1 /* 2 * Copyright (C) 2011-2013 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 27 /* 28 * This module supports memory mapped access to network devices, 29 * see netmap(4). 30 * 31 * The module uses a large, memory pool allocated by the kernel 32 * and accessible as mmapped memory by multiple userspace threads/processes. 33 * The memory pool contains packet buffers and "netmap rings", 34 * i.e. user-accessible copies of the interface's queues. 35 * 36 * Access to the network card works like this: 37 * 1. a process/thread issues one or more open() on /dev/netmap, to create 38 * select()able file descriptor on which events are reported. 39 * 2. on each descriptor, the process issues an ioctl() to identify 40 * the interface that should report events to the file descriptor. 41 * 3. on each descriptor, the process issues an mmap() request to 42 * map the shared memory region within the process' address space. 43 * The list of interesting queues is indicated by a location in 44 * the shared memory region. 45 * 4. using the functions in the netmap(4) userspace API, a process 46 * can look up the occupation state of a queue, access memory buffers, 47 * and retrieve received packets or enqueue packets to transmit. 48 * 5. using some ioctl()s the process can synchronize the userspace view 49 * of the queue with the actual status in the kernel. This includes both 50 * receiving the notification of new packets, and transmitting new 51 * packets on the output interface. 52 * 6. select() or poll() can be used to wait for events on individual 53 * transmit or receive queues (or all queues for a given interface). 54 * 55 56 SYNCHRONIZATION (USER) 57 58 The netmap rings and data structures may be shared among multiple 59 user threads or even independent processes. 60 Any synchronization among those threads/processes is delegated 61 to the threads themselves. Only one thread at a time can be in 62 a system call on the same netmap ring. The OS does not enforce 63 this and only guarantees against system crashes in case of 64 invalid usage. 65 66 LOCKING (INTERNAL) 67 68 Within the kernel, access to the netmap rings is protected as follows: 69 70 - a spinlock on each ring, to handle producer/consumer races on 71 RX rings attached to the host stack (against multiple host 72 threads writing from the host stack to the same ring), 73 and on 'destination' rings attached to a VALE switch 74 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports) 75 protecting multiple active senders for the same destination) 76 77 - an atomic variable to guarantee that there is at most one 78 instance of *_*xsync() on the ring at any time. 79 For rings connected to user file 80 descriptors, an atomic_test_and_set() protects this, and the 81 lock on the ring is not actually used. 82 For NIC RX rings connected to a VALE switch, an atomic_test_and_set() 83 is also used to prevent multiple executions (the driver might indeed 84 already guarantee this). 85 For NIC TX rings connected to a VALE switch, the lock arbitrates 86 access to the queue (both when allocating buffers and when pushing 87 them out). 88 89 - *xsync() should be protected against initializations of the card. 90 On FreeBSD most devices have the reset routine protected by 91 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing 92 the RING protection on rx_reset(), this should be added. 93 94 On linux there is an external lock on the tx path, which probably 95 also arbitrates access to the reset routine. XXX to be revised 96 97 - a per-interface core_lock protecting access from the host stack 98 while interfaces may be detached from netmap mode. 99 XXX there should be no need for this lock if we detach the interfaces 100 only while they are down. 101 102 103 --- VALE SWITCH --- 104 105 NMG_LOCK() serializes all modifications to switches and ports. 106 A switch cannot be deleted until all ports are gone. 107 108 For each switch, an SX lock (RWlock on linux) protects 109 deletion of ports. When configuring or deleting a new port, the 110 lock is acquired in exclusive mode (after holding NMG_LOCK). 111 When forwarding, the lock is acquired in shared mode (without NMG_LOCK). 112 The lock is held throughout the entire forwarding cycle, 113 during which the thread may incur in a page fault. 114 Hence it is important that sleepable shared locks are used. 115 116 On the rx ring, the per-port lock is grabbed initially to reserve 117 a number of slot in the ring, then the lock is released, 118 packets are copied from source to destination, and then 119 the lock is acquired again and the receive ring is updated. 120 (A similar thing is done on the tx ring for NIC and host stack 121 ports attached to the switch) 122 123 */ 124 125 /* 126 * OS-specific code that is used only within this file. 127 * Other OS-specific code that must be accessed by drivers 128 * is present in netmap_kern.h 129 */ 130 131 /* __FBSDID("$FreeBSD: head/sys/dev/netmap/netmap.c 257176 2013-10-26 17:58:36Z glebius $"); */ 132 #include <sys/types.h> 133 #include <sys/errno.h> 134 #include <sys/param.h> /* defines used in kernel.h */ 135 #include <sys/kernel.h> /* types used in module initialization */ 136 #include <sys/conf.h> /* cdevsw struct, UID, GID */ 137 #include <sys/devfs.h> 138 #include <sys/sockio.h> 139 #include <sys/socketvar.h> /* struct socket */ 140 #include <sys/malloc.h> 141 #include <sys/poll.h> 142 #include <sys/lock.h> 143 #include <sys/socket.h> /* sockaddrs */ 144 #include <sys/event.h> 145 #include <sys/sysctl.h> 146 #include <net/if.h> 147 #include <net/if_var.h> 148 #include <net/bpf.h> /* BIOCIMMEDIATE */ 149 #include <sys/bus.h> /* bus_dmamap_* */ 150 #include <sys/endian.h> 151 #include <sys/refcount.h> 152 153 /* reduce conditional code */ 154 #define init_waitqueue_head(x) // only needed in linux 155 156 extern struct dev_ops netmap_cdevsw; 157 158 /* 159 * common headers 160 */ 161 #include <net/netmap.h> 162 #include "netmap_kern.h" 163 #include "netmap_mem2.h" 164 165 #define selrecord(x, y) do { } while (0) /* XXX porting in progress */ 166 167 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 168 169 /* 170 * The following variables are used by the drivers and replicate 171 * fields in the global memory pool. They only refer to buffers 172 * used by physical interfaces. 173 */ 174 u_int netmap_total_buffers; 175 u_int netmap_buf_size; 176 char *netmap_buffer_base; /* also address of an invalid buffer */ 177 178 /* user-controlled variables */ 179 int netmap_verbose; 180 181 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 182 183 SYSCTL_NODE(_net, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 184 SYSCTL_INT(_net_netmap, OID_AUTO, verbose, 185 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 186 SYSCTL_INT(_net_netmap, OID_AUTO, no_timestamp, 187 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 188 int netmap_mitigate = 1; 189 SYSCTL_INT(_net_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 190 int netmap_no_pendintr = 1; 191 SYSCTL_INT(_net_netmap, OID_AUTO, no_pendintr, 192 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 193 int netmap_txsync_retry = 2; 194 SYSCTL_INT(_net_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 195 &netmap_txsync_retry, 0 , "Number of txsync loops in bridge's flush."); 196 197 int netmap_flags = 0; /* debug flags */ 198 int netmap_fwd = 0; /* force transparent mode */ 199 int netmap_mmap_unreg = 0; /* allow mmap of unregistered fds */ 200 201 /* 202 * netmap_admode selects the netmap mode to use. 203 * Invalid values are reset to NETMAP_ADMODE_BEST 204 */ 205 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */ 206 NETMAP_ADMODE_NATIVE, /* either native or none */ 207 NETMAP_ADMODE_GENERIC, /* force generic */ 208 NETMAP_ADMODE_LAST }; 209 #define NETMAP_ADMODE_NATIVE 1 /* Force native netmap adapter. */ 210 #define NETMAP_ADMODE_GENERIC 2 /* Force generic netmap adapter. */ 211 #define NETMAP_ADMODE_BEST 0 /* Priority to native netmap adapter. */ 212 static int netmap_admode = NETMAP_ADMODE_BEST; 213 214 int netmap_generic_mit = 100*1000; /* Generic mitigation interval in nanoseconds. */ 215 int netmap_generic_ringsize = 1024; /* Generic ringsize. */ 216 217 SYSCTL_INT(_net_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 218 SYSCTL_INT(_net_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0 , ""); 219 SYSCTL_INT(_net_netmap, OID_AUTO, mmap_unreg, CTLFLAG_RW, &netmap_mmap_unreg, 0, ""); 220 SYSCTL_INT(_net_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0 , ""); 221 SYSCTL_INT(_net_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 0 , ""); 222 SYSCTL_INT(_net_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, &netmap_generic_ringsize, 0 , ""); 223 224 NMG_LOCK_T netmap_global_lock; 225 226 227 static void 228 nm_kr_get(struct netmap_kring *kr) 229 { 230 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 231 tsleep(kr, 0, "NM_KR_GET", 4); 232 } 233 234 235 void 236 netmap_disable_ring(struct netmap_kring *kr) 237 { 238 kr->nkr_stopped = 1; 239 nm_kr_get(kr); 240 lockmgr(&kr->q_lock, LK_EXCLUSIVE); 241 lockmgr(&kr->q_lock, LK_RELEASE); 242 nm_kr_put(kr); 243 } 244 245 246 static void 247 netmap_set_all_rings(struct ifnet *ifp, int stopped) 248 { 249 struct netmap_adapter *na; 250 int i; 251 252 if (!