1 /* 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 30 * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $ 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_mpls.h" 36 #include "opt_netgraph.h" 37 #include "opt_carp.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/globaldata.h> 43 #include <sys/kernel.h> 44 #include <sys/ktr.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/msgport.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/sysctl.h> 52 #include <sys/thread.h> 53 54 #include <sys/thread2.h> 55 #include <sys/mplock2.h> 56 57 #include <net/if.h> 58 #include <net/netisr.h> 59 #include <net/route.h> 60 #include <net/if_llc.h> 61 #include <net/if_dl.h> 62 #include <net/if_types.h> 63 #include <net/ifq_var.h> 64 #include <net/bpf.h> 65 #include <net/ethernet.h> 66 #include <net/vlan/if_vlan_ether.h> 67 #include <net/vlan/if_vlan_var.h> 68 #include <net/netmsg2.h> 69 #include <net/netisr2.h> 70 71 #if defined(INET) || defined(INET6) 72 #include <netinet/in.h> 73 #include <netinet/ip_var.h> 74 #include <netinet/tcp_var.h> 75 #include <netinet/if_ether.h> 76 #include <netinet/ip_flow.h> 77 #include <net/ipfw/ip_fw.h> 78 #include <net/ipfw3/ip_fw.h> 79 #include <net/dummynet/ip_dummynet.h> 80 #endif 81 #ifdef INET6 82 #include <netinet6/nd6.h> 83 #endif 84 85 #ifdef CARP 86 #include <netinet/ip_carp.h> 87 #endif 88 89 #ifdef MPLS 90 #include <netproto/mpls/mpls.h> 91 #endif 92 93 /* netgraph node hooks for ng_ether(4) */ 94 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 95 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 96 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 97 void (*ng_ether_attach_p)(struct ifnet *ifp); 98 void (*ng_ether_detach_p)(struct ifnet *ifp); 99 100 void (*vlan_input_p)(struct mbuf *); 101 102 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *, 103 struct rtentry *); 104 static void ether_restore_header(struct mbuf **, const struct ether_header *, 105 const struct ether_header *); 106 static int ether_characterize(struct mbuf **); 107 static void ether_dispatch(int, struct mbuf *, int); 108 109 /* 110 * if_bridge support 111 */ 112 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 113 int (*bridge_output_p)(struct ifnet *, struct mbuf *); 114 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 115 struct ifnet *(*bridge_interface_p)(void *if_bridge); 116 117 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 118 struct sockaddr *); 119 120 /* 121 * if_lagg(4) support 122 */ 123 void (*lagg_input_p)(struct ifnet *, struct mbuf *); 124 int (*lagg_output_p)(struct ifnet *, struct mbuf *); 125 126 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = { 127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 128 }; 129 130 #define gotoerr(e) do { error = (e); goto bad; } while (0) 131 #define IFP2AC(ifp) ((struct arpcom *)(ifp)) 132 133 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, 134 struct ip_fw **rule, 135 const struct ether_header *eh); 136 137 static int ether_ipfw; 138 static u_long ether_restore_hdr; 139 static u_long ether_prepend_hdr; 140 static u_long ether_input_wronghash; 141 static int ether_debug; 142 143 #ifdef RSS_DEBUG 144 static u_long ether_pktinfo_try; 145 static u_long ether_pktinfo_hit; 146 static u_long ether_rss_nopi; 147 static u_long ether_rss_nohash; 148 static u_long ether_input_requeue; 149 #endif 150 static u_long ether_input_wronghwhash; 151 static int ether_input_ckhash; 152 153 #define ETHER_TSOLEN_DEFAULT (4 * ETHERMTU) 154 155 #define ETHER_NMBCLUSTERS_DEFMIN 32 156 #define ETHER_NMBCLUSTERS_DEFAULT 256 157 158 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT; 159 TUNABLE_INT("net.link.ether.tsolen", ðer_tsolen_default); 160 161 static int ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT; 162 TUNABLE_INT("net.link.ether.nmbclusters", ðer_nmbclusters_default); 163 164 SYSCTL_DECL(_net_link); 165 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 166 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW, 167 ðer_debug, 0, "Ether debug"); 168 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW, 169 ðer_ipfw, 0, "Pass ether pkts through firewall"); 170 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW, 171 ðer_restore_hdr, 0, "# of ether header restoration"); 172 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW, 173 ðer_prepend_hdr, 0, 174 "# of ether header restoration which prepends mbuf"); 175 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW, 176 ðer_input_wronghash, 0, "# of input packets with wrong hash"); 177 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW, 178 ðer_tsolen_default, 0, "Default max TSO length"); 179 180 #ifdef RSS_DEBUG 181 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW, 182 ðer_rss_nopi, 0, "# of packets do not have pktinfo"); 183 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW, 184 ðer_rss_nohash, 0, "# of packets do not have hash"); 185 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW, 186 ðer_pktinfo_try, 0, 187 "# of tries to find packets' msgport using pktinfo"); 188 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW, 189 ðer_pktinfo_hit, 0, 190 "# of packets whose msgport are found using pktinfo"); 191 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW, 192 ðer_input_requeue, 0, "# of input packets gets requeued"); 193 #endif 194 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW, 195 ðer_input_wronghwhash, 0, "# of input packets with wrong hw hash"); 196 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW, 197 ðer_input_ckhash, 0, "always check hash"); 198 199 #define ETHER_KTR_STR "ifp=%p" 200 #define ETHER_KTR_ARGS struct ifnet *ifp 201 #ifndef KTR_ETHERNET 202 #define KTR_ETHERNET KTR_ALL 203 #endif 204 KTR_INFO_MASTER(ether); 205 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS); 206 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS); 207 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS); 208 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS); 209 #define logether(name, arg) KTR_LOG(ether_ ## name, arg) 210 211 /* 212 * Ethernet output routine. 