1 /* 2 * Copyright (C) 2011-2013 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * Copyright (C) 2013 Universita` di Pisa. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * $FreeBSD: head/sys/dev/netmap/netmap_kern.h 238985 2012-08-02 11:59:43Z luigi $ 29 * 30 * The header contains the definitions of constants and function 31 * prototypes used only in kernelspace. 32 */ 33 34 #ifndef _NET_NETMAP_KERN_H_ 35 #define _NET_NETMAP_KERN_H_ 36 37 #define WITH_VALE // comment out to disable VALE support 38 39 #define likely(x) __builtin_expect((long)!!(x), 1L) 40 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 41 42 #define NM_LOCK_T struct lock 43 #define NMG_LOCK_T struct lock 44 #define NMG_LOCK_INIT() lockinit(&netmap_global_lock, \ 45 "netmap global lock", 0, LK_CANRECURSE) 46 #define NMG_LOCK_DESTROY() lockuninit(&netmap_global_lock) 47 #define NMG_LOCK() lockmgr(&netmap_global_lock, LK_EXCLUSIVE) 48 #define NMG_UNLOCK() lockmgr(&netmap_global_lock, LK_RELEASE) 49 #define NMG_LOCK_ASSERT() KKASSERT(lockstatus(&netmap_global_lock, NULL) != 0) 50 51 #define NM_SELINFO_T struct kqinfo 52 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 53 #define MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 54 #define NM_SEND_UP(ifp, m) ((ifp)->if_input)(ifp, m) 55 56 #define NM_ATOMIC_T volatile int // XXX ? 57 /* atomic operations */ 58 #include <machine/atomic.h> 59 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 60 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 61 62 #define prefetch(x) __builtin_prefetch(x) 63 64 #define mb() cpu_mfence() 65 #define rmb() cpu_lfence() 66 #define wmb() cpu_sfence() 67 68 MALLOC_DECLARE(M_NETMAP); 69 70 // XXX linux struct, not used in FreeBSD 71 struct net_device_ops { 72 }; 73 struct hrtimer { 74 }; 75 76 #define IFCAP_NETMAP 0x8000 /* XXX move to <net/if.h> */ 77 78 #define ND(format, ...) 79 #define D(format, ...) \ 80 do { \ 81 struct timeval __xxts; \ 82 microtime(&__xxts); \ 83 kprintf("%03d.%06d %s [%d] " format "\n", \ 84 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 85 __FUNCTION__, __LINE__, ##__VA_ARGS__); \ 86 } while (0) 87 88 /* rate limited, lps indicates how many per second */ 89 #define RD(lps, format, ...) \ 90 do { \ 91 static int t0, __cnt; \ 92 if (t0 != time_second) { \ 93 t0 = time_second; \ 94 __cnt = 0; \ 95 } \ 96 if (__cnt++ < lps) \ 97 D(format, ##__VA_ARGS__); \ 98 } while (0) 99 100 struct netmap_adapter; 101 struct nm_bdg_fwd; 102 struct nm_bridge; 103 struct netmap_priv_d; 104 105 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 106 107 #include "netmap_mbq.h" 108 109 extern NMG_LOCK_T netmap_global_lock; 110 111 /* 112 * private, kernel view of a ring. Keeps track of the status of 113 * a ring across system calls. 114 * 115 * nr_hwcur index of the next buffer to refill. 116 * It corresponds to ring->cur - ring->reserved 117 * 118 * nr_hwavail the number of slots "owned" by userspace. 119 * nr_hwavail =:= ring->avail + ring->reserved 120 * 121 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 122 * This is so that, on a reset, buffers owned by userspace are not 123 * modified by the kernel. In particular: 124 * RX rings: the next empty buffer (hwcur + hwavail + hwofs) coincides with 125 * the next empty buffer as known by the hardware (next_to_check or so). 126 * TX rings: hwcur + hwofs coincides with next_to_send 127 * 128 * Clients cannot issue concurrent syscall on a ring. The system 129 * detects this and reports an error using two flags, 130 * NKR_WBUSY and NKR_RBUSY 131 * For received packets, slot->flags is set to nkr_slot_flags 132 * so we can provide a proper initial value (e.g. set NS_FORWARD 133 * when operating in 'transparent' mode). 134 * 135 * The following fields are used to implement lock-free copy of packets 136 * from input to output ports in VALE switch: 137 * nkr_hwlease buffer after the last one being copied. 