1 /* 2 * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved. 3 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved. 4 * Copyright (c) 2003 Jonathan Lemon. All rights reserved. 5 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved. 6 * 7 * This code is derived from software contributed to The DragonFly Project 8 * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon. 9 * 10 * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright 11 * into this one around July 8 2004. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of The DragonFly Project nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific, prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/msgport.h> 44 #include <sys/proc.h> 45 #include <sys/interrupt.h> 46 #include <sys/socket.h> 47 #include <sys/sysctl.h> 48 #include <sys/socketvar.h> 49 #include <net/if.h> 50 #include <net/if_var.h> 51 #include <net/netisr2.h> 52 #include <machine/cpufunc.h> 53 #include <machine/smp.h> 54 55 #include <sys/thread2.h> 56 #include <sys/msgport2.h> 57 #include <net/netmsg2.h> 58 #include <sys/mplock2.h> 59 60 static void netmsg_service_loop(void *arg); 61 static void netisr_hashfn0(struct mbuf **mp, int hoff); 62 static void netisr_nohashck(struct mbuf *, const struct pktinfo *); 63 64 struct netmsg_port_registration { 65 TAILQ_ENTRY(netmsg_port_registration) npr_entry; 66 lwkt_port_t npr_port; 67 }; 68 69 struct netmsg_rollup { 70 TAILQ_ENTRY(netmsg_rollup) ru_entry; 71 netisr_ru_t ru_func; 72 int ru_prio; 73 }; 74 75 struct netmsg_barrier { 76 struct netmsg_base base; 77 volatile cpumask_t *br_cpumask; 78 volatile uint32_t br_done; 79 }; 80 81 #define NETISR_BR_NOTDONE 0x1 82 #define NETISR_BR_WAITDONE 0x80000000 83 84 struct netisr_barrier { 85 struct netmsg_barrier *br_msgs[MAXCPU]; 86 int br_isset; 87 }; 88 89 static struct netisr netisrs[NETISR_MAX]; 90 static TAILQ_HEAD(,netmsg_port_registration) netreglist; 91 static TAILQ_HEAD(,netmsg_rollup) netrulist; 92 93 /* Per-CPU thread to handle any protocol. */ 94 struct thread netisr_cpu[MAXCPU]; 95 lwkt_port netisr_afree_rport; 96 lwkt_port netisr_afree_free_so_rport; 97 lwkt_port netisr_adone_rport; 98 lwkt_port netisr_apanic_rport; 99 lwkt_port netisr_sync_port; 100 101 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t); 102 103 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr"); 104 105 /* 106 * netisr_afree_rport replymsg function, only used to handle async 107 * messages which the sender has abandoned to their fate. 108 */ 109 static void 110 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg) 111 { 112 kfree(msg, M_LWKTMSG); 113 } 114 115 static void 116 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg) 117 { 118 sofree(((netmsg_t)msg)->base.nm_so); 119 kfree(msg, M_LWKTMSG); 120 } 121 122 /* 123 * We need a custom putport function to handle the case where the 124 * message target is the current thread's message port. This case 125 * can occur when the TCP or UDP stack does a direct callback to NFS and NFS 126 * then turns around and executes a network operation synchronously. 