xref: /dflybsd-src/sys/net/netisr.c (revision c157ff7a29251a7088f0e396f85c0dfd6862976b)
1 /*
2  * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
4  * Copyright (c) 2003 Jonathan Lemon.  All rights reserved.
5  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
9  *
10  * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11  * into this one around July 8 2004.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/msgport.h>
44 #include <sys/proc.h>
45 #include <sys/interrupt.h>
46 #include <sys/socket.h>
47 #include <sys/sysctl.h>
48 #include <sys/socketvar.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/netisr.h>
52 #include <machine/cpufunc.h>
53 
54 #include <sys/thread2.h>
55 #include <sys/msgport2.h>
56 #include <net/netmsg2.h>
57 #include <sys/mplock2.h>
58 
59 static void netmsg_sync_func(netmsg_t msg);
60 static void netmsg_service_loop(void *arg);
61 static void cpu0_cpufn(struct mbuf **mp, int hoff);
62 
63 struct netmsg_port_registration {
64 	TAILQ_ENTRY(netmsg_port_registration) npr_entry;
65 	lwkt_port_t	npr_port;
66 };
67 
68 struct netmsg_rollup {
69 	TAILQ_ENTRY(netmsg_rollup) ru_entry;
70 	netisr_ru_t	ru_func;
71 };
72 
73 static struct netisr netisrs[NETISR_MAX];
74 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
75 static TAILQ_HEAD(,netmsg_rollup) netrulist;
76 
77 /* Per-CPU thread to handle any protocol.  */
78 static struct thread netisr_cpu[MAXCPU];
79 lwkt_port netisr_afree_rport;
80 lwkt_port netisr_afree_free_so_rport;
81 lwkt_port netisr_adone_rport;
82 lwkt_port netisr_apanic_rport;
83 lwkt_port netisr_sync_port;
84 
85 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
86 
87 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
88 
89 /*
90  * netisr_afree_rport replymsg function, only used to handle async
91  * messages which the sender has abandoned to their fate.
92  */
93 static void
94 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
95 {
96 	kfree(msg, M_LWKTMSG);
97 }
98 
99 static void
100 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg)
101 {
102 	sofree(((netmsg_t)msg)->base.nm_so);
103 	kfree(msg, M_LWKTMSG);
104 }
105 
106 /*
107  * We need a custom putport function to handle the case where the
108  * message target is the current thread's message port.  This case
109  * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
110  * then turns around and executes a network operation synchronously.
111  *
112  * To prevent deadlocking, we must execute these self-referential messages
113  * synchronously, effectively turning the message into a glorified direct
114  * procedure call back into the protocol stack.  The operation must be
115  * complete on return or we will deadlock, so panic if it isn't.
116  *
117  * However, the target function is under no obligation to immediately
118  * reply the message.  It may forward it elsewhere.
119  */
120 static int
121 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
122 {
123 	netmsg_base_t nmsg = (void *)lmsg;
124 
125 	if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
126 		nmsg->nm_dispatch((netmsg_t)nmsg);
127 		return(EASYNC);
128 	} else {
129 		return(netmsg_fwd_port_fn(port, lmsg));
130 	}
131 }
132 
133 /*
134  * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
135  * because they depend on the user proc context for a number of things
136  * (like creds) which we have not yet incorporated into the message structure.
137  *
138  * However, we maintain or message/port abstraction.  Having a special
139  * synchronous port which runs the commands synchronously gives us the
140  * ability to serialize operations in one place later on when we start
141  * removing the BGL.
142  */
143 static int
144 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
145 {
146 	netmsg_base_t nmsg = (void *)lmsg;
147 
148 	KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
149 
150 	lmsg->ms_target_port = port;	/* required for abort */
151 	nmsg->nm_dispatch((netmsg_t)nmsg);
152 	return(EASYNC);
153 }
154 
155 static void
156 netisr_init(void)
157 {
158 	int i;
159 
160 	TAILQ_INIT(&netreglist);
161 	TAILQ_INIT(&netrulist);
162 
163 	/*
164 	 * Create default per-cpu threads for generic protocol handling.