(ifp->if_capenable & IFCAP_NETMAP)) 253 return; 254 255 na = NA(ifp); 256 257 for (i = 0; i <= na->num_tx_rings; i++) { 258 if (stopped) 259 netmap_disable_ring(na->tx_rings + i); 260 else 261 na->tx_rings[i].nkr_stopped = 0; 262 na->nm_notify(na, i, NR_TX, NAF_DISABLE_NOTIFY | 263 (i == na->num_tx_rings ? NAF_GLOBAL_NOTIFY: 0)); 264 } 265 266 for (i = 0; i <= na->num_rx_rings; i++) { 267 if (stopped) 268 netmap_disable_ring(na->rx_rings + i); 269 else 270 na->rx_rings[i].nkr_stopped = 0; 271 na->nm_notify(na, i, NR_RX, NAF_DISABLE_NOTIFY | 272 (i == na->num_rx_rings ? NAF_GLOBAL_NOTIFY: 0)); 273 } 274 } 275 276 277 void 278 netmap_disable_all_rings(struct ifnet *ifp) 279 { 280 netmap_set_all_rings(ifp, 1 /* stopped */); 281 } 282 283 284 void 285 netmap_enable_all_rings(struct ifnet *ifp) 286 { 287 netmap_set_all_rings(ifp, 0 /* enabled */); 288 } 289 290 291 /* 292 * generic bound_checking function 293 */ 294 u_int 295 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg) 296 { 297 u_int oldv = *v; 298 const char *op = NULL; 299 300 if (dflt < lo) 301 dflt = lo; 302 if (dflt > hi) 303 dflt = hi; 304 if (oldv < lo) { 305 *v = dflt; 306 op = "Bump"; 307 } else if (oldv > hi) { 308 *v = hi; 309 op = "Clamp"; 310 } 311 if (op && msg) 312 kprintf("%s %s to %d (was %d)\n", op, msg, *v, oldv); 313 return *v; 314 } 315 316 317 /* 318 * packet-dump function, user-supplied or static buffer. 319 * The destination buffer must be at least 30+4*len 320 */ 321 const char * 322 nm_dump_buf(char *p, int len, int lim, char *dst) 323 { 324 static char _dst[8192]; 325 int i, j, i0; 326 static char hex[] ="0123456789abcdef"; 327 char *o; /* output position */ 328 329 #define P_HI(x) hex[((x) & 0xf0)>>4] 330 #define P_LO(x) hex[((x) & 0xf)] 331 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.') 332 if (!dst) 333 dst = _dst; 334 if (lim <= 0 || lim > len) 335 lim = len; 336 o = dst; 337 ksprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim); 338 o += strlen(o); 339 /* hexdump routine */ 340 for (i = 0; i < lim; ) { 341 ksprintf(o, "%5d: ", i); 342 o += strlen(o); 343 memset(o, ' ', 48); 344 i0 = i; 345 for (j=0; j < 16 && i < lim; i++, j++) { 346 o[j*3] = P_HI(p[i]); 347 o[j*3+1] = P_LO(p[i]); 348 } 349 i = i0; 350 for (j=0; j < 16 && i < lim; i++, j++) 351 o[j + 48] = P_C(p[i]); 352 o[j+48] = '\n'; 353 o += j+49; 354 } 355 *o = '\0'; 356 #undef P_HI 357 #undef P_LO 358 #undef P_C 359 return dst; 360 } 361 362 363 364 /* 365 * Fetch configuration from the device, to cope with dynamic 366 * reconfigurations after loading the module. 367 */ 368 int 369 netmap_update_config(struct netmap_adapter *na) 370 { 371 struct ifnet *ifp = na->ifp; 372 u_int txr, txd, rxr, rxd; 373 374 txr = txd = rxr = rxd = 0; 375 if (na->nm_config) { 376 na->nm_config(na, &txr, &txd, &rxr, &rxd); 377 } else { 378 /* take whatever we had at init time */ 379 txr = na->num_tx_rings; 380 txd = na->num_tx_desc; 381 rxr = na->num_rx_rings; 382 rxd = na->num_rx_desc; 383 } 384 385 if (na->num_tx_rings == txr && na->num_tx_desc == txd && 386 na->num_rx_rings == rxr && na->num_rx_desc == rxd) 387 return 0; /* nothing changed */ 388 if (netmap_verbose || na->active_fds > 0) { 389 D("stored config %s: txring %d x %d, rxring %d x %d", 390 NM_IFPNAME(ifp), 391 na->num_tx_rings, na->num_tx_desc, 392 na->num_rx_rings, na->num_rx_desc); 393 D("new config %s: txring %d x %d, rxring %d x %d", 394 NM_IFPNAME(ifp), txr, txd, rxr, rxd); 395 } 396 if (na->active_fds == 0) { 397 D("configuration changed (but fine)"); 398 na->num_tx_rings = txr; 399 na->num_tx_desc = txd; 400 na->num_rx_rings = rxr; 401 na->num_rx_desc = rxd; 402 return 0; 403 } 404 D("configuration changed while active, this is bad..."); 405 return 1; 406 } 407 408 409 int 410 netmap_krings_create(struct netmap_adapter *na, u_int ntx, u_int nrx, u_int tailroom) 411 { 412 u_int i, len, ndesc; 413 struct netmap_kring *kring; 414 415 len = (ntx + nrx) * sizeof(struct netmap_kring) + tailroom; 416 417 na->tx_rings = kmalloc((size_t)len, M_DEVBUF, M_NOWAIT | M_ZERO); 418 if (na->tx_rings == NULL) { 419 D("Cannot allocate krings"); 420 return ENOMEM; 421 } 422 na->rx_rings = na->tx_rings + ntx; 423 424 ndesc = na->num_tx_desc; 425 for (i = 0; i < ntx; i++) { /* Transmit rings */ 426 kring = &na->tx_rings[i]; 427 bzero(kring, sizeof(*kring)); 428 kring->na = na; 429 kring->nkr_num_slots = ndesc; 430 /* 431 * IMPORTANT: 432 * Always keep one slot empty, so we can detect new 433 * transmissions comparing cur and nr_hwcur (they are 434 * the same only if there are no new transmissions). 435 */ 436 kring->nr_hwavail = ndesc - 1; 437 lockinit(&kring->q_lock, "nm_txq_lock", 0, LK_CANRECURSE); 438 init_waitqueue_head(&kring->si); 439 } 440 441 ndesc = na->num_rx_desc; 442 for (i = 0; i < nrx; i++) { /* Receive rings */ 443 kring = &na->rx_rings[i]; 444 bzero(kring, sizeof(*kring)); 445 kring->na = na; 446 kring->nkr_num_slots = ndesc; 447 lockinit(&kring->q_lock, "nm_rxq_lock", 0, LK_CANRECURSE); 448 init_waitqueue_head(&kring->si); 449 } 450 init_waitqueue_head(&na->tx_si); 451 init_waitqueue_head(&na->rx_si); 452 453 na->tailroom = na->rx_rings + nrx; 454 455 return 0; 456 457 } 458 459 460 void 461 netmap_krings_delete(struct netmap_adapter *na) 462 { 463 int i; 464 465 for (i = 0; i < na->num_tx_rings + 1; i++) { 466 lockuninit(&na->tx_rings[i].q_lock); 467 } 468 for (i = 0; i < na->num_rx_rings + 1; i++) { 469 lockuninit(&na->rx_rings[i].q_lock); 470 } 471 kfree(na->tx_rings, M_DEVBUF); 472 na->tx_rings = na->rx_rings = na->tailroom = NULL; 473 } 474 475 476 static struct netmap_if* 477 netmap_if_new(const char *ifname, struct netmap_adapter *na) 478 { 479 struct netmap_if *nifp; 480 481 if (netmap_update_config(na)) { 482 /* configuration mismatch, report and fail */ 483 return NULL; 484 } 485 486 if (na->active_fds) 487 goto final; 488 489 if (na->nm_krings_create(na)) 490 goto cleanup; 491 492 if (netmap_mem_rings_create(na)) 493 goto cleanup; 494 495 final: 496 497 nifp = netmap_mem_if_new(ifname, na); 498 if (nifp == NULL) 499 goto cleanup; 500 501 return (nifp); 502 503 cleanup: 504 505 if (na->active_fds == 0) { 506 netmap_mem_rings_delete(na); 507 na->nm_krings_delete(na); 508 } 509 510 return NULL; 511 } 512 513 514 /* grab a reference to the memory allocator, if we don't have one already. The 515 * reference is taken from the netmap_adapter registered with the priv. 516 * 517 */ 518 static int 519 netmap_get_memory_locked(struct netmap_priv_d* p) 520 { 521 struct netmap_mem_d *nmd; 522 int error = 0; 523 524 if (p->np_na == NULL) { 525 if (!netmap_mmap_unreg) 526 return ENODEV; 527 /* for compatibility with older versions of the API 528 * we use the global allocator when no interface has been 529 * registered 530 */ 531 nmd = &nm_mem; 532 } else { 533 nmd = p->np_na->nm_mem; 534 } 535 if (p->np_mref == NULL) { 536 error = netmap_mem_finalize(nmd); 537 if (!error) 538 p->np_mref = nmd; 539 } else if (p->np_mref != nmd) { 540 /* a virtual port has been registered, but previous 541 * syscalls already used the global allocator. 542 * We cannot continue 543 */ 544 error = ENODEV; 545 } 546 return error; 547 } 548 549 550 int 551 netmap_get_memory(struct netmap_priv_d* p) 552 { 553 int error; 554 NMG_LOCK(); 555 error = netmap_get_memory_locked(p); 556 NMG_UNLOCK(); 557 return error; 558 } 559 560 561 static int 562 netmap_have_memory_locked(struct netmap_priv_d* p) 563 { 564 return p->np_mref != NULL; 565 } 566 567 568 static void 569 netmap_drop_memory_locked(struct netmap_priv_d* p) 570 { 571 if (p->np_mref) { 572 netmap_mem_deref(p->np_mref); 573 p->np_mref = NULL; 574 } 575 } 576 577 578 /* 579 * File descriptor's private data destructor. 