1 /* 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $ 35 * $DragonFly: src/sys/net/if_ethersubr.c,v 1.96 2008/11/22 04:00:53 sephe Exp $ 36 */ 37 38 #include "opt_atalk.h" 39 #include "opt_inet.h" 40 #include "opt_inet6.h" 41 #include "opt_ipx.h" 42 #include "opt_mpls.h" 43 #include "opt_netgraph.h" 44 #include "opt_carp.h" 45 #include "opt_rss.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/globaldata.h> 50 #include <sys/kernel.h> 51 #include <sys/ktr.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/mbuf.h> 55 #include <sys/msgport.h> 56 #include <sys/socket.h> 57 #include <sys/sockio.h> 58 #include <sys/sysctl.h> 59 #include <sys/thread.h> 60 61 #include <sys/thread2.h> 62 #include <sys/mplock2.h> 63 64 #include <net/if.h> 65 #include <net/netisr.h> 66 #include <net/route.h> 67 #include <net/if_llc.h> 68 #include <net/if_dl.h> 69 #include <net/if_types.h> 70 #include <net/ifq_var.h> 71 #include <net/bpf.h> 72 #include <net/ethernet.h> 73 #include <net/vlan/if_vlan_ether.h> 74 #include <net/netmsg2.h> 75 76 #if defined(INET) || defined(INET6) 77 #include <netinet/in.h> 78 #include <netinet/ip_var.h> 79 #include <netinet/if_ether.h> 80 #include <netinet/ip_flow.h> 81 #include <net/ipfw/ip_fw.h> 82 #include <net/dummynet/ip_dummynet.h> 83 #endif 84 #ifdef INET6 85 #include <netinet6/nd6.h> 86 #endif 87 88 #ifdef CARP 89 #include <netinet/ip_carp.h> 90 #endif 91 92 #ifdef IPX 93 #include <netproto/ipx/ipx.h> 94 #include <netproto/ipx/ipx_if.h> 95 int (*ef_inputp)(struct ifnet*, const struct ether_header *eh, struct mbuf *m); 96 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst, 97 short *tp, int *hlen); 98 #endif 99 100 #ifdef NETATALK 101 #include <netproto/atalk/at.h> 102 #include <netproto/atalk/at_var.h> 103 #include <netproto/atalk/at_extern.h> 104 105 #define llc_snap_org_code llc_un.type_snap.org_code 106 #define llc_snap_ether_type llc_un.type_snap.ether_type 107 108 extern u_char at_org_code[3]; 109 extern u_char aarp_org_code[3]; 110 #endif /* NETATALK */ 111 112 #ifdef MPLS 113 #include <netproto/mpls/mpls.h> 114 #endif 115 116 /* netgraph node hooks for ng_ether(4) */ 117 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 118 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, 119 struct mbuf *m, const struct ether_header *eh); 120 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 121 void (*ng_ether_attach_p)(struct ifnet *ifp); 122 void (*ng_ether_detach_p)(struct ifnet *ifp); 123 124 void (*vlan_input_p)(struct mbuf *); 125 126 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *, 127 struct rtentry *); 128 static void ether_restore_header(struct mbuf **, const struct ether_header *, 129 const struct ether_header *); 130 static int ether_characterize(struct mbuf **); 131 132 /* 133 * if_bridge support 134 */ 135 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 136 int (*bridge_output_p)(struct ifnet *, struct mbuf *); 137 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 138 struct ifnet *(*bridge_interface_p)(void *if_bridge); 139 140 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 141 struct sockaddr *); 142 143 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = { 144 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 145 }; 146 147 #define gotoerr(e) do { error = (e); goto bad; } while (0) 148 #define IFP2AC(ifp) ((struct arpcom *)(ifp)) 149 150 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, 151 struct ip_fw **rule, 152 const struct ether_header *eh); 153 154 static int ether_ipfw; 155 static u_long ether_restore_hdr; 156 static u_long ether_prepend_hdr; 157 static u_long ether_input_wronghash; 158 static int ether_debug; 159 160 #ifdef RSS_DEBUG 161 static u_long ether_pktinfo_try; 162 static u_long ether_pktinfo_hit; 163 static u_long ether_rss_nopi; 164 static u_long ether_rss_nohash; 165 static u_long ether_input_requeue; 166 #endif 167 168 SYSCTL_DECL(_net_link); 169 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 170 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW, 171 ðer_debug, 0, "Ether debug"); 172 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW, 173 ðer_ipfw, 0, "Pass ether pkts through firewall"); 174 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW, 175 ðer_restore_hdr, 0, "# of ether header restoration"); 176 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW, 177 ðer_prepend_hdr, 0, 178 "# of ether header restoration which prepends mbuf"); 179 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW, 180 ðer_input_wronghash, 0, "# of input packets with wrong hash"); 181 #ifdef RSS_DEBUG 182 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW, 183 ðer_rss_nopi, 0, "# of packets do not have pktinfo"); 184 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW, 185 ðer_rss_nohash, 0, "# of packets do not have hash"); 186 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW, 187 ðer_pktinfo_try, 0, 188 "# of tries to find packets' msgport using pktinfo"); 189 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW, 190 ðer_pktinfo_hit, 0, 191 "# of packets whose msgport are found using pktinfo"); 192 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW, 193 ðer_input_requeue, 0, "# of input packets gets requeued"); 194 #endif 195 196 #define ETHER_KTR_STR "ifp=%p" 197 #define ETHER_KTR_ARG_SIZE (sizeof(void *)) 198 #ifndef KTR_ETHERNET 199 #define KTR_ETHERNET KTR_ALL 200 #endif 201 KTR_INFO_MASTER(ether); 202 KTR_INFO(KTR_ETHERNET, ether, chain_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARG_SIZE); 203 KTR_INFO(KTR_ETHERNET, ether, chain_end, 1, ETHER_KTR_STR, ETHER_KTR_ARG_SIZE); 204 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARG_SIZE); 205 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARG_SIZE); 206 #define logether(name, arg) KTR_LOG(ether_ ## name, arg) 207 208 /* 209 * Ethernet output routine. 