165 	 */
166 	for (i = 0; i < ncpus; ++i) {
167 		lwkt_create(netmsg_service_loop, NULL, NULL,
168 			    &netisr_cpu[i], TDF_STOPREQ, i,
169 			    "netisr_cpu %d", i);
170 		netmsg_service_port_init(&netisr_cpu[i].td_msgport);
171 		lwkt_schedule(&netisr_cpu[i]);
172 	}
173 
174 	/*
175 	 * The netisr_afree_rport is a special reply port which automatically
176 	 * frees the replied message.  The netisr_adone_rport simply marks
177 	 * the message as being done.  The netisr_apanic_rport panics if
178 	 * the message is replied to.
179 	 */
180 	lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
181 	lwkt_initport_replyonly(&netisr_afree_free_so_rport,
182 				netisr_autofree_free_so_reply);
183 	lwkt_initport_replyonly_null(&netisr_adone_rport);
184 	lwkt_initport_panic(&netisr_apanic_rport);
185 
186 	/*
187 	 * The netisr_syncport is a special port which executes the message
188 	 * synchronously and waits for it if EASYNC is returned.
189 	 */
190 	lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
191 }
192 
193 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
194 
195 /*
196  * Finish initializing the message port for a netmsg service.  This also
197  * registers the port for synchronous cleanup operations such as when an
198  * ifnet is being destroyed.  There is no deregistration API yet.
199  */
200 void
201 netmsg_service_port_init(lwkt_port_t port)
202 {
203 	struct netmsg_port_registration *reg;
204 
205 	/*
206 	 * Override the putport function.  Our custom function checks for
207 	 * self-references and executes such commands synchronously.
208 	 */
209 	if (netmsg_fwd_port_fn == NULL)
210 		netmsg_fwd_port_fn = port->mp_putport;
211 	KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
212 	port->mp_putport = netmsg_put_port;
213 
214 	/*
215 	 * Keep track of ports using the netmsg API so we can synchronize
216 	 * certain operations (such as freeing an ifnet structure) across all
217 	 * consumers.
218 	 */
219 	reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
220 	reg->npr_port = port;
221 	TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
222 }
223 
224 /*
225  * This function synchronizes the caller with all netmsg services.  For
226  * example, if an interface is being removed we must make sure that all
227  * packets related to that interface complete processing before the structure
228  * can actually be freed.  This sort of synchronization is an alternative to
229  * ref-counting the netif, removing the ref counting overhead in favor of
230  * placing additional overhead in the netif freeing sequence (where it is
231  * inconsequential).
232  */
233 void
234 netmsg_service_sync(void)
235 {
236 	struct netmsg_port_registration *reg;
237 	struct netmsg_base smsg;
238 
239 	netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_func);
240 
241 	TAILQ_FOREACH(reg, &netreglist, npr_entry) {
242 		lwkt_domsg(reg->npr_port, &smsg.lmsg, 0);
243 	}
244 }
245 
246 /*
247  * The netmsg function simply replies the message.  API semantics require
248  * EASYNC to be returned if the netmsg function disposes of the message.
249  */
250 static void
251 netmsg_sync_func(netmsg_t msg)
252 {
253 	lwkt_replymsg(&msg->lmsg, 0);
254 }
255 
256 /*
257  * Generic netmsg service loop.  Some protocols may roll their own but all
258  * must do the basic command dispatch function call done here.
259  */
260 static void
261 netmsg_service_loop(void *arg)
262 {
263 	struct netmsg_rollup *ru;
264 	netmsg_base_t msg;
265 	thread_t td = curthread;;
266 	int limit;
267 
268 	while ((msg = lwkt_waitport(&td->td_msgport, 0))) {
269 		/*
270 		 * Run up to 512 pending netmsgs.
271 		 */
272 		limit = 512;
273 		do {
274 			KASSERT(msg->nm_dispatch != NULL,
275 				("netmsg_service isr %d badmsg\n",
276 				msg->lmsg.u.ms_result));
277 			if (msg->nm_so &&
278 			    msg->nm_so->so_port != &td->td_msgport) {
279 				/*
280 				 * Sockets undergoing connect or disconnect
281 				 * ops can change ports on us.  Chase the
282 				 * port.
283 				 */
284 				kprintf("netmsg_service_loop: Warning, "
285 					"port changed so=%p\n", msg->nm_so);
286 				lwkt_forwardmsg(msg->nm_so->so_port,
287 						&msg->lmsg);
288 			} else {
289 				/*
290 				 * We are on the correct port, dispatch it.