138 * A writer in nm_bdg_flush reserves N buffers 139 * from nr_hwlease, advances it, then does the 140 * copy outside the lock. 141 * In RX rings (used for VALE ports), 142 * nkr_hwcur + nkr_hwavail <= nkr_hwlease < nkr_hwcur+N-1 143 * In TX rings (used for NIC or host stack ports) 144 * nkr_hwcur <= nkr_hwlease < nkr_hwcur+ nkr_hwavail 145 * nkr_leases array of nkr_num_slots where writers can report 146 * completion of their block. NR_NOSLOT (~0) indicates 147 * that the writer has not finished yet 148 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 149 * 150 * The kring is manipulated by txsync/rxsync and generic netmap function. 151 * q_lock is used to arbitrate access to the kring from within the netmap 152 * code, and this and other protections guarantee that there is never 153 * more than 1 concurrent call to txsync or rxsync. So we are free 154 * to manipulate the kring from within txsync/rxsync without any extra 155 * locks. 156 */ 157 struct netmap_kring { 158 struct netmap_ring *ring; 159 uint32_t nr_hwcur; 160 uint32_t nr_hwavail; 161 uint32_t nr_kflags; /* private driver flags */ 162 int32_t nr_hwreserved; 163 #define NKR_PENDINTR 0x1 // Pending interrupt. 164 uint32_t nkr_num_slots; 165 int32_t nkr_hwofs; /* offset between NIC and netmap ring */ 166 167 uint16_t nkr_slot_flags; /* initial value for flags */ 168 struct netmap_adapter *na; 169 struct nm_bdg_fwd *nkr_ft; 170 uint32_t *nkr_leases; 171 #define NR_NOSLOT ((uint32_t)~0) 172 uint32_t nkr_hwlease; 173 uint32_t nkr_lease_idx; 174 175 NM_SELINFO_T si; /* poll/select wait queue */ 176 NM_LOCK_T q_lock; /* protects kring and ring. */ 177 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 178 179 volatile int nkr_stopped; 180 181 /* support for adapters without native netmap support. 182 * On tx rings we preallocate an array of tx buffers 183 * (same size as the netmap ring), on rx rings we 184 * store incoming packets in a queue. 185 * XXX who writes to the rx queue ? 186 */ 187 struct mbuf **tx_pool; 188 u_int nr_ntc; /* Emulation of a next-to-clean RX ring pointer. */ 189 struct mbq rx_queue; /* A queue for intercepted rx mbufs. */ 190 191 } __attribute__((__aligned__(64))); 192 193 194 /* return the next index, with wraparound */ 195 static inline uint32_t 196 nm_next(uint32_t i, uint32_t lim) 197 { 198 return unlikely (i == lim) ? 0 : i + 1; 199 } 200 201 /* 202 * 203 * Here is the layout for the Rx and Tx rings. 204 205 RxRING TxRING 206 207 +-----------------+ +-----------------+ 208 | | | | 209 |XXX free slot XXX| |XXX free slot XXX| 210 +-----------------+ +-----------------+ 211 | |<-hwcur | |<-hwcur 212 | reserved h | | (ready | 213 +----------- w -+ | to be | 214 cur->| a | | sent) h | 215 | v | +---------- w | 216 | a | cur->| (being a | 217 | i | | prepared) v | 218 | avail l | | a | 219 +-----------------+ + a ------ i + 220 | | ... | v l |<-hwlease 221 | (being | ... | a | ... 222 | prepared) | ... | i | ... 223 +-----------------+ ... | l | ... 224 | |<-hwlease +-----------------+ 225 | | | | 226 | | | | 227 | | | | 228 | | | | 229 +-----------------+ +-----------------+ 230 231 * The cur/avail (user view) and hwcur/hwavail (kernel view) 232 * are used in the normal operation of the card. 233 * 234 * When a ring is the output of a switch port (Rx ring for 235 * a VALE port, Tx ring for the host stack or NIC), slots 236 * are reserved in blocks through 'hwlease' which points 237 * to the next unused slot. 238 * On an Rx ring, hwlease is always after hwavail, 239 * and completions cause avail to advance. 240 * On a Tx ring, hwlease is always between cur and hwavail, 241 * and completions cause cur to advance. 242 * 243 * nm_kr_space() returns the maximum number of slots that 244 * can be assigned. 245 * nm_kr_lease() reserves the required number of buffers, 246 * advances nkr_hwlease and also returns an entry in 247 * a circular array where completions should be reported. 