213 * Encapsulate a packet of type family for the local net. 214 * Use trailer local net encapsulation if enough data in first 215 * packet leaves a multiple of 512 bytes of data in remainder. 216 * Assumes that ifp is actually pointer to arpcom structure. 217 */ 218 static int 219 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, 220 struct rtentry *rt) 221 { 222 struct ether_header *eh, *deh; 223 u_char *edst; 224 int loop_copy = 0; 225 int hlen = ETHER_HDR_LEN; /* link layer header length */ 226 struct arpcom *ac = IFP2AC(ifp); 227 int error; 228 229 ASSERT_NETISR_NCPUS(mycpuid); 230 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 231 232 if (ifp->if_flags & IFF_MONITOR) 233 gotoerr(ENETDOWN); 234 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 235 gotoerr(ENETDOWN); 236 237 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 238 if (m == NULL) 239 return (ENOBUFS); 240 m->m_pkthdr.csum_lhlen = sizeof(struct ether_header); 241 eh = mtod(m, struct ether_header *); 242 edst = eh->ether_dhost; 243 244 /* 245 * Fill in the destination ethernet address and frame type. 246 */ 247 switch (dst->sa_family) { 248 #ifdef INET 249 case AF_INET: 250 if (!arpresolve(ifp, rt, m, dst, edst)) 251 return (0); /* if not yet resolved */ 252 #ifdef MPLS 253 if (m->m_flags & M_MPLSLABELED) 254 eh->ether_type = htons(ETHERTYPE_MPLS); 255 else 256 #endif 257 eh->ether_type = htons(ETHERTYPE_IP); 258 break; 259 #endif 260 #ifdef INET6 261 case AF_INET6: 262 if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst)) 263 return (0); /* Something bad happenned. */ 264 eh->ether_type = htons(ETHERTYPE_IPV6); 265 break; 266 #endif 267 case pseudo_AF_HDRCMPLT: 268 case AF_UNSPEC: 269 loop_copy = -1; /* if this is for us, don't do it */ 270 deh = (struct ether_header *)dst->sa_data; 271 memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN); 272 eh->ether_type = deh->ether_type; 273 break; 274 275 default: 276 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 277 gotoerr(EAFNOSUPPORT); 278 } 279 280 if (dst->sa_family == pseudo_AF_HDRCMPLT) /* unlikely */ 281 memcpy(eh->ether_shost, 282 ((struct ether_header *)dst->sa_data)->ether_shost, 283 ETHER_ADDR_LEN); 284 else 285 memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN); 286 287 /* 288 * Bridges require special output handling. 289 */ 290 if (ifp->if_bridge) { 291 KASSERT(bridge_output_p != NULL, 292 ("%s: if_bridge not loaded!", __func__)); 293 return bridge_output_p(ifp, m); 294 } 295 #if 0 /* XXX */ 296 if (ifp->if_lagg) { 297 KASSERT(lagg_output_p != NULL, 298 ("%s: if_lagg not loaded!", __func__)); 299 return lagg_output_p(ifp, m); 300 } 301 #endif 302 303 /* 304 * If a simplex interface, and the packet is being sent to our 305 * Ethernet address or a broadcast address, loopback a copy. 306 * XXX To make a simplex device behave exactly like a duplex 307 * device, we should copy in the case of sending to our own 308 * ethernet address (thus letting the original actually appear 309 * on the wire). However, we don't do that here for security 310 * reasons and compatibility with the original behavior. 311 */ 312 if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) { 313 int csum_flags = 0; 314 315 if (m->m_pkthdr.csum_flags & CSUM_IP) 316 csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); 317 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 318 csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 319 if ((m->m_flags & M_BCAST) || (loop_copy > 0)) { 320 struct mbuf *n; 321 322 if ((n = m_copypacket(m, M_NOWAIT)) != NULL) { 323 n->m_pkthdr.csum_flags |= csum_flags; 324 if (csum_flags & CSUM_DATA_VALID) 325 n->m_pkthdr.csum_data = 0xffff; 326 if_simloop(ifp, n, dst->sa_family, hlen); 327 } else 328 IFNET_STAT_INC(ifp, iqdrops, 1); 329 } else if (bcmp(eh->ether_dhost, eh->ether_shost, 330 ETHER_ADDR_LEN) == 0) { 331 m->m_pkthdr.csum_flags |= csum_flags; 332 if (csum_flags & CSUM_DATA_VALID) 333 m->m_pkthdr.csum_data = 0xffff; 334 if_simloop(ifp, m, dst->sa_family, hlen); 335 return (0); /* XXX */ 336 } 337 } 338 339 #ifdef CARP 340 if (ifp->if_type == IFT_CARP) { 341 ifp = carp_parent(ifp); 342 if (ifp == NULL) 343 gotoerr(ENETUNREACH); 344 345 ac = IFP2AC(ifp); 346 347 /* 348 * Check precondition again 349 */ 350 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 351 352 if (ifp->if_flags & IFF_MONITOR) 353 gotoerr(ENETDOWN); 354 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 355 (IFF_UP | IFF_RUNNING)) 356 gotoerr(ENETDOWN); 357 } 358 #endif 359 360 /* Handle ng_ether(4) processing, if any */ 361 if (ng_ether_output_p != NULL) { 362 /* 363 * Hold BGL and recheck ng_ether_output_p 364 */ 365 get_mplock(); 366 if (ng_ether_output_p != NULL) { 367 if ((error = ng_ether_output_p(ifp, &m)) != 0) { 368 rel_mplock(); 369 goto bad; 370 } 371 if (m == NULL) { 372 rel_mplock(); 373 return (0); 374 } 375 } 376 rel_mplock(); 377 } 378 379 /* Continue with link-layer output */ 380 return ether_output_frame(ifp, m); 381 382 bad: 383 m_freem(m); 384 return (error); 385 } 386 387 /* 388 * Returns the bridge interface an ifp is associated 389 * with. 390 * 391 * Only call if ifp->if_bridge != NULL. 392 */ 393 struct ifnet * 394 ether_bridge_interface(struct ifnet *ifp) 395 { 396 if (bridge_interface_p) 397 return(bridge_interface_p(ifp->if_bridge)); 398 return (ifp); 399 } 400 401 /* 402 * Ethernet link layer output routine to send a raw frame to the device. 