291 				 */
292 				msg->nm_dispatch((netmsg_t)msg);
293 			}
294 			if (--limit == 0)
295 				break;
296 		} while ((msg = lwkt_getport(&td->td_msgport)) != NULL);
297 
298 		/*
299 		 * Run all registered rollup functions for this cpu
300 		 * (e.g. tcp_willblock()).
301 		 */
302 		TAILQ_FOREACH(ru, &netrulist, ru_entry)
303 			ru->ru_func();
304 	}
305 }
306 
307 /*
308  * Forward a packet to a netisr service function.
309  *
310  * If the packet has not been assigned to a protocol thread we call
311  * the port characterization function to assign it.  The caller must
312  * clear M_HASH (or not have set it in the first place) if the caller
313  * wishes the packet to be recharacterized.
314  */
315 int
316 netisr_queue(int num, struct mbuf *m)
317 {
318 	struct netisr *ni;
319 	struct netmsg_packet *pmsg;
320 	lwkt_port_t port;
321 
322 	KASSERT((num > 0 && num <= NELEM(netisrs)),
323 		("Bad isr %d", num));
324 
325 	ni = &netisrs[num];
326 	if (ni->ni_handler == NULL) {
327 		kprintf("Unregistered isr %d\n", num);
328 		m_freem(m);
329 		return (EIO);
330 	}
331 
332 	/*
333 	 * Figure out which protocol thread to send to.  This does not
334 	 * have to be perfect but performance will be really good if it
335 	 * is correct.  Major protocol inputs such as ip_input() will
336 	 * re-characterize the packet as necessary.
337 	 */
338 	if ((m->m_flags & M_HASH) == 0) {
339 		ni->ni_cpufn(&m, 0);
340 		if (m == NULL) {
341 			m_freem(m);
342 			return (EIO);
343 		}
344 		if ((m->m_flags & M_HASH) == 0) {
345 			kprintf("netisr_queue(%d): packet hash failed\n", num);
346 			m_freem(m);
347 			return (EIO);
348 		}
349 	}
350 
351 	/*
352 	 * Get the protocol port based on the packet hash, initialize
353 	 * the netmsg, and send it off.
354 	 */
355 	port = cpu_portfn(m->m_pkthdr.hash);
356 	pmsg = &m->m_hdr.mh_netmsg;
357 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
358 		    0, ni->ni_handler);
359 	pmsg->nm_packet = m;
360 	pmsg->base.lmsg.u.ms_result = num;
361 	lwkt_sendmsg(port, &pmsg->base.lmsg);
362 
363 	return (0);
364 }
365 
366 /*
367  * Pre-characterization of a deeper portion of the packet for the
368  * requested isr.
369  *
370  * The base of the ISR type (e.g. IP) that we want to characterize is
371  * at (hoff) relative to the beginning of the mbuf.  This allows
372  * e.g. ether_input_chain() to not have to adjust the m_data/m_len.
373  */
374 void
375 netisr_characterize(int num, struct mbuf **mp, int hoff)
376 {
377 	struct netisr *ni;
378 	struct mbuf *m;
379 
380 	/*
381 	 * Validation
382 	 */
383 	m = *mp;
384 	KKASSERT(m != NULL);
385 
386 	if (num < 0 || num >= NETISR_MAX) {
387 		if (num == NETISR_MAX) {
388 			m->m_flags |= M_HASH;
389 			m->m_pkthdr.hash = 0;
390 			return;
391 		}
392 		panic("Bad isr %d", num);
393 	}
394 
395 	/*
396 	 * Valid netisr?