248 */ 249 250 251 252 253 enum txrx { NR_RX = 0, NR_TX = 1 }; 254 255 /* 256 * The "struct netmap_adapter" extends the "struct adapter" 257 * (or equivalent) device descriptor. 258 * It contains all base fields needed to support netmap operation. 259 * There are in fact different types of netmap adapters 260 * (native, generic, VALE switch...) so a netmap_adapter is 261 * just the first field in the derived type. 262 */ 263 struct netmap_adapter { 264 /* 265 * On linux we do not have a good way to tell if an interface 266 * is netmap-capable. So we use the following trick: 267 * NA(ifp) points here, and the first entry (which hopefully 268 * always exists and is at least 32 bits) contains a magic 269 * value which we can use to detect that the interface is good. 270 */ 271 uint32_t magic; 272 uint32_t na_flags; /* future place for IFCAP_NETMAP */ 273 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 274 * useful during initialization 275 */ 276 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 277 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 278 * forwarding packets coming from this 279 * interface 280 */ 281 #define NAF_MEM_OWNER 8 /* the adapter is responsible for the 282 * deallocation of the memory allocator 283 */ 284 #define NAF_NATIVE_ON 16 /* the adapter is native and the attached 285 * interface is in netmap mode 286 */ 287 int active_fds; /* number of user-space descriptors using this 288 interface, which is equal to the number of 289 struct netmap_if objs in the mapped region. */ 290 291 u_int num_rx_rings; /* number of adapter receive rings */ 292 u_int num_tx_rings; /* number of adapter transmit rings */ 293 294 u_int num_tx_desc; /* number of descriptor in each queue */ 295 u_int num_rx_desc; 296 297 /* tx_rings and rx_rings are private but allocated 298 * as a contiguous chunk of memory. Each array has 299 * N+1 entries, for the adapter queues and for the host queue. 300 */ 301 struct netmap_kring *tx_rings; /* array of TX rings. */ 302 struct netmap_kring *rx_rings; /* array of RX rings. */ 303 void *tailroom; /* space below the rings array */ 304 /* (used for leases) */ 305 306 NM_SELINFO_T tx_si, rx_si; /* global wait queues */ 307 308 /* copy of if_qflush and if_transmit pointers, to intercept 309 * packets from the network stack when netmap is active. 310 */ 311 int (*if_transmit)(struct ifnet *, struct mbuf *); 312 313 /* references to the ifnet and device routines, used by 314 * the generic netmap functions. 315 */ 316 struct ifnet *ifp; /* adapter is ifp->if_softc */ 317 318 /* private cleanup */ 319 void (*nm_dtor)(struct netmap_adapter *); 320 321 int (*nm_register)(struct netmap_adapter *, int onoff); 322 323 int (*nm_txsync)(struct netmap_adapter *, u_int ring, int flags); 324 int (*nm_rxsync)(struct netmap_adapter *, u_int ring, int flags); 325 #define NAF_FORCE_READ 1 326 #define NAF_FORCE_RECLAIM 2 327 /* return configuration information */ 328 int (*nm_config)(struct netmap_adapter *, 329 u_int *txr, u_int *txd, u_int *rxr, u_int *rxd); 330 int (*nm_krings_create)(struct netmap_adapter *); 331 void (*nm_krings_delete)(struct netmap_adapter *); 332 int (*nm_notify)(struct netmap_adapter *, 333 u_int ring, enum txrx, int flags); 334 #define NAF_GLOBAL_NOTIFY 4 335 #define NAF_DISABLE_NOTIFY 8 336 337 /* standard refcount to control the lifetime of the adapter 338 * (it should be equal to the lifetime of the corresponding ifp) 339 */ 340 int na_refcount; 341 342 /* memory allocator (opaque) 343 * We also cache a pointer to the lut_entry for translating 344 * buffer addresses, and the total number of buffers. 345 */ 346 struct netmap_mem_d *nm_mem; 347 struct lut_entry *na_lut; 348 uint32_t na_lut_objtotal; /* max buffer index */ 349 350 /* used internally. If non-null, the interface cannot be bound 351 * from userspace 352 */ 353 void *na_private; 354 }; 355 356 /* 357 * If the NIC is owned by the kernel 358 * (i.e., bridge), neither another bridge nor user can use it; 359 * if the NIC is owned by a user, only users can share it. 360 * Evaluation must be done under NMG_LOCK(). 