210 * Encapsulate a packet of type family for the local net. 211 * Use trailer local net encapsulation if enough data in first 212 * packet leaves a multiple of 512 bytes of data in remainder. 213 * Assumes that ifp is actually pointer to arpcom structure. 214 */ 215 static int 216 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, 217 struct rtentry *rt) 218 { 219 struct ether_header *eh, *deh; 220 u_char *edst; 221 int loop_copy = 0; 222 int hlen = ETHER_HDR_LEN; /* link layer header length */ 223 struct arpcom *ac = IFP2AC(ifp); 224 int error; 225 226 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 227 228 if (ifp->if_flags & IFF_MONITOR) 229 gotoerr(ENETDOWN); 230 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 231 gotoerr(ENETDOWN); 232 233 M_PREPEND(m, sizeof(struct ether_header), MB_DONTWAIT); 234 if (m == NULL) 235 return (ENOBUFS); 236 eh = mtod(m, struct ether_header *); 237 edst = eh->ether_dhost; 238 239 /* 240 * Fill in the destination ethernet address and frame type. 241 */ 242 switch (dst->sa_family) { 243 #ifdef INET 244 case AF_INET: 245 if (!arpresolve(ifp, rt, m, dst, edst)) 246 return (0); /* if not yet resolved */ 247 #ifdef MPLS 248 if (m->m_flags & M_MPLSLABELED) 249 eh->ether_type = htons(ETHERTYPE_MPLS); 250 else 251 #endif 252 eh->ether_type = htons(ETHERTYPE_IP); 253 break; 254 #endif 255 #ifdef INET6 256 case AF_INET6: 257 if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst)) 258 return (0); /* Something bad happenned. */ 259 eh->ether_type = htons(ETHERTYPE_IPV6); 260 break; 261 #endif 262 #ifdef IPX 263 case AF_IPX: 264 if (ef_outputp != NULL) { 265 /* 266 * Hold BGL and recheck ef_outputp 267 */ 268 get_mplock(); 269 if (ef_outputp != NULL) { 270 error = ef_outputp(ifp, &m, dst, 271 &eh->ether_type, &hlen); 272 rel_mplock(); 273 if (error) 274 goto bad; 275 else 276 break; 277 } 278 rel_mplock(); 279 } 280 eh->ether_type = htons(ETHERTYPE_IPX); 281 bcopy(&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host), 282 edst, ETHER_ADDR_LEN); 283 break; 284 #endif 285 #ifdef NETATALK 286 case AF_APPLETALK: { 287 struct at_ifaddr *aa; 288 289 /* 290 * Hold BGL 291 */ 292 get_mplock(); 293 294 if ((aa = at_ifawithnet((struct sockaddr_at *)dst)) == NULL) { 295 error = 0; /* XXX */ 296 rel_mplock(); 297 goto bad; 298 } 299 /* 300 * In the phase 2 case, need to prepend an mbuf for 301 * the llc header. Since we must preserve the value 302 * of m, which is passed to us by value, we m_copy() 303 * the first mbuf, and use it for our llc header. 304 */ 305 if (aa->aa_flags & AFA_PHASE2) { 306 struct llc llc; 307 308 M_PREPEND(m, sizeof(struct llc), MB_DONTWAIT); 309 eh = mtod(m, struct ether_header *); 310 edst = eh->ether_dhost; 311 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 312 llc.llc_control = LLC_UI; 313 bcopy(at_org_code, llc.llc_snap_org_code, 314 sizeof at_org_code); 315 llc.llc_snap_ether_type = htons(ETHERTYPE_AT); 316 bcopy(&llc, 317 mtod(m, caddr_t) + sizeof(struct ether_header), 318 sizeof(struct llc)); 319 eh->ether_type = htons(m->m_pkthdr.len); 320 hlen = sizeof(struct llc) + ETHER_HDR_LEN; 321 } else { 322 eh->ether_type = htons(ETHERTYPE_AT); 323 } 324 if (!aarpresolve(ac, m, (struct sockaddr_at *)dst, edst)) { 325 rel_mplock(); 326 return (0); 327 } 328 329 rel_mplock(); 330 break; 331 } 332 #endif 333 case pseudo_AF_HDRCMPLT: 334 case AF_UNSPEC: 335 loop_copy = -1; /* if this is for us, don't do it */ 336 deh = (struct ether_header *)dst->sa_data; 337 memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN); 338 eh->ether_type = deh->ether_type; 339 break; 340 341 default: 342 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 343 gotoerr(EAFNOSUPPORT); 344 } 345 346 if (dst->sa_family == pseudo_AF_HDRCMPLT) /* unlikely */ 347 memcpy(eh->ether_shost, 348 ((struct ether_header *)dst->sa_data)->ether_shost, 349 ETHER_ADDR_LEN); 350 else 351 memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN); 352 353 /* 354 * Bridges require special output handling. 355 */ 356 if (ifp->if_bridge) { 357 KASSERT(bridge_output_p != NULL, 358 ("%s: if_bridge not loaded!", __func__)); 359 return bridge_output_p(ifp, m); 360 } 361 362 /* 363 * If a simplex interface, and the packet is being sent to our 364 * Ethernet address or a broadcast address, loopback a copy. 365 * XXX To make a simplex device behave exactly like a duplex 366 * device, we should copy in the case of sending to our own 367 * ethernet address (thus letting the original actually appear 368 * on the wire). However, we don't do that here for security 369 * reasons and compatibility with the original behavior. 