403 * 404 * This assumes that the 14 byte Ethernet header is present and contiguous 405 * in the first mbuf. 406 */ 407 int 408 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 409 { 410 struct ip_fw *rule = NULL; 411 int error = 0; 412 struct altq_pktattr pktattr; 413 414 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 415 416 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) { 417 struct m_tag *mtag; 418 419 /* Extract info from dummynet tag */ 420 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 421 KKASSERT(mtag != NULL); 422 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 423 KKASSERT(rule != NULL); 424 425 m_tag_delete(m, mtag); 426 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED; 427 } 428 429 if (ifq_is_enabled(&ifp->if_snd)) 430 altq_etherclassify(&ifp->if_snd, m, &pktattr); 431 crit_enter(); 432 if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0) { 433 struct ether_header save_eh, *eh; 434 435 eh = mtod(m, struct ether_header *); 436 save_eh = *eh; 437 m_adj(m, ETHER_HDR_LEN); 438 if (!ether_ipfw_chk(&m, ifp, &rule, eh)) { 439 crit_exit(); 440 if (m != NULL) { 441 m_freem(m); 442 return ENOBUFS; /* pkt dropped */ 443 } else 444 return 0; /* consumed e.g. in a pipe */ 445 } 446 447 /* packet was ok, restore the ethernet header */ 448 ether_restore_header(&m, eh, &save_eh); 449 if (m == NULL) { 450 crit_exit(); 451 return ENOBUFS; 452 } 453 } 454 crit_exit(); 455 456 /* 457 * Queue message on interface, update output statistics if 458 * successful, and start output if interface not yet active. 459 */ 460 error = ifq_dispatch(ifp, m, &pktattr); 461 return (error); 462 } 463 464 /* 465 * ipfw processing for ethernet packets (in and out). 466 * The second parameter is NULL from ether_demux(), and ifp from 467 * ether_output_frame(). 468 */ 469 static boolean_t 470 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule, 471 const struct ether_header *eh) 472 { 473 struct ether_header save_eh = *eh; /* might be a ptr in *m0 */ 474 struct ip_fw_args args; 475 struct m_tag *mtag; 476 struct mbuf *m; 477 int i; 478 479 if (*rule != NULL && fw_one_pass) 480 return TRUE; /* dummynet packet, already partially processed */ 481 482 /* 483 * I need some amount of data to be contiguous. 484 */ 485 i = min((*m0)->m_pkthdr.len, max_protohdr); 486 if ((*m0)->m_len < i) { 487 *m0 = m_pullup(*m0, i); 488 if (*m0 == NULL) 489 return FALSE; 490 } 491 492 /* 493 * Clean up tags 494 */ 495 if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL) 496 m_tag_delete(*m0, mtag); 497 if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) { 498 mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL); 499 KKASSERT(mtag != NULL); 500 m_tag_delete(*m0, mtag); 501 (*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED; 502 } 503 504 args.m = *m0; /* the packet we are looking at */ 505 args.oif = dst; /* destination, if any */ 506 args.rule = *rule; /* matching rule to restart */ 507 args.eh = &save_eh; /* MAC header for bridged/MAC packets */ 508 i = ip_fw_chk_ptr(&args); 509 *m0 = args.m; 510 *rule = args.rule; 511 512 if (*m0 == NULL) 513 return FALSE; 514 515 switch (i) { 516 case IP_FW_PASS: 517 return TRUE; 518 519 case IP_FW_DIVERT: 520 case IP_FW_TEE: 521 case IP_FW_DENY: 522 /* 523 * XXX at some point add support for divert/forward actions. 524 * If none of the above matches, we have to drop the pkt. 525 */ 526 return FALSE; 527 528 case IP_FW_DUMMYNET: 529 /* 530 * Pass the pkt to dummynet, which consumes it. 531 */ 532 m = *m0; /* pass the original to dummynet */ 533 *m0 = NULL; /* and nothing back to the caller */ 534 535 ether_restore_header(&m, eh, &save_eh); 536 if (m == NULL) 537 return FALSE; 538 539 m = ip_fw_dn_io_ptr(m, args.cookie, 540 dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args); 541 if (m != NULL) 542 ip_dn_queue(m); 543 return FALSE; 544 545 default: 546 panic("unknown ipfw return value: %d", i); 547 } 548 } 549 550 /* 551 * Perform common duties while attaching to interface list 552 */ 553 void 554 ether_ifattach(struct ifnet *ifp, const uint8_t *lla, 555 lwkt_serialize_t serializer) 556 { 557 ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header), 558 serializer); 559 } 560 561 void 562 ether_ifattach_bpf(struct ifnet *ifp, const uint8_t *lla, 563 u_int dlt, u_int hdrlen, lwkt_serialize_t serializer) 564 { 565 struct sockaddr_dl *sdl; 566 char ethstr[ETHER_ADDRSTRLEN + 1]; 567 struct ifaltq *ifq; 568 int i; 569 570 /* 571 * If driver does not configure # of mbuf clusters/jclusters 572 * that could sit on the device queues for quite some time, 573 * we then assume: 574 * - The device queues only consume mbuf clusters. 