xref: /dflybsd-src/sys/net/netisr.c (revision 1b3d9ff9c8cb4b27a04811543d5596e748335fe3)
1 /*
2  * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
4  * Copyright (c) 2003 Jonathan Lemon.  All rights reserved.
5  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
9  *
10  * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11  * into this one around July 8 2004.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/msgport.h>
44 #include <sys/proc.h>
45 #include <sys/interrupt.h>
46 #include <sys/socket.h>
47 #include <sys/sysctl.h>
48 #include <sys/socketvar.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/netisr2.h>
52 #include <machine/cpufunc.h>
53 #include <machine/smp.h>
54 
55 #include <sys/thread2.h>
56 #include <sys/msgport2.h>
57 #include <net/netmsg2.h>
58 #include <sys/mplock2.h>
59 
60 static void netmsg_service_loop(void *arg);
61 static void netisr_hashfn0(struct mbuf **mp, int hoff);
62 static void netisr_nohashck(struct mbuf *, const struct pktinfo *);
63 
64 struct netmsg_port_registration {
65 	TAILQ_ENTRY(netmsg_port_registration) npr_entry;
66 	lwkt_port_t	npr_port;
67 };
68 
69 struct netmsg_rollup {
70 	TAILQ_ENTRY(netmsg_rollup) ru_entry;
71 	netisr_ru_t	ru_func;
72 	int		ru_prio;
73 };
74 
75 struct netmsg_barrier {
76 	struct netmsg_base	base;
77 	volatile cpumask_t	*br_cpumask;
78 	volatile uint32_t	br_done;
79 };
80 
81 #define NETISR_BR_NOTDONE	0x1
82 #define NETISR_BR_WAITDONE	0x80000000
83 
84 struct netisr_barrier {
85 	struct netmsg_barrier	*br_msgs[MAXCPU];
86 	int			br_isset;
87 };
88 
89 static struct netisr netisrs[NETISR_MAX];
90 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
91 static TAILQ_HEAD(,netmsg_rollup) netrulist;
92 
93 /* Per-CPU thread to handle any protocol.  */
94 struct thread netisr_cpu[MAXCPU];
95 lwkt_port netisr_afree_rport;
96 lwkt_port netisr_afree_free_so_rport;
97 lwkt_port netisr_adone_rport;
98 lwkt_port netisr_apanic_rport;
99 lwkt_port netisr_sync_port;
100 
101 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
102 
103 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
104 
105 /*
106  * netisr_afree_rport replymsg function, only used to handle async
107  * messages which the sender has abandoned to their fate.
108  */
109 static void
110 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
111 {
112 	kfree(msg, M_LWKTMSG);
113 }
114 
115 static void
116 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg)
117 {
118 	sofree(((netmsg_t)msg)->base.nm_so);
119 	kfree(msg, M_LWKTMSG);
120 }
121 
122 /*
123  * We need a custom putport function to handle the case where the
124  * message target is the current thread's message port.  This case
125  * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
126  * then turns around and executes a network operation synchronously.
127  *
128  * To prevent deadlocking, we must execute these self-referential messages
129  * synchronously, effectively turning the message into a glorified direct
130  * procedure call back into the protocol stack.  The operation must be
131  * complete on return or we will deadlock, so panic if it isn't.
132  *
133  * However, the target function is under no obligation to immediately
134  * reply the message.  It may forward it elsewhere.
135  */
136 static int
137 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
138 {
139 	netmsg_base_t nmsg = (void *)lmsg;
140 
141 	if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
142 		nmsg->nm_dispatch((netmsg_t)nmsg);
143 		return(EASYNC);
144 	} else {
145 		return(netmsg_fwd_port_fn(port, lmsg));
146 	}
147 }
148 
149 /*
150  * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
151  * because they depend on the user proc context for a number of things
152  * (like creds) which we have not yet incorporated into the message structure.
153  *
154  * However, we maintain or message/port abstraction.  Having a special
155  * synchronous port which runs the commands synchronously gives us the
156  * ability to serialize operations in one place later on when we start
157  * removing the BGL.