361 */ 362 #define NETMAP_OWNED_BY_KERN(na) (na->na_private) 363 #define NETMAP_OWNED_BY_ANY(na) \ 364 (NETMAP_OWNED_BY_KERN(na) || (na->active_fds > 0)) 365 366 367 /* 368 * derived netmap adapters for various types of ports 369 */ 370 struct netmap_vp_adapter { /* VALE software port */ 371 struct netmap_adapter up; 372 373 /* 374 * Bridge support: 375 * 376 * bdg_port is the port number used in the bridge; 377 * na_bdg points to the bridge this NA is attached to. 378 */ 379 int bdg_port; 380 struct nm_bridge *na_bdg; 381 int retry; 382 }; 383 384 struct netmap_hw_adapter { /* physical device */ 385 struct netmap_adapter up; 386 387 struct net_device_ops nm_ndo; // XXX linux only 388 }; 389 390 struct netmap_generic_adapter { /* non-native device */ 391 struct netmap_hw_adapter up; 392 393 /* Pointer to a previously used netmap adapter. */ 394 struct netmap_adapter *prev; 395 396 /* generic netmap adapters support: 397 * a net_device_ops struct overrides ndo_select_queue(), 398 * save_if_input saves the if_input hook (FreeBSD), 399 * mit_timer and mit_pending implement rx interrupt mitigation, 400 */ 401 struct net_device_ops generic_ndo; 402 void (*save_if_input)(struct ifnet *, struct mbuf *); 403 404 struct hrtimer mit_timer; 405 int mit_pending; 406 }; 407 408 #ifdef WITH_VALE 409 410 /* bridge wrapper for non VALE ports. It is used to connect real devices to the bridge. 411 * 412 * The real device must already have its own netmap adapter (hwna). The 413 * bridge wrapper and the hwna adapter share the same set of netmap rings and 414 * buffers, but they have two separate sets of krings descriptors, with tx/rx 415 * meanings swapped: 416 * 417 * netmap 418 * bwrap krings rings krings hwna 419 * +------+ +------+ +-----+ +------+ +------+ 420 * |tx_rings->| |\ /| |----| |<-tx_rings| 421 * | | +------+ \ / +-----+ +------+ | | 422 * | | X | | 423 * | | / \ | | 424 * | | +------+/ \+-----+ +------+ | | 425 * |rx_rings->| | | |----| |<-rx_rings| 426 * | | +------+ +-----+ +------+ | | 427 * +------+ +------+ 428 * 429 * - packets coming from the bridge go to the brwap rx rings, which are also the 430 * hwna tx rings. The bwrap notify callback will then complete the hwna tx 431 * (see netmap_bwrap_notify). 432 * - packets coming from the outside go to the hwna rx rings, which are also the 433 * bwrap tx rings. The (overwritten) hwna notify method will then complete 434 * the bridge tx (see netmap_bwrap_intr_notify). 435 * 436 * The bridge wrapper may optionally connect the hwna 'host' rings to the 437 * bridge. This is done by using a second port in the bridge and connecting it 438 * to the 'host' netmap_vp_adapter contained in the netmap_bwrap_adapter. 439 * The brwap host adapter cross-links the hwna host rings in the same way as shown above. 440 * 441 * - packets coming from the bridge and directed to host stack are handled by the 442 * bwrap host notify callback (see netmap_bwrap_host_notify) 443 * - packets coming from the host stack are still handled by the overwritten 444 * hwna notify callback (netmap_bwrap_intr_notify), but are diverted to the 445 * host adapter depending on the ring number. 446 * 447 */ 448 struct netmap_bwrap_adapter { 449 struct netmap_vp_adapter up; 450 struct netmap_vp_adapter host; /* for host rings */ 451 struct netmap_adapter *hwna; /* the underlying device */ 452 453 /* backup of the hwna notify callback */ 454 int (*save_notify)(struct netmap_adapter *, 455 u_int ring, enum txrx, int flags); 456 /* When we attach a physical interface to the bridge, we 457 * allow the controlling process to terminate, so we need 458 * a place to store the netmap_priv_d data structure. 459 * This is only done when physical interfaces are attached to a bridge. 