127 * 128 * To prevent deadlocking, we must execute these self-referential messages 129 * synchronously, effectively turning the message into a glorified direct 130 * procedure call back into the protocol stack. The operation must be 131 * complete on return or we will deadlock, so panic if it isn't. 132 * 133 * However, the target function is under no obligation to immediately 134 * reply the message. It may forward it elsewhere. 135 */ 136 static int 137 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg) 138 { 139 netmsg_base_t nmsg = (void *)lmsg; 140 141 if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) { 142 nmsg->nm_dispatch((netmsg_t)nmsg); 143 return(EASYNC); 144 } else { 145 return(netmsg_fwd_port_fn(port, lmsg)); 146 } 147 } 148 149 /* 150 * UNIX DOMAIN sockets still have to run their uipc functions synchronously, 151 * because they depend on the user proc context for a number of things 152 * (like creds) which we have not yet incorporated into the message structure. 153 * 154 * However, we maintain or message/port abstraction. Having a special 155 * synchronous port which runs the commands synchronously gives us the 156 * ability to serialize operations in one place later on when we start 157 * removing the BGL. 158 */ 159 static int 160 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg) 161 { 162 netmsg_base_t nmsg = (void *)lmsg; 163 164 KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0); 165 166 lmsg->ms_target_port = port; /* required for abort */ 167 nmsg->nm_dispatch((netmsg_t)nmsg); 168 return(EASYNC); 169 } 170 171 static void 172 netisr_init(void) 173 { 174 int i; 175 176 TAILQ_INIT(&netreglist); 177 TAILQ_INIT(&netrulist); 178 179 /* 180 * Create default per-cpu threads for generic protocol handling. 181 */ 182 for (i = 0; i < ncpus; ++i) { 183 lwkt_create(netmsg_service_loop, NULL, NULL, 184 &netisr_cpu[i], TDF_NOSTART|TDF_FORCE_SPINPORT, 185 i, "netisr_cpu %d", i); 186 netmsg_service_port_init(&netisr_cpu[i].td_msgport); 187 lwkt_schedule(&netisr_cpu[i]); 188 } 189 190 /* 191 * The netisr_afree_rport is a special reply port which automatically 192 * frees the replied message. The netisr_adone_rport simply marks 193 * the message as being done. The netisr_apanic_rport panics if 194 * the message is replied to. 195 */ 196 lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply); 197 lwkt_initport_replyonly(&netisr_afree_free_so_rport, 198 netisr_autofree_free_so_reply); 199 lwkt_initport_replyonly_null(&netisr_adone_rport); 200 lwkt_initport_panic(&netisr_apanic_rport); 201 202 /* 203 * The netisr_syncport is a special port which executes the message 204 * synchronously and waits for it if EASYNC is returned. 205 */ 206 lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport); 207 } 208 209 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL); 210 211 /* 212 * Finish initializing the message port for a netmsg service. This also 213 * registers the port for synchronous cleanup operations such as when an 214 * ifnet is being destroyed. There is no deregistration API yet. 215 */ 216 void 217 netmsg_service_port_init(lwkt_port_t port) 218 { 219 struct netmsg_port_registration *reg; 220 221 /* 222 * Override the putport function. Our custom function checks for 223 * self-references and executes such commands synchronously. 