmask != NULL) {
790 		if ((x = rn_addmask(netmask, true, head_off,
791 				    head->rnh_maskhead)) == NULL)
792 			return (NULL);
793 		netmask = x->rn_key;
794 		while (tt->rn_mask != netmask)
795 			if ((tt = tt->rn_dupedkey) == NULL)
796 				return (NULL);
797 	}
798 	if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
799 		goto on1;
800 	if (tt->rn_flags & RNF_NORMAL) {
801 		if (m->rm_leaf != tt || m->rm_refs > 0) {
802 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
803 			return (NULL);  /* dangling ref could cause disaster */
804 		}
805 	} else {
806 		if (m->rm_mask != tt->rn_mask) {
807 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
808 			goto on1;
809 		}
810 		if (--m->rm_refs >= 0)
811 			goto on1;
812 	}
813 	b = -1 - tt->rn_bit;
814 	t = saved_tt->rn_parent;
815 	if (b > t->rn_bit)
816 		goto on1; /* Wasn't lifted at all */
817 
818 	do {
819 		x = t;
820 		t = t->rn_parent;
821 	} while (b <= t->rn_bit && x != top);
822 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_next)
823 		if (m == saved_m) {
824 			*mp = m->rm_next;
825 			MKFree(&rn_mkfreelist[cpu], m);
826 			break;
827 		}
828 	if (m == NULL) {
829 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
830 		if (tt->rn_flags & RNF_NORMAL)
831 			return (NULL); /* Dangling ref to us */
832 	}
833 
834 on1:
835 	/*
836 	 * Eliminate us from tree
837 	 */
838 	if (tt->rn_flags & RNF_ROOT)
839 		return (NULL);
840 
841 #ifdef RN_DEBUG
842 	/* Get us out of the creation list */
843 	for (t = rn_clist; t != NULL && t->rn_ybro != tt; t = t->rn_ybro)
844 		;
845 	if (t != NULL)
846 		t->rn_ybro = tt->rn_ybro;
847 #endif
848 
849 	t = tt->rn_parent;
850 	dupedkey = saved_tt->rn_dupedkey;
851 	if (dupedkey != NULL) {
852 		/*
853 		 * at this point, tt is the deletion target and saved_tt
854 		 * is the head of the dupekey chain
855 		 */
856 		if (tt == saved_tt) {
857 			/* remove from head of chain */
858 			x = dupedkey;
859 			x->rn_parent = t;
860 			if (t->rn_left == tt)
861 				t->rn_left = x;
862 			else
863 				t->rn_right = x;
864 		} else {
865 			/* find node in front of tt on the chain */
866 			for (x = p = saved_tt; p != NULL && p->rn_dupedkey != tt;)
867 				p = p->rn_dupedkey;
868 			if (p) {
869 				p->rn_dupedkey = tt->rn_dupedkey;
870 				if (tt->rn_dupedkey)		/* parent */
871 					tt->rn_dupedkey->rn_parent = p;
872 								/* parent */
873 			} else {
874 				log(LOG_ERR, "rn_delete: couldn't find us\n");
875 			}
876 		}
877 		t = tt + 1;
878 		if  (t->rn_flags & RNF_ACTIVE) {
879 #ifndef RN_DEBUG
880 			*++x = *t;
881 			p = t->rn_parent;
882 #else
883 			b = t->rn_info;
884 			*++x = *t;
885 			t->rn_info = b;
886 			p = t->rn_parent;
887 #endif
888 			if (p->rn_left == t)
889 				p->rn_left = x;
890 			else
891 				p->rn_right = x;
892 			x->rn_left->rn_parent = x;
893 			x->rn_right->rn_parent = x;
894 		}
895 		goto out;
896 	}
897 	if (t->rn_left == tt)
898 		x = t->rn_right;
899 	else
900 		x = t->rn_left;
901 	p = t->rn_parent;
902 	if (p->rn_right == t)
903 		p->rn_right = x;
904 	else
905 		p->rn_left = x;
906 	x->rn_parent = p;
907 	/*
908 	 * Demote routes attached to us.
909 	 */
910 	if (t->rn_mklist != NULL) {
911 		if (x->rn_bit >= 0) {
912 			for (mp = &x->rn_mklist; (m = *mp) != NULL;)
913 				mp = &m->rm_next;
914 			*mp = t->rn_mklist;
915 		} else {
916 			/*
917 			 * If there are any (key, mask) pairs in a sibling
918 			 * duped-key chain, some subset will appear sorted
919 			 * in the same order attached to our mklist.
