xref: /dflybsd-src/sys/net/netisr.c (revision 30e3ae034c9501c319c415ada6d5e23372649c88)
1 /*
2  * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
4  * Copyright (c) 2003 Jonathan Lemon.  All rights reserved.
5  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
9  *
10  * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11  * into this one around July 8 2004.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $DragonFly: src/sys/net/netisr.c,v 1.49 2008/11/01 10:29:31 sephe Exp $
39  */
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/msgport.h>
46 #include <sys/proc.h>
47 #include <sys/interrupt.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
50 #include <sys/socketvar.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/netisr.h>
54 #include <machine/cpufunc.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/msgport2.h>
58 #include <net/netmsg2.h>
59 #include <sys/mplock2.h>
60 
61 static void netmsg_sync_func(struct netmsg *msg);
62 static void netmsg_service_loop(void *arg);
63 static void cpu0_cpufn(struct mbuf **mp, int hoff);
64 
65 struct netmsg_port_registration {
66 	TAILQ_ENTRY(netmsg_port_registration) npr_entry;
67 	lwkt_port_t	npr_port;
68 };
69 
70 struct netmsg_rollup {
71 	TAILQ_ENTRY(netmsg_rollup) ru_entry;
72 	netisr_ru_t	ru_func;
73 };
74 
75 static struct netisr netisrs[NETISR_MAX];
76 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
77 static TAILQ_HEAD(,netmsg_rollup) netrulist;
78 
79 /* Per-CPU thread to handle any protocol.  */
80 static struct thread netisr_cpu[MAXCPU];
81 lwkt_port netisr_afree_rport;
82 lwkt_port netisr_adone_rport;
83 lwkt_port netisr_apanic_rport;
84 lwkt_port netisr_sync_port;
85 
86 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
87 
88 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
89 
90 /*
91  * netisr_afree_rport replymsg function, only used to handle async
92  * messages which the sender has abandoned to their fate.
93  */
94 static void
95 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
96 {
97 	kfree(msg, M_LWKTMSG);
98 }
99 
100 /*
101  * We need a custom putport function to handle the case where the
102  * message target is the current thread's message port.  This case
103  * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
104  * then turns around and executes a network operation synchronously.
105  *
106  * To prevent deadlocking, we must execute these self-referential messages
107  * synchronously, effectively turning the message into a glorified direct
108  * procedure call back into the protocol stack.  The operation must be
109  * complete on return or we will deadlock, so panic if it isn't.
110  */
111 static int
112 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
113 {
114 	netmsg_t netmsg = (void *)lmsg;
115 
116 	if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
117 		netmsg->nm_dispatch(netmsg);
118 		if ((lmsg->ms_flags & MSGF_DONE) == 0) {
119 			panic("netmsg_put_port: self-referential "
120 			      "deadlock on netport");
121 		}
122 		return(EASYNC);
123 	} else {
124 		return(netmsg_fwd_port_fn(port, lmsg));
125 	}
126 }
127 
128 /*
129  * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
130  * because they depend on the user proc context for a number of things
131  * (like creds) which we have not yet incorporated into the message structure.
132  *
133  * However, we maintain or message/port abstraction.  Having a special
134  * synchronous port which runs the commands synchronously gives us the
135  * ability to serialize operations in one place later on when we start
136  * removing the BGL.
137  */
138 static int
139 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
140 {
141 	netmsg_t netmsg = (void *)lmsg;
142 
143 	KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
144 
145 	lmsg->ms_target_port = port;	/* required for abort */
146 	netmsg->nm_dispatch(netmsg);
147 	return(EASYNC);
148 }
149 
150 static void
151 netisr_init(void)
152 {
153 	int i;
154 
155 	TAILQ_INIT(&netreglist);
156 	TAILQ_INIT(&netrulist);
157 
158 	/*
159 	 * Create default per-cpu threads for generic protocol handling.
160 	 */
161 	for (i = 0; i < ncpus; ++i) {
162 		lwkt_create(netmsg_service_loop, NULL, NULL,
163 			    &netisr_cpu[i], TDF_STOPREQ, i,
164 			    "netisr_cpu %d", i);
165 		netmsg_service_port_init(&netisr_cpu[i].td_msgport);
166 		lwkt_schedule(&netisr_cpu[i]);
167 	}
168 
169 	/*
170 	 * The netisr_afree_rport is a special reply port which automatically
171 	 * frees the replied message.  The netisr_adone_rport simply marks
172 	 * the message as being done.  The netisr_apanic_rport panics if
173 	 * the message is replied to.