460 */ 461 struct netmap_priv_d *na_kpriv; 462 }; 463 464 465 /* 466 * Available space in the ring. Only used in VALE code 467 */ 468 static inline uint32_t 469 nm_kr_space(struct netmap_kring *k, int is_rx) 470 { 471 int space; 472 473 if (is_rx) { 474 int busy = k->nkr_hwlease - k->nr_hwcur + k->nr_hwreserved; 475 if (busy < 0) 476 busy += k->nkr_num_slots; 477 space = k->nkr_num_slots - 1 - busy; 478 } else { 479 space = k->nr_hwcur + k->nr_hwavail - k->nkr_hwlease; 480 if (space < 0) 481 space += k->nkr_num_slots; 482 } 483 #if 0 484 // sanity check 485 if (k->nkr_hwlease >= k->nkr_num_slots || 486 k->nr_hwcur >= k->nkr_num_slots || 487 k->nr_hwavail >= k->nkr_num_slots || 488 busy < 0 || 489 busy >= k->nkr_num_slots) { 490 D("invalid kring, cur %d avail %d lease %d lease_idx %d lim %d", k->nr_hwcur, k->nr_hwavail, k->nkr_hwlease, 491 k->nkr_lease_idx, k->nkr_num_slots); 492 } 493 #endif 494 return space; 495 } 496 497 498 499 500 /* make a lease on the kring for N positions. return the 501 * lease index 502 */ 503 static inline uint32_t 504 nm_kr_lease(struct netmap_kring *k, u_int n, int is_rx) 505 { 506 uint32_t lim = k->nkr_num_slots - 1; 507 uint32_t lease_idx = k->nkr_lease_idx; 508 509 k->nkr_leases[lease_idx] = NR_NOSLOT; 510 k->nkr_lease_idx = nm_next(lease_idx, lim); 511 512 if (n > nm_kr_space(k, is_rx)) { 513 D("invalid request for %d slots", n); 514 panic("x"); 515 } 516 /* XXX verify that there are n slots */ 517 k->nkr_hwlease += n; 518 if (k->nkr_hwlease > lim) 519 k->nkr_hwlease -= lim + 1; 520 521 if (k->nkr_hwlease >= k->nkr_num_slots || 522 k->nr_hwcur >= k->nkr_num_slots || 523 k->nr_hwavail >= k->nkr_num_slots || 524 k->nkr_lease_idx >= k->nkr_num_slots) { 525 D("invalid kring %s, cur %d avail %d lease %d lease_idx %d lim %d", 526 k->na->ifp->if_xname, 527 k->nr_hwcur, k->nr_hwavail, k->nkr_hwlease, 528 k->nkr_lease_idx, k->nkr_num_slots); 529 } 530 return lease_idx; 531 } 532 533 #endif /* WITH_VALE */ 534 535 /* return update position */ 536 static inline uint32_t 537 nm_kr_rxpos(struct netmap_kring *k) 538 { 539 uint32_t pos = k->nr_hwcur + k->nr_hwavail; 540 if (pos >= k->nkr_num_slots) 541 pos -= k->nkr_num_slots; 542 #if 0 543 if (pos >= k->nkr_num_slots || 544 k->nkr_hwlease >= k->nkr_num_slots || 545 k->nr_hwcur >= k->nkr_num_slots || 546 k->nr_hwavail >= k->nkr_num_slots || 547 k->nkr_lease_idx >= k->nkr_num_slots) { 548 D("invalid kring, cur %d avail %d lease %d lease_idx %d lim %d", k->nr_hwcur, k->nr_hwavail, k->nkr_hwlease, 549 k->nkr_lease_idx, k->nkr_num_slots); 550 } 551 #endif 552 return pos; 553 } 554 555 556 /* 557 * protect against multiple threads using the same ring. 558 * also check that the ring has not been stopped. 559 * We only care for 0 or !=0 as a return code. 560 */ 561 #define NM_KR_BUSY 1 562 #define NM_KR_STOPPED 2 563 564 static __inline void nm_kr_put(struct netmap_kring *kr) 565 { 566 NM_ATOMIC_CLEAR(&kr->nr_busy); 567 } 568 569 static __inline int nm_kr_tryget(struct netmap_kring *kr) 570 { 571 /* check a first time without taking the lock 572 * to avoid starvation for nm_kr_get() 573 */ 574 if (unlikely(kr->nkr_stopped)) { 575 ND("ring %p stopped (%d)", kr, kr->nkr_stopped); 576 return NM_KR_STOPPED; 577 } 578 if (unlikely(NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))) 579 return NM_KR_BUSY; 580 /* check a second time with lock held */ 581 if (unlikely(kr->nkr_stopped)) { 582 ND("ring %p stopped (%d)", kr, kr->nkr_stopped); 583 nm_kr_put(kr); 584 return NM_KR_STOPPED; 585 } 586 return 0; 587 } 588 589 590 /* 591 * The following are support routines used by individual drivers to 592 * support netmap operation. 593 * 594 * netmap_attach() initializes a struct netmap_adapter, allocating the 595 * struct netmap_ring's and the struct selinfo. 596 * 597 * netmap_detach() frees the memory allocated by netmap_attach(). 598 * 599 * netmap_transmit() replaces the if_transmit routine of the interface, 600 * and is used to intercept packets coming from the stack. 