158  */
159 static int
160 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
161 {
162 	netmsg_base_t nmsg = (void *)lmsg;
163 
164 	KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
165 
166 	lmsg->ms_target_port = port;	/* required for abort */
167 	nmsg->nm_dispatch((netmsg_t)nmsg);
168 	return(EASYNC);
169 }
170 
171 static void
172 netisr_init(void)
173 {
174 	int i;
175 
176 	TAILQ_INIT(&netreglist);
177 	TAILQ_INIT(&netrulist);
178 
179 	/*
180 	 * Create default per-cpu threads for generic protocol handling.
181 	 */
182 	for (i = 0; i < ncpus; ++i) {
183 		lwkt_create(netmsg_service_loop, NULL, NULL,
184 			    &netisr_cpu[i],
185 			    TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
186 			    i, "netisr_cpu %d", i);
187 		netmsg_service_port_init(&netisr_cpu[i].td_msgport);
188 		lwkt_schedule(&netisr_cpu[i]);
189 	}
190 
191 	/*
192 	 * The netisr_afree_rport is a special reply port which automatically
193 	 * frees the replied message.  The netisr_adone_rport simply marks
194 	 * the message as being done.  The netisr_apanic_rport panics if
195 	 * the message is replied to.
196 	 */
197 	lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
198 	lwkt_initport_replyonly(&netisr_afree_free_so_rport,
199 				netisr_autofree_free_so_reply);
200 	lwkt_initport_replyonly_null(&netisr_adone_rport);
201 	lwkt_initport_panic(&netisr_apanic_rport);
202 
203 	/*
204 	 * The netisr_syncport is a special port which executes the message
205 	 * synchronously and waits for it if EASYNC is returned.
206 	 */
207 	lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
208 }
209 
210 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
211 
212 /*
213  * Finish initializing the message port for a netmsg service.  This also
214  * registers the port for synchronous cleanup operations such as when an
215  * ifnet is being destroyed.  There is no deregistration API yet.
216  */
217 void
218 netmsg_service_port_init(lwkt_port_t port)
219 {
220 	struct netmsg_port_registration *reg;
221 
222 	/*
223 	 * Override the putport function.  Our custom function checks for
224 	 * self-references and executes such commands synchronously.
225 	 */
226 	if (netmsg_fwd_port_fn == NULL)
227 		netmsg_fwd_port_fn = port->mp_putport;
228 	KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
229 	port->mp_putport = netmsg_put_port;
230 
231 	/*
232 	 * Keep track of ports using the netmsg API so we can synchronize
233 	 * certain operations (such as freeing an ifnet structure) across all
234 	 * consumers.
235 	 */
236 	reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
237 	reg->npr_port = port;
238 	TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
239 }
240 
241 /*
242  * This function synchronizes the caller with all netmsg services.  For
243  * example, if an interface is being removed we must make sure that all
244  * packets related to that interface complete processing before the structure
245  * can actually be freed.  This sort of synchronization is an alternative to
246  * ref-counting the netif, removing the ref counting overhead in favor of
247  * placing additional overhead in the netif freeing sequence (where it is
248  * inconsequential).
249  */
250 void
251 netmsg_service_sync(void)
252 {
253 	struct netmsg_port_registration *reg;
254 	struct netmsg_base smsg;
255 
256 	netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_handler);
257 
258 	TAILQ_FOREACH(reg, &netreglist, npr_entry) {
259 		lwkt_domsg(reg->npr_port, &smsg.lmsg, 0);
260 	}
261 }
262 
263 /*
264  * The netmsg function simply replies the message.  API semantics require
265  * EASYNC to be returned if the netmsg function disposes of the message.
266  */
267 void
268 netmsg_sync_handler(netmsg_t msg)
269 {
270 	lwkt_replymsg(&msg->lmsg, 0);
271 }
272 
273 /*
274  * Generic netmsg service loop.  Some protocols may roll their own but all
275  * must do the basic command dispatch function call done here.