174 	 */
175 	lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
176 	lwkt_initport_replyonly_null(&netisr_adone_rport);
177 	lwkt_initport_panic(&netisr_apanic_rport);
178 
179 	/*
180 	 * The netisr_syncport is a special port which executes the message
181 	 * synchronously and waits for it if EASYNC is returned.
182 	 */
183 	lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
184 }
185 
186 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
187 
188 /*
189  * Finish initializing the message port for a netmsg service.  This also
190  * registers the port for synchronous cleanup operations such as when an
191  * ifnet is being destroyed.  There is no deregistration API yet.
192  */
193 void
194 netmsg_service_port_init(lwkt_port_t port)
195 {
196 	struct netmsg_port_registration *reg;
197 
198 	/*
199 	 * Override the putport function.  Our custom function checks for
200 	 * self-references and executes such commands synchronously.
201 	 */
202 	if (netmsg_fwd_port_fn == NULL)
203 		netmsg_fwd_port_fn = port->mp_putport;
204 	KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
205 	port->mp_putport = netmsg_put_port;
206 
207 	/*
208 	 * Keep track of ports using the netmsg API so we can synchronize
209 	 * certain operations (such as freeing an ifnet structure) across all
210 	 * consumers.
211 	 */
212 	reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
213 	reg->npr_port = port;
214 	TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
215 }
216 
217 /*
218  * This function synchronizes the caller with all netmsg services.  For
219  * example, if an interface is being removed we must make sure that all
220  * packets related to that interface complete processing before the structure
221  * can actually be freed.  This sort of synchronization is an alternative to
222  * ref-counting the netif, removing the ref counting overhead in favor of
223  * placing additional overhead in the netif freeing sequence (where it is
224  * inconsequential).
225  */
226 void
227 netmsg_service_sync(void)
228 {
229 	struct netmsg_port_registration *reg;
230 	struct netmsg smsg;
231 
232 	netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_func);
233 
234 	TAILQ_FOREACH(reg, &netreglist, npr_entry) {
235 		lwkt_domsg(reg->npr_port, &smsg.nm_lmsg, 0);
236 	}
237 }
238 
239 /*
240  * The netmsg function simply replies the message.  API semantics require
241  * EASYNC to be returned if the netmsg function disposes of the message.
242  */
243 static void
244 netmsg_sync_func(struct netmsg *msg)
245 {
246 	lwkt_replymsg(&msg->nm_lmsg, 0);
247 }
248 
249 /*
250  * Generic netmsg service loop.  Some protocols may roll their own but all
251  * must do the basic command dispatch function call done here.
252  */
253 static void
254 netmsg_service_loop(void *arg)
255 {
256 	struct netmsg_rollup *ru;
257 	struct netmsg *msg;
258 	thread_t td = curthread;;
259 	int limit;
260 
261 	while ((msg = lwkt_waitport(&td->td_msgport, 0))) {
262 		/*
263 		 * Run up to 512 pending netmsgs.
264 		 */
265 		limit = 512;
266 		do {
267 			KASSERT(msg->nm_dispatch != NULL,
268 				("netmsg_service isr %d badmsg\n",
269 				msg->nm_lmsg.u.ms_result));
270 			if (msg->nm_so &&
271 			    msg->nm_so->so_port != &td->td_msgport) {
272 				/*
273 				 * Sockets undergoing connect or disconnect
274 				 * ops can change ports on us.  Chase the
275 				 * port.
276 				 */
277 				kprintf("netmsg_service_loop: Warning, "
278 					"port changed so=%p\n", msg->nm_so);
279 				lwkt_forwardmsg(msg->nm_so->so_port,
280 						&msg->nm_lmsg);
281 			} else {
282 				/*
283 				 * We are on the correct port, dispatch it.
284 				 */
285 				msg->nm_dispatch(msg);
286 			}
287 			if (--limit == 0)
288 				break;
289 		} while ((msg = lwkt_getport(&td->td_msgport)) != NULL);
290 
291 		/*
292 		 * Run all registered rollup functions for this cpu
293 		 * (e.g. tcp_willblock()).
294 		 */
295 		TAILQ_FOREACH(ru, &netrulist, ru_entry)
296 			ru->ru_func();
297 	}
298 }
299 
300 /*
301  * Forward a packet to a netisr service function.