370 */ 371 if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) { 372 int csum_flags = 0; 373 374 if (m->m_pkthdr.csum_flags & CSUM_IP) 375 csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); 376 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 377 csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 378 if ((m->m_flags & M_BCAST) || (loop_copy > 0)) { 379 struct mbuf *n; 380 381 if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) { 382 n->m_pkthdr.csum_flags |= csum_flags; 383 if (csum_flags & CSUM_DATA_VALID) 384 n->m_pkthdr.csum_data = 0xffff; 385 if_simloop(ifp, n, dst->sa_family, hlen); 386 } else 387 ifp->if_iqdrops++; 388 } else if (bcmp(eh->ether_dhost, eh->ether_shost, 389 ETHER_ADDR_LEN) == 0) { 390 m->m_pkthdr.csum_flags |= csum_flags; 391 if (csum_flags & CSUM_DATA_VALID) 392 m->m_pkthdr.csum_data = 0xffff; 393 if_simloop(ifp, m, dst->sa_family, hlen); 394 return (0); /* XXX */ 395 } 396 } 397 398 #ifdef CARP 399 if (ifp->if_carp) { 400 /* 401 * Hold BGL and recheck ifp->if_carp 402 */ 403 get_mplock(); 404 if (ifp->if_carp && (error = carp_output(ifp, m, dst, NULL))) { 405 rel_mplock(); 406 goto bad; 407 } 408 rel_mplock(); 409 } 410 #endif 411 412 413 /* Handle ng_ether(4) processing, if any */ 414 if (ng_ether_output_p != NULL) { 415 /* 416 * Hold BGL and recheck ng_ether_output_p 417 */ 418 get_mplock(); 419 if (ng_ether_output_p != NULL) { 420 if ((error = ng_ether_output_p(ifp, &m)) != 0) { 421 rel_mplock(); 422 goto bad; 423 } 424 if (m == NULL) { 425 rel_mplock(); 426 return (0); 427 } 428 } 429 rel_mplock(); 430 } 431 432 /* Continue with link-layer output */ 433 return ether_output_frame(ifp, m); 434 435 bad: 436 m_freem(m); 437 return (error); 438 } 439 440 /* 441 * Returns the bridge interface an ifp is associated 442 * with. 443 * 444 * Only call if ifp->if_bridge != NULL. 445 */ 446 struct ifnet * 447 ether_bridge_interface(struct ifnet *ifp) 448 { 449 if (bridge_interface_p) 450 return(bridge_interface_p(ifp->if_bridge)); 451 return (ifp); 452 } 453 454 /* 455 * Ethernet link layer output routine to send a raw frame to the device. 456 * 457 * This assumes that the 14 byte Ethernet header is present and contiguous 458 * in the first mbuf. 459 */ 460 int 461 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 462 { 463 struct ip_fw *rule = NULL; 464 int error = 0; 465 struct altq_pktattr pktattr; 466 467 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 468 469 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) { 470 struct m_tag *mtag; 471 472 /* Extract info from dummynet tag */ 473 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 474 KKASSERT(mtag != NULL); 475 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 476 KKASSERT(rule != NULL); 477 478 m_tag_delete(m, mtag); 479 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED; 480 } 481 482 if (ifq_is_enabled(&ifp->if_snd)) 483 altq_etherclassify(&ifp->if_snd, m, &pktattr); 484 crit_enter(); 485 if (IPFW_LOADED && ether_ipfw != 0) { 486 struct ether_header save_eh, *eh; 487 488 eh = mtod(m, struct ether_header *); 489 save_eh = *eh; 490 m_adj(m, ETHER_HDR_LEN); 491 if (!ether_ipfw_chk(&m, ifp, &rule, eh)) { 492 crit_exit(); 493 if (m != NULL) { 494 m_freem(m); 495 return ENOBUFS; /* pkt dropped */ 496 } else 497 return 0; /* consumed e.g. in a pipe */ 498 } 499 500 /* packet was ok, restore the ethernet header */ 501 ether_restore_header(&m, eh, &save_eh); 502 if (m == NULL) { 503 crit_exit(); 504 return ENOBUFS; 505 } 506 } 507 crit_exit(); 508 509 /* 510 * Queue message on interface, update output statistics if 511 * successful, and start output if interface not yet active. 512 */ 513 error = ifq_dispatch(ifp, m, &pktattr); 514 return (error); 515 } 516 517 /* 518 * ipfw processing for ethernet packets (in and out). 519 * The second parameter is NULL from ether_demux(), and ifp from 520 * ether_output_frame(). 521 */ 522 static boolean_t 523 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule, 524 const struct ether_header *eh) 525 { 526 struct ether_header save_eh = *eh; /* might be a ptr in *m0 */ 527 struct ip_fw_args args; 528 struct m_tag *mtag; 529 struct mbuf *m; 530 int i; 531 532 if (*rule != NULL && fw_one_pass) 533 return TRUE; /* dummynet packet, already partially processed */ 534 535 /* 536 * I need some amount of data to be contiguous. 537 */ 538 i = min((*m0)->m_pkthdr.len, max_protohdr); 539 if ((*m0)->m_len < i) { 540 *m0 = m_pullup(*m0, i); 541 if (*m0 == NULL) 542 return FALSE; 543 } 544 545 /* 546 * Clean up tags 547 */ 548 if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL) 549 m_tag_delete(*m0, mtag); 550 if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) { 551 mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL); 552 KKASSERT(mtag != NULL); 553 m_tag_delete(*m0, mtag); 554 (*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED; 555 } 556 557 args.m = *m0; /* the packet we are looking at */ 558 args.oif = dst; /* destination, if any */ 559 args.rule = *rule; /* matching rule to restart */ 560 args.eh = &save_eh; /* MAC header for bridged/MAC packets */ 561 i = ip_fw_chk_ptr(&args); 562 *m0 = args.m; 563 *rule = args.rule; 564 565 if (*m0 == NULL) 566 return FALSE; 567 568 switch (i) { 569 case IP_FW_PASS: 570 return TRUE; 571 572 case IP_FW_DIVERT: 573 case IP_FW_TEE: 574 case IP_FW_DENY: 575 /* 576 * XXX at some point add support for divert/forward actions. 577 * If none of the above matches, we have to drop the pkt. 578 */ 579 return FALSE; 580 581 case IP_FW_DUMMYNET: 582 /* 583 * Pass the pkt to dummynet, which consumes it. 584 */ 585 m = *m0; /* pass the original to dummynet */ 586 *m0 = NULL; /* and nothing back to the caller */ 587 588 ether_restore_header(&m, eh, &save_eh); 589 if (m == NULL) 590 return FALSE; 591 592 ip_fw_dn_io_ptr(m, args.cookie, 593 dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args); 594 ip_dn_queue(m); 595 return FALSE; 596 597 default: 598 panic("unknown ipfw return value: %d\n", i); 599 } 600 } 601 602 static void 603 ether_input(struct ifnet *ifp, struct mbuf *m) 604 { 605 ether_input_chain(ifp, m, NULL, NULL); 606 } 607 608 /* 609 * Perform common duties while attaching to interface list 610 */ 611 void 612 ether_ifattach(struct ifnet *ifp, uint8_t *lla, lwkt_serialize_t serializer) 613 { 614 ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header), 615 serializer); 616 } 617 618 void 619 ether_ifattach_bpf(struct ifnet *ifp, uint8_t *lla, u_int dlt, u_int hdrlen, 620 lwkt_serialize_t serializer) 621 { 622 struct sockaddr_dl *sdl; 623 624 ifp->if_type = IFT_ETHER; 625 ifp->if_addrlen = ETHER_ADDR_LEN; 626 ifp->if_hdrlen = ETHER_HDR_LEN; 627 if_attach(ifp, serializer); 628 ifp->if_mtu = ETHERMTU; 629 if (ifp->if_baudrate == 0) 630 ifp->if_baudrate = 10000000; 631 ifp->if_output = ether_output; 632 ifp->if_input = ether_input; 633 ifp->if_resolvemulti = ether_resolvemulti; 634 ifp->if_broadcastaddr = etherbroadcastaddr; 635 sdl = IF_LLSOCKADDR(ifp); 636 sdl->sdl_type = IFT_ETHER; 637 sdl->sdl_alen = ifp->if_addrlen; 638 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 639 /* 640 * XXX Keep the current drivers happy. 