276  */
277 static void
278 netmsg_service_loop(void *arg)
279 {
280 	struct netmsg_rollup *ru;
281 	netmsg_base_t msg;
282 	thread_t td = curthread;
283 	int limit;
284 
285 	td->td_type = TD_TYPE_NETISR;
286 
287 	while ((msg = lwkt_waitport(&td->td_msgport, 0))) {
288 		/*
289 		 * Run up to 512 pending netmsgs.
290 		 */
291 		limit = 512;
292 		do {
293 			KASSERT(msg->nm_dispatch != NULL,
294 				("netmsg_service isr %d badmsg",
295 				msg->lmsg.u.ms_result));
296 			if (msg->nm_so &&
297 			    msg->nm_so->so_port != &td->td_msgport) {
298 				/*
299 				 * Sockets undergoing connect or disconnect
300 				 * ops can change ports on us.  Chase the
301 				 * port.
302 				 */
303 #ifdef foo
304 				/*
305 				 * This could be quite common for protocols
306 				 * which support asynchronous pru_connect,
307 				 * e.g. TCP, so kprintf socket port chasing
308 				 * could be too verbose for the console.
309 				 */
310 				kprintf("netmsg_service_loop: Warning, "
311 					"port changed so=%p\n", msg->nm_so);
312 #endif
313 				lwkt_forwardmsg(msg->nm_so->so_port,
314 						&msg->lmsg);
315 			} else {
316 				/*
317 				 * We are on the correct port, dispatch it.
318 				 */
319 				msg->nm_dispatch((netmsg_t)msg);
320 			}
321 			if (--limit == 0)
322 				break;
323 		} while ((msg = lwkt_getport(&td->td_msgport)) != NULL);
324 
325 		/*
326 		 * Run all registered rollup functions for this cpu
327 		 * (e.g. tcp_willblock()).
328 		 */
329 		TAILQ_FOREACH(ru, &netrulist, ru_entry)
330 			ru->ru_func();
331 	}
332 }
333 
334 /*
335  * Forward a packet to a netisr service function.
336  *
337  * If the packet has not been assigned to a protocol thread we call
338  * the port characterization function to assign it.  The caller must
339  * clear M_HASH (or not have set it in the first place) if the caller
340  * wishes the packet to be recharacterized.
341  */
342 int
343 netisr_queue(int num, struct mbuf *m)
344 {
345 	struct netisr *ni;
346 	struct netmsg_packet *pmsg;
347 	lwkt_port_t port;
348 
349 	KASSERT((num > 0 && num <= NELEM(netisrs)),
350 		("Bad isr %d", num));
351 
352 	ni = &netisrs[num];
353 	if (ni->ni_handler == NULL) {
354 		kprintf("Unregistered isr %d\n", num);
355 		m_freem(m);
356 		return (EIO);
357 	}
358 
359 	/*
360 	 * Figure out which protocol thread to send to.  This does not
361 	 * have to be perfect but performance will be really good if it
362 	 * is correct.  Major protocol inputs such as ip_input() will
363 	 * re-characterize the packet as necessary.
364 	 */
365 	if ((m->m_flags & M_HASH) == 0) {
366 		ni->ni_hashfn(&m, 0);
367 		if (m == NULL)
368 			return (EIO);
369 		if ((m->m_flags & M_HASH) == 0) {
370 			kprintf("netisr_queue(%d): packet hash failed\n", num);
371 			m_freem(m);
372 			return (EIO);
373 		}
374 	}
375 
376 	/*
377 	 * Get the protocol port based on the packet hash, initialize
378 	 * the netmsg, and send it off.
379 	 */
380 	port = netisr_hashport(m->m_pkthdr.hash);
381 	pmsg = &m->m_hdr.mh_netmsg;
382 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
383 		    0, ni->ni_handler);
384 	pmsg->nm_packet = m;
385 	pmsg->base.lmsg.u.ms_result = num;
386 	lwkt_sendmsg(port, &pmsg->base.lmsg);
387 
388 	return (0);
389 }
390 
391 /*
392  * Run a netisr service function on the packet.