302  *
303  * If the packet has not been assigned to a protocol thread we call
304  * the port characterization function to assign it.  The caller must
305  * clear M_HASH (or not have set it in the first place) if the caller
306  * wishes the packet to be recharacterized.
307  */
308 int
309 netisr_queue(int num, struct mbuf *m)
310 {
311 	struct netisr *ni;
312 	struct netmsg_packet *pmsg;
313 	lwkt_port_t port;
314 
315 	KASSERT((num > 0 && num <= (sizeof(netisrs)/sizeof(netisrs[0]))),
316 		("Bad isr %d", num));
317 
318 	ni = &netisrs[num];
319 	if (ni->ni_handler == NULL) {
320 		kprintf("Unregistered isr %d\n", num);
321 		m_freem(m);
322 		return (EIO);
323 	}
324 
325 	/*
326 	 * Figure out which protocol thread to send to.  This does not
327 	 * have to be perfect but performance will be really good if it
328 	 * is correct.  Major protocol inputs such as ip_input() will
329 	 * re-characterize the packet as necessary.
330 	 */
331 	if ((m->m_flags & M_HASH) == 0) {
332 		ni->ni_cpufn(&m, 0);
333 		if (m == NULL) {
334 			m_freem(m);
335 			return (EIO);
336 		}
337 		if ((m->m_flags & M_HASH) == 0) {
338 			kprintf("netisr_queue(%d): packet hash failed\n", num);
339 			m_freem(m);
340 			return (EIO);
341 		}
342 	}
343 
344 	/*
345 	 * Get the protocol port based on the packet hash, initialize
346 	 * the netmsg, and send it off.
347 	 */
348 	port = cpu_portfn(m->m_pkthdr.hash);
349 	pmsg = &m->m_hdr.mh_netmsg;
350 	netmsg_init(&pmsg->nm_netmsg, NULL, &netisr_apanic_rport,
351 		    0, ni->ni_handler);
352 	pmsg->nm_packet = m;
353 	pmsg->nm_netmsg.nm_lmsg.u.ms_result = num;
354 	lwkt_sendmsg(port, &pmsg->nm_netmsg.nm_lmsg);
355 
356 	return (0);
357 }
358 
359 /*
360  * Pre-characterization of a deeper portion of the packet for the
361  * requested isr.
362  *
363  * The base of the ISR type (e.g. IP) that we want to characterize is
364  * at (hoff) relative to the beginning of the mbuf.  This allows
365  * e.g. ether_input_chain() to not have to adjust the m_data/m_len.
366  */
367 void
368 netisr_characterize(int num, struct mbuf **mp, int hoff)
369 {
370 	struct netisr *ni;
371 	struct mbuf *m;
372 
373 	/*
374 	 * Validation
375 	 */
376 	m = *mp;
377 	KKASSERT(m != NULL);
378 
379 	if (num < 0 || num >= NETISR_MAX) {
380 		if (num == NETISR_MAX) {
381 			m->m_flags |= M_HASH;
382 			m->m_pkthdr.hash = 0;
383 			return;
384 		}
385 		panic("Bad isr %d", num);
386 	}
387 
388 	/*
389 	 * Valid netisr?
390 	 */
391 	ni = &netisrs[num];
392 	if (ni->ni_handler == NULL) {
393 		kprintf("Unregistered isr %d\n", num);
394 		m_freem(m);
395 		*mp = NULL;
396 	}
397 
398 	/*
399 	 * Characterize the packet
400 	 */
401 	if ((m->m_flags & M_HASH) == 0) {
402 		ni->ni_cpufn(mp, hoff);
403 		m = *mp;
404 		if (m && (m->m_flags & M_HASH) == 0)
405 			kprintf("netisr_queue(%d): packet hash failed\n", num);
406 	}
407 }
408 
409 void
410 netisr_register(int num, netisr_fn_t handler, netisr_cpufn_t cpufn)
411 {
412 	struct netisr *ni;
413 
414 	KASSERT((num > 0 && num <= (sizeof(netisrs)/sizeof(netisrs[0]))),
415 		("netisr_register: bad isr %d", num));
416 	KKASSERT(handler != NULL);
417 
418 	if (cpufn == NULL)
419 		cpufn = cpu0_cpufn;
420 
421 	ni = &netisrs[num];
422 
423 	ni->ni_handler = handler;
424 	ni->ni_cpufn = cpufn;
425 	netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL);
426 }
427 
428 void
429 netisr_register_rollup(netisr_ru_t ru_func)
430 {
431 	struct netmsg_rollup *ru;
432 
433 	ru = kmalloc(sizeof(*ru), M_TEMP, M_WAITOK|M_ZERO);
434 	ru->ru_func = ru_func;
435 	TAILQ_INSERT_TAIL(&netrulist, ru, ru_entry);
436 }
437 
438 /*
439  * Return the message port for the general protocol message servicing
440  * thread for a particular cpu.