580 * 581 * Call nm_register(ifp,0) to stop netmap mode on the interface and 582 * revert to normal operation. We expect that np_na->ifp has not gone. 583 * The second argument is the nifp to work on. In some cases it is 584 * not attached yet to the netmap_priv_d so we need to pass it as 585 * a separate argument. 586 */ 587 /* call with NMG_LOCK held */ 588 static void 589 netmap_do_unregif(struct netmap_priv_d *priv, struct netmap_if *nifp) 590 { 591 struct netmap_adapter *na = priv->np_na; 592 struct ifnet *ifp = na->ifp; 593 594 NMG_LOCK_ASSERT(); 595 na->active_fds--; 596 if (na->active_fds <= 0) { /* last instance */ 597 598 if (netmap_verbose) 599 D("deleting last instance for %s", NM_IFPNAME(ifp)); 600 /* 601 * (TO CHECK) This function is only called 602 * when the last reference to this file descriptor goes 603 * away. This means we cannot have any pending poll() 604 * or interrupt routine operating on the structure. 605 * XXX The file may be closed in a thread while 606 * another thread is using it. 607 * Linux keeps the file opened until the last reference 608 * by any outstanding ioctl/poll or mmap is gone. 609 * FreeBSD does not track mmap()s (but we do) and 610 * wakes up any sleeping poll(). Need to check what 611 * happens if the close() occurs while a concurrent 612 * syscall is running. 613 */ 614 if (ifp) 615 na->nm_register(na, 0); /* off, clear IFCAP_NETMAP */ 616 /* Wake up any sleeping threads. netmap_poll will 617 * then return POLLERR 618 * XXX The wake up now must happen during *_down(), when 619 * we order all activities to stop. -gl 620 */ 621 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 622 /* knlist_destroy(&na->tx_si.si_note); */ 623 /* knlist_destroy(&na->rx_si.si_note); */ 624 625 /* delete rings and buffers */ 626 netmap_mem_rings_delete(na); 627 na->nm_krings_delete(na); 628 } 629 /* delete the nifp */ 630 netmap_mem_if_delete(na, nifp); 631 } 632 633 634 /* 635 * returns 1 if this is the last instance and we can free priv 636 */ 637 int 638 netmap_dtor_locked(struct netmap_priv_d *priv) 639 { 640 struct netmap_adapter *na = priv->np_na; 641 642 /* 643 * np_refcount is the number of active mmaps on 644 * this file descriptor 645 */ 646 if (--priv->np_refcount > 0) { 647 return 0; 648 } 649 if (!na) { 650 return 1; //XXX is it correct? 651 } 652 netmap_do_unregif(priv, priv->np_nifp); 653 priv->np_nifp = NULL; 654 netmap_drop_memory_locked(priv); 655 if (priv->np_na) { 656 netmap_adapter_put(na); 657 priv->np_na = NULL; 658 } 659 return 1; 660 } 661 662 663 void 664 netmap_dtor(void *data) 665 { 666 struct netmap_priv_d *priv = data; 667 int last_instance; 668 669 NMG_LOCK(); 670 last_instance = netmap_dtor_locked(priv); 671 NMG_UNLOCK(); 672 if (last_instance) { 673 bzero(priv, sizeof(*priv)); /* for safety */ 674 kfree(priv, M_DEVBUF); 675 } 676 } 677 678 679 680 681 /* 682 * Handlers for synchronization of the queues from/to the host. 683 * Netmap has two operating modes: 684 * - in the default mode, the rings connected to the host stack are 685 * just another ring pair managed by userspace; 686 * - in transparent mode (XXX to be defined) incoming packets 687 * (from the host or the NIC) are marked as NS_FORWARD upon 688 * arrival, and the user application has a chance to reset the 689 * flag for packets that should be dropped. 690 * On the RXSYNC or poll(), packets in RX rings between 691 * kring->nr_kcur and ring->cur with NS_FORWARD still set are moved 692 * to the other side. 693 * The transfer NIC --> host is relatively easy, just encapsulate 694 * into mbufs and we are done. The host --> NIC side is slightly 695 * harder because there might not be room in the tx ring so it 696 * might take a while before releasing the buffer. 697 */ 698 699 700 /* 701 * pass a chain of buffers to the host stack as coming from 'dst' 702 */ 703 static void 704 netmap_send_up(struct ifnet *dst, struct mbq *q) 705 { 706 struct mbuf *m; 707 708 /* send packets up, outside the lock */ 709 while ((m = mbq_dequeue(q)) != NULL) { 710 if (netmap_verbose & NM_VERB_HOST) 711 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 712 NM_SEND_UP(dst, m); 713 } 714 mbq_destroy(q); 715 } 716 717 718 /* 719 * put a copy of the buffers marked NS_FORWARD into an mbuf chain. 720 * Run from hwcur to cur - reserved 721 */ 722 static void 723 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 724 { 725 /* Take packets from hwcur to cur-reserved and pass them up. 726 * In case of no buffers we give up. At the end of the loop, 727 * the queue is drained in all cases. 728 * XXX handle reserved 729 */ 730 u_int lim = kring->nkr_num_slots - 1; 731 struct mbuf *m; 732 u_int k = kring->ring->cur, n = kring->ring->reserved; 733 struct netmap_adapter *na = kring->na; 734 735 /* compute the final position, ring->cur - ring->reserved */ 736 if (n > 0) { 737 if (k < n) 738 k += kring->nkr_num_slots; 739 k += n; 740 } 741 for (n = kring->nr_hwcur; n != k;) { 742 struct netmap_slot *slot = &kring->ring->slot[n]; 743 744 n = nm_next(n, lim); 745 if ((slot->flags & NS_FORWARD) == 0 && !force) 746 continue; 747 if (slot->len < 14 || slot->len > NETMAP_BDG_BUF_SIZE(na->nm_mem)) { 748 D("bad pkt at %d len %d", n, slot->len); 749 continue; 750 } 751 slot->flags &= ~NS_FORWARD; // XXX needed ? 752 /* XXX adapt to the case of a multisegment packet */ 753 m = m_devget(BDG_NMB(na, slot), slot->len, 0, na->ifp, NULL); 754 755 if (m == NULL) 756 break; 757 mbq_enqueue(q, m); 758 } 759 } 760 761 762 /* 763 * The host ring has packets from nr_hwcur to (cur - reserved) 764 * to be sent down to the NIC. 765 * We need to use the queue lock on the source (host RX ring) 766 * to protect against netmap_transmit. 767 * If the user is well behaved we do not need to acquire locks 768 * on the destination(s), 769 * so we only need to make sure that there are no panics because 770 * of user errors. 771 * XXX verify 772 * 773 * We scan the tx rings, which have just been 774 * flushed so nr_hwcur == cur. Pushing packets down means 775 * increment cur and decrement avail. 776 * XXX to be verified 777 */ 778 static void 779 netmap_sw_to_nic(struct netmap_adapter *na) 780 { 781 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 782 struct netmap_kring *k1 = &na->tx_rings[0]; 783 u_int i, howmany, src_lim, dst_lim; 784 785 /* XXX we should also check that the carrier is on */ 786 if (kring->nkr_stopped) 787 return; 788 789 lockmgr(&kring->q_lock, LK_EXCLUSIVE); 790 791 if (kring->nkr_stopped) 792 goto out; 793 794 howmany = kring->nr_hwavail; /* XXX otherwise cur - reserved - nr_hwcur */ 795 796 src_lim = kring->nkr_num_slots - 1; 797 for (i = 0; howmany > 0 && i < na->num_tx_rings; i++, k1++) { 798 ND("%d packets left to ring %d (space %d)", howmany, i, k1->nr_hwavail); 799 dst_lim = k1->nkr_num_slots - 1; 800 while (howmany > 0 && k1->ring->avail > 0) { 801 struct netmap_slot *src, *dst, tmp; 802 src = &kring->ring->slot[kring->nr_hwcur]; 803 dst = &k1->ring->slot[k1->ring->cur]; 804 tmp = *src; 805 src->buf_idx = dst->buf_idx; 806 src->flags = NS_BUF_CHANGED; 807 808 dst->buf_idx = tmp.buf_idx; 809 dst->len = tmp.len; 810 dst->flags = NS_BUF_CHANGED; 811 ND("out len %d buf %d from %d to %d", 812 dst->len, dst->buf_idx, 813 kring->nr_hwcur, k1->ring->cur); 814 815 kring->nr_hwcur = nm_next(kring->nr_hwcur, src_lim); 816 howmany--; 817 kring->nr_hwavail--; 818 k1->ring->cur = nm_next(k1->ring->cur, dst_lim); 819 k1->ring->avail--; 820 } 821 kring->ring->cur = kring->nr_hwcur; // XXX 822 k1++; // XXX why? 823 } 824 out: 825 lockmgr(&kring->q_lock, LK_RELEASE); 826 } 827 828 829 /* 830 * netmap_txsync_to_host() passes packets up. We are called from a 831 * system call in user process context, and the only contention 832 * can be among multiple user threads erroneously calling 833 * this routine concurrently. 