641 * XXX Remove once all drivers have been cleaned up 642 */ 643 if (lla != IFP2AC(ifp)->ac_enaddr) 644 bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen); 645 bpfattach(ifp, dlt, hdrlen); 646 if (ng_ether_attach_p != NULL) 647 (*ng_ether_attach_p)(ifp); 648 649 if_printf(ifp, "MAC address: %6D\n", lla, ":"); 650 } 651 652 /* 653 * Perform common duties while detaching an Ethernet interface 654 */ 655 void 656 ether_ifdetach(struct ifnet *ifp) 657 { 658 if_down(ifp); 659 660 if (ng_ether_detach_p != NULL) 661 (*ng_ether_detach_p)(ifp); 662 bpfdetach(ifp); 663 if_detach(ifp); 664 } 665 666 int 667 ether_ioctl(struct ifnet *ifp, int command, caddr_t data) 668 { 669 struct ifaddr *ifa = (struct ifaddr *) data; 670 struct ifreq *ifr = (struct ifreq *) data; 671 int error = 0; 672 673 #define IF_INIT(ifp) \ 674 do { \ 675 if (((ifp)->if_flags & IFF_UP) == 0) { \ 676 (ifp)->if_flags |= IFF_UP; \ 677 (ifp)->if_init((ifp)->if_softc); \ 678 } \ 679 } while (0) 680 681 ASSERT_IFNET_SERIALIZED_ALL(ifp); 682 683 switch (command) { 684 case SIOCSIFADDR: 685 switch (ifa->ifa_addr->sa_family) { 686 #ifdef INET 687 case AF_INET: 688 IF_INIT(ifp); /* before arpwhohas */ 689 arp_ifinit(ifp, ifa); 690 break; 691 #endif 692 #ifdef IPX 693 /* 694 * XXX - This code is probably wrong 695 */ 696 case AF_IPX: 697 { 698 struct ipx_addr *ina = &IA_SIPX(ifa)->sipx_addr; 699 struct arpcom *ac = IFP2AC(ifp); 700 701 if (ipx_nullhost(*ina)) 702 ina->x_host = *(union ipx_host *) ac->ac_enaddr; 703 else 704 bcopy(ina->x_host.c_host, ac->ac_enaddr, 705 sizeof ac->ac_enaddr); 706 707 IF_INIT(ifp); /* Set new address. */ 708 break; 709 } 710 #endif 711 default: 712 IF_INIT(ifp); 713 break; 714 } 715 break; 716 717 case SIOCGIFADDR: 718 bcopy(IFP2AC(ifp)->ac_enaddr, 719 ((struct sockaddr *)ifr->ifr_data)->sa_data, 720 ETHER_ADDR_LEN); 721 break; 722 723 case SIOCSIFMTU: 724 /* 725 * Set the interface MTU. 726 */ 727 if (ifr->ifr_mtu > ETHERMTU) { 728 error = EINVAL; 729 } else { 730 ifp->if_mtu = ifr->ifr_mtu; 731 } 732 break; 733 default: 734 error = EINVAL; 735 break; 736 } 737 return (error); 738 739 #undef IF_INIT 740 } 741 742 int 743 ether_resolvemulti( 744 struct ifnet *ifp, 745 struct sockaddr **llsa, 746 struct sockaddr *sa) 747 { 748 struct sockaddr_dl *sdl; 749 struct sockaddr_in *sin; 750 #ifdef INET6 751 struct sockaddr_in6 *sin6; 752 #endif 753 u_char *e_addr; 754 755 switch(sa->sa_family) { 756 case AF_LINK: 757 /* 758 * No mapping needed. Just check that it's a valid MC address. 759 */ 760 sdl = (struct sockaddr_dl *)sa; 761 e_addr = LLADDR(sdl); 762 if ((e_addr[0] & 1) != 1) 763 return EADDRNOTAVAIL; 764 *llsa = 0; 765 return 0; 766 767 #ifdef INET 768 case AF_INET: 769 sin = (struct sockaddr_in *)sa; 770 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 771 return EADDRNOTAVAIL; 772 MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR, 773 M_WAITOK | M_ZERO); 774 sdl->sdl_len = sizeof *sdl; 775 sdl->sdl_family = AF_LINK; 776 sdl->sdl_index = ifp->if_index; 777 sdl->sdl_type = IFT_ETHER; 778 sdl->sdl_alen = ETHER_ADDR_LEN; 779 e_addr = LLADDR(sdl); 780 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 781 *llsa = (struct sockaddr *)sdl; 782 return 0; 783 #endif 784 #ifdef INET6 785 case AF_INET6: 786 sin6 = (struct sockaddr_in6 *)sa; 787 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 788 /* 789 * An IP6 address of 0 means listen to all 790 * of the Ethernet multicast address used for IP6. 791 * (This is used for multicast routers.) 792 */ 793 ifp->if_flags |= IFF_ALLMULTI; 794 *llsa = 0; 795 return 0; 796 } 797 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 798 return EADDRNOTAVAIL; 799 MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR, 800 M_WAITOK | M_ZERO); 801 sdl->sdl_len = sizeof *sdl; 802 sdl->sdl_family = AF_LINK; 803 sdl->sdl_index = ifp->if_index; 804 sdl->sdl_type = IFT_ETHER; 805 sdl->sdl_alen = ETHER_ADDR_LEN; 806 e_addr = LLADDR(sdl); 807 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 808 *llsa = (struct sockaddr *)sdl; 809 return 0; 810 #endif 811 812 default: 813 /* 814 * Well, the text isn't quite right, but it's the name 815 * that counts... 