575 * - No more than ether_nmbclusters_default (by default 256) 576 * mbuf clusters will sit on the device queues for quite 577 * some time. 578 */ 579 if (ifp->if_nmbclusters <= 0 && ifp->if_nmbjclusters <= 0) { 580 if (ether_nmbclusters_default < ETHER_NMBCLUSTERS_DEFMIN) { 581 kprintf("ether nmbclusters %d -> %d\n", 582 ether_nmbclusters_default, 583 ETHER_NMBCLUSTERS_DEFAULT); 584 ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT; 585 } 586 ifp->if_nmbclusters = ether_nmbclusters_default; 587 } 588 589 ifp->if_type = IFT_ETHER; 590 ifp->if_addrlen = ETHER_ADDR_LEN; 591 ifp->if_hdrlen = ETHER_HDR_LEN; 592 if_attach(ifp, serializer); 593 ifq = &ifp->if_snd; 594 for (i = 0; i < ifq->altq_subq_cnt; ++i) { 595 struct ifaltq_subque *ifsq = ifq_get_subq(ifq, i); 596 597 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * 598 (ETHER_MAX_LEN - ETHER_CRC_LEN); 599 } 600 ifp->if_mtu = ETHERMTU; 601 if (ifp->if_tsolen <= 0) { 602 if ((ether_tsolen_default / ETHERMTU) < 2) { 603 kprintf("ether TSO maxlen %d -> %d\n", 604 ether_tsolen_default, ETHER_TSOLEN_DEFAULT); 605 ether_tsolen_default = ETHER_TSOLEN_DEFAULT; 606 } 607 ifp->if_tsolen = ether_tsolen_default; 608 } 609 if (ifp->if_baudrate == 0) 610 ifp->if_baudrate = 10000000; 611 ifp->if_output = ether_output; 612 ifp->if_input = ether_input; 613 ifp->if_resolvemulti = ether_resolvemulti; 614 ifp->if_broadcastaddr = etherbroadcastaddr; 615 sdl = IF_LLSOCKADDR(ifp); 616 sdl->sdl_type = IFT_ETHER; 617 sdl->sdl_alen = ifp->if_addrlen; 618 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 619 /* 620 * XXX Keep the current drivers happy. 621 * XXX Remove once all drivers have been cleaned up 622 */ 623 if (lla != IFP2AC(ifp)->ac_enaddr) 624 bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen); 625 bpfattach(ifp, dlt, hdrlen); 626 if (ng_ether_attach_p != NULL) 627 (*ng_ether_attach_p)(ifp); 628 629 if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr)); 630 } 631 632 /* 633 * Perform common duties while detaching an Ethernet interface 634 */ 635 void 636 ether_ifdetach(struct ifnet *ifp) 637 { 638 if_down(ifp); 639 640 if (ng_ether_detach_p != NULL) 641 (*ng_ether_detach_p)(ifp); 642 bpfdetach(ifp); 643 if_detach(ifp); 644 } 645 646 int 647 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 648 { 649 struct ifaddr *ifa = (struct ifaddr *) data; 650 struct ifreq *ifr = (struct ifreq *) data; 651 int error = 0; 652 653 #define IF_INIT(ifp) \ 654 do { \ 655 if (((ifp)->if_flags & IFF_UP) == 0) { \ 656 (ifp)->if_flags |= IFF_UP; \ 657 (ifp)->if_init((ifp)->if_softc); \ 658 } \ 659 } while (0) 660 661 ASSERT_IFNET_SERIALIZED_ALL(ifp); 662 663 switch (command) { 664 case SIOCSIFADDR: 665 switch (ifa->ifa_addr->sa_family) { 666 #ifdef INET 667 case AF_INET: 668 IF_INIT(ifp); /* before arpwhohas */ 669 arp_ifinit(ifp, ifa); 670 break; 671 #endif 672 default: 673 IF_INIT(ifp); 674 break; 675 } 676 break; 677 678 case SIOCGIFADDR: 679 bcopy(IFP2AC(ifp)->ac_enaddr, 680 ((struct sockaddr *)ifr->ifr_data)->sa_data, 681 ETHER_ADDR_LEN); 682 break; 683 684 case SIOCSIFMTU: 685 /* 686 * Set the interface MTU. 687 */ 688 if (ifr->ifr_mtu > ETHERMTU) { 689 error = EINVAL; 690 } else { 691 ifp->if_mtu = ifr->ifr_mtu; 692 } 693 break; 694 default: 695 error = EINVAL; 696 break; 697 } 698 return (error); 699 700 #undef IF_INIT 701 } 702 703 static int 704 ether_resolvemulti( 705 struct ifnet *ifp, 706 struct sockaddr **llsa, 707 struct sockaddr *sa) 708 { 709 struct sockaddr_dl *sdl; 710 #ifdef INET 711 struct sockaddr_in *sin; 712 #endif 713 #ifdef INET6 714 struct sockaddr_in6 *sin6; 715 #endif 716 u_char *e_addr; 717 718 switch(sa->sa_family) { 719 case AF_LINK: 720 /* 721 * No mapping needed. Just check that it's a valid MC address. 722 */ 723 sdl = (struct sockaddr_dl *)sa; 724 e_addr = LLADDR(sdl); 725 if ((e_addr[0] & 1) != 1) 726 return EADDRNOTAVAIL; 727 *llsa = NULL; 728 return 0; 729 730 #ifdef INET 731 case AF_INET: 732 sin = (struct sockaddr_in *)sa; 733 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 734 return EADDRNOTAVAIL; 735 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO); 736 sdl->sdl_len = sizeof *sdl; 737 sdl->sdl_family = AF_LINK; 738 sdl->sdl_index = ifp->if_index; 739 sdl->sdl_type = IFT_ETHER; 740 sdl->sdl_alen = ETHER_ADDR_LEN; 741 e_addr = LLADDR(sdl); 742 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 743 *llsa = (struct sockaddr *)sdl; 744 return 0; 745 #endif 746 #ifdef INET6 747 case AF_INET6: 748 sin6 = (struct sockaddr_in6 *)sa; 749 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 750 /* 751 * An IP6 address of 0 means listen to all 752 * of the Ethernet multicast address used for IP6. 753 * (This is used for multicast routers.) 754 */ 755 ifp->if_flags |= IFF_ALLMULTI; 756 *llsa = NULL; 757 return 0; 758 } 759 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 760 return EADDRNOTAVAIL; 761 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO); 762 sdl->sdl_len = sizeof *sdl; 763 sdl->sdl_family = AF_LINK; 764 sdl->sdl_index = ifp->if_index; 765 sdl->sdl_type = IFT_ETHER; 766 sdl->sdl_alen = ETHER_ADDR_LEN; 767 e_addr = LLADDR(sdl); 768 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 769 *llsa = (struct sockaddr *)sdl; 770 return 0; 771 #endif 772 773 default: 774 /* 775 * Well, the text isn't quite right, but it's the name 776 * that counts... 