441  */
442 lwkt_port_t
443 cpu_portfn(int cpu)
444 {
445 	KKASSERT(cpu >= 0 && cpu < ncpus);
446 	return (&netisr_cpu[cpu].td_msgport);
447 }
448 
449 /*
450  * Return the current cpu's network protocol thread.
451  */
452 lwkt_port_t
453 cur_netport(void)
454 {
455 	return(cpu_portfn(mycpu->gd_cpuid));
456 }
457 
458 /*
459  * Return a default protocol mbuf processing thread port
460  */
461 lwkt_port_t
462 cpu0_soport(struct socket *so __unused, struct sockaddr *nam __unused,
463 	    struct mbuf **dummy __unused)
464 {
465 	return (&netisr_cpu[0].td_msgport);
466 }
467 
468 /*
469  * Return a default protocol control message processing thread port
470  */
471 lwkt_port_t
472 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
473 	     void *extra __unused)
474 {
475 	return (&netisr_cpu[0].td_msgport);
476 }
477 
478 /*
479  * This is a dummy port that causes a message to be executed synchronously
480  * instead of being queued to a port.
481  */
482 lwkt_port_t
483 sync_soport(struct socket *so __unused, struct sockaddr *nam __unused,
484 	    struct mbuf **dummy __unused)
485 {
486 	return (&netisr_sync_port);
487 }
488 
489 /*
490  * This is a default netisr packet characterization function which
491  * sets M_HASH.  If a netisr is registered with a NULL cpufn function
492  * this one is assigned.
493  *
494  * This function makes no attempt to validate the packet.
495  */
496 static void
497 cpu0_cpufn(struct mbuf **mp, int hoff __unused)
498 {
499 	struct mbuf *m = *mp;
500 
501 	m->m_flags |= M_HASH;
502 	m->m_pkthdr.hash = 0;
503 }
504 
505 /*
506  * schednetisr() is used to call the netisr handler from the appropriate
507  * netisr thread for polling and other purposes.
508  *
509  * This function may be called from a hard interrupt or IPI and must be
510  * MP SAFE and non-blocking.  We use a fixed per-cpu message instead of
511  * trying to allocate one.  We must get ourselves onto the target cpu
512  * to safely check the MSGF_DONE bit on the message but since the message
513  * will be sent to that cpu anyway this does not add any extra work beyond
514  * what lwkt_sendmsg() would have already had to do to schedule the target
515  * thread.
516  */
517 static void
518 schednetisr_remote(void *data)
519 {
520 	int num = (int)(intptr_t)data;
521 	struct netisr *ni = &netisrs[num];
522 	lwkt_port_t port = &netisr_cpu[0].td_msgport;
523 	struct netmsg *pmsg;
524 
525 	pmsg = &netisrs[num].ni_netmsg;
526 	if (pmsg->nm_lmsg.ms_flags & MSGF_DONE) {
527 		netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler);
528 		pmsg->nm_lmsg.u.ms_result = num;
529 		lwkt_sendmsg(port, &pmsg->nm_lmsg);
530 	}
531 }
532 
533 void
534 schednetisr(int num)
535 {
536 	KASSERT((num > 0 && num <= (sizeof(netisrs)/sizeof(netisrs[0]))),
537 		("schednetisr: bad isr %d", num));
538 	KKASSERT(netisrs[num].ni_handler != NULL);
539 #ifdef SMP
540 	if (mycpu->gd_cpuid != 0) {
541 		lwkt_send_ipiq(globaldata_find(0),
542 			       schednetisr_remote, (void *)(intptr_t)num);
543 	} else {
544 		crit_enter();
545 		schednetisr_remote((void *)(intptr_t)num);
546 		crit_exit();
547 	}
548 #else
549 	crit_enter();
550 	schednetisr_remote((void *)(intptr_t)num);
551 	crit_exit();
552 #endif
553 }
554