224 */ 225 if (netmsg_fwd_port_fn == NULL) 226 netmsg_fwd_port_fn = port->mp_putport; 227 KKASSERT(netmsg_fwd_port_fn == port->mp_putport); 228 port->mp_putport = netmsg_put_port; 229 230 /* 231 * Keep track of ports using the netmsg API so we can synchronize 232 * certain operations (such as freeing an ifnet structure) across all 233 * consumers. 234 */ 235 reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO); 236 reg->npr_port = port; 237 TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry); 238 } 239 240 /* 241 * This function synchronizes the caller with all netmsg services. For 242 * example, if an interface is being removed we must make sure that all 243 * packets related to that interface complete processing before the structure 244 * can actually be freed. This sort of synchronization is an alternative to 245 * ref-counting the netif, removing the ref counting overhead in favor of 246 * placing additional overhead in the netif freeing sequence (where it is 247 * inconsequential). 248 */ 249 void 250 netmsg_service_sync(void) 251 { 252 struct netmsg_port_registration *reg; 253 struct netmsg_base smsg; 254 255 netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_handler); 256 257 TAILQ_FOREACH(reg, &netreglist, npr_entry) { 258 lwkt_domsg(reg->npr_port, &smsg.lmsg, 0); 259 } 260 } 261 262 /* 263 * The netmsg function simply replies the message. API semantics require 264 * EASYNC to be returned if the netmsg function disposes of the message. 265 */ 266 void 267 netmsg_sync_handler(netmsg_t msg) 268 { 269 lwkt_replymsg(&msg->lmsg, 0); 270 } 271 272 /* 273 * Generic netmsg service loop. Some protocols may roll their own but all 274 * must do the basic command dispatch function call done here. 275 */ 276 static void 277 netmsg_service_loop(void *arg) 278 { 279 struct netmsg_rollup *ru; 280 netmsg_base_t msg; 281 thread_t td = curthread; 282 int limit; 283 284 td->td_type = TD_TYPE_NETISR; 285 286 while ((msg = lwkt_waitport(&td->td_msgport, 0))) { 287 /* 288 * Run up to 512 pending netmsgs. 289 */ 290 limit = 512; 291 do { 292 KASSERT(msg->nm_dispatch != NULL, 293 ("netmsg_service isr %d badmsg", 294 msg->lmsg.u.ms_result)); 295 if (msg->nm_so && 296 msg->nm_so->so_port != &td->td_msgport) { 297 /* 298 * Sockets undergoing connect or disconnect 299 * ops can change ports on us. Chase the 300 * port. 301 */ 302 #ifdef foo 303 /* 304 * This could be quite common for protocols 305 * which support asynchronous pru_connect, 306 * e.g. TCP, so kprintf socket port chasing 307 * could be too verbose for the console. 308 */ 309 kprintf("netmsg_service_loop: Warning, " 310 "port changed so=%p\n", msg->nm_so); 311 #endif 312 lwkt_forwardmsg(msg->nm_so->so_port, 313 &msg->lmsg); 314 } else { 315 /* 316 * We are on the correct port, dispatch it. 317 */ 318 msg->nm_dispatch((netmsg_t)msg); 319 } 320 if (--limit == 0) 321 break; 322 } while ((msg = lwkt_getport(&td->td_msgport)) != NULL); 323 324 /* 325 * Run all registered rollup functions for this cpu 326 * (e.g. tcp_willblock()). 327 */ 328 TAILQ_FOREACH(ru, &netrulist, ru_entry) 329 ru->ru_func(); 330 } 331 } 332 333 /* 334 * Forward a packet to a netisr service function. 335 * 336 * If the packet has not been assigned to a protocol thread we call 337 * the port characterization function to assign it. The caller must 338 * clear M_HASH (or not have set it in the first place) if the caller 339 * wishes the packet to be recharacterized. 