834 */ 835 void 836 netmap_txsync_to_host(struct netmap_adapter *na) 837 { 838 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 839 struct netmap_ring *ring = kring->ring; 840 u_int k, lim = kring->nkr_num_slots - 1; 841 struct mbq q; 842 int error; 843 844 error = nm_kr_tryget(kring); 845 if (error) { 846 if (error == NM_KR_BUSY) 847 D("ring %p busy (user error)", kring); 848 return; 849 } 850 k = ring->cur; 851 if (k > lim) { 852 D("invalid ring index in stack TX kring %p", kring); 853 netmap_ring_reinit(kring); 854 nm_kr_put(kring); 855 return; 856 } 857 858 /* Take packets from hwcur to cur and pass them up. 859 * In case of no buffers we give up. At the end of the loop, 860 * the queue is drained in all cases. 861 */ 862 mbq_init(&q); 863 netmap_grab_packets(kring, &q, 1); 864 kring->nr_hwcur = k; 865 kring->nr_hwavail = ring->avail = lim; 866 867 nm_kr_put(kring); 868 netmap_send_up(na->ifp, &q); 869 } 870 871 872 /* 873 * rxsync backend for packets coming from the host stack. 874 * They have been put in the queue by netmap_transmit() so we 875 * need to protect access to the kring using a lock. 876 * 877 * This routine also does the selrecord if called from the poll handler 878 * (we know because td != NULL). 879 * 880 * NOTE: on linux, selrecord() is defined as a macro and uses pwait 881 * as an additional hidden argument. 882 */ 883 static void 884 netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait) 885 { 886 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 887 struct netmap_ring *ring = kring->ring; 888 u_int j, n, lim = kring->nkr_num_slots; 889 u_int k = ring->cur, resvd = ring->reserved; 890 891 (void)pwait; /* disable unused warnings */ 892 893 if (kring->nkr_stopped) /* check a first time without lock */ 894 return; 895 896 lockmgr(&kring->q_lock, LK_EXCLUSIVE); 897 898 if (kring->nkr_stopped) /* check again with lock held */ 899 goto unlock_out; 900 901 if (k >= lim) { 902 netmap_ring_reinit(kring); 903 goto unlock_out; 904 } 905 /* new packets are already set in nr_hwavail */ 906 /* skip past packets that userspace has released */ 907 j = kring->nr_hwcur; 908 if (resvd > 0) { 909 if (resvd + ring->avail >= lim + 1) { 910 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 911 ring->reserved = resvd = 0; // XXX panic... 912 } 913 k = (k >= resvd) ? k - resvd : k + lim - resvd; 914 } 915 if (j != k) { 916 n = k >= j ? k - j : k + lim - j; 917 kring->nr_hwavail -= n; 918 kring->nr_hwcur = k; 919 } 920 k = ring->avail = kring->nr_hwavail - resvd; 921 if (k == 0 && td) 922 selrecord(td, &kring->si); 923 if (k && (netmap_verbose & NM_VERB_HOST)) 924 D("%d pkts from stack", k); 925 unlock_out: 926 927 lockmgr(&kring->q_lock, LK_RELEASE); 928 } 929 930 931 /* Get a netmap adapter for the port. 932 * 933 * If it is possible to satisfy the request, return 0 934 * with *na containing the netmap adapter found. 935 * Otherwise return an error code, with *na containing NULL. 936 * 937 * When the port is attached to a bridge, we always return 938 * EBUSY. 939 * Otherwise, if the port is already bound to a file descriptor, 940 * then we unconditionally return the existing adapter into *na. 941 * In all the other cases, we return (into *na) either native, 942 * generic or NULL, according to the following table: 943 * 944 * native_support 945 * active_fds dev.netmap.admode YES NO 946 * ------------------------------------------------------- 947 * >0 * NA(ifp) NA(ifp) 948 * 949 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC 950 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL 951 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC 952 * 953 */ 954 955 int 956 netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na) 957 { 958 /* generic support */ 959 int i = netmap_admode; /* Take a snapshot. */ 960 int error = 0; 961 struct netmap_adapter *prev_na; 962 struct netmap_generic_adapter *gna; 963 964 *na = NULL; /* default */ 965 966 /* reset in case of invalid value */ 967 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST) 968 i = netmap_admode = NETMAP_ADMODE_BEST; 969 970 if (NETMAP_CAPABLE(ifp)) { 971 /* If an adapter already exists, but is 972 * attached to a vale port, we report that the 973 * port is busy. 974 */ 975 if (NETMAP_OWNED_BY_KERN(NA(ifp))) 976 return EBUSY; 977 978 /* If an adapter already exists, return it if 979 * there are active file descriptors or if 980 * netmap is not forced to use generic 981 * adapters. 982 */ 983 if (NA(ifp)->active_fds > 0 || 984 i != NETMAP_ADMODE_GENERIC) { 985 *na = NA(ifp); 986 return 0; 987 } 988 } 989 990 /* If there isn't native support and netmap is not allowed 991 * to use generic adapters, we cannot satisfy the request. 992 */ 993 if (!NETMAP_CAPABLE(ifp) && i == NETMAP_ADMODE_NATIVE) 994 return EINVAL; 995 996 /* Otherwise, create a generic adapter and return it, 997 * saving the previously used netmap adapter, if any. 998 * 999 * Note that here 'prev_na', if not NULL, MUST be a 1000 * native adapter, and CANNOT be a generic one. This is 1001 * true because generic adapters are created on demand, and 1002 * destroyed when not used anymore. Therefore, if the adapter 1003 * currently attached to an interface 'ifp' is generic, it 1004 * must be that 1005 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))). 1006 * Consequently, if NA(ifp) is generic, we will enter one of 1007 * the branches above. This ensures that we never override 1008 * a generic adapter with another generic adapter. 1009 */ 1010 prev_na = NA(ifp); 1011 error = generic_netmap_attach(ifp); 1012 if (error) 1013 return error; 1014 1015 *na = NA(ifp); 1016 gna = (struct netmap_generic_adapter*)NA(ifp); 1017 gna->prev = prev_na; /* save old na */ 1018 if (prev_na != NULL) { 1019 ifunit(ifp->if_xname); /* XXX huh? */ 1020 // XXX add a refcount ? 1021 netmap_adapter_get(prev_na); 1022 } 1023 D("Created generic NA %p (prev %p)", gna, gna->prev); 1024 1025 return 0; 1026 } 1027 1028 1029 /* 1030 * MUST BE CALLED UNDER NMG_LOCK() 1031 * 1032 * get a refcounted reference to an interface. 1033 * This is always called in the execution of an ioctl(). 1034 * 1035 * Return ENXIO if the interface does not exist, EINVAL if netmap 1036 * is not supported by the interface. 1037 * If successful, hold a reference. 1038 * 1039 * When the NIC is attached to a bridge, reference is managed 1040 * at na->na_bdg_refcount using ADD/DROP_BDG_REF() as well as 1041 * virtual ports. Hence, on the final DROP_BDG_REF(), the NIC 1042 * is detached from the bridge, then ifp's refcount is dropped (this 1043 * is equivalent to that ifp is destroyed in case of virtual ports. 1044 * 1045 * This function uses if_rele() when we want to prevent the NIC from 1046 * being detached from the bridge in error handling. But once refcount 1047 * is acquired by this function, it must be released using nm_if_rele(). 1048 */ 1049 int 1050 netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create) 1051 { 1052 struct ifnet *ifp; 1053 int error = 0; 1054 struct netmap_adapter *ret; 1055 1056 *na = NULL; /* default return value */ 1057 1058 /* first try to see if this is a bridge port. */ 1059 NMG_LOCK_ASSERT(); 1060 1061 error = netmap_get_bdg_na(nmr, na, create); 1062 if (error || *na != NULL) /* valid match in netmap_get_bdg_na() */ 1063 return error; 1064 1065 ifp = ifunit(nmr->nr_name); 1066 if (ifp == NULL) { 1067 return ENXIO; 1068 } 1069 1070 error = netmap_get_hw_na(ifp, &ret); 1071 if (error) 1072 goto out; 1073 1074 if (ret != NULL) { 1075 /* Users cannot use the NIC attached to a bridge directly */ 1076 if (NETMAP_OWNED_BY_KERN(ret)) { 1077 error = EINVAL; 1078 goto out; 1079 } 1080 error = 0; 1081 *na = ret; 1082 netmap_adapter_get(ret); 1083 } 1084 out: 1085 #if 0 1086 if_rele(ifp); 1087 #endif 1088 1089 return error; 1090 } 1091 1092 1093 /* 1094 * Error routine called when txsync/rxsync detects an error. 1095 * Can't do much more than resetting cur = hwcur, avail = hwavail. 1096 * Return 1 on reinit. 1097 * 1098 * This routine is only called by the upper half of the kernel. 