816 */ 817 return EAFNOSUPPORT; 818 } 819 } 820 821 #if 0 822 /* 823 * This is for reference. We have a table-driven version 824 * of the little-endian crc32 generator, which is faster 825 * than the double-loop. 826 */ 827 uint32_t 828 ether_crc32_le(const uint8_t *buf, size_t len) 829 { 830 uint32_t c, crc, carry; 831 size_t i, j; 832 833 crc = 0xffffffffU; /* initial value */ 834 835 for (i = 0; i < len; i++) { 836 c = buf[i]; 837 for (j = 0; j < 8; j++) { 838 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 839 crc >>= 1; 840 c >>= 1; 841 if (carry) 842 crc = (crc ^ ETHER_CRC_POLY_LE); 843 } 844 } 845 846 return (crc); 847 } 848 #else 849 uint32_t 850 ether_crc32_le(const uint8_t *buf, size_t len) 851 { 852 static const uint32_t crctab[] = { 853 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 854 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 855 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 856 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 857 }; 858 uint32_t crc; 859 size_t i; 860 861 crc = 0xffffffffU; /* initial value */ 862 863 for (i = 0; i < len; i++) { 864 crc ^= buf[i]; 865 crc = (crc >> 4) ^ crctab[crc & 0xf]; 866 crc = (crc >> 4) ^ crctab[crc & 0xf]; 867 } 868 869 return (crc); 870 } 871 #endif 872 873 uint32_t 874 ether_crc32_be(const uint8_t *buf, size_t len) 875 { 876 uint32_t c, crc, carry; 877 size_t i, j; 878 879 crc = 0xffffffffU; /* initial value */ 880 881 for (i = 0; i < len; i++) { 882 c = buf[i]; 883 for (j = 0; j < 8; j++) { 884 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 885 crc <<= 1; 886 c >>= 1; 887 if (carry) 888 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 889 } 890 } 891 892 return (crc); 893 } 894 895 /* 896 * find the size of ethernet header, and call classifier 897 */ 898 void 899 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m, 900 struct altq_pktattr *pktattr) 901 { 902 struct ether_header *eh; 903 uint16_t ether_type; 904 int hlen, af, hdrsize; 905 caddr_t hdr; 906 907 hlen = sizeof(struct ether_header); 908 eh = mtod(m, struct ether_header *); 909 910 ether_type = ntohs(eh->ether_type); 911 if (ether_type < ETHERMTU) { 912 /* ick! LLC/SNAP */ 913 struct llc *llc = (struct llc *)(eh + 1); 914 hlen += 8; 915 916 if (m->m_len < hlen || 917 llc->llc_dsap != LLC_SNAP_LSAP || 918 llc->llc_ssap != LLC_SNAP_LSAP || 919 llc->llc_control != LLC_UI) 920 goto bad; /* not snap! */ 921 922 ether_type = ntohs(llc->llc_un.type_snap.ether_type); 923 } 924 925 if (ether_type == ETHERTYPE_IP) { 926 af = AF_INET; 927 hdrsize = 20; /* sizeof(struct ip) */ 928 #ifdef INET6 929 } else if (ether_type == ETHERTYPE_IPV6) { 930 af = AF_INET6; 931 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 932 #endif 933 } else 934 goto bad; 935 936 while (m->m_len <= hlen) { 937 hlen -= m->m_len; 938 m = m->m_next; 939 } 940 hdr = m->m_data + hlen; 941 if (m->m_len < hlen + hdrsize) { 942 /* 943 * ip header is not in a single mbuf. this should not 944 * happen in the current code. 945 * (todo: use m_pulldown in the future) 946 */ 947 goto bad; 948 } 949 m->m_data += hlen; 950 m->m_len -= hlen; 951 ifq_classify(ifq, m, af, pktattr); 952 m->m_data -= hlen; 953 m->m_len += hlen; 954 955 return; 956 957 bad: 958 pktattr->pattr_class = NULL; 959 pktattr->pattr_hdr = NULL; 960 pktattr->pattr_af = AF_UNSPEC; 961 } 962 963 static void 964 ether_restore_header(struct mbuf **m0, const struct ether_header *eh, 965 const struct ether_header *save_eh) 966 { 967 struct mbuf *m = *m0; 968 969 ether_restore_hdr++; 970 971 /* 972 * Prepend the header, optimize for the common case of 973 * eh pointing into the mbuf. 974 */ 975 if ((const void *)(eh + 1) == (void *)m->m_data) { 976 m->m_data -= ETHER_HDR_LEN; 977 m->m_len += ETHER_HDR_LEN; 978 m->m_pkthdr.len += ETHER_HDR_LEN; 979 } else { 980 ether_prepend_hdr++; 981 982 M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT); 983 if (m != NULL) { 984 bcopy(save_eh, mtod(m, struct ether_header *), 985 ETHER_HDR_LEN); 986 } 987 } 988 *m0 = m; 989 } 990 991 static void 992 ether_input_ipifunc(void *arg) 993 { 994 struct mbuf *m, *next; 995 lwkt_port_t port = cpu_portfn(mycpu->gd_cpuid); 996 997 m = arg; 998 do { 999 next = m->m_nextpkt; 1000 m->m_nextpkt = NULL; 1001 lwkt_sendmsg(port, &m->m_hdr.mh_netmsg.base.lmsg); 1002 m = next; 1003 } while (m != NULL); 1004 } 1005 1006 void 1007 ether_input_dispatch(struct mbuf_chain *chain) 1008 { 1009 #ifdef SMP 1010 int i; 1011 1012 logether(disp_beg, NULL); 1013 for (i = 0; i < ncpus; ++i) { 1014 if (chain[i].mc_head != NULL) { 1015 lwkt_send_ipiq(globaldata_find(i), 1016 ether_input_ipifunc, chain[i].mc_head); 1017 } 1018 } 1019 #else 1020 logether(disp_beg, NULL); 1021 if (chain->mc_head != NULL) 1022 ether_input_ipifunc(chain->mc_head); 1023 #endif 1024 logether(disp_end, NULL); 1025 } 1026 1027 void 1028 ether_input_chain_init(struct mbuf_chain *chain) 1029 { 1030 #ifdef SMP 1031 int i; 1032 1033 for (i = 0; i < ncpus; ++i) 1034 chain[i].mc_head = chain[i].mc_tail = NULL; 1035 #else 1036 chain->mc_head = chain->mc_tail = NULL; 1037 #endif 1038 } 1039 1040 /* 1041 * Upper layer processing for a received Ethernet packet. 1042 */ 1043 void 1044 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m) 1045 { 1046 struct ether_header *eh; 1047 int isr, discard = 0; 1048 u_short ether_type; 1049 struct ip_fw *rule = NULL; 1050 #ifdef NETATALK 1051 struct llc *l; 1052 #endif 1053 1054 M_ASSERTPKTHDR(m); 1055 KASSERT(m->m_len >= ETHER_HDR_LEN, 1056 ("ether header is no contiguous!\n")); 1057 1058 eh = mtod(m, struct ether_header *); 1059 1060 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) { 1061 struct m_tag *mtag; 1062 1063 /* Extract info from dummynet tag */ 1064 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 1065 KKASSERT(mtag != NULL); 1066 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 1067 KKASSERT(rule != NULL); 1068 1069 m_tag_delete(m, mtag); 1070 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED; 1071 1072 /* packet is passing the second time */ 1073 goto post_stats; 1074 } 1075 1076 #ifdef CARP 1077 /* 1078 * XXX: Okay, we need to call carp_forus() and - if it is for 1079 * us jump over code that does the normal check 1080 * "ac_enaddr == ether_dhost". The check sequence is a bit 1081 * different from OpenBSD, so we jump over as few code as 1082 * possible, to catch _all_ sanity checks. This needs 1083 * evaluation, to see if the carp ether_dhost values break any 1084 * of these checks! 