393  *
394  * The packet must have been correctly characterized!
395  */
396 int
397 netisr_handle(int num, struct mbuf *m)
398 {
399 	struct netisr *ni;
400 	struct netmsg_packet *pmsg;
401 	lwkt_port_t port;
402 
403 	/*
404 	 * Get the protocol port based on the packet hash
405 	 */
406 	KASSERT((m->m_flags & M_HASH), ("packet not characterized"));
407 	port = netisr_hashport(m->m_pkthdr.hash);
408 	KASSERT(&curthread->td_msgport == port, ("wrong msgport"));
409 
410 	KASSERT((num > 0 && num <= NELEM(netisrs)), ("bad isr %d", num));
411 	ni = &netisrs[num];
412 	if (ni->ni_handler == NULL) {
413 		kprintf("unregistered isr %d\n", num);
414 		m_freem(m);
415 		return EIO;
416 	}
417 
418 	/*
419 	 * Initialize the netmsg, and run the handler directly.
420 	 */
421 	pmsg = &m->m_hdr.mh_netmsg;
422 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
423 		    0, ni->ni_handler);
424 	pmsg->nm_packet = m;
425 	pmsg->base.lmsg.u.ms_result = num;
426 	ni->ni_handler((netmsg_t)&pmsg->base);
427 
428 	return 0;
429 }
430 
431 /*
432  * Pre-characterization of a deeper portion of the packet for the
433  * requested isr.
434  *
435  * The base of the ISR type (e.g. IP) that we want to characterize is
436  * at (hoff) relative to the beginning of the mbuf.  This allows
437  * e.g. ether_characterize() to not have to adjust the m_data/m_len.
438  */
439 void
440 netisr_characterize(int num, struct mbuf **mp, int hoff)
441 {
442 	struct netisr *ni;
443 	struct mbuf *m;
444 
445 	/*
446 	 * Validation
447 	 */
448 	m = *mp;
449 	KKASSERT(m != NULL);
450 
451 	if (num < 0 || num >= NETISR_MAX) {
452 		if (num == NETISR_MAX) {
453 			m->m_flags |= M_HASH;
454 			m->m_pkthdr.hash = 0;
455 			return;
456 		}
457 		panic("Bad isr %d", num);
458 	}
459 
460 	/*
461 	 * Valid netisr?
462 	 */
463 	ni = &netisrs[num];
464 	if (ni->ni_handler == NULL) {
465 		kprintf("Unregistered isr %d\n", num);
466 		m_freem(m);
467 		*mp = NULL;
468 	}
469 
470 	/*
471 	 * Characterize the packet
472 	 */
473 	if ((m->m_flags & M_HASH) == 0) {
474 		ni->ni_hashfn(mp, hoff);
475 		m = *mp;
476 		if (m && (m->m_flags & M_HASH) == 0)
477 			kprintf("netisr_queue(%d): packet hash failed\n", num);
478 	}
479 }
480 
481 void
482 netisr_register(int num, netisr_fn_t handler, netisr_hashfn_t hashfn)
483 {
484 	struct netisr *ni;
485 
486 	KASSERT((num > 0 && num <= NELEM(netisrs)),
487 		("netisr_register: bad isr %d", num));
488 	KKASSERT(handler != NULL);
489 
490 	if (hashfn == NULL)
491 		hashfn = netisr_hashfn0;
492 
493 	ni = &netisrs[num];
494 
495 	ni->ni_handler = handler;
496 	ni->ni_hashck = netisr_nohashck;
497 	ni->ni_hashfn = hashfn;
498 	netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL);
499 }
500 
501 void
502 netisr_register_hashcheck(int num, netisr_hashck_t hashck)
503 {
504 	struct netisr *ni;
505 
506 	KASSERT((num > 0 && num <= NELEM(netisrs)),
507 		("netisr_register: bad isr %d", num));
508 