920 			 */
921 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
922 				if (m == x->rn_mklist) {
923 					struct radix_mask *mm = m->rm_next;
924 
925 					x->rn_mklist = NULL;
926 					if (--(m->rm_refs) < 0)
927 						MKFree(&rn_mkfreelist[cpu], m);
928 					m = mm;
929 				}
930 			if (m) {
931 				log(LOG_ERR,
932 				    "rn_delete: Orphaned Mask %p at %p\n",
933 				    (void *)m, (void *)x);
934 			}
935 		}
936 	}
937 	/*
938 	 * We may be holding an active internal node in the tree.
939 	 */
940 	x = tt + 1;
941 	if (t != x) {
942 #ifndef RN_DEBUG
943 		*t = *x;
944 #else
945 		b = t->rn_info;
946 		*t = *x;
947 		t->rn_info = b;
948 #endif
949 		t->rn_left->rn_parent = t;
950 		t->rn_right->rn_parent = t;
951 		p = x->rn_parent;
952 		if (p->rn_left == x)
953 			p->rn_left = t;
954 		else
955 			p->rn_right = t;
956 	}
957 
958 out:
959 	tt->rn_flags &= ~RNF_ACTIVE;
960 	tt[1].rn_flags &= ~RNF_ACTIVE;
961 	return (tt);
962 }
963 
964 /*
965  * This is the same as rn_walktree() except for the parameters and the
966  * exit.
967  */
968 static int
969 rn_walktree_from(struct radix_node_head *h, const char *xa, const char *xm,
970 		 walktree_f_t *f, void *w)
971 {
972 	struct radix_node *base, *next;
973 	struct radix_node *rn, *last = NULL /* shut up gcc */;
974 	bool stopping = false;
975 	int lastb, error;
976 
977 	/*
978 	 * rn_search_m is sort-of-open-coded here.
979 	 */
980 	/* kprintf("about to search\n"); */
981 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
982 		last = rn;
983 		/* kprintf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
984 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
985 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
986 			break;
987 		}
988 		if (rn->rn_bmask & xa[rn->rn_offset]) {
989 			rn = rn->rn_right;
990 		} else {
991 			rn = rn->rn_left;
992 		}
993 	}
994 	/* kprintf("done searching\n"); */
995 
996 	/*
997 	 * Two cases: either we stepped off the end of our mask,
998 	 * in which case last == rn, or we reached a leaf, in which
999 	 * case we want to start from the last node we looked at.
1000 	 * Either way, last is the node we want to start from.
1001 	 */
1002 	rn = last;
1003 	lastb = rn->rn_bit;
1004 
1005 	/* kprintf("rn %p, lastb %d\n", rn, lastb);*/
1006 
1007 	/*
1008 	 * This gets complicated because we may delete the node
1009 	 * while applying the function f to it, so we need to calculate
1010 	 * the successor node in advance.
1011 	 */
1012 	while (rn->rn_bit >= 0)
1013 		rn = rn->rn_left;
1014 
1015 	while (!stopping) {
1016 		/* kprintf("node %p (%d)\n", rn, rn->rn_bit); */
1017 		base = rn;
1018 		/* If at right child go back up, otherwise, go right */
1019 		while (rn->rn_parent->rn_right == rn &&
1020 		    !(rn->rn_flags & RNF_ROOT)) {
1021 			rn = rn->rn_parent;
1022 
1023 			/* if went up beyond last, stop */
1024 			if (rn->rn_bit < lastb) {
1025 				stopping = true;
1026 				/* kprintf("up too far\n"); */
1027 			}
1028 		}
1029 
1030 		/* Find the next *leaf* since next node might vanish, too */
1031 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1032 			rn = rn->rn_left;
1033 		next = rn;
1034 		/* Process leaves */
1035 		while ((rn = base) != NULL) {
1036 			base = rn->rn_dupedkey;
1037 			/* kprintf("leaf %p\n", rn); */
1038 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
1039 				return (error);
1040 		}
1041 		rn = next;
1042 
1043 		if (rn->rn_flags & RNF_ROOT) {
1044 			/* kprintf("root, stopping"); */
1045 			stopping = true;
1046 		}
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 static int
1053 rn_walktree_at(struct radix_node_head *h, const char *a, const char *m,
1054 	       walktree_f_t *f, void *w)
1055 {
1056 	struct radix_node *base, *next;
1057 	struct radix_node *rn = h->rnh_treetop;
1058 	int error;
1059 
1060 	/*
1061 	 * This gets complicated because we may delete the node
1062 	 * while applying the function f to it, so we need to calculate
1063 	 * the successor node in advance.