1085 */ 1086 if (ifp->if_carp) { 1087 /* 1088 * Hold BGL and recheck ifp->if_carp 1089 */ 1090 get_mplock(); 1091 if (ifp->if_carp && carp_forus(ifp->if_carp, eh->ether_dhost)) { 1092 rel_mplock(); 1093 goto post_stats; 1094 } 1095 rel_mplock(); 1096 } 1097 #endif 1098 1099 /* 1100 * We got a packet which was unicast to a different Ethernet 1101 * address. If the driver is working properly, then this 1102 * situation can only happen when the interface is in 1103 * promiscuous mode. We defer the packet discarding until the 1104 * vlan processing is done, so that vlan/bridge or vlan/netgraph 1105 * could work. 1106 */ 1107 if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) && 1108 !ETHER_IS_MULTICAST(eh->ether_dhost) && 1109 bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) { 1110 if (ether_debug & 1) { 1111 kprintf("%02x:%02x:%02x:%02x:%02x:%02x " 1112 "%02x:%02x:%02x:%02x:%02x:%02x " 1113 "%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n", 1114 eh->ether_dhost[0], 1115 eh->ether_dhost[1], 1116 eh->ether_dhost[2], 1117 eh->ether_dhost[3], 1118 eh->ether_dhost[4], 1119 eh->ether_dhost[5], 1120 eh->ether_shost[0], 1121 eh->ether_shost[1], 1122 eh->ether_shost[2], 1123 eh->ether_shost[3], 1124 eh->ether_shost[4], 1125 eh->ether_shost[5], 1126 eh->ether_type, 1127 ((u_char *)IFP2AC(ifp)->ac_enaddr)[0], 1128 ((u_char *)IFP2AC(ifp)->ac_enaddr)[1], 1129 ((u_char *)IFP2AC(ifp)->ac_enaddr)[2], 1130 ((u_char *)IFP2AC(ifp)->ac_enaddr)[3], 1131 ((u_char *)IFP2AC(ifp)->ac_enaddr)[4], 1132 ((u_char *)IFP2AC(ifp)->ac_enaddr)[5] 1133 ); 1134 } 1135 if ((ether_debug & 2) == 0) 1136 discard = 1; 1137 } 1138 1139 post_stats: 1140 if (IPFW_LOADED && ether_ipfw != 0 && !discard) { 1141 struct ether_header save_eh = *eh; 1142 1143 /* XXX old crufty stuff, needs to be removed */ 1144 m_adj(m, sizeof(struct ether_header)); 1145 1146 if (!ether_ipfw_chk(&m, NULL, &rule, eh)) { 1147 m_freem(m); 1148 return; 1149 } 1150 1151 ether_restore_header(&m, eh, &save_eh); 1152 if (m == NULL) 1153 return; 1154 eh = mtod(m, struct ether_header *); 1155 } 1156 1157 ether_type = ntohs(eh->ether_type); 1158 KKASSERT(ether_type != ETHERTYPE_VLAN); 1159 1160 if (m->m_flags & M_VLANTAG) { 1161 void (*vlan_input_func)(struct mbuf *); 1162 1163 vlan_input_func = vlan_input_p; 1164 if (vlan_input_func != NULL) { 1165 vlan_input_func(m); 1166 } else { 1167 m->m_pkthdr.rcvif->if_noproto++; 1168 m_freem(m); 1169 } 1170 return; 1171 } 1172 1173 /* 1174 * If we have been asked to discard this packet 1175 * (e.g. not for us), drop it before entering 1176 * the upper layer. 1177 */ 1178 if (discard) { 1179 m_freem(m); 1180 return; 1181 } 1182 1183 /* 1184 * Clear protocol specific flags, 1185 * before entering the upper layer. 1186 */ 1187 m->m_flags &= ~M_ETHER_FLAGS; 1188 1189 /* Strip ethernet header. */ 1190 m_adj(m, sizeof(struct ether_header)); 1191 1192 switch (ether_type) { 1193 #ifdef INET 1194 case ETHERTYPE_IP: 1195 if ((m->m_flags & M_LENCHECKED) == 0) { 1196 if (!ip_lengthcheck(&m, 0)) 1197 return; 1198 } 1199 if (ipflow_fastforward(m)) 1200 return; 1201 isr = NETISR_IP; 1202 break; 1203 1204 case ETHERTYPE_ARP: 1205 if (ifp->if_flags & IFF_NOARP) { 1206 /* Discard packet if ARP is disabled on interface */ 1207 m_freem(m); 1208 return; 1209 } 1210 isr = NETISR_ARP; 1211 break; 1212 #endif 1213 1214 #ifdef INET6 1215 case ETHERTYPE_IPV6: 1216 isr = NETISR_IPV6; 1217 break; 1218 #endif 1219 1220 #ifdef IPX 1221 case ETHERTYPE_IPX: 1222 if (ef_inputp) { 1223 /* 1224 * Hold BGL and recheck ef_inputp 1225 */ 1226 get_mplock(); 1227 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) { 1228 rel_mplock(); 1229 return; 1230 } 1231 rel_mplock(); 1232 } 1233 isr = NETISR_IPX; 1234 break; 1235 #endif 1236 1237 #ifdef NETATALK 1238 case ETHERTYPE_AT: 1239 isr = NETISR_ATALK1; 1240 break; 1241 case ETHERTYPE_AARP: 1242 isr = NETISR_AARP; 1243 break; 1244 #endif 1245 1246 #ifdef MPLS 1247 case ETHERTYPE_MPLS: 1248 case ETHERTYPE_MPLS_MCAST: 1249 /* Should have been set by ether_input_chain(). */ 1250 KKASSERT(m->m_flags & M_MPLSLABELED); 1251 isr = NETISR_MPLS; 1252 break; 1253 #endif 1254 1255 default: 1256 /* 1257 * The accurate msgport is not determined before 1258 * we reach here, so recharacterize packet. 1259 */ 1260 m->m_flags &= ~M_HASH; 1261 #ifdef IPX 1262 if (ef_inputp) { 1263 /* 1264 * Hold BGL and recheck ef_inputp 1265 */ 1266 get_mplock(); 1267 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) { 1268 rel_mplock(); 1269 return; 1270 } 1271 rel_mplock(); 1272 } 1273 #endif 1274 #ifdef NETATALK 1275 if (ether_type > ETHERMTU) 1276 goto dropanyway; 1277 l = mtod(m, struct llc *); 1278 if (l->llc_dsap == LLC_SNAP_LSAP && 1279 l->llc_ssap == LLC_SNAP_LSAP && 1280 l->llc_control == LLC_UI) { 1281 if (bcmp(&(l->llc_snap_org_code)[0], at_org_code, 1282 sizeof at_org_code) == 0 && 1283 ntohs(l->llc_snap_ether_type) == ETHERTYPE_AT) { 1284 m_adj(m, sizeof(struct llc)); 1285 isr = NETISR_ATALK2; 1286 break; 1287 } 1288 if (bcmp(&(l->llc_snap_org_code)[0], aarp_org_code, 1289 sizeof aarp_org_code) == 0 && 1290 ntohs(l->llc_snap_ether_type) == ETHERTYPE_AARP) { 1291 m_adj(m, sizeof(struct llc)); 1292 isr = NETISR_AARP; 1293 break; 1294 } 1295 } 1296 dropanyway: 1297 #endif 1298 if (ng_ether_input_orphan_p != NULL) { 1299 /* 1300 * Hold BGL and recheck ng_ether_input_orphan_p 1301 */ 1302 get_mplock(); 1303 if (ng_ether_input_orphan_p != NULL) { 1304 ng_ether_input_orphan_p(ifp, m, eh); 1305 rel_mplock(); 1306 return; 1307 } 1308 rel_mplock(); 1309 } 1310 m_freem(m); 1311 return; 1312 } 1313 1314 if (m->m_flags & M_HASH) { 1315 if (&curthread->td_msgport == cpu_portfn(m->m_pkthdr.hash)) { 1316 netisr_handle(isr, m); 1317 return; 1318 } else { 1319 /* 1320 * XXX Something is wrong, 1321 * we probably should panic here! 1322 */ 1323 m->m_flags &= ~M_HASH; 1324 ether_input_wronghash++; 1325 } 1326 } 1327 #ifdef RSS_DEBUG 1328 ether_input_requeue++; 1329 #endif 1330 netisr_queue(isr, m); 1331 } 1332 1333 /* 1334 * First we perform any link layer operations, then continue to the 1335 * upper layers with ether_demux_oncpu(). 