777 */ 778 return EAFNOSUPPORT; 779 } 780 } 781 782 #if 0 783 /* 784 * This is for reference. We have a table-driven version 785 * of the little-endian crc32 generator, which is faster 786 * than the double-loop. 787 */ 788 uint32_t 789 ether_crc32_le(const uint8_t *buf, size_t len) 790 { 791 uint32_t c, crc, carry; 792 size_t i, j; 793 794 crc = 0xffffffffU; /* initial value */ 795 796 for (i = 0; i < len; i++) { 797 c = buf[i]; 798 for (j = 0; j < 8; j++) { 799 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 800 crc >>= 1; 801 c >>= 1; 802 if (carry) 803 crc = (crc ^ ETHER_CRC_POLY_LE); 804 } 805 } 806 807 return (crc); 808 } 809 #else 810 uint32_t 811 ether_crc32_le(const uint8_t *buf, size_t len) 812 { 813 static const uint32_t crctab[] = { 814 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 815 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 816 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 817 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 818 }; 819 uint32_t crc; 820 size_t i; 821 822 crc = 0xffffffffU; /* initial value */ 823 824 for (i = 0; i < len; i++) { 825 crc ^= buf[i]; 826 crc = (crc >> 4) ^ crctab[crc & 0xf]; 827 crc = (crc >> 4) ^ crctab[crc & 0xf]; 828 } 829 830 return (crc); 831 } 832 #endif 833 834 uint32_t 835 ether_crc32_be(const uint8_t *buf, size_t len) 836 { 837 uint32_t c, crc, carry; 838 size_t i, j; 839 840 crc = 0xffffffffU; /* initial value */ 841 842 for (i = 0; i < len; i++) { 843 c = buf[i]; 844 for (j = 0; j < 8; j++) { 845 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 846 crc <<= 1; 847 c >>= 1; 848 if (carry) 849 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 850 } 851 } 852 853 return (crc); 854 } 855 856 /* 857 * find the size of ethernet header, and call classifier 858 */ 859 void 860 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m, 861 struct altq_pktattr *pktattr) 862 { 863 struct ether_header *eh; 864 uint16_t ether_type; 865 int hlen, af, hdrsize; 866 867 hlen = sizeof(struct ether_header); 868 eh = mtod(m, struct ether_header *); 869 870 ether_type = ntohs(eh->ether_type); 871 if (ether_type < ETHERMTU) { 872 /* ick! LLC/SNAP */ 873 struct llc *llc = (struct llc *)(eh + 1); 874 hlen += 8; 875 876 if (m->m_len < hlen || 877 llc->llc_dsap != LLC_SNAP_LSAP || 878 llc->llc_ssap != LLC_SNAP_LSAP || 879 llc->llc_control != LLC_UI) 880 goto bad; /* not snap! */ 881 882 ether_type = ntohs(llc->llc_un.type_snap.ether_type); 883 } 884 885 if (ether_type == ETHERTYPE_IP) { 886 af = AF_INET; 887 hdrsize = 20; /* sizeof(struct ip) */ 888 #ifdef INET6 889 } else if (ether_type == ETHERTYPE_IPV6) { 890 af = AF_INET6; 891 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 892 #endif 893 } else 894 goto bad; 895 896 while (m->m_len <= hlen) { 897 hlen -= m->m_len; 898 m = m->m_next; 899 } 900 if (m->m_len < hlen + hdrsize) { 901 /* 902 * ip header is not in a single mbuf. this should not 903 * happen in the current code. 904 * (todo: use m_pulldown in the future) 905 */ 906 goto bad; 907 } 908 m->m_data += hlen; 909 m->m_len -= hlen; 910 ifq_classify(ifq, m, af, pktattr); 911 m->m_data -= hlen; 912 m->m_len += hlen; 913 914 return; 915 916 bad: 917 pktattr->pattr_class = NULL; 918 pktattr->pattr_hdr = NULL; 919 pktattr->pattr_af = AF_UNSPEC; 920 } 921 922 static void 923 ether_restore_header(struct mbuf **m0, const struct ether_header *eh, 924 const struct ether_header *save_eh) 925 { 926 struct mbuf *m = *m0; 927 928 ether_restore_hdr++; 929 930 /* 931 * Prepend the header, optimize for the common case of 932 * eh pointing into the mbuf. 933 */ 934 if ((const void *)(eh + 1) == (void *)m->m_data) { 935 m->m_data -= ETHER_HDR_LEN; 936 m->m_len += ETHER_HDR_LEN; 937 m->m_pkthdr.len += ETHER_HDR_LEN; 938 } else { 939 ether_prepend_hdr++; 940 941 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 942 if (m != NULL) { 943 bcopy(save_eh, mtod(m, struct ether_header *), 944 ETHER_HDR_LEN); 945 } 946 } 947 *m0 = m; 948 } 949 950 /* 951 * Upper layer processing for a received Ethernet packet. 952 */ 953 void 954 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m) 955 { 956 struct ether_header *eh; 957 int isr, discard = 0; 958 u_short ether_type; 959 struct ip_fw *rule = NULL; 960 961 M_ASSERTPKTHDR(m); 962 KASSERT(m->m_len >= ETHER_HDR_LEN, 963 ("ether header is not contiguous!")); 964 965 eh = mtod(m, struct ether_header *); 966 967 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) { 968 struct m_tag *mtag; 969 970 /* Extract info from dummynet tag */ 971 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 972 KKASSERT(mtag != NULL); 973 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 974 KKASSERT(rule != NULL); 975 976 m_tag_delete(m, mtag); 977 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED; 978 979 /* packet is passing the second time */ 980 goto post_stats; 981 } 982 983 /* 984 * We got a packet which was unicast to a different Ethernet 985 * address. If the driver is working properly, then this 986 * situation can only happen when the interface is in 987 * promiscuous mode. We defer the packet discarding until the 988 * vlan processing is done, so that vlan/bridge or vlan/netgraph 989 * could work. 990 */ 991 if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) && 992 !ETHER_IS_MULTICAST(eh->ether_dhost) && 993 bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) { 994 if (ether_debug & 1) { 995 kprintf("%02x:%02x:%02x:%02x:%02x:%02x " 996 "%02x:%02x:%02x:%02x:%02x:%02x " 997 "%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n", 998 