1099 * It only reads hwcur (which is changed only by the upper half, too) 1100 * and hwavail (which may be changed by the lower half, but only on 1101 * a tx ring and only to increase it, so any error will be recovered 1102 * on the next call). For the above, we don't strictly need to call 1103 * it under lock. 1104 */ 1105 int 1106 netmap_ring_reinit(struct netmap_kring *kring) 1107 { 1108 struct netmap_ring *ring = kring->ring; 1109 u_int i, lim = kring->nkr_num_slots - 1; 1110 int errors = 0; 1111 1112 // XXX KASSERT nm_kr_tryget 1113 RD(10, "called for %s", NM_IFPNAME(kring->na->ifp)); 1114 if (ring->cur > lim) 1115 errors++; 1116 for (i = 0; i <= lim; i++) { 1117 u_int idx = ring->slot[i].buf_idx; 1118 u_int len = ring->slot[i].len; 1119 if (idx < 2 || idx >= netmap_total_buffers) { 1120 if (!errors++) 1121 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 1122 ring->slot[i].buf_idx = 0; 1123 ring->slot[i].len = 0; 1124 } else if (len > NETMAP_BDG_BUF_SIZE(kring->na->nm_mem)) { 1125 ring->slot[i].len = 0; 1126 if (!errors++) 1127 D("bad len %d at slot %d idx %d", 1128 len, i, idx); 1129 } 1130 } 1131 if (errors) { 1132 int pos = kring - kring->na->tx_rings; 1133 int n = kring->na->num_tx_rings + 1; 1134 1135 RD(10, "total %d errors", errors); 1136 errors++; 1137 RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 1138 NM_IFPNAME(kring->na->ifp), 1139 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 1140 ring->cur, kring->nr_hwcur, 1141 ring->avail, kring->nr_hwavail); 1142 ring->cur = kring->nr_hwcur; 1143 ring->avail = kring->nr_hwavail; 1144 } 1145 return (errors ? 1 : 0); 1146 } 1147 1148 1149 /* 1150 * Set the ring ID. For devices with a single queue, a request 1151 * for all rings is the same as a single ring. 1152 */ 1153 static int 1154 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 1155 { 1156 struct netmap_adapter *na = priv->np_na; 1157 struct ifnet *ifp = na->ifp; 1158 u_int i = ringid & NETMAP_RING_MASK; 1159 /* initially (np_qfirst == np_qlast) we don't want to lock */ 1160 u_int lim = na->num_rx_rings; 1161 1162 if (na->num_tx_rings > lim) 1163 lim = na->num_tx_rings; 1164 if ( (ringid & NETMAP_HW_RING) && i >= lim) { 1165 D("invalid ring id %d", i); 1166 return (EINVAL); 1167 } 1168 priv->np_ringid = ringid; 1169 if (ringid & NETMAP_SW_RING) { 1170 priv->np_qfirst = NETMAP_SW_RING; 1171 priv->np_qlast = 0; 1172 } else if (ringid & NETMAP_HW_RING) { 1173 priv->np_qfirst = i; 1174 priv->np_qlast = i + 1; 1175 } else { 1176 priv->np_qfirst = 0; 1177 priv->np_qlast = NETMAP_HW_RING ; 1178 } 1179 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 1180 if (netmap_verbose) { 1181 if (ringid & NETMAP_SW_RING) 1182 D("ringid %s set to SW RING", NM_IFPNAME(ifp)); 1183 else if (ringid & NETMAP_HW_RING) 1184 D("ringid %s set to HW RING %d", NM_IFPNAME(ifp), 1185 priv->np_qfirst); 1186 else 1187 D("ringid %s set to all %d HW RINGS", NM_IFPNAME(ifp), lim); 1188 } 1189 return 0; 1190 } 1191 1192 1193 /* 1194 * possibly move the interface to netmap-mode. 1195 * If success it returns a pointer to netmap_if, otherwise NULL. 1196 * This must be called with NMG_LOCK held. 1197 */ 1198 struct netmap_if * 1199 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1200 uint16_t ringid, int *err) 1201 { 1202 struct ifnet *ifp = na->ifp; 1203 struct netmap_if *nifp = NULL; 1204 int error, need_mem = 0; 1205 1206 NMG_LOCK_ASSERT(); 1207 /* ring configuration may have changed, fetch from the card */ 1208 netmap_update_config(na); 1209 priv->np_na = na; /* store the reference */ 1210 error = netmap_set_ringid(priv, ringid); 1211 if (error) 1212 goto out; 1213 /* ensure allocators are ready */ 1214 need_mem = !netmap_have_memory_locked(priv); 1215 if (need_mem) { 1216 error = netmap_get_memory_locked(priv); 1217 ND("get_memory returned %d", error); 1218 if (error) 1219 goto out; 1220 } 1221 nifp = netmap_if_new(NM_IFPNAME(ifp), na); 1222 if (nifp == NULL) { /* allocation failed */ 1223 /* we should drop the allocator, but only 1224 * if we were the ones who grabbed it 1225 */ 1226 error = ENOMEM; 1227 goto out; 1228 } 1229 na->active_fds++; 1230 if (ifp->if_capenable & IFCAP_NETMAP) { 1231 /* was already set */ 1232 } else { 1233 /* Otherwise set the card in netmap mode 1234 * and make it use the shared buffers. 1235 * 1236 * do not core lock because the race is harmless here, 1237 * there cannot be any traffic to netmap_transmit() 1238 */ 1239 na->na_lut = na->nm_mem->pools[NETMAP_BUF_POOL].lut; 1240 ND("%p->na_lut == %p", na, na->na_lut); 1241 na->na_lut_objtotal = na->nm_mem->pools[NETMAP_BUF_POOL].objtotal; 1242 error = na->nm_register(na, 1); /* mode on */ 1243 if (error) { 1244 netmap_do_unregif(priv, nifp); 1245 nifp = NULL; 1246 } 1247 } 1248 out: 1249 *err = error; 1250 if (error) { 1251 priv->np_na = NULL; 1252 if (need_mem) 1253 netmap_drop_memory_locked(priv); 1254 } 1255 if (nifp != NULL) { 1256 /* 1257 * advertise that the interface is ready bt setting ni_nifp. 1258 * The barrier is needed because readers (poll and *SYNC) 1259 * check for priv->np_nifp != NULL without locking 1260 */ 1261 wmb(); /* make sure previous writes are visible to all CPUs */ 1262 priv->np_nifp = nifp; 1263 } 1264 return nifp; 1265 } 1266 1267 1268 1269 /* 1270 * ioctl(2) support for the "netmap" device. 1271 * 1272 * Following a list of accepted commands: 1273 * - NIOCGINFO 1274 * - SIOCGIFADDR just for convenience 1275 * - NIOCREGIF 1276 * - NIOCUNREGIF 1277 * - NIOCTXSYNC 1278 * - NIOCRXSYNC 1279 * 1280 * Return 0 on success, errno otherwise. 1281 */ 1282 int 1283 netmap_ioctl(struct dev_ioctl_args *ap) 1284 { 1285 struct netmap_priv_d *priv = NULL; 1286 struct ifnet *ifp = NULL; 1287 struct nmreq *nmr = (struct nmreq *) ap->a_data; 1288 struct netmap_adapter *na = NULL; 1289 int error; 1290 u_int i, lim; 1291 struct netmap_if *nifp; 1292 struct netmap_kring *krings; 1293 u_long cmd = ap->a_cmd; 1294 1295 #if 0 1296 error = devfs_get_cdevpriv((void **)&priv); 1297 if (error) { 1298 /* XXX ENOENT should be impossible, since the priv 1299 * is now created in the open */ 1300 return (error == ENOENT ? ENXIO : error); 1301 } 1302 #endif 1303 1304 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */ 1305 switch (cmd) { 1306 case NIOCGINFO: /* return capabilities etc */ 1307 if (nmr->nr_version != NETMAP_API) { 1308 D("API mismatch got %d have %d", 1309 nmr->nr_version, NETMAP_API); 1310 nmr->nr_version = NETMAP_API; 1311 error = EINVAL; 1312 break; 1313 } 1314 if (nmr->nr_cmd == NETMAP_BDG_LIST) { 1315 error = netmap_bdg_ctl(nmr, NULL); 1316 break; 1317 } 1318 1319 NMG_LOCK(); 1320 do { 1321 /* memsize is always valid */ 1322 struct netmap_mem_d *nmd = &nm_mem; 1323 u_int memflags; 1324 1325 if (nmr->nr_name[0] != '\0') { 1326 /* get a refcount */ 1327 error = netmap_get_na(nmr, &na, 1 /* create */); 1328 if (error) 1329 break; 1330 nmd = na->nm_mem; /* get memory allocator */ 1331 } 1332 1333 error = netmap_mem_get_info(nmd, &nmr->nr_memsize, &memflags); 1334 if (error) 1335 break; 1336 if (na == NULL) /* only memory info */ 1337 break; 1338 nmr->nr_offset = 0; 1339 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 1340 netmap_update_config(na); 1341 nmr->nr_rx_rings = na->num_rx_rings; 1342 nmr->nr_tx_rings = na->num_tx_rings; 1343 nmr->nr_rx_slots = na->num_rx_desc; 1344 nmr->nr_tx_slots = na->num_tx_desc; 1345 if (memflags & NETMAP_MEM_PRIVATE) 1346 nmr->nr_ringid |= NETMAP_PRIV_MEM; 1347 netmap_adapter_put(na); 1348 } while (0); 1349 NMG_UNLOCK(); 1350 break; 1351 1352 case NIOCREGIF: 1353 if (nmr->nr_version != NETMAP_API) { 1354 nmr->nr_version = NETMAP_API; 1355 error = EINVAL; 1356 break; 1357 } 1358 /* possibly attach/detach NIC and VALE switch */ 1359 i = nmr->nr_cmd; 1360 if (i == NETMAP_BDG_ATTACH || i == NETMAP_BDG_DETACH) { 1361 error = netmap_bdg_ctl(nmr, NULL); 1362 break; 1363 } else if (i != 0) { 1364 D("nr_cmd must be 0 not %d", i); 1365 error = EINVAL; 1366 break; 1367 } 1368 1369 /* protect access to priv from concurrent NIOCREGIF */ 1370 NMG_LOCK(); 1371 do { 1372 u_int memflags; 1373 1374 if (priv->np_na != NULL) { /* thread already registered */ 1375 error = netmap_set_ringid(priv, nmr->nr_ringid); 1376 break; 1377 } 1378 /* find the interface and a reference */ 1379 error = netmap_get_na(nmr, &na, 1 /* create */); /* keep reference */ 1380 if (error) 1381 break; 1382 ifp = na->ifp; 1383 if (NETMAP_OWNED_BY_KERN(na)) { 1384 netmap_adapter_put(na); 1385 error = EBUSY; 1386 break; 1387 } 1388 nifp = netmap_do_regif(priv, na, nmr->nr_ringid, &error); 1389 if (!nifp) { /* reg. failed, release priv and ref */ 1390 netmap_adapter_put(na); 1391 priv->np_nifp = NULL; 1392 break; 1393 } 1394 1395 /* return the offset of the netmap_if object */ 1396 nmr->nr_rx_rings = na->num_rx_rings; 1397 nmr->nr_tx_rings = na->num_tx_rings; 1398 nmr->nr_rx_slots = na->num_rx_desc; 1399 nmr->nr_tx_slots = na->num_tx_desc; 1400 error = netmap_mem_get_info(na->nm_mem, &nmr->nr_memsize, &memflags); 1401 if (error) { 1402 netmap_adapter_put(na); 1403 break; 1404 } 1405 if (memflags & NETMAP_MEM_PRIVATE) { 1406 nmr->nr_ringid |= NETMAP_PRIV_MEM; 1407 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM; 1408 } 1409 nmr->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp); 1410 } while (0); 1411 NMG_UNLOCK(); 1412 break; 1413 1414 case NIOCUNREGIF: 1415 // XXX we have no data here ? 