601 * 602 * netmap_load_map/netmap_reload_map are helper routines to set/reset 603 * the dmamap for a packet buffer 604 * 605 * netmap_reset() is a helper routine to be called in the driver 606 * when reinitializing a ring. 607 */ 608 int netmap_attach(struct netmap_adapter *); 609 int netmap_attach_common(struct netmap_adapter *); 610 void netmap_detach_common(struct netmap_adapter *na); 611 void netmap_detach(struct ifnet *); 612 int netmap_transmit(struct ifnet *, struct mbuf *); 613 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 614 enum txrx tx, u_int n, u_int new_cur); 615 int netmap_ring_reinit(struct netmap_kring *); 616 617 618 /* 619 * Support routines to be used with the VALE switch 620 */ 621 int netmap_update_config(struct netmap_adapter *na); 622 int netmap_krings_create(struct netmap_adapter *na, u_int ntx, u_int nrx, u_int tailroom); 623 void netmap_krings_delete(struct netmap_adapter *na); 624 625 struct netmap_if * 626 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 627 uint16_t ringid, int *err); 628 629 630 631 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 632 int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 633 int netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na); 634 635 #ifdef WITH_VALE 636 /* 637 * The following bridge-related interfaces are used by other kernel modules 638 * In the version that only supports unicast or broadcast, the lookup 639 * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports, 640 * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown. 641 * XXX in practice "unknown" might be handled same as broadcast. 642 */ 643 typedef u_int (*bdg_lookup_fn_t)(char *buf, u_int len, 644 uint8_t *ring_nr, struct netmap_vp_adapter *); 645 u_int netmap_bdg_learning(char *, u_int, uint8_t *, 646 struct netmap_vp_adapter *); 647 648 #define NM_BDG_MAXPORTS 254 /* up to 254 */ 649 #define NM_BDG_BROADCAST NM_BDG_MAXPORTS 650 #define NM_BDG_NOPORT (NM_BDG_MAXPORTS+1) 651 652 #define NM_NAME "vale" /* prefix for bridge port name */ 653 654 655 /* these are redefined in case of no VALE support */ 656 int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 657 void netmap_init_bridges(void); 658 int netmap_bdg_ctl(struct nmreq *nmr, bdg_lookup_fn_t func); 659 660 #else /* !WITH_VALE */ 661 #define netmap_get_bdg_na(_1, _2, _3) 0 662 #define netmap_init_bridges(_1) 663 #define netmap_bdg_ctl(_1, _2) EINVAL 664 #endif /* !WITH_VALE */ 665 666 /* Various prototypes */ 667 struct dev_kfilter_args; /* XXX this shouldn't be here */ 668 int netmap_kqfilter(struct dev_kqfilter_args *ap); 669 670 671 int netmap_init(void); 672 void netmap_fini(void); 673 int netmap_get_memory(struct netmap_priv_d* p); 674 void netmap_dtor(void *data); 675 int netmap_dtor_locked(struct netmap_priv_d *priv); 676 677 struct dev_ioctl_args; /* XXX this shouldn't be here */ 678 int netmap_ioctl(struct dev_ioctl_args *ap); 679 680 /* netmap_adapter creation/destruction */ 681 #define NM_IFPNAME(ifp) ((ifp) ? (ifp)->if_xname : "zombie") 682 #define NM_DEBUG_PUTGET 1 683 684 #ifdef NM_DEBUG_PUTGET 685 686 #define NM_DBG(f) __##f 687 688 void __netmap_adapter_get(struct netmap_adapter *na); 689 690 #define netmap_adapter_get(na) \ 691 do { \ 692 struct netmap_adapter *__na = na; \ 693 D("getting %p:%s (%d)", __na, NM_IFPNAME(__na->ifp), __na->na_refcount); \ 694 __netmap_adapter_get(__na); \ 695 } while (0) 696 697 int __netmap_adapter_put(struct netmap_adapter *na); 698 699 #define netmap_adapter_put(na) \ 700 do { \ 701 struct netmap_adapter *__na = na; \ 702 D("putting %p:%s (%d)", __na, NM_IFPNAME(__na->ifp), __na->na_refcount); \ 703 __netmap_adapter_put(__na); \ 704 } while (0) 705 706 #else /* !NM_DEBUG_PUTGET */ 707 708 #define NM_DBG(f) f 709 void netmap_adapter_get(struct netmap_adapter *na); 710 int netmap_adapter_put(struct netmap_adapter *na); 711 712 #endif /* !NM_DEBUG_PUTGET */ 713 714 715 716 extern