397 	 */
398 	ni = &netisrs[num];
399 	if (ni->ni_handler == NULL) {
400 		kprintf("Unregistered isr %d\n", num);
401 		m_freem(m);
402 		*mp = NULL;
403 	}
404 
405 	/*
406 	 * Characterize the packet
407 	 */
408 	if ((m->m_flags & M_HASH) == 0) {
409 		ni->ni_cpufn(mp, hoff);
410 		m = *mp;
411 		if (m && (m->m_flags & M_HASH) == 0)
412 			kprintf("netisr_queue(%d): packet hash failed\n", num);
413 	}
414 }
415 
416 void
417 netisr_register(int num, netisr_fn_t handler, netisr_cpufn_t cpufn)
418 {
419 	struct netisr *ni;
420 
421 	KASSERT((num > 0 && num <= NELEM(netisrs)),
422 		("netisr_register: bad isr %d", num));
423 	KKASSERT(handler != NULL);
424 
425 	if (cpufn == NULL)
426 		cpufn = cpu0_cpufn;
427 
428 	ni = &netisrs[num];
429 
430 	ni->ni_handler = handler;
431 	ni->ni_cpufn = cpufn;
432 	netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL);
433 }
434 
435 void
436 netisr_register_rollup(netisr_ru_t ru_func)
437 {
438 	struct netmsg_rollup *ru;
439 
440 	ru = kmalloc(sizeof(*ru), M_TEMP, M_WAITOK|M_ZERO);
441 	ru->ru_func = ru_func;
442 	TAILQ_INSERT_TAIL(&netrulist, ru, ru_entry);
443 }
444 
445 /*
446  * Return the message port for the general protocol message servicing
447  * thread for a particular cpu.
448  */
449 lwkt_port_t
450 cpu_portfn(int cpu)
451 {
452 	KKASSERT(cpu >= 0 && cpu < ncpus);
453 	return (&netisr_cpu[cpu].td_msgport);
454 }
455 
456 /*
457  * Return the current cpu's network protocol thread.
458  */
459 lwkt_port_t
460 cur_netport(void)
461 {
462 	return(cpu_portfn(mycpu->gd_cpuid));
463 }
464 
465 /*
466  * Return a default protocol control message processing thread port
467  */
468 lwkt_port_t
469 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
470 	     void *extra __unused)
471 {
472 	return (&netisr_cpu[0].td_msgport);
473 }
474 
475 /*
476  * This is a default netisr packet characterization function which
477  * sets M_HASH.  If a netisr is registered with a NULL cpufn function
478  * this one is assigned.
479  *
480  * This function makes no attempt to validate the packet.
481  */
482 static void
483 cpu0_cpufn(struct mbuf **mp, int hoff __unused)
484 {
485 	struct mbuf *m = *mp;
486 
487 	m->m_flags |= M_HASH;
488 	m->m_pkthdr.hash = 0;
489 }
490 
491 /*
492  * schednetisr() is used to call the netisr handler from the appropriate
493  * netisr thread for polling and other purposes.
494  *
495  * This function may be called from a hard interrupt or IPI and must be
496  * MP SAFE and non-blocking.  We use a fixed per-cpu message instead of
497  * trying to allocate one.  We must get ourselves onto the target cpu
498  * to safely check the MSGF_DONE bit on the message but since the message
499  * will be sent to that cpu anyway this does not add any extra work beyond
500  * what lwkt_sendmsg() would have already had to do to schedule the target
501  * thread.
502  */
503 static void
504 schednetisr_remote(void *data)
505 {
506 	int num = (int)(intptr_t)data;
507 	struct netisr *ni = &netisrs[num];
508 	lwkt_port_t port = &netisr_cpu[0].td_msgport;
509 	netmsg_base_t pmsg;
510 
511 	pmsg = &netisrs[num].ni_netmsg;
512 	if (pmsg->lmsg.ms_flags & MSGF_DONE) {
513 		netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler);
514 		pmsg->lmsg.u.ms_result = num;
515 		lwkt_sendmsg(port, &pmsg->lmsg);
516 	}
517 }
518 
519 void
520 schednetisr(int num)
521 {
522 	KASSERT((num > 0 && num <= NELEM(netisrs)),
523 		("schednetisr: bad isr %d", num));
524 	KKASSERT(netisrs[num].ni_handler != NULL);
525 #ifdef SMP
526 	if (mycpu->gd_cpuid != 0) {
527 		lwkt_send_ipiq(globaldata_find(0),
528 			       schednetisr_remote, (void *)(intptr_t)num);
529 	} else {
530 		crit_enter();
531 		schednetisr_remote((void *)(intptr_t)num);
532 		crit_exit();
533 	}
534 #else
535 	crit_enter();
536 	schednetisr_remote((void *)(intptr_t)num);
537 	crit_exit();
538 #endif
539 }
540