1064 	 */
1065 	if (a == NULL) {
1066 		/* First time through node, go left */
1067 		while (rn->rn_bit >= 0)
1068 			rn = rn->rn_left;
1069 	} else {
1070 		if (m != NULL)
1071 			rn = rn_search_m(a, rn, m);
1072 		else
1073 			rn = rn_search(a, rn);
1074 	}
1075 	for (;;) {
1076 		base = rn;
1077 		/* If at right child go back up, otherwise, go right */
1078 		while (rn->rn_parent->rn_right == rn &&
1079 		    !(rn->rn_flags & RNF_ROOT))
1080 			rn = rn->rn_parent;
1081 		/* Find the next *leaf* since next node might vanish, too */
1082 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1083 			rn = rn->rn_left;
1084 		next = rn;
1085 		/* Process leaves */
1086 		while ((rn = base)) {
1087 			base = rn->rn_dupedkey;
1088 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
1089 				return (error);
1090 		}
1091 		rn = next;
1092 		if (rn->rn_flags & RNF_ROOT)
1093 			return (0);
1094 	}
1095 	/* NOTREACHED */
1096 }
1097 
1098 static int
1099 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
1100 {
1101 	return rn_walktree_at(h, NULL, NULL, f, w);
1102 }
1103 
1104 /*
1105  * Allocate and initialize an empty radix tree at <head>.
1106  *
1107  * The created radix_node_head embeds 3 nodes in the order of
1108  * {left,root,right}.  These nodes are flagged with RNF_ROOT and thus
1109  * cannot be freed.  The left and right leaves are initialized with
1110  * all-zero and all-one keys, respectively, and with the significant
1111  * byte starting at <off_bytes>.
1112  *
1113  * The <maskhead> refers to another radix tree for storing the network
1114  * masks (so aka mask tree).  It is also created by this function with
1115  * <maskhead>=NULL; the <off_bytes> parameter is ignored and auto set
1116  * to be zero (0).  The reason of requiring <off_bytes> be zero is that
1117  * a mask tree can be shared with multiple radix trees of different
1118  * address families that have different offset bytes; e.g.,
1119  * offsetof(struct sockaddr_in, sin_addr) !=
1120  * offsetof(struct sockaddr_in6, sin6_addr).
1121  *
1122  * Return 1 on success, 0 on error.
1123  */
1124 int
1125 rn_inithead(struct radix_node_head **head, struct radix_node_head *maskhead,
1126 	    int off_bytes)
1127 {
1128 	struct radix_node_head *rnh;
1129 	struct radix_node *root, *left, *right;
1130 
1131 	if (*head != NULL)	/* already initialized */
1132 		return (1);
1133 
1134 	R_Malloc(rnh, struct radix_node_head *, sizeof *rnh);
1135 	if (rnh == NULL)
1136 		return (0);
1137 
1138 	if (maskhead == NULL)	/* mask tree initialization */
1139 		off_bytes = 0;
1140 	if (off_bytes >= RN_MAXKEYLEN)	/* prevent possible misuse */
1141 		panic("%s: invalid off_bytes=%d", __func__, off_bytes);
1142 
1143 	bzero(rnh, sizeof *rnh);
1144 	*head = rnh;
1145 
1146 	root = rn_newpair(rn_zeros, off_bytes * NBBY, rnh->rnh_nodes);
1147 	right = &rnh->rnh_nodes[2];
1148 	root->rn_parent = root;
1149 	root->rn_flags = RNF_ROOT | RNF_ACTIVE;
1150 	root->rn_right = right;
1151 
1152 	left = root->rn_left;
1153 	left->rn_bit = -1 - off_bytes * NBBY;
1154 	left->rn_flags = root->rn_flags;
1155 
1156 	*right = *left;
1157 	right->rn_key = rn_ones;
1158 
1159 	rnh->rnh_treetop = root;
1160 	rnh->rnh_maskhead = maskhead;
1161 
1162 	rnh->rnh_addaddr = rn_addroute;
1163 	rnh->rnh_deladdr = rn_delete;
1164 	rnh->rnh_matchaddr = rn_match;
1165 	rnh->rnh_lookup = rn_lookup;
1166 	rnh->rnh_walktree = rn_walktree;
1167 	rnh->rnh_walktree_from = rn_walktree_from;
1168 	rnh->rnh_walktree_at = rn_walktree_at;
1169 
1170 	return (1);
1171 }
1172 
1173 /*
1174  * Callback function to be used in rn_flush() to empty a mask tree.