509 	ni = &netisrs[num];
510 	ni->ni_hashck = hashck;
511 }
512 
513 void
514 netisr_register_rollup(netisr_ru_t ru_func, int prio)
515 {
516 	struct netmsg_rollup *new_ru, *ru;
517 
518 	new_ru = kmalloc(sizeof(*new_ru), M_TEMP, M_WAITOK|M_ZERO);
519 	new_ru->ru_func = ru_func;
520 	new_ru->ru_prio = prio;
521 
522 	/*
523 	 * Higher priority "rollup" appears first
524 	 */
525 	TAILQ_FOREACH(ru, &netrulist, ru_entry) {
526 		if (ru->ru_prio < new_ru->ru_prio) {
527 			TAILQ_INSERT_BEFORE(ru, new_ru, ru_entry);
528 			return;
529 		}
530 	}
531 	TAILQ_INSERT_TAIL(&netrulist, new_ru, ru_entry);
532 }
533 
534 /*
535  * Return a default protocol control message processing thread port
536  */
537 lwkt_port_t
538 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
539 	     void *extra __unused)
540 {
541 	return (&netisr_cpu[0].td_msgport);
542 }
543 
544 /*
545  * This is a default netisr packet characterization function which
546  * sets M_HASH.  If a netisr is registered with a NULL hashfn function
547  * this one is assigned.
548  *
549  * This function makes no attempt to validate the packet.
550  */
551 static void
552 netisr_hashfn0(struct mbuf **mp, int hoff __unused)
553 {
554 	struct mbuf *m = *mp;
555 
556 	m->m_flags |= M_HASH;
557 	m->m_pkthdr.hash = 0;
558 }
559 
560 /*
561  * schednetisr() is used to call the netisr handler from the appropriate
562  * netisr thread for polling and other purposes.
563  *
564  * This function may be called from a hard interrupt or IPI and must be
565  * MP SAFE and non-blocking.  We use a fixed per-cpu message instead of
566  * trying to allocate one.  We must get ourselves onto the target cpu
567  * to safely check the MSGF_DONE bit on the message but since the message
568  * will be sent to that cpu anyway this does not add any extra work beyond
569  * what lwkt_sendmsg() would have already had to do to schedule the target
570  * thread.
571  */
572 static void
573 schednetisr_remote(void *data)
574 {
575 	int num = (int)(intptr_t)data;
576 	struct netisr *ni = &netisrs[num];
577 	lwkt_port_t port = &netisr_cpu[0].td_msgport;
578 	netmsg_base_t pmsg;
579 
580 	pmsg = &netisrs[num].ni_netmsg;
581 	if (pmsg->lmsg.ms_flags & MSGF_DONE) {
582 		netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler);
583 		pmsg->lmsg.u.ms_result = num;
584 		lwkt_sendmsg(port, &pmsg->lmsg);
585 	}
586 }
587 
588 void
589 schednetisr(int num)
590 {
591 	KASSERT((num > 0 && num <= NELEM(netisrs)),
592 		("schednetisr: bad isr %d", num));
593 	KKASSERT(netisrs[num].ni_handler != NULL);
594 	if (mycpu->gd_cpuid != 0) {
595 		lwkt_send_ipiq(globaldata_find(0),
596 			       schednetisr_remote, (void *)(intptr_t)num);
597 	} else {
598 		crit_enter();
599 		schednetisr_remote((void *)(intptr_t)num);
600 		crit_exit();
601 	}
602 }
603 
604 static void
605 netisr_barrier_dispatch(netmsg_t nmsg)
606 {
607 	struct netmsg_barrier *msg = (struct netmsg_barrier *)nmsg;
608 