eh->ether_dhost[0], 999 eh->ether_dhost[1], 1000 eh->ether_dhost[2], 1001 eh->ether_dhost[3], 1002 eh->ether_dhost[4], 1003 eh->ether_dhost[5], 1004 eh->ether_shost[0], 1005 eh->ether_shost[1], 1006 eh->ether_shost[2], 1007 eh->ether_shost[3], 1008 eh->ether_shost[4], 1009 eh->ether_shost[5], 1010 eh->ether_type, 1011 ((u_char *)IFP2AC(ifp)->ac_enaddr)[0], 1012 ((u_char *)IFP2AC(ifp)->ac_enaddr)[1], 1013 ((u_char *)IFP2AC(ifp)->ac_enaddr)[2], 1014 ((u_char *)IFP2AC(ifp)->ac_enaddr)[3], 1015 ((u_char *)IFP2AC(ifp)->ac_enaddr)[4], 1016 ((u_char *)IFP2AC(ifp)->ac_enaddr)[5] 1017 ); 1018 } 1019 if ((ether_debug & 2) == 0) 1020 discard = 1; 1021 } 1022 1023 post_stats: 1024 if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0 && !discard) { 1025 struct ether_header save_eh = *eh; 1026 1027 /* XXX old crufty stuff, needs to be removed */ 1028 m_adj(m, sizeof(struct ether_header)); 1029 1030 if (!ether_ipfw_chk(&m, NULL, &rule, eh)) { 1031 m_freem(m); 1032 return; 1033 } 1034 1035 ether_restore_header(&m, eh, &save_eh); 1036 if (m == NULL) 1037 return; 1038 eh = mtod(m, struct ether_header *); 1039 } 1040 1041 ether_type = ntohs(eh->ether_type); 1042 KKASSERT(ether_type != ETHERTYPE_VLAN); 1043 1044 /* Handle input from a lagg(4) port */ 1045 if (ifp->if_type == IFT_IEEE8023ADLAG) { 1046 KASSERT(lagg_input_p != NULL, 1047 ("%s: if_lagg not loaded!", __func__)); 1048 (*lagg_input_p)(ifp, m); 1049 return; 1050 } 1051 1052 if (m->m_flags & M_VLANTAG) { 1053 void (*vlan_input_func)(struct mbuf *); 1054 1055 vlan_input_func = vlan_input_p; 1056 /* Make sure 'vlan_input_func' is really used. */ 1057 cpu_ccfence(); 1058 if (vlan_input_func != NULL) { 1059 vlan_input_func(m); 1060 } else { 1061 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1); 1062 m_freem(m); 1063 } 1064 return; 1065 } 1066 1067 /* 1068 * If we have been asked to discard this packet 1069 * (e.g. not for us), drop it before entering 1070 * the upper layer. 1071 */ 1072 if (discard) { 1073 m_freem(m); 1074 return; 1075 } 1076 1077 /* 1078 * Clear protocol specific flags, 1079 * before entering the upper layer. 1080 */ 1081 m->m_flags &= ~M_ETHER_FLAGS; 1082 1083 /* Strip ethernet header. */ 1084 m_adj(m, sizeof(struct ether_header)); 1085 1086 switch (ether_type) { 1087 #ifdef INET 1088 case ETHERTYPE_IP: 1089 if ((m->m_flags & M_LENCHECKED) == 0) { 1090 if (!ip_lengthcheck(&m, 0)) 1091 return; 1092 } 1093 if (ipflow_fastforward(m)) 1094 return; 1095 isr = NETISR_IP; 1096 break; 1097 1098 case ETHERTYPE_ARP: 1099 if (ifp->if_flags & IFF_NOARP) { 1100 /* Discard packet if ARP is disabled on interface */ 1101 m_freem(m); 1102 return; 1103 } 1104 isr = NETISR_ARP; 1105 break; 1106 #endif 1107 1108 #ifdef INET6 1109 case ETHERTYPE_IPV6: 1110 isr = NETISR_IPV6; 1111 break; 1112 #endif 1113 1114 #ifdef MPLS 1115 case ETHERTYPE_MPLS: 1116 case ETHERTYPE_MPLS_MCAST: 1117 /* Should have been set by ether_input(). */ 1118 KKASSERT(m->m_flags & M_MPLSLABELED); 1119 isr = NETISR_MPLS; 1120 break; 1121 #endif 1122 1123 default: 1124 /* 1125 * The accurate msgport is not determined before 1126 * we reach here, so recharacterize packet. 1127 */ 1128 m->m_flags &= ~M_HASH; 1129 if (ng_ether_input_orphan_p != NULL) { 1130 /* 1131 * Put back the ethernet header so netgraph has a 1132 * consistent view of inbound packets. 1133 */ 1134 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); 1135 if (m == NULL) { 1136 /* 1137 * M_PREPEND frees the mbuf in case of failure. 1138 */ 1139 return; 1140 } 1141 /* 1142 * Hold BGL and recheck ng_ether_input_orphan_p 1143 */ 1144 get_mplock(); 1145 if (ng_ether_input_orphan_p != NULL) { 1146 ng_ether_input_orphan_p(ifp, m); 1147 rel_mplock(); 1148 return; 1149 } 1150 rel_mplock(); 1151 } 1152 m_freem(m); 1153 return; 1154 } 1155 1156 if (m->m_flags & M_HASH) { 1157 if (&curthread->td_msgport == 1158 netisr_hashport(m->m_pkthdr.hash)) { 1159 netisr_handle(isr, m); 1160 return; 1161 } else { 1162 /* 1163 * XXX Something is wrong, 1164 * we probably should panic here! 1165 */ 1166 m->m_flags &= ~M_HASH; 1167 atomic_add_long(ðer_input_wronghash, 1); 1168 } 1169 } 1170 #ifdef RSS_DEBUG 1171 atomic_add_long(ðer_input_requeue, 1); 1172 #endif 1173 netisr_queue(isr, m); 1174 } 1175 1176 /* 1177 * First we perform any link layer operations, then continue to the 1178 * upper layers with ether_demux_oncpu(). 1179 */ 1180 static void 1181 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m) 1182 { 1183 #ifdef CARP 1184 void *carp; 1185 #endif 1186 1187 if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) { 1188 /* 1189 * Receiving interface's flags are changed, when this 1190 * packet is waiting for processing; discard it. 1191 */ 1192 m_freem(m); 1193 return; 1194 } 1195 1196 /* 1197 * Tap the packet off here for a bridge. bridge_input() 1198 * will return NULL if it has consumed the packet, otherwise 1199 * it gets processed as normal. Note that bridge_input() 1200 * will always return the original packet if we need to 1201 * process it locally. 