340 */ 341 int 342 netisr_queue(int num, struct mbuf *m) 343 { 344 struct netisr *ni; 345 struct netmsg_packet *pmsg; 346 lwkt_port_t port; 347 348 KASSERT((num > 0 && num <= NELEM(netisrs)), 349 ("Bad isr %d", num)); 350 351 ni = &netisrs[num]; 352 if (ni->ni_handler == NULL) { 353 kprintf("Unregistered isr %d\n", num); 354 m_freem(m); 355 return (EIO); 356 } 357 358 /* 359 * Figure out which protocol thread to send to. This does not 360 * have to be perfect but performance will be really good if it 361 * is correct. Major protocol inputs such as ip_input() will 362 * re-characterize the packet as necessary. 363 */ 364 if ((m->m_flags & M_HASH) == 0) { 365 ni->ni_hashfn(&m, 0); 366 if (m == NULL) { 367 m_freem(m); 368 return (EIO); 369 } 370 if ((m->m_flags & M_HASH) == 0) { 371 kprintf("netisr_queue(%d): packet hash failed\n", num); 372 m_freem(m); 373 return (EIO); 374 } 375 } 376 377 /* 378 * Get the protocol port based on the packet hash, initialize 379 * the netmsg, and send it off. 380 */ 381 port = netisr_hashport(m->m_pkthdr.hash); 382 pmsg = &m->m_hdr.mh_netmsg; 383 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 384 0, ni->ni_handler); 385 pmsg->nm_packet = m; 386 pmsg->base.lmsg.u.ms_result = num; 387 lwkt_sendmsg(port, &pmsg->base.lmsg); 388 389 return (0); 390 } 391 392 /* 393 * Run a netisr service function on the packet. 394 * 395 * The packet must have been correctly characterized! 396 */ 397 int 398 netisr_handle(int num, struct mbuf *m) 399 { 400 struct netisr *ni; 401 struct netmsg_packet *pmsg; 402 lwkt_port_t port; 403 404 /* 405 * Get the protocol port based on the packet hash 406 */ 407 KASSERT((m->m_flags & M_HASH), ("packet not characterized")); 408 port = netisr_hashport(m->m_pkthdr.hash); 409 KASSERT(&curthread->td_msgport == port, ("wrong msgport")); 410 411 KASSERT((num > 0 && num <= NELEM(netisrs)), ("bad isr %d", num)); 412 ni = &netisrs[num]; 413 if (ni->ni_handler == NULL) { 414 kprintf("unregistered isr %d\n", num); 415 m_freem(m); 416 return EIO; 417 } 418 419 /* 420 * Initialize the netmsg, and run the handler directly. 421 */ 422 pmsg = &m->m_hdr.mh_netmsg; 423 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 424 0, ni->ni_handler); 425 pmsg->nm_packet = m; 426 pmsg->base.lmsg.u.ms_result = num; 427 ni->ni_handler((netmsg_t)&pmsg->base); 428 429 return 0; 430 } 431 432 /* 433 * Pre-characterization of a deeper portion of the packet for the 434 * requested isr. 435 * 436 * The base of the ISR type (e.g. IP) that we want to characterize is 437 * at (hoff) relative to the beginning of the mbuf. This allows 438 * e.g. ether_characterize() to not have to adjust the m_data/m_len. 439 */ 440 void 441 netisr_characterize(int num, struct mbuf **mp, int hoff) 442 { 443 struct netisr *ni; 444 struct mbuf *m; 445 446 /* 447 * Validation 448 */ 449 m = *mp; 450 KKASSERT(m != NULL); 451 452 if (num < 0 || num >= NETISR_MAX) { 453 if (num == NETISR_MAX) { 454 m->m_flags |= M_HASH; 455 m->m_pkthdr.hash = 0; 456 return; 457 } 458 panic("Bad isr %d", num); 459 } 460 461 /* 462 * Valid netisr? 