u_int netmap_buf_size; 717 #define NETMAP_BUF_SIZE netmap_buf_size // XXX remove 718 extern int netmap_mitigate; 719 extern int netmap_no_pendintr; 720 extern u_int netmap_total_buffers; 721 extern char *netmap_buffer_base; 722 extern int netmap_verbose; // XXX debugging 723 enum { /* verbose flags */ 724 NM_VERB_ON = 1, /* generic verbose */ 725 NM_VERB_HOST = 0x2, /* verbose host stack */ 726 NM_VERB_RXSYNC = 0x10, /* verbose on rxsync/txsync */ 727 NM_VERB_TXSYNC = 0x20, 728 NM_VERB_RXINTR = 0x100, /* verbose on rx/tx intr (driver) */ 729 NM_VERB_TXINTR = 0x200, 730 NM_VERB_NIC_RXSYNC = 0x1000, /* verbose on rx/tx intr (driver) */ 731 NM_VERB_NIC_TXSYNC = 0x2000, 732 }; 733 734 extern int netmap_txsync_retry; 735 extern int netmap_generic_mit; 736 extern int netmap_generic_ringsize; 737 738 /* 739 * NA returns a pointer to the struct netmap adapter from the ifp, 740 * WNA is used to write it. 741 */ 742 #ifndef WNA 743 #define WNA(_ifp) (_ifp)->if_unused7 /* XXX better name ;) */ 744 #endif 745 #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) 746 747 /* 748 * Macros to determine if an interface is netmap capable or netmap enabled. 749 * See the magic field in struct netmap_adapter. 750 */ 751 /* 752 * on FreeBSD just use if_capabilities and if_capenable. 753 */ 754 #define NETMAP_CAPABLE(ifp) (NA(ifp) && \ 755 (ifp)->if_capabilities & IFCAP_NETMAP ) 756 757 #define NETMAP_SET_CAPABLE(ifp) \ 758 (ifp)->if_capabilities |= IFCAP_NETMAP 759 760 /* Callback invoked by the dma machinery after a successfull dmamap_load */ 761 static void netmap_dmamap_cb(__unused void *arg, 762 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 763 { 764 } 765 766 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 767 * XXX can we do it without a callback ? 768 */ 769 static inline void 770 netmap_load_map(bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 771 { 772 if (map) 773 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE, 774 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 775 } 776 777 /* update the map when a buffer changes. */ 778 static inline void 779 netmap_reload_map(bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 780 { 781 if (map) { 782 bus_dmamap_unload(tag, map); 783 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE, 784 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 785 } 786 } 787 788 /* 789 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 790 */ 791 static inline int 792 netmap_idx_n2k(struct netmap_kring *kr, int idx) 793 { 794 int n = kr->nkr_num_slots; 795 idx += kr->nkr_hwofs; 796 if (idx < 0) 797 return idx + n; 798 else if (idx < n) 799 return idx; 800 else 801 return idx - n; 802 } 803 804 805 static inline int 806 netmap_idx_k2n(struct netmap_kring *kr, int idx) 807 { 808 int n = kr->nkr_num_slots; 809 idx -= kr->nkr_hwofs; 810 if (idx < 0) 811 return idx + n; 812 else if (idx < n) 813 return idx; 814 else 815 return idx - n; 816 } 817 818 819 /* Entries of the look-up table. */ 820 struct lut_entry { 821 void *vaddr; /* virtual address. */ 822 vm_paddr_t paddr; /* physical address. */ 823 }; 824 825 struct netmap_obj_pool; 826 extern struct lut_entry *netmap_buffer_lut; 827 #define NMB_VA(i) (netmap_buffer_lut[i].vaddr) 828 #define NMB_PA(i) (netmap_buffer_lut[i].paddr) 829 830 /* 831 * NMB return the virtual address of a buffer (buffer 0 on bad index) 832 * PNMB also fills the physical address 833 */ 834 static inline void * 835 NMB(struct netmap_slot *slot) 836 { 837 uint32_t i = slot->buf_idx; 838 return (unlikely(i >= netmap_total_buffers)) ? NMB_VA(0) : NMB_VA(i); 839 } 840 841 static inline void * 842 PNMB(struct netmap_slot *slot, uint64_t *pp) 843 { 844 uint32_t i = slot->buf_idx; 845 void *ret = (i >= netmap_total_buffers) ? NMB_VA(0) : NMB_VA(i); 846 847 *pp = (i >= netmap_total_buffers) ? NMB_PA(0) : NMB_PA(i); 848 return ret; 849 } 850 851 /* Generic version of NMB, which uses device-specific memory. */ 852 static inline void * 853 BDG_NMB(struct netmap_adapter *na, struct netmap_slot *slot) 854 { 855 struct lut_entry *lut = na->na_lut; 856 uint32_t i = slot->buf_idx; 857 return (unlikely(i >= na->na_lut_objtotal)) ? 