1416 D("deprecated, data is %p", nmr); 1417 error = EINVAL; 1418 break; 1419 1420 case NIOCTXSYNC: 1421 case NIOCRXSYNC: 1422 nifp = priv->np_nifp; 1423 1424 if (nifp == NULL) { 1425 error = ENXIO; 1426 break; 1427 } 1428 rmb(); /* make sure following reads are not from cache */ 1429 1430 na = priv->np_na; /* we have a reference */ 1431 1432 if (na == NULL) { 1433 D("Internal error: nifp != NULL && na == NULL"); 1434 error = ENXIO; 1435 break; 1436 } 1437 1438 ifp = na->ifp; 1439 if (ifp == NULL) { 1440 RD(1, "the ifp is gone"); 1441 error = ENXIO; 1442 break; 1443 } 1444 1445 if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ 1446 if (cmd == NIOCTXSYNC) 1447 netmap_txsync_to_host(na); 1448 else 1449 netmap_rxsync_from_host(na, NULL, NULL); 1450 break; 1451 } 1452 /* find the last ring to scan */ 1453 lim = priv->np_qlast; 1454 if (lim == NETMAP_HW_RING) 1455 lim = (cmd == NIOCTXSYNC) ? 1456 na->num_tx_rings : na->num_rx_rings; 1457 1458 krings = (cmd == NIOCTXSYNC) ? na->tx_rings : na->rx_rings; 1459 for (i = priv->np_qfirst; i < lim; i++) { 1460 struct netmap_kring *kring = krings + i; 1461 if (nm_kr_tryget(kring)) { 1462 error = EBUSY; 1463 goto out; 1464 } 1465 if (cmd == NIOCTXSYNC) { 1466 if (netmap_verbose & NM_VERB_TXSYNC) 1467 D("pre txsync ring %d cur %d hwcur %d", 1468 i, kring->ring->cur, 1469 kring->nr_hwcur); 1470 na->nm_txsync(na, i, NAF_FORCE_RECLAIM); 1471 if (netmap_verbose & NM_VERB_TXSYNC) 1472 D("post txsync ring %d cur %d hwcur %d", 1473 i, kring->ring->cur, 1474 kring->nr_hwcur); 1475 } else { 1476 na->nm_rxsync(na, i, NAF_FORCE_READ); 1477 microtime(&na->rx_rings[i].ring->ts); 1478 } 1479 nm_kr_put(kring); 1480 } 1481 1482 break; 1483 case BIOCIMMEDIATE: 1484 case BIOCGHDRCMPLT: 1485 case BIOCSHDRCMPLT: 1486 case BIOCSSEESENT: 1487 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1488 break; 1489 1490 default: /* allow device-specific ioctls */ 1491 { 1492 struct socket so; 1493 1494 bzero(&so, sizeof(so)); 1495 NMG_LOCK(); 1496 error = netmap_get_na(nmr, &na, 0 /* don't create */); /* keep reference */ 1497 if (error) { 1498 netmap_adapter_put(na); 1499 NMG_UNLOCK(); 1500 break; 1501 } 1502 ifp = na->ifp; 1503 // so->so_proto not null. 1504 error = ifioctl(&so, cmd, ap->a_data, ap->a_cred); 1505 netmap_adapter_put(na); 1506 NMG_UNLOCK(); 1507 break; 1508 } 1509 } 1510 out: 1511 1512 return (error); 1513 } 1514 1515 static int 1516 netmap_kqfilter_event(struct knote *kn, long hint) 1517 { 1518 return (0); 1519 } 1520 1521 static void 1522 netmap_kqfilter_detach(struct knote *kn) 1523 { 1524 } 1525 1526 static struct filterops netmap_kqfilter_ops = { 1527 FILTEROP_ISFD, NULL, netmap_kqfilter_detach, netmap_kqfilter_event, 1528 }; 1529 1530 int 1531 netmap_kqfilter(struct dev_kqfilter_args *ap) 1532 { 1533 struct knote *kn = ap->a_kn; 1534 1535 ap->a_result = 0; 1536 1537 switch (kn->kn_filter) { 1538 case EVFILT_READ: 1539 case EVFILT_WRITE: 1540 kn->kn_fop = &netmap_kqfilter_ops; 1541 break; 1542 default: 1543 ap->a_result = EOPNOTSUPP; 1544 return (0); 1545 } 1546 1547 return (0); 1548 } 1549 1550 /* 1551 * select(2) and poll(2) handlers for the "netmap" device. 1552 * 1553 * Can be called for one or more queues. 1554 * Return true the event mask corresponding to ready events. 1555 * If there are no ready events, do a selrecord on either individual 1556 * selinfo or on the global one. 1557 * Device-dependent parts (locking and sync of tx/rx rings) 1558 * are done through callbacks. 1559 * 1560 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 1561 * The first one is remapped to pwait as selrecord() uses the name as an 1562 * hidden argument. 1563 */ 1564 static int 1565 netmap_poll(struct cdev *dev, int events, struct thread *td) 1566 { 1567 struct netmap_priv_d *priv = NULL; 1568 struct netmap_adapter *na; 1569 struct ifnet *ifp; 1570 struct netmap_kring *kring; 1571 u_int i, check_all_tx, check_all_rx, want_tx, want_rx, revents = 0; 1572 u_int lim_tx, lim_rx, host_forwarded = 0; 1573 struct mbq q; 1574 void *pwait = dev; /* linux compatibility */ 1575 1576 /* 1577 * In order to avoid nested locks, we need to "double check" 1578 * txsync and rxsync if we decide to do a selrecord(). 1579 * retry_tx (and retry_rx, later) prevent looping forever. 1580 */ 1581 int retry_tx = 1; 1582 1583 (void)pwait; 1584 mbq_init(&q); 1585 1586 #if 0 1587 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1588 return POLLERR; 1589 #endif 1590 1591 if (priv->np_nifp == NULL) { 1592 D("No if registered"); 1593 return POLLERR; 1594 } 1595 rmb(); /* make sure following reads are not from cache */ 1596 1597 na = priv->np_na; 1598 ifp = na->ifp; 1599 // check for deleted 1600 if (ifp == NULL) { 1601 RD(1, "the ifp is gone"); 1602 return POLLERR; 1603 } 1604 1605 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1606 return POLLERR; 1607 1608 if (netmap_verbose & 0x8000) 1609 D("device %s events 0x%x", NM_IFPNAME(ifp), events); 1610 want_tx = events & (POLLOUT | POLLWRNORM); 1611 want_rx = events & (POLLIN | POLLRDNORM); 1612 1613 lim_tx = na->num_tx_rings; 1614 lim_rx = na->num_rx_rings; 1615 1616 if (priv->np_qfirst == NETMAP_SW_RING) { 1617 /* handle the host stack ring */ 1618 if (priv->np_txpoll || want_tx) { 1619 /* push any packets up, then we are always ready */ 1620 netmap_txsync_to_host(na); 1621 revents |= want_tx; 1622 } 1623 if (want_rx) { 1624 kring = &na->rx_rings[lim_rx]; 1625 if (kring->ring->avail == 0) 1626 netmap_rxsync_from_host(na, td, dev); 1627 if (kring->ring->avail > 0) { 1628 revents |= want_rx; 1629 } 1630 } 1631 return (revents); 1632 } 1633 1634 /* 1635 * If we are in transparent mode, check also the host rx ring 1636 * XXX Transparent mode at the moment requires to bind all 1637 * rings to a single file descriptor. 1638 */ 1639 kring = &na->rx_rings[lim_rx]; 1640 if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all 1641 && want_rx 1642 && (netmap_fwd || kring->ring->flags & NR_FORWARD) ) { 1643 if (kring->ring->avail == 0) 1644 netmap_rxsync_from_host(na, td, dev); 1645 if (kring->ring->avail > 0) 1646 revents |= want_rx; 1647 } 1648 1649 /* 1650 * check_all_{tx|rx} are set if the card has more than one queue AND 1651 * the file descriptor is bound to all of them. If so, we sleep on 1652 * the "global" selinfo, otherwise we sleep on individual selinfo 1653 * (FreeBSD only allows two selinfo's per file descriptor). 1654 * The interrupt routine in the driver wake one or the other 1655 * (or both) depending on which clients are active. 1656 * 1657 * rxsync() is only called if we run out of buffers on a POLLIN. 1658 * txsync() is called if we run out of buffers on POLLOUT, or 1659 * there are pending packets to send. The latter can be disabled 1660 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1661 */ 1662 check_all_tx = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1); 1663 check_all_rx = (priv->np_qlast == NETMAP_HW_RING) && (lim_rx > 1); 1664 1665 if (priv->np_qlast != NETMAP_HW_RING) { 1666 lim_tx = lim_rx = priv->np_qlast; 1667 } 1668 1669 /* 1670 * We start with a lock free round which is cheap if we have 1671 * slots available. If this fails, then lock and call the sync 1672 * routines. 1673 */ 1674 for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { 1675 kring = &na->rx_rings[i]; 1676 if (kring->ring->avail > 0) { 1677 revents |= want_rx; 1678 want_rx = 0; /* also breaks the loop */ 1679 } 1680 } 1681 for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { 1682 kring = &na->tx_rings[i]; 1683 if (kring->ring->avail > 0) { 1684 revents |= want_tx; 1685 want_tx = 0; /* also breaks the loop */ 1686 } 1687 } 1688 1689 /* 1690 * If we to push packets out (priv->np_txpoll) or want_tx is 1691 * still set, we do need to run the txsync calls (on all rings, 1692 * to avoid that the tx rings stall). 1693 * XXX should also check cur != hwcur on the tx rings. 