463 */ 464 ni = &netisrs[num]; 465 if (ni->ni_handler == NULL) { 466 kprintf("Unregistered isr %d\n", num); 467 m_freem(m); 468 *mp = NULL; 469 } 470 471 /* 472 * Characterize the packet 473 */ 474 if ((m->m_flags & M_HASH) == 0) { 475 ni->ni_hashfn(mp, hoff); 476 m = *mp; 477 if (m && (m->m_flags & M_HASH) == 0) 478 kprintf("netisr_queue(%d): packet hash failed\n", num); 479 } 480 } 481 482 void 483 netisr_register(int num, netisr_fn_t handler, netisr_hashfn_t hashfn) 484 { 485 struct netisr *ni; 486 487 KASSERT((num > 0 && num <= NELEM(netisrs)), 488 ("netisr_register: bad isr %d", num)); 489 KKASSERT(handler != NULL); 490 491 if (hashfn == NULL) 492 hashfn = netisr_hashfn0; 493 494 ni = &netisrs[num]; 495 496 ni->ni_handler = handler; 497 ni->ni_hashck = netisr_nohashck; 498 ni->ni_hashfn = hashfn; 499 netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL); 500 } 501 502 void 503 netisr_register_hashcheck(int num, netisr_hashck_t hashck) 504 { 505 struct netisr *ni; 506 507 KASSERT((num > 0 && num <= NELEM(netisrs)), 508 ("netisr_register: bad isr %d", num)); 509 510 ni = &netisrs[num]; 511 ni->ni_hashck = hashck; 512 } 513 514 void 515 netisr_register_rollup(netisr_ru_t ru_func, int prio) 516 { 517 struct netmsg_rollup *new_ru, *ru; 518 519 new_ru = kmalloc(sizeof(*new_ru), M_TEMP, M_WAITOK|M_ZERO); 520 new_ru->ru_func = ru_func; 521 new_ru->ru_prio = prio; 522 523 /* 524 * Higher priority "rollup" appears first 525 */ 526 TAILQ_FOREACH(ru, &netrulist, ru_entry) { 527 if (ru->ru_prio < new_ru->ru_prio) { 528 TAILQ_INSERT_BEFORE(ru, new_ru, ru_entry); 529 return; 530 } 531 } 532 TAILQ_INSERT_TAIL(&netrulist, new_ru, ru_entry); 533 } 534 535 /* 536 * Return a default protocol control message processing thread port 537 */ 538 lwkt_port_t 539 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused, 540 void *extra __unused) 541 { 542 return (&netisr_cpu[0].td_msgport); 543 } 544 545 /* 546 * This is a default netisr packet characterization function which 547 * sets M_HASH. If a netisr is registered with a NULL hashfn function 548 * this one is assigned. 549 * 550 * This function makes no attempt to validate the packet. 551 */ 552 static void 553 netisr_hashfn0(struct mbuf **mp, int hoff __unused) 554 { 555 struct mbuf *m = *mp; 556 557 m->m_flags |= M_HASH; 558 m->m_pkthdr.hash = 0; 559 } 560 561 /* 562 * schednetisr() is used to call the netisr handler from the appropriate 563 * netisr thread for polling and other purposes. 564 * 565 * This function may be called from a hard interrupt or IPI and must be 566 * MP SAFE and non-blocking. We use a fixed per-cpu message instead of 567 * trying to allocate one. We must get ourselves onto the target cpu 568 * to safely check the MSGF_DONE bit on the message but since the message 569 * will be sent to that cpu anyway this does not add any extra work beyond 570 * what lwkt_sendmsg() would have already had to do to schedule the target 571 * thread. 572 */ 573 static void 574 schednetisr_remote(void *data) 575 { 576 int num = (int)(intptr_t)data; 577 struct netisr *ni = &netisrs[num]; 578 lwkt_port_t port = &netisr_cpu[0].td_msgport; 579 netmsg_base_t pmsg; 580 581 pmsg = &netisrs[num].ni_netmsg; 582 if (pmsg->lmsg.ms_flags & MSGF_DONE) { 583 netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler); 584 pmsg->lmsg.u.ms_result = num; 585 lwkt_sendmsg(port, &pmsg->lmsg); 586 } 587 } 588 589 void 590 schednetisr(int num) 591 { 592 KASSERT((num > 0 && num <= NELEM(netisrs)), 593 ("schednetisr: bad isr %d", num)); 594 KKASSERT(netisrs[num].ni_handler != NULL); 595 if (mycpu->gd_cpuid != 0) { 596 lwkt_send_ipiq(globaldata_find(0), 597 schednetisr_remote, (void *)(intptr_t)num); 598 } else { 599 crit_enter(); 600 schednetisr_remote((void *)(intptr_t)num); 601 crit_exit(); 602 } 603 } 604 605 static void 606 netisr_barrier_dispatch(netmsg_t nmsg) 607 { 608 struct netmsg_barrier *msg = (struct netmsg_barrier *)nmsg; 609 610 atomic_clear_cpumask(msg->br_cpumask, mycpu->gd_cpumask); 611 if (*msg->br_cpumask == 0) 612 wakeup(msg->br_cpumask); 613 614 for (;;) { 615 uint32_t done = msg->br_done; 616 617 cpu_ccfence(); 618 if ((done & NETISR_BR_NOTDONE) == 0) 619 break; 620 621 tsleep_interlock(&msg->br_done, 0); 622 if (atomic_cmpset_int(&msg->br_done, 623 done, done | NETISR_BR_WAITDONE)) 624 tsleep(&msg->br_done, PINTERLOCKED, "nbrdsp", 0); 625 } 626 627 lwkt_replymsg(&nmsg->lmsg, 0); 628 } 629 630 struct netisr_barrier * 631 netisr_barrier_create(void) 632 { 633 struct netisr_barrier *br; 634 635 br = kmalloc(sizeof(*br), M_LWKTMSG, M_WAITOK | M_ZERO); 636 return br; 637 } 638 639 void 640 netisr_barrier_set(struct netisr_barrier *br) 641 { 642 volatile cpumask_t other_cpumask; 643 int i, cur_cpuid; 644 645 KKASSERT(&curthread->td_msgport == netisr_cpuport(0)); 646 KKASSERT(!br->br_isset); 647 648 other_cpumask = mycpu->gd_other_cpus & smp_active_mask; 649 cur_cpuid = mycpuid; 650 651 for (i = 0; i < ncpus; ++i) { 652 struct netmsg_barrier *msg; 653 654 if (i == cur_cpuid) 655 continue; 656 657 msg = kmalloc(sizeof(struct netmsg_barrier), 658 M_LWKTMSG, M_WAITOK); 659 netmsg_init(&msg->base, NULL, &netisr_afree_rport, 660 MSGF_PRIORITY, netisr_barrier_dispatch); 661 msg->br_cpumask = &other_cpumask; 662 msg->br_done = NETISR_BR_NOTDONE; 663 664 KKASSERT(br->br_msgs[i] == NULL); 665 br->br_msgs[i] = msg; 666 } 667 668 for (i = 0; i < ncpus; ++i) { 669 if (i == cur_cpuid) 670 continue; 671 lwkt_sendmsg(netisr_cpuport(i), &br->br_msgs[i]->base.lmsg); 672 } 673 674 while (other_cpumask != 0) { 675 tsleep_interlock(&other_cpumask, 0); 676 if (other_cpumask != 0) 677 tsleep(&other_cpumask, PINTERLOCKED, "nbrset", 0); 678 } 679 br->br_isset = 1; 680 } 681 682 void 683 netisr_barrier_rem(struct netisr_barrier *br) 684 { 685 int i, cur_cpuid; 686 687 KKASSERT(&curthread->td_msgport == netisr_cpuport(0)); 688 KKASSERT(br->br_isset); 689 690 cur_cpuid = mycpuid; 691 for (i = 0; i < ncpus; ++i) { 692 struct netmsg_barrier *msg = br->br_msgs[i]; 693 uint32_t done; 694 695 msg = br->br_msgs[i]; 696 br->br_msgs[i] = NULL; 697 698 if (i == cur_cpuid) 699 continue; 700 701 done = atomic_swap_int(&msg->br_done, 0); 702 if (done & NETISR_BR_WAITDONE) 703 wakeup(&msg->br_done); 704 } 705 br->br_isset = 0; 706 } 707 708 static void 709 netisr_nohashck(struct mbuf *m, const struct pktinfo *pi __unused) 710 { 711 m->m_flags &= ~M_HASH; 712 } 713 714 void 715 netisr_hashcheck(int num, struct mbuf *m, const struct pktinfo *pi) 716 { 717 struct netisr *ni; 718 719 if (num < 0 || num >= NETISR_MAX) 720 panic("Bad isr %d", num); 721 722 /* 723 * Valid netisr? 724 */ 725 ni = &netisrs[num]; 726 if (ni->ni_handler == NULL) 727 panic("Unregistered isr %d", num); 728 729 ni->ni_hashck(m, pi); 730 } 731