1202 */ 1203 if (ifp->if_bridge) { 1204 KASSERT(bridge_input_p != NULL, 1205 ("%s: if_bridge not loaded!", __func__)); 1206 1207 if(m->m_flags & M_ETHER_BRIDGED) { 1208 m->m_flags &= ~M_ETHER_BRIDGED; 1209 } else { 1210 m = bridge_input_p(ifp, m); 1211 if (m == NULL) 1212 return; 1213 1214 KASSERT(ifp == m->m_pkthdr.rcvif, 1215 ("bridge_input_p changed rcvif")); 1216 } 1217 } 1218 1219 #ifdef CARP 1220 carp = ifp->if_carp; 1221 if (carp) { 1222 m = carp_input(carp, m); 1223 if (m == NULL) 1224 return; 1225 KASSERT(ifp == m->m_pkthdr.rcvif, 1226 ("carp_input changed rcvif")); 1227 } 1228 #endif 1229 1230 /* Handle ng_ether(4) processing, if any */ 1231 if (ng_ether_input_p != NULL) { 1232 /* 1233 * Hold BGL and recheck ng_ether_input_p 1234 */ 1235 get_mplock(); 1236 if (ng_ether_input_p != NULL) 1237 ng_ether_input_p(ifp, &m); 1238 rel_mplock(); 1239 1240 if (m == NULL) 1241 return; 1242 } 1243 1244 /* Continue with upper layer processing */ 1245 ether_demux_oncpu(ifp, m); 1246 } 1247 1248 /* 1249 * Perform certain functions of ether_input(): 1250 * - Test IFF_UP 1251 * - Update statistics 1252 * - Run bpf(4) tap if requested 1253 * Then pass the packet to ether_input_oncpu(). 1254 * 1255 * This function should be used by pseudo interface (e.g. vlan(4)), 1256 * when it tries to claim that the packet is received by it. 1257 * 1258 * REINPUT_KEEPRCVIF 1259 * REINPUT_RUNBPF 1260 */ 1261 void 1262 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags) 1263 { 1264 /* Discard packet if interface is not up */ 1265 if (!(ifp->if_flags & IFF_UP)) { 1266 m_freem(m); 1267 return; 1268 } 1269 1270 /* 1271 * Change receiving interface. The bridge will often pass a flag to 1272 * ask that this not be done so ARPs get applied to the correct 1273 * side. 1274 */ 1275 if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 || 1276 m->m_pkthdr.rcvif == NULL) { 1277 m->m_pkthdr.rcvif = ifp; 1278 } 1279 1280 /* Update statistics */ 1281 IFNET_STAT_INC(ifp, ipackets, 1); 1282 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len); 1283 if (m->m_flags & (M_MCAST | M_BCAST)) 1284 IFNET_STAT_INC(ifp, imcasts, 1); 1285 1286 if (reinput_flags & REINPUT_RUNBPF) 1287 BPF_MTAP(ifp, m); 1288 1289 ether_input_oncpu(ifp, m); 1290 } 1291 1292 static __inline boolean_t 1293 ether_vlancheck(struct mbuf **m0) 1294 { 1295 struct mbuf *m = *m0; 1296 struct ether_header *eh; 1297 uint16_t ether_type; 1298 1299 eh = mtod(m, struct ether_header *); 1300 ether_type = ntohs(eh->ether_type); 1301 1302 if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) { 1303 /* 1304 * Extract vlan tag if hardware does not do it for us 1305 */ 1306 vlan_ether_decap(&m); 1307 if (m == NULL) 1308 goto failed; 1309 1310 eh = mtod(m, struct ether_header *); 1311 ether_type = ntohs(eh->ether_type); 1312 } 1313 1314 if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) { 1315 /* 1316 * To prevent possible dangerous recursion, 1317 * we don't do vlan-in-vlan 1318 */ 1319 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1); 1320 goto failed; 1321 } 1322 KKASSERT(ether_type != ETHERTYPE_VLAN); 1323 1324 m->m_flags |= M_ETHER_VLANCHECKED; 1325 *m0 = m; 1326 return TRUE; 1327 failed: 1328 if (m != NULL) 1329 m_freem(m); 1330 *m0 = NULL; 1331 return FALSE; 1332 } 1333 1334 static void 1335 ether_input_handler(netmsg_t nmsg) 1336 { 1337 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */ 1338 struct ether_header *eh; 1339 struct ifnet *ifp; 1340 struct mbuf *m; 1341 1342 m = nmp->nm_packet; 1343 M_ASSERTPKTHDR(m); 1344 1345 if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) { 1346 if (!ether_vlancheck(&m)) { 1347 KKASSERT(m == NULL); 1348 return; 1349 } 1350 } 1351 if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) || 1352 __predict_false(ether_input_ckhash)) { 1353 int isr; 1354 1355 /* 1356 * Need to verify the hash supplied by the hardware 1357 * which could be wrong. 1358 */ 1359 m->m_flags &= ~(M_HASH | M_CKHASH); 1360 isr = ether_characterize(&m); 1361 if (m == NULL) 1362 return; 1363 KKASSERT(m->m_flags & M_HASH); 1364 1365 if (netisr_hashcpu(m->m_pkthdr.hash) != mycpuid) { 1366 /* 1367 * Wrong hardware supplied hash; redispatch 1368 */ 1369 ether_dispatch(isr, m, -1); 1370 if (__predict_false(ether_input_ckhash)) 1371 atomic_add_long(ðer_input_wronghwhash, 1); 1372 return; 1373 } 1374 } 1375 ifp = m->m_pkthdr.rcvif; 1376 1377 eh = mtod(m, struct ether_header *); 1378 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 1379 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost, 1380 ifp->if_addrlen) == 0) 1381 m->m_flags |= M_BCAST; 1382 else 1383 m->m_flags |= M_MCAST; 1384 IFNET_STAT_INC(ifp, imcasts, 1); 1385 } 1386 1387 ether_input_oncpu(ifp, m); 1388 } 1389 1390 /* 1391 * Send the packet to the target netisr msgport 1392 * 1393 * At this point the packet must be characterized (M_HASH set), 1394 * so we know which netisr to send it to. 1395 */ 1396 static void 1397 ether_dispatch(int isr, struct mbuf *m, int cpuid) 1398 { 1399 struct netmsg_packet *pmsg; 1400 int target_cpuid; 1401 1402 KKASSERT(m->m_flags & M_HASH); 1403 target_cpuid = netisr_hashcpu(m->m_pkthdr.hash); 1404 1405 pmsg = &m->m_hdr.mh_netmsg; 1406 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 1407 0, ether_input_handler); 1408 pmsg->nm_packet = m; 1409 pmsg->base.lmsg.u.ms_result = isr; 1410 1411 logether(disp_beg, NULL); 1412 if (target_cpuid == cpuid) { 1413 lwkt_sendmsg_oncpu(netisr_cpuport(target_cpuid), 1414 &pmsg->base.lmsg); 1415 } else { 1416 lwkt_sendmsg(netisr_cpuport(target_cpuid), 1417 &pmsg->base.lmsg); 1418 } 1419 logether(disp_end, NULL); 1420 } 1421 1422 /* 1423 * Process a received Ethernet packet. 