858 lut[0].vaddr : lut[i].vaddr; 859 } 860 861 /* default functions to handle rx/tx interrupts */ 862 int netmap_rx_irq(struct ifnet *, u_int, u_int *); 863 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 864 int netmap_common_irq(struct ifnet *, u_int, u_int *work_done); 865 866 867 void netmap_txsync_to_host(struct netmap_adapter *na); 868 void netmap_disable_all_rings(struct ifnet *); 869 void netmap_enable_all_rings(struct ifnet *); 870 void netmap_disable_ring(struct netmap_kring *kr); 871 872 873 /* Structure associated to each thread which registered an interface. 874 * 875 * The first 4 fields of this structure are written by NIOCREGIF and 876 * read by poll() and NIOC?XSYNC. 877 * There is low contention among writers (actually, a correct user program 878 * should have no contention among writers) and among writers and readers, 879 * so we use a single global lock to protect the structure initialization. 880 * Since initialization involves the allocation of memory, we reuse the memory 881 * allocator lock. 882 * Read access to the structure is lock free. Readers must check that 883 * np_nifp is not NULL before using the other fields. 884 * If np_nifp is NULL initialization has not been performed, so they should 885 * return an error to userlevel. 886 * 887 * The ref_done field is used to regulate access to the refcount in the 888 * memory allocator. The refcount must be incremented at most once for 889 * each open("/dev/netmap"). The increment is performed by the first 890 * function that calls netmap_get_memory() (currently called by 891 * mmap(), NIOCGINFO and NIOCREGIF). 892 * If the refcount is incremented, it is then decremented when the 893 * private structure is destroyed. 894 */ 895 struct netmap_priv_d { 896 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 897 898 struct netmap_adapter *np_na; 899 int np_ringid; /* from the ioctl */ 900 u_int np_qfirst, np_qlast; /* range of rings to scan */ 901 uint16_t np_txpoll; 902 903 struct netmap_mem_d *np_mref; /* use with NMG_LOCK held */ 904 /* np_refcount is only used on FreeBSD */ 905 int np_refcount; /* use with NMG_LOCK held */ 906 }; 907 908 909 /* 910 * generic netmap emulation for devices that do not have 911 * native netmap support. 912 * XXX generic_netmap_register() is only exported to implement 913 * nma_is_generic(). 914 */ 915 int generic_netmap_register(struct netmap_adapter *na, int enable); 916 int generic_netmap_attach(struct ifnet *ifp); 917 918 int netmap_catch_rx(struct netmap_adapter *na, int intercept); 919 void generic_rx_handler(struct ifnet *ifp, struct mbuf *m);; 920 void netmap_catch_packet_steering(struct netmap_generic_adapter *na, int enable); 921 int generic_xmit_frame(struct ifnet *ifp, struct mbuf *m, void *addr, u_int len, u_int ring_nr); 922 int generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx); 923 void generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq); 924 925 static __inline int 926 nma_is_generic(struct netmap_adapter *na) 927 { 928 return na->nm_register == generic_netmap_register; 929 } 930 931 /* 932 * netmap_mitigation API. This is used by the generic adapter 933 * to reduce the number of interrupt requests/selwakeup 934 * to clients on incoming packets. 935 */ 936 void netmap_mitigation_init(struct netmap_generic_adapter *na); 937 void netmap_mitigation_start(struct netmap_generic_adapter *na); 938 void netmap_mitigation_restart(struct netmap_generic_adapter *na); 939 int netmap_mitigation_active(struct netmap_generic_adapter *na); 940 void netmap_mitigation_cleanup(struct netmap_generic_adapter *na); 941 942 // int generic_timer_handler(struct hrtimer *t); 943 944 #endif /* _NET_NETMAP_KERN_H_ */ 945