1336 */ 1337 static void 1338 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m) 1339 { 1340 if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) { 1341 /* 1342 * Receiving interface's flags are changed, when this 1343 * packet is waiting for processing; discard it. 1344 */ 1345 m_freem(m); 1346 return; 1347 } 1348 1349 /* 1350 * Tap the packet off here for a bridge. bridge_input() 1351 * will return NULL if it has consumed the packet, otherwise 1352 * it gets processed as normal. Note that bridge_input() 1353 * will always return the original packet if we need to 1354 * process it locally. 1355 */ 1356 if (ifp->if_bridge) { 1357 KASSERT(bridge_input_p != NULL, 1358 ("%s: if_bridge not loaded!", __func__)); 1359 1360 if(m->m_flags & M_ETHER_BRIDGED) { 1361 m->m_flags &= ~M_ETHER_BRIDGED; 1362 } else { 1363 m = bridge_input_p(ifp, m); 1364 if (m == NULL) 1365 return; 1366 1367 KASSERT(ifp == m->m_pkthdr.rcvif, 1368 ("bridge_input_p changed rcvif\n")); 1369 } 1370 } 1371 1372 /* Handle ng_ether(4) processing, if any */ 1373 if (ng_ether_input_p != NULL) { 1374 /* 1375 * Hold BGL and recheck ng_ether_input_p 1376 */ 1377 get_mplock(); 1378 if (ng_ether_input_p != NULL) 1379 ng_ether_input_p(ifp, &m); 1380 rel_mplock(); 1381 1382 if (m == NULL) 1383 return; 1384 } 1385 1386 /* Continue with upper layer processing */ 1387 ether_demux_oncpu(ifp, m); 1388 } 1389 1390 /* 1391 * Perform certain functions of ether_input_chain(): 1392 * - Test IFF_UP 1393 * - Update statistics 1394 * - Run bpf(4) tap if requested 1395 * Then pass the packet to ether_input_oncpu(). 1396 * 1397 * This function should be used by pseudo interface (e.g. vlan(4)), 1398 * when it tries to claim that the packet is received by it. 1399 * 1400 * REINPUT_KEEPRCVIF 1401 * REINPUT_RUNBPF 1402 */ 1403 void 1404 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags) 1405 { 1406 /* Discard packet if interface is not up */ 1407 if (!(ifp->if_flags & IFF_UP)) { 1408 m_freem(m); 1409 return; 1410 } 1411 1412 /* 1413 * Change receiving interface. The bridge will often pass a flag to 1414 * ask that this not be done so ARPs get applied to the correct 1415 * side. 1416 */ 1417 if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 || 1418 m->m_pkthdr.rcvif == NULL) { 1419 m->m_pkthdr.rcvif = ifp; 1420 } 1421 1422 /* Update statistics */ 1423 ifp->if_ipackets++; 1424 ifp->if_ibytes += m->m_pkthdr.len; 1425 if (m->m_flags & (M_MCAST | M_BCAST)) 1426 ifp->if_imcasts++; 1427 1428 if (reinput_flags & REINPUT_RUNBPF) 1429 BPF_MTAP(ifp, m); 1430 1431 ether_input_oncpu(ifp, m); 1432 } 1433 1434 static __inline boolean_t 1435 ether_vlancheck(struct mbuf **m0) 1436 { 1437 struct mbuf *m = *m0; 1438 struct ether_header *eh; 1439 uint16_t ether_type; 1440 1441 eh = mtod(m, struct ether_header *); 1442 ether_type = ntohs(eh->ether_type); 1443 1444 if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) { 1445 /* 1446 * Extract vlan tag if hardware does not do it for us 1447 */ 1448 vlan_ether_decap(&m); 1449 if (m == NULL) 1450 goto failed; 1451 1452 eh = mtod(m, struct ether_header *); 1453 ether_type = ntohs(eh->ether_type); 1454 } 1455 1456 if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) { 1457 /* 1458 * To prevent possible dangerous recursion, 1459 * we don't do vlan-in-vlan 1460 */ 1461 m->m_pkthdr.rcvif->if_noproto++; 1462 goto failed; 1463 } 1464 KKASSERT(ether_type != ETHERTYPE_VLAN); 1465 1466 m->m_flags |= M_ETHER_VLANCHECKED; 1467 *m0 = m; 1468 return TRUE; 1469 failed: 1470 if (m != NULL) 1471 m_freem(m); 1472 *m0 = NULL; 1473 return FALSE; 1474 } 1475 1476 static void 1477 ether_input_handler(netmsg_t nmsg) 1478 { 1479 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */ 1480 struct ether_header *eh; 1481 struct ifnet *ifp; 1482 struct mbuf *m; 1483 1484 m = nmp->nm_packet; 1485 M_ASSERTPKTHDR(m); 1486 ifp = m->m_pkthdr.rcvif; 1487 1488 eh = mtod(m, struct ether_header *); 1489 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 1490 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost, 1491 ifp->if_addrlen) == 0) 1492 m->m_flags |= M_BCAST; 1493 else 1494 m->m_flags |= M_MCAST; 1495 ifp->if_imcasts++; 1496 } 1497 1498 if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) { 1499 if (!ether_vlancheck(&m)) { 1500 KKASSERT(m == NULL); 1501 return; 1502 } 1503 } 1504 1505 ether_input_oncpu(ifp, m); 1506 } 1507 1508 /* 1509 * Send the packet to the target msgport or queue it into 'chain'. 1510 * 1511 * At this point the packet had better be characterized (M_HASH set), 1512 * so we know which cpu to send it to. 1513 */ 1514 static void 1515 ether_dispatch(int isr, struct mbuf *m, struct mbuf_chain *chain) 1516 { 1517 struct netmsg_packet *pmsg; 1518 1519 KKASSERT(m->m_flags & M_HASH); 1520 pmsg = &m->m_hdr.mh_netmsg; 1521 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 1522 0, ether_input_handler); 1523 pmsg->nm_packet = m; 1524 pmsg->base.lmsg.u.ms_result = isr; 1525 1526 if (chain != NULL) { 1527 int cpuid = m->m_pkthdr.hash; 1528 struct mbuf_chain *c; 1529 1530 c = &chain[cpuid]; 1531 if (c->mc_head == NULL) { 1532 c->mc_head = c->mc_tail = m; 1533 } else { 1534 c->mc_tail->m_nextpkt = m; 1535 c->mc_tail = m; 1536 } 1537 m->m_nextpkt = NULL; 1538 } else { 1539 lwkt_sendmsg(cpu_portfn(m->m_pkthdr.hash), &pmsg->base.lmsg); 1540 } 1541 } 1542 1543 /* 1544 * Process a received Ethernet packet. 