1424 * 1425 * The ethernet header is assumed to be in the mbuf so the caller 1426 * MUST MAKE SURE that there are at least sizeof(struct ether_header) 1427 * bytes in the first mbuf. 1428 * 1429 * If the caller knows that the current thread is stick to the current 1430 * cpu, e.g. the interrupt thread or the netisr thread, the current cpuid 1431 * (mycpuid) should be passed through 'cpuid' argument. Else -1 should 1432 * be passed as 'cpuid' argument. 1433 */ 1434 void 1435 ether_input(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi, 1436 int cpuid) 1437 { 1438 int isr; 1439 1440 M_ASSERTPKTHDR(m); 1441 1442 /* Discard packet if interface is not up */ 1443 if (!(ifp->if_flags & IFF_UP)) { 1444 m_freem(m); 1445 return; 1446 } 1447 1448 if (m->m_len < sizeof(struct ether_header)) { 1449 /* XXX error in the caller. */ 1450 m_freem(m); 1451 return; 1452 } 1453 1454 m->m_pkthdr.rcvif = ifp; 1455 1456 logether(pkt_beg, ifp); 1457 1458 ETHER_BPF_MTAP(ifp, m); 1459 1460 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len); 1461 1462 if (ifp->if_flags & IFF_MONITOR) { 1463 struct ether_header *eh; 1464 1465 eh = mtod(m, struct ether_header *); 1466 if (ETHER_IS_MULTICAST(eh->ether_dhost)) 1467 IFNET_STAT_INC(ifp, imcasts, 1); 1468 1469 /* 1470 * Interface marked for monitoring; discard packet. 1471 */ 1472 m_freem(m); 1473 1474 logether(pkt_end, ifp); 1475 return; 1476 } 1477 1478 /* 1479 * If the packet has been characterized (pi->pi_netisr / M_HASH) 1480 * we can dispatch it immediately with trivial checks. 1481 */ 1482 if (pi != NULL && (m->m_flags & M_HASH)) { 1483 #ifdef RSS_DEBUG 1484 atomic_add_long(ðer_pktinfo_try, 1); 1485 #endif 1486 netisr_hashcheck(pi->pi_netisr, m, pi); 1487 if (m->m_flags & M_HASH) { 1488 ether_dispatch(pi->pi_netisr, m, cpuid); 1489 #ifdef RSS_DEBUG 1490 atomic_add_long(ðer_pktinfo_hit, 1); 1491 #endif 1492 logether(pkt_end, ifp); 1493 return; 1494 } 1495 } 1496 #ifdef RSS_DEBUG 1497 else if (ifp->if_capenable & IFCAP_RSS) { 1498 if (pi == NULL) 1499 atomic_add_long(ðer_rss_nopi, 1); 1500 else 1501 atomic_add_long(ðer_rss_nohash, 1); 1502 } 1503 #endif 1504 1505 /* 1506 * Packet hash will be recalculated by software, so clear 1507 * the M_HASH and M_CKHASH flag set by the driver; the hash 1508 * value calculated by the hardware may not be exactly what 1509 * we want. 1510 */ 1511 m->m_flags &= ~(M_HASH | M_CKHASH); 1512 1513 if (!ether_vlancheck(&m)) { 1514 KKASSERT(m == NULL); 1515 logether(pkt_end, ifp); 1516 return; 1517 } 1518 1519 isr = ether_characterize(&m); 1520 if (m == NULL) { 1521 logether(pkt_end, ifp); 1522 return; 1523 } 1524 1525 /* 1526 * Finally dispatch it 1527 */ 1528 ether_dispatch(isr, m, cpuid); 1529 1530 logether(pkt_end, ifp); 1531 } 1532 1533 static int 1534 ether_characterize(struct mbuf **m0) 1535 { 1536 struct mbuf *m = *m0; 1537 struct ether_header *eh; 1538 uint16_t ether_type; 1539 int isr; 1540 1541 eh = mtod(m, struct ether_header *); 1542 ether_type = ntohs(eh->ether_type); 1543 1544 /* 1545 * Map ether type to netisr id. 1546 */ 1547 switch (ether_type) { 1548 #ifdef INET 1549 case ETHERTYPE_IP: 1550 isr = NETISR_IP; 1551 break; 1552 1553 case ETHERTYPE_ARP: 1554 isr = NETISR_ARP; 1555 break; 1556 #endif 1557 1558 #ifdef INET6 1559 case ETHERTYPE_IPV6: 1560 isr = NETISR_IPV6; 1561 break; 1562 #endif 1563 1564 #ifdef MPLS 1565 case ETHERTYPE_MPLS: 1566 case ETHERTYPE_MPLS_MCAST: 1567 m->m_flags |= M_MPLSLABELED; 1568 isr = NETISR_MPLS; 1569 break; 1570 #endif 1571 1572 default: 1573 /* 1574 * NETISR_MAX is an invalid value; it is chosen to let 1575 * netisr_characterize() know that we have no clear 1576 * idea where this packet should go. 1577 */ 1578 isr = NETISR_MAX; 1579 break; 1580 } 1581 1582 /* 1583 * Ask the isr to characterize the packet since we couldn't. 1584 * This is an attempt to optimally get us onto the correct protocol 1585 * thread. 1586 */ 1587 netisr_characterize(isr, &m, sizeof(struct ether_header)); 1588 1589 *m0 = m; 1590 return isr; 1591 } 1592 1593 static void 1594 ether_demux_handler(netmsg_t nmsg) 1595 { 1596 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */ 1597 struct ifnet *ifp; 1598 struct mbuf *m; 1599 1600 m = nmp->nm_packet; 1601 M_ASSERTPKTHDR(m); 1602 ifp = m->m_pkthdr.rcvif; 1603 1604 ether_demux_oncpu(ifp, m); 1605 } 1606 1607 void 1608 ether_demux(struct mbuf *m) 1609 { 1610 struct netmsg_packet *pmsg; 1611 int isr; 1612 1613 isr = ether_characterize(&m); 1614 if (m == NULL) 1615 return; 1616 1617 KKASSERT(m->m_flags & M_HASH); 1618 pmsg = &m->m_hdr.mh_netmsg; 1619 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 1620 0, ether_demux_handler); 1621 pmsg->nm_packet = m; 1622 pmsg->base.lmsg.u.ms_result = isr; 1623 1624 lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg); 1625 } 1626 1627 u_char * 1628 kether_aton(const char *macstr, u_char *addr) 1629 { 1630 unsigned int o0, o1, o2, o3, o4, o5; 1631 int n; 1632 1633 if (macstr == NULL || addr == NULL) 1634 return NULL; 1635 1636 n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2, 1637 &o3, &o4, &o5); 1638 if (n != 6) 1639 return NULL; 1640 1641 addr[0] = o0; 1642 addr[1] = o1; 1643 addr[2] = o2; 1644 addr[3] = o3; 1645 addr[4] = o4; 1646 addr[5] = o5; 1647 1648 return addr; 1649 } 1650 1651 char * 1652 kether_ntoa(const u_char *addr, char *buf) 1653 { 1654 int len = ETHER_ADDRSTRLEN + 1; 1655 int n; 1656 1657 n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0], 1658 addr[1], addr[2], addr[3], addr[4], addr[5]); 1659 1660 if (n < 17) 1661 return NULL; 1662 1663 return buf; 1664 } 1665 1666 MODULE_VERSION(ether, 1); 1667