609 	atomic_clear_cpumask(msg->br_cpumask, mycpu->gd_cpumask);
610 	if (*msg->br_cpumask == 0)
611 		wakeup(msg->br_cpumask);
612 
613 	for (;;) {
614 		uint32_t done = msg->br_done;
615 
616 		cpu_ccfence();
617 		if ((done & NETISR_BR_NOTDONE) == 0)
618 			break;
619 
620 		tsleep_interlock(&msg->br_done, 0);
621 		if (atomic_cmpset_int(&msg->br_done,
622 		    done, done | NETISR_BR_WAITDONE))
623 			tsleep(&msg->br_done, PINTERLOCKED, "nbrdsp", 0);
624 	}
625 
626 	lwkt_replymsg(&nmsg->lmsg, 0);
627 }
628 
629 struct netisr_barrier *
630 netisr_barrier_create(void)
631 {
632 	struct netisr_barrier *br;
633 
634 	br = kmalloc(sizeof(*br), M_LWKTMSG, M_WAITOK | M_ZERO);
635 	return br;
636 }
637 
638 void
639 netisr_barrier_set(struct netisr_barrier *br)
640 {
641 	volatile cpumask_t other_cpumask;
642 	int i, cur_cpuid;
643 
644 	KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
645 	KKASSERT(!br->br_isset);
646 
647 	other_cpumask = mycpu->gd_other_cpus & smp_active_mask;
648 	cur_cpuid = mycpuid;
649 
650 	for (i = 0; i < ncpus; ++i) {
651 		struct netmsg_barrier *msg;
652 
653 		if (i == cur_cpuid)
654 			continue;
655 
656 		msg = kmalloc(sizeof(struct netmsg_barrier),
657 			      M_LWKTMSG, M_WAITOK);
658 		netmsg_init(&msg->base, NULL, &netisr_afree_rport,
659 			    MSGF_PRIORITY, netisr_barrier_dispatch);
660 		msg->br_cpumask = &other_cpumask;
661 		msg->br_done = NETISR_BR_NOTDONE;
662 
663 		KKASSERT(br->br_msgs[i] == NULL);
664 		br->br_msgs[i] = msg;
665 	}
666 
667 	for (i = 0; i < ncpus; ++i) {
668 		if (i == cur_cpuid)
669 			continue;
670 		lwkt_sendmsg(netisr_cpuport(i), &br->br_msgs[i]->base.lmsg);
671 	}
672 
673 	while (other_cpumask != 0) {
674 		tsleep_interlock(&other_cpumask, 0);
675 		if (other_cpumask != 0)
676 			tsleep(&other_cpumask, PINTERLOCKED, "nbrset", 0);
677 	}
678 	br->br_isset = 1;
679 }
680 
681 void
682 netisr_barrier_rem(struct netisr_barrier *br)
683 {
684 	int i, cur_cpuid;
685 
686 	KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
687 	KKASSERT(br->br_isset);
688 
689 	cur_cpuid = mycpuid;
690 	for (i = 0; i < ncpus; ++i) {
691 		struct netmsg_barrier *msg = br->br_msgs[i];
692 		uint32_t done;
693 
694 		msg = br->br_msgs[i];
695 		br->br_msgs[i] = NULL;
696 
697 		if (i == cur_cpuid)
698 			continue;
699 
700 		done = atomic_swap_int(&msg->br_done, 0);
701 		if (done & NETISR_BR_WAITDONE)
702 			wakeup(&msg->br_done);
703 	}
704 	br->br_isset = 0;
705 }
706 
707 static void
708 netisr_nohashck(struct mbuf *m, const struct pktinfo *pi __unused)
709 {
710 	m->m_flags &= ~M_HASH;
711 }
712 
713 void
714 netisr_hashcheck(int num, struct mbuf *m, const struct pktinfo *pi)
715 {
716 	struct netisr *ni;
717 
718 	if (num < 0 || num >= NETISR_MAX)
719 		panic("Bad isr %d", num);
720 
721 	/*
722 	 * Valid netisr?
723 	 */
724 	ni = &netisrs[num];
725 	if (ni->ni_handler == NULL)
726 		panic("Unregistered isr %d", num);
727 
728 	ni->ni_hashck(m, pi);
729 }
730