1545 * 1546 * The ethernet header is assumed to be in the mbuf so the caller 1547 * MUST MAKE SURE that there are at least sizeof(struct ether_header) 1548 * bytes in the first mbuf. 1549 * 1550 * - If 'chain' is NULL, this ether frame is sent to the target msgport 1551 * immediately. This situation happens when ether_input_chain is 1552 * accessed through ifnet.if_input. 1553 * 1554 * - If 'chain' is not NULL, this ether frame is queued to the 'chain' 1555 * bucket indexed by the target msgport's cpuid and the target msgport 1556 * is saved in mbuf's m_pkthdr.m_head. Caller of ether_input_chain 1557 * must initialize 'chain' by calling ether_input_chain_init(). 1558 * ether_input_dispatch must be called later to send ether frames 1559 * queued on 'chain' to their target msgport. 1560 */ 1561 void 1562 ether_input_chain(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi, 1563 struct mbuf_chain *chain) 1564 { 1565 int isr; 1566 1567 M_ASSERTPKTHDR(m); 1568 1569 /* Discard packet if interface is not up */ 1570 if (!(ifp->if_flags & IFF_UP)) { 1571 m_freem(m); 1572 return; 1573 } 1574 1575 if (m->m_len < sizeof(struct ether_header)) { 1576 /* XXX error in the caller. */ 1577 m_freem(m); 1578 return; 1579 } 1580 1581 m->m_pkthdr.rcvif = ifp; 1582 1583 logether(chain_beg, ifp); 1584 1585 ETHER_BPF_MTAP(ifp, m); 1586 1587 ifp->if_ibytes += m->m_pkthdr.len; 1588 1589 if (ifp->if_flags & IFF_MONITOR) { 1590 struct ether_header *eh; 1591 1592 eh = mtod(m, struct ether_header *); 1593 if (ETHER_IS_MULTICAST(eh->ether_dhost)) 1594 ifp->if_imcasts++; 1595 1596 /* 1597 * Interface marked for monitoring; discard packet. 1598 */ 1599 m_freem(m); 1600 1601 logether(chain_end, ifp); 1602 return; 1603 } 1604 1605 /* 1606 * If the packet has been characterized (pi->pi_netisr / M_HASH) 1607 * we can dispatch it immediately without further inspection. 1608 */ 1609 if (pi != NULL && (m->m_flags & M_HASH)) { 1610 #ifdef RSS_DEBUG 1611 ether_pktinfo_try++; 1612 #endif 1613 netisr_hashcheck(pi->pi_netisr, m, pi); 1614 if (m->m_flags & M_HASH) { 1615 ether_dispatch(pi->pi_netisr, m, chain); 1616 #ifdef RSS_DEBUG 1617 ether_pktinfo_hit++; 1618 #endif 1619 logether(chain_end, ifp); 1620 return; 1621 } 1622 } 1623 #ifdef RSS_DEBUG 1624 else if (ifp->if_capenable & IFCAP_RSS) { 1625 if (pi == NULL) 1626 ether_rss_nopi++; 1627 else 1628 ether_rss_nohash++; 1629 } 1630 #endif 1631 1632 /* 1633 * Packet hash will be recalculated by software, 1634 * so clear the M_HASH flag set by the driver; 1635 * the hash value calculated by the hardware may 1636 * not be exactly what we want. 1637 */ 1638 m->m_flags &= ~M_HASH; 1639 1640 if (!ether_vlancheck(&m)) { 1641 KKASSERT(m == NULL); 1642 logether(chain_end, ifp); 1643 return; 1644 } 1645 1646 isr = ether_characterize(&m); 1647 if (m == NULL) { 1648 logether(chain_end, ifp); 1649 return; 1650 } 1651 1652 /* 1653 * Finally dispatch it 1654 */ 1655 ether_dispatch(isr, m, chain); 1656 1657 logether(chain_end, ifp); 1658 } 1659 1660 static int 1661 ether_characterize(struct mbuf **m0) 1662 { 1663 struct mbuf *m = *m0; 1664 struct ether_header *eh; 1665 uint16_t ether_type; 1666 int isr; 1667 1668 eh = mtod(m, struct ether_header *); 1669 ether_type = ntohs(eh->ether_type); 1670 1671 /* 1672 * Map ether type to netisr id. 1673 */ 1674 switch (ether_type) { 1675 #ifdef INET 1676 case ETHERTYPE_IP: 1677 isr = NETISR_IP; 1678 break; 1679 1680 case ETHERTYPE_ARP: 1681 isr = NETISR_ARP; 1682 break; 1683 #endif 1684 1685 #ifdef INET6 1686 case ETHERTYPE_IPV6: 1687 isr = NETISR_IPV6; 1688 break; 1689 #endif 1690 1691 #ifdef IPX 1692 case ETHERTYPE_IPX: 1693 isr = NETISR_IPX; 1694 break; 1695 #endif 1696 1697 #ifdef NETATALK 1698 case ETHERTYPE_AT: 1699 isr = NETISR_ATALK1; 1700 break; 1701 case ETHERTYPE_AARP: 1702 isr = NETISR_AARP; 1703 break; 1704 #endif 1705 1706 #ifdef MPLS 1707 case ETHERTYPE_MPLS: 1708 case ETHERTYPE_MPLS_MCAST: 1709 m->m_flags |= M_MPLSLABELED; 1710 isr = NETISR_MPLS; 1711 break; 1712 #endif 1713 1714 default: 1715 /* 1716 * NETISR_MAX is an invalid value; it is chosen to let 1717 * netisr_characterize() know that we have no clear 1718 * idea where this packet should go. 1719 */ 1720 isr = NETISR_MAX; 1721 break; 1722 } 1723 1724 /* 1725 * Ask the isr to characterize the packet since we couldn't. 1726 * This is an attempt to optimally get us onto the correct protocol 1727 * thread. 1728 */ 1729 netisr_characterize(isr, &m, sizeof(struct ether_header)); 1730 1731 *m0 = m; 1732 return isr; 1733 } 1734 1735 static void 1736 ether_demux_handler(netmsg_t nmsg) 1737 { 1738 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */ 1739 struct ifnet *ifp; 1740 struct mbuf *m; 1741 1742 m = nmp->nm_packet; 1743 M_ASSERTPKTHDR(m); 1744 ifp = m->m_pkthdr.rcvif; 1745 1746 ether_demux_oncpu(ifp, m); 1747 } 1748 1749 void 1750 ether_demux(struct mbuf *m) 1751 { 1752 struct netmsg_packet *pmsg; 1753 int isr; 1754 1755 isr = ether_characterize(&m); 1756 if (m == NULL) 1757 return; 1758 1759 KKASSERT(m->m_flags & M_HASH); 1760 pmsg = &m->m_hdr.mh_netmsg; 1761 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 1762 0, ether_demux_handler); 1763 pmsg->nm_packet = m; 1764 pmsg->base.lmsg.u.ms_result = isr; 1765 1766 lwkt_sendmsg(cpu_portfn(m->m_pkthdr.hash), &pmsg->base.lmsg); 1767 } 1768 1769 MODULE_VERSION(ether, 1); 1770