1694 * Fortunately, normal tx mode has np_txpoll set. 1695 */ 1696 if (priv->np_txpoll || want_tx) { 1697 /* If we really want to be woken up (want_tx), 1698 * do a selrecord, either on the global or on 1699 * the private structure. Then issue the txsync 1700 * so there is no race in the selrecord/selwait 1701 */ 1702 flush_tx: 1703 for (i = priv->np_qfirst; i < lim_tx; i++) { 1704 kring = &na->tx_rings[i]; 1705 /* 1706 * Skip this ring if want_tx == 0 1707 * (we have already done a successful sync on 1708 * a previous ring) AND kring->cur == kring->hwcur 1709 * (there are no pending transmissions for this ring). 1710 */ 1711 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1712 continue; 1713 /* make sure only one user thread is doing this */ 1714 if (nm_kr_tryget(kring)) { 1715 ND("ring %p busy is %d", 1716 kring, (int)kring->nr_busy); 1717 revents |= POLLERR; 1718 goto out; 1719 } 1720 1721 if (netmap_verbose & NM_VERB_TXSYNC) 1722 D("send %d on %s %d", 1723 kring->ring->cur, NM_IFPNAME(ifp), i); 1724 if (na->nm_txsync(na, i, 0)) 1725 revents |= POLLERR; 1726 1727 /* Check avail/call selrecord only if called with POLLOUT */ 1728 if (want_tx) { 1729 if (kring->ring->avail > 0) { 1730 /* stop at the first ring. We don't risk 1731 * starvation. 1732 */ 1733 revents |= want_tx; 1734 want_tx = 0; 1735 } 1736 } 1737 nm_kr_put(kring); 1738 } 1739 if (want_tx && retry_tx) { 1740 selrecord(td, check_all_tx ? 1741 &na->tx_si : &na->tx_rings[priv->np_qfirst].si); 1742 retry_tx = 0; 1743 goto flush_tx; 1744 } 1745 } 1746 1747 /* 1748 * now if want_rx is still set we need to lock and rxsync. 1749 * Do it on all rings because otherwise we starve. 1750 */ 1751 if (want_rx) { 1752 int retry_rx = 1; 1753 do_retry_rx: 1754 for (i = priv->np_qfirst; i < lim_rx; i++) { 1755 kring = &na->rx_rings[i]; 1756 1757 if (nm_kr_tryget(kring)) { 1758 revents |= POLLERR; 1759 goto out; 1760 } 1761 1762 /* XXX NR_FORWARD should only be read on 1763 * physical or NIC ports 1764 */ 1765 if (netmap_fwd ||kring->ring->flags & NR_FORWARD) { 1766 ND(10, "forwarding some buffers up %d to %d", 1767 kring->nr_hwcur, kring->ring->cur); 1768 netmap_grab_packets(kring, &q, netmap_fwd); 1769 } 1770 1771 if (na->nm_rxsync(na, i, 0)) 1772 revents |= POLLERR; 1773 if (netmap_no_timestamp == 0 || 1774 kring->ring->flags & NR_TIMESTAMP) { 1775 microtime(&kring->ring->ts); 1776 } 1777 1778 if (kring->ring->avail > 0) { 1779 revents |= want_rx; 1780 retry_rx = 0; 1781 } 1782 nm_kr_put(kring); 1783 } 1784 if (retry_rx) { 1785 retry_rx = 0; 1786 selrecord(td, check_all_rx ? 1787 &na->rx_si : &na->rx_rings[priv->np_qfirst].si); 1788 goto do_retry_rx; 1789 } 1790 } 1791 1792 /* forward host to the netmap ring. 1793 * I am accessing nr_hwavail without lock, but netmap_transmit 1794 * can only increment it, so the operation is safe. 1795 */ 1796 kring = &na->rx_rings[lim_rx]; 1797 if ( (priv->np_qlast == NETMAP_HW_RING) // XXX check_all 1798 && (netmap_fwd || kring->ring->flags & NR_FORWARD) 1799 && kring->nr_hwavail > 0 && !host_forwarded) { 1800 netmap_sw_to_nic(na); 1801 host_forwarded = 1; /* prevent another pass */ 1802 want_rx = 0; 1803 goto flush_tx; 1804 } 1805 1806 if (q.head) 1807 netmap_send_up(na->ifp, &q); 1808 1809 out: 1810 1811 return (revents); 1812 } 1813 1814 /*------- driver support routines ------*/ 1815 1816 static int netmap_hw_krings_create(struct netmap_adapter *); 1817 1818 static int 1819 netmap_notify(struct netmap_adapter *na, u_int n_ring, enum txrx tx, int flags) 1820 { 1821 struct netmap_kring *kring; 1822 1823 if (tx == NR_TX) { 1824 kring = na->tx_rings + n_ring; 1825 KNOTE(&kring->si.ki_note, 0); 1826 wakeup(&kring->si.ki_note); 1827 if (flags & NAF_GLOBAL_NOTIFY) 1828 wakeup(&na->tx_si.ki_note); 1829 } else { 1830 kring = na->rx_rings + n_ring; 1831 KNOTE(&kring->si.ki_note, 0); 1832 wakeup(&kring->si.ki_note); 1833 if (flags & NAF_GLOBAL_NOTIFY) 1834 wakeup(&na->rx_si.ki_note); 1835 } 1836 return 0; 1837 } 1838 1839 1840 // XXX check handling of failures 1841 int 1842 netmap_attach_common(struct netmap_adapter *na) 1843 { 1844 struct ifnet *ifp = na->ifp; 1845 1846 if (na->num_tx_rings == 0 || na->num_rx_rings == 0) { 1847 D("%s: invalid rings tx %d rx %d", 1848 ifp->if_xname, na->num_tx_rings, na->num_rx_rings); 1849 return EINVAL; 1850 } 1851 WNA(ifp) = na; 1852 NETMAP_SET_CAPABLE(ifp); 1853 if (na->nm_krings_create == NULL) { 1854 na->nm_krings_create = netmap_hw_krings_create; 1855 na->nm_krings_delete = netmap_krings_delete; 1856 } 1857 if (na->nm_notify == NULL) 1858 na->nm_notify = netmap_notify; 1859 na->active_fds = 0; 1860 1861 if (na->nm_mem == NULL) 1862 na->nm_mem = &nm_mem; 1863 return 0; 1864 } 1865 1866 1867 void 1868 netmap_detach_common(struct netmap_adapter *na) 1869 { 1870 if (na->ifp) 1871 WNA(na->ifp) = NULL; /* XXX do we need this? */ 1872 1873 if (na->tx_rings) { /* XXX should not happen */ 1874 D("freeing leftover tx_rings"); 1875 na->nm_krings_delete(na); 1876 } 1877 if (na->na_flags & NAF_MEM_OWNER) 1878 netmap_mem_private_delete(na->nm_mem); 1879 bzero(na, sizeof(*na)); 1880 kfree(na, M_DEVBUF); 1881 } 1882 1883 1884 /* 1885 * Initialize a ``netmap_adapter`` object created by driver on attach. 1886 * We allocate a block of memory with room for a struct netmap_adapter 1887 * plus two sets of N+2 struct netmap_kring (where N is the number 1888 * of hardware rings): 1889 * krings 0..N-1 are for the hardware queues. 1890 * kring N is for the host stack queue 1891 * kring N+1 is only used for the selinfo for all queues. 1892 * Return 0 on success, ENOMEM otherwise. 1893 * 1894 * By default the receive and transmit adapter ring counts are both initialized 1895 * to num_queues. na->num_tx_rings can be set for cards with different tx/rx 1896 * setups. 1897 */ 1898 int 1899 netmap_attach(struct netmap_adapter *arg) 1900 { 1901 struct netmap_hw_adapter *hwna = NULL; 1902 // XXX when is arg == NULL ? 1903 struct ifnet *ifp = arg ? arg->ifp : NULL; 1904 1905 if (arg == NULL || ifp == NULL) 1906 goto fail; 1907 hwna = kmalloc(sizeof(*hwna), M_DEVBUF, M_NOWAIT | M_ZERO); 1908 if (hwna == NULL) 1909 goto fail; 1910 hwna->up = *arg; 1911 if (netmap_attach_common(&hwna->up)) { 1912 kfree(hwna, M_DEVBUF); 1913 goto fail; 1914 } 1915 netmap_adapter_get(&hwna->up); 1916 1917 D("success for %s", NM_IFPNAME(ifp)); 1918 return 0; 1919 1920 fail: 1921 D("fail, arg %p ifp %p na %p", arg, ifp, hwna); 1922 netmap_detach(ifp); 1923 return (hwna ? EINVAL : ENOMEM); 1924 } 1925 1926 1927 void 1928 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na) 1929 { 1930 if (!na) { 1931 return; 1932 } 1933 1934 refcount_acquire(&na->na_refcount); 1935 } 1936 1937 1938 /* returns 1 iff the netmap_adapter is destroyed */ 1939 int 1940 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na) 1941 { 1942 if (!na) 1943 return 1; 1944 1945 if (!refcount_release(&na->na_refcount)) 1946 return 0; 1947 1948 if (na->nm_dtor) 1949 na->nm_dtor(na); 1950 1951 netmap_detach_common(na); 1952 1953 return 1; 1954 } 1955 1956 1957 int 1958 netmap_hw_krings_create(struct netmap_adapter *na) 1959 { 1960 return netmap_krings_create(na, 1961 na->num_tx_rings + 1, na->num_rx_rings + 1, 0); 1962 } 1963 1964 1965 1966 /* 1967 * Free the allocated memory linked to the given ``netmap_adapter`` 1968 * object. 1969 */ 1970 void 1971 netmap_detach(struct ifnet *ifp) 1972 { 1973 struct netmap_adapter *na = NA(ifp); 1974 1975 if (!na) 1976 return; 1977 1978 NMG_LOCK(); 1979 netmap_disable_all_rings(ifp); 1980 netmap_adapter_put(na); 1981 na->ifp = NULL; 1982 netmap_enable_all_rings(ifp); 1983 NMG_UNLOCK(); 1984 } 1985 1986 1987 /* 1988 * Intercept packets from the network stack and pass them 1989 * to netmap as incoming packets on the 'software' ring. 1990 * We rely on the OS to make sure that the ifp and na do not go 1991 * away (typically the caller checks for IFF_DRV_RUNNING or the like). 