1175  */
1176 void
1177 rn_freemask(struct radix_node *rn)
1178 {
1179 	if (rn->rn_mask != NULL)
1180 		panic("%s: not a mask node", __func__);
1181 
1182 	R_Free(rn);
1183 }
1184 
1185 struct rn_flush_ctx {
1186 	struct radix_node_head *head;
1187 	freenode_f_t *f;
1188 };
1189 
1190 static int
1191 rn_flush_walker(struct radix_node *rn, void *arg)
1192 {
1193 	struct rn_flush_ctx *ctx = arg;
1194 	struct radix_node *node;
1195 
1196 	node = ctx->head->rnh_deladdr(rn->rn_key, rn->rn_mask, ctx->head);
1197 	if (node != rn) {
1198 		panic("%s: deleted wrong node: %p, want: %p",
1199 		      __func__, node, rn);
1200 	}
1201 	if (ctx->f)
1202 		ctx->f(rn);
1203 
1204 	return 0;
1205 }
1206 
1207 #define IS_EMPTY(head) \
1208 	(((head)->rnh_treetop == &(head)->rnh_nodes[1]) && \
1209 	 ((head)->rnh_treetop->rn_left == &(head)->rnh_nodes[0]) && \
1210 	 ((head)->rnh_treetop->rn_right == &(head)->rnh_nodes[2]))
1211 
1212 /*
1213  * Flush all nodes in the radix tree at <head>.
1214  * If the callback function <f> is specified, it is called against every
1215  * flushed node to allow the caller to do extra cleanups.
1216  */
1217 void
1218 rn_flush(struct radix_node_head *head, freenode_f_t *f)
1219 {
1220 	struct rn_flush_ctx ctx;
1221 
1222 	if (f == rn_freemask && head->rnh_maskhead != NULL)
1223 		panic("%s: rn_freemask() used with non-mask tree", __func__);
1224 
1225 	ctx.head = head;
1226 	ctx.f = f;
1227 	head->rnh_walktree(head, rn_flush_walker, &ctx);
1228 
1229 	if (!IS_EMPTY(head))
1230 		panic("%s: failed to flush all nodes", __func__);
1231 }
1232 
1233 /*
1234  * Free an empty radix tree at <head>.
1235  *
1236  * NOTE: The radix tree must be first emptied by rn_flush().
1237  */
1238 void
1239 rn_freehead(struct radix_node_head *head)
1240 {
1241 	if (!IS_EMPTY(head))
1242 		panic("%s: radix tree not empty", __func__);
1243 
1244 	R_Free(head);
1245 }
1246 
1247 #ifdef _KERNEL
1248 
1249 static void
1250 rn_init_handler(netmsg_t msg)
1251 {
1252 	int cpu = mycpuid;
1253 
1254 	ASSERT_NETISR_NCPUS(cpu);
1255 	if (rn_inithead(&mask_rnheads[cpu], NULL, 0) == 0)
1256 		panic("rn_init 1");
1257 
1258 	netisr_forwardmsg(&msg->base, cpu + 1);
1259 }
1260 
1261 void
1262 rn_init(void)
1263 {
1264 	struct netmsg_base msg;
1265 	struct domain *dom;
1266 
1267 	SLIST_FOREACH(dom, &domains, dom_next) {
1268 		if (dom->dom_maxrtkey > RN_MAXKEYLEN) {
1269 			panic("domain %s maxkey too big %d/%d",
1270 			      dom->dom_name, dom->dom_maxrtkey, RN_MAXKEYLEN);
1271 		}
1272 	}
1273 
1274 	netmsg_init(&msg, NULL, &curthread->td_msgport, 0, rn_init_handler);
1275 	netisr_domsg_global(&msg);
1276 }
1277 
1278 struct radix_node_head *
1279 rn_cpumaskhead(int cpu)
1280 {
1281 	ASSERT_NETISR_NCPUS(cpu);
1282 	KKASSERT(mask_rnheads[cpu] != NULL);
1283 	return mask_rnheads[cpu];
1284 }
1285 
1286 #else /* !_KERNEL */
1287 
1288 void
1289 rn_init(void)
1290 {
1291 	if (rn_inithead(&mask_rnheads[0], NULL, 0) == 0)
1292 		panic("rn_init 2");
1293 }
1294 
1295 struct radix_node_head *
1296 rn_cpumaskhead(int cpu __unused)
1297 {
1298 	return mask_rnheads[0];
1299 }
1300 
1301 #endif /* _KERNEL */
1302