1992 * In nm_register() or whenever there is a reinitialization, 1993 * we make sure to access the core lock and per-ring locks 1994 * so that IFCAP_NETMAP is visible here. 1995 */ 1996 int 1997 netmap_transmit(struct ifnet *ifp, struct mbuf *m) 1998 { 1999 struct netmap_adapter *na = NA(ifp); 2000 struct netmap_kring *kring; 2001 u_int i, len = MBUF_LEN(m); 2002 u_int error = EBUSY, lim; 2003 struct netmap_slot *slot; 2004 2005 // XXX [Linux] we do not need this lock 2006 // if we follow the down/configure/up protocol -gl 2007 // mtx_lock(&na->core_lock); 2008 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) { 2009 /* interface not in netmap mode anymore */ 2010 error = ENXIO; 2011 goto done; 2012 } 2013 2014 kring = &na->rx_rings[na->num_rx_rings]; 2015 lim = kring->nkr_num_slots - 1; 2016 if (netmap_verbose & NM_VERB_HOST) 2017 D("%s packet %d len %d from the stack", NM_IFPNAME(ifp), 2018 kring->nr_hwcur + kring->nr_hwavail, len); 2019 // XXX reconsider long packets if we handle fragments 2020 if (len > NETMAP_BDG_BUF_SIZE(na->nm_mem)) { /* too long for us */ 2021 D("%s from_host, drop packet size %d > %d", NM_IFPNAME(ifp), 2022 len, NETMAP_BDG_BUF_SIZE(na->nm_mem)); 2023 goto done; 2024 } 2025 /* protect against other instances of netmap_transmit, 2026 * and userspace invocations of rxsync(). 2027 */ 2028 // XXX [Linux] there can be no other instances of netmap_transmit 2029 // on this same ring, but we still need this lock to protect 2030 // concurrent access from netmap_sw_to_nic() -gl 2031 lockmgr(&kring->q_lock, LK_EXCLUSIVE); 2032 if (kring->nr_hwavail >= lim) { 2033 if (netmap_verbose) 2034 D("stack ring %s full\n", NM_IFPNAME(ifp)); 2035 } else { 2036 /* compute the insert position */ 2037 i = nm_kr_rxpos(kring); 2038 slot = &kring->ring->slot[i]; 2039 m_copydata(m, 0, (int)len, BDG_NMB(na, slot)); 2040 slot->len = len; 2041 slot->flags = kring->nkr_slot_flags; 2042 kring->nr_hwavail++; 2043 if (netmap_verbose & NM_VERB_HOST) 2044 D("wake up host ring %s %d", NM_IFPNAME(na->ifp), na->num_rx_rings); 2045 na->nm_notify(na, na->num_rx_rings, NR_RX, 0); 2046 error = 0; 2047 } 2048 lockmgr(&kring->q_lock, LK_RELEASE); 2049 2050 done: 2051 // mtx_unlock(&na->core_lock); 2052 2053 /* release the mbuf in either cases of success or failure. As an 2054 * alternative, put the mbuf in a free list and free the list 2055 * only when really necessary. 2056 */ 2057 m_freem(m); 2058 2059 return (error); 2060 } 2061 2062 2063 /* 2064 * netmap_reset() is called by the driver routines when reinitializing 2065 * a ring. The driver is in charge of locking to protect the kring. 2066 * If native netmap mode is not set just return NULL. 2067 */ 2068 struct netmap_slot * 2069 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, 2070 u_int new_cur) 2071 { 2072 struct netmap_kring *kring; 2073 int new_hwofs, lim; 2074 2075 if (na == NULL) { 2076 D("NULL na, should not happen"); 2077 return NULL; /* no netmap support here */ 2078 } 2079 if (!(na->ifp->if_capenable & IFCAP_NETMAP) || nma_is_generic(na)) { 2080 ND("interface not in netmap mode"); 2081 return NULL; /* nothing to reinitialize */ 2082 } 2083 2084 /* XXX note- in the new scheme, we are not guaranteed to be 2085 * under lock (e.g. when called on a device reset). 2086 * In this case, we should set a flag and do not trust too 2087 * much the values. In practice: TODO 2088 * - set a RESET flag somewhere in the kring 2089 * - do the processing in a conservative way 2090 * - let the *sync() fixup at the end. 2091 */ 2092 if (tx == NR_TX) { 2093 if (n >= na->num_tx_rings) 2094 return NULL; 2095 kring = na->tx_rings + n; 2096 new_hwofs = kring->nr_hwcur - new_cur; 2097 } else { 2098 if (n >= na->num_rx_rings) 2099 return NULL; 2100 kring = na->rx_rings + n; 2101 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 2102 } 2103 lim = kring->nkr_num_slots - 1; 2104 if (new_hwofs > lim) 2105 new_hwofs -= lim + 1; 2106 2107 /* Always set the new offset value and realign the ring. */ 2108 D("%s hwofs %d -> %d, hwavail %d -> %d", 2109 tx == NR_TX ? "TX" : "RX", 2110 kring->nkr_hwofs, new_hwofs, 2111 kring->nr_hwavail, 2112 tx == NR_TX ? lim : kring->nr_hwavail); 2113 kring->nkr_hwofs = new_hwofs; 2114 if (tx == NR_TX) 2115 kring->nr_hwavail = lim; 2116 kring->nr_hwreserved = 0; 2117 2118 /* 2119 * Wakeup on the individual and global selwait 2120 * We do the wakeup here, but the ring is not yet reconfigured. 2121 * However, we are under lock so there are no races. 2122 */ 2123 na->nm_notify(na, n, tx, NAF_GLOBAL_NOTIFY); 2124 return kring->ring->slot; 2125 } 2126 2127 2128 /* 2129 * Default functions to handle rx/tx interrupts from a physical device. 2130 * "work_done" is non-null on the RX path, NULL for the TX path. 2131 * "generic" is 0 when we are called by a device driver, and 1 when we 2132 * are called by the generic netmap adapter layer. 2133 * We rely on the OS to make sure that there is only one active 2134 * instance per queue, and that there is appropriate locking. 2135 * 2136 * If the card is not in netmap mode, simply return 0, 2137 * so that the caller proceeds with regular processing. 2138 * 2139 * We return 0 also when the card is in netmap mode but the current 2140 * netmap adapter is the generic one, because this function will be 2141 * called by the generic layer. 2142 * 2143 * If the card is connected to a netmap file descriptor, 2144 * do a selwakeup on the individual queue, plus one on the global one 2145 * if needed (multiqueue card _and_ there are multiqueue listeners), 2146 * and return 1. 2147 * 2148 * Finally, if called on rx from an interface connected to a switch, 2149 * calls the proper forwarding routine, and return 1. 2150 */ 2151 int 2152 netmap_common_irq(struct ifnet *ifp, u_int q, u_int *work_done) 2153 { 2154 struct netmap_adapter *na = NA(ifp); 2155 struct netmap_kring *kring; 2156 2157 q &= NETMAP_RING_MASK; 2158 2159 if (netmap_verbose) { 2160 RD(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 2161 } 2162 2163 if (work_done) { /* RX path */ 2164 if (q >= na->num_rx_rings) 2165 return 0; // not a physical queue 2166 kring = na->rx_rings + q; 2167 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ? 2168 na->nm_notify(na, q, NR_RX, 2169 (na->num_rx_rings > 1 ? NAF_GLOBAL_NOTIFY : 0)); 2170 *work_done = 1; /* do not fire napi again */ 2171 } else { /* TX path */ 2172 if (q >= na->num_tx_rings) 2173 return 0; // not a physical queue 2174 kring = na->tx_rings + q; 2175 na->nm_notify(na, q, NR_TX, 2176 (na->num_tx_rings > 1 ? NAF_GLOBAL_NOTIFY : 0)); 2177 } 2178 return 1; 2179 } 2180 2181 /* 2182 * Default functions to handle rx/tx interrupts from a physical device. 2183 * "work_done" is non-null on the RX path, NULL for the TX path. 2184 * "generic" is 0 when we are called by a device driver, and 1 when we 2185 * are called by the generic netmap adapter layer. 2186 * We rely on the OS to make sure that there is only one active 2187 * instance per queue, and that there is appropriate locking. 2188 * 2189 * If the card is not in netmap mode, simply return 0, 2190 * so that the caller proceeds with regular processing. 2191 * 2192 * If the card is connected to a netmap file descriptor, 2193 * do a selwakeup on the individual queue, plus one on the global one 2194 * if needed (multiqueue card _and_ there are multiqueue listeners), 2195 * and return 1. 2196 * 2197 * Finally, if called on rx from an interface connected to a switch, 2198 * calls the proper forwarding routine, and return 1. 2199 */ 2200 int 2201 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done) 2202 { 2203 // XXX could we check NAF_NATIVE_ON ? 2204 if (!(ifp->if_capenable & IFCAP_NETMAP)) 2205 return 0; 2206 2207 if (NA(ifp)->na_flags & NAF_SKIP_INTR) { 2208 ND("use regular interrupt"); 2209 return 0; 2210 } 2211 2212 return netmap_common_irq(ifp, q, work_done); 2213 } 2214 2215 2216 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 2217 2218 2219 /* 2220 * Module loader. 2221 * 2222 * Create the /dev/netmap device and initialize all global 2223 * variables. 2224 * 2225 * Return 0 on success, errno on failure. 2226 */ 2227 int 2228 netmap_init(void) 2229 { 2230 int error; 2231 2232 NMG_LOCK_INIT(); 2233 2234 error = netmap_mem_init(); 2235 if (error != 0) { 2236 kprintf("netmap: unable to initialize the memory allocator.\n"); 2237 return (error); 2238 } 2239 kprintf("netmap: loaded module\n"); 2240 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 2241 "netmap"); 2242 2243 netmap_init_bridges(); 2244 return (error); 2245 } 2246 2247 2248 /* 2249 * Module unloader. 2250 * 2251 * Free all the memory, and destroy the ``/dev/netmap`` device. 2252 */ 2253 void 2254 netmap_fini(void) 2255 { 2256 destroy_dev(netmap_dev); 2257 netmap_mem_fini(); 2258 NMG_LOCK_DESTROY(); 2259 kprintf("netmap: unloaded module.\n"); 2260 } 2261