1 /* 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $ 35 * $DragonFly: src/sys/net/if_ethersubr.c,v 1.31 2005/06/03 23:23:03 joerg Exp $ 36 */ 37 38 #include "opt_atalk.h" 39 #include "opt_inet.h" 40 #include "opt_inet6.h" 41 #include "opt_ipx.h" 42 #include "opt_bdg.h" 43 #include "opt_netgraph.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/kernel.h> 48 #include <sys/malloc.h> 49 #include <sys/mbuf.h> 50 #include <sys/socket.h> 51 #include <sys/sockio.h> 52 #include <sys/sysctl.h> 53 54 #include <net/if.h> 55 #include <net/netisr.h> 56 #include <net/route.h> 57 #include <net/if_llc.h> 58 #include <net/if_dl.h> 59 #include <net/if_types.h> 60 #include <net/ifq_var.h> 61 #include <net/bpf.h> 62 #include <net/ethernet.h> 63 #include <net/bridge/bridge.h> 64 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #include <netinet/in_var.h> 68 #include <netinet/if_ether.h> 69 #include <net/ipfw/ip_fw.h> 70 #include <net/dummynet/ip_dummynet.h> 71 #endif 72 #ifdef INET6 73 #include <netinet6/nd6.h> 74 #endif 75 76 #ifdef IPX 77 #include <netproto/ipx/ipx.h> 78 #include <netproto/ipx/ipx_if.h> 79 int (*ef_inputp)(struct ifnet*, struct ether_header *eh, struct mbuf *m); 80 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst, 81 short *tp, int *hlen); 82 #endif 83 84 #ifdef NS 85 #include <netns/ns.h> 86 #include <netns/ns_if.h> 87 ushort ns_nettype; 88 int ether_outputdebug = 0; 89 int ether_inputdebug = 0; 90 #endif 91 92 #ifdef NETATALK 93 #include <netproto/atalk/at.h> 94 #include <netproto/atalk/at_var.h> 95 #include <netproto/atalk/at_extern.h> 96 97 #define llc_snap_org_code llc_un.type_snap.org_code 98 #define llc_snap_ether_type llc_un.type_snap.ether_type 99 100 extern u_char at_org_code[3]; 101 extern u_char aarp_org_code[3]; 102 #endif /* NETATALK */ 103 104 /* netgraph node hooks for ng_ether(4) */ 105 void (*ng_ether_input_p)(struct ifnet *ifp, 106 struct mbuf **mp, struct ether_header *eh); 107 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, 108 struct mbuf *m, struct ether_header *eh); 109 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 110 void (*ng_ether_attach_p)(struct ifnet *ifp); 111 void (*ng_ether_detach_p)(struct ifnet *ifp); 112 113 int (*vlan_input_p)(struct ether_header *eh, struct mbuf *m); 114 int (*vlan_input_tag_p)(struct mbuf *m, uint16_t t); 115 116 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *, 117 struct rtentry *); 118 119 /* 120 * bridge support 121 */ 122 int do_bridge; 123 bridge_in_t *bridge_in_ptr; 124 bdg_forward_t *bdg_forward_ptr; 125 bdgtakeifaces_t *bdgtakeifaces_ptr; 126 struct bdg_softc *ifp2sc; 127 128 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 129 struct sockaddr *); 130 131 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = { 132 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 133 }; 134 135 #define gotoerr(e) do { error = (e); goto bad; } while (0) 136 #define IFP2AC(ifp) ((struct arpcom *)(ifp)) 137 138 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, 139 struct ip_fw **rule, struct ether_header *eh, 140 boolean_t shared); 141 142 static int ether_ipfw; 143 SYSCTL_DECL(_net_link); 144 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 145 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW, 146 ðer_ipfw, 0, "Pass ether pkts through firewall"); 147 148 /* 149 * Ethernet output routine. 150 * Encapsulate a packet of type family for the local net. 151 * Use trailer local net encapsulation if enough data in first 152 * packet leaves a multiple of 512 bytes of data in remainder. 153 * Assumes that ifp is actually pointer to arpcom structure. 154 */ 155 static int 156 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, 157 struct rtentry *rt) 158 { 159 struct ether_header *eh, *deh; 160 u_char *edst; 161 int loop_copy = 0; 162 int hlen = ETHER_HDR_LEN; /* link layer header length */ 163 struct arpcom *ac = IFP2AC(ifp); 164 int error; 165 166 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 167 gotoerr(ENETDOWN); 168 169 M_PREPEND(m, sizeof(struct ether_header), MB_DONTWAIT); 170 if (m == NULL) 171 return (ENOBUFS); 172 eh = mtod(m, struct ether_header *); 173 edst = eh->ether_dhost; 174 175 /* 176 * Fill in the destination ethernet address and frame type. 177 */ 178 switch (dst->sa_family) { 179 #ifdef INET 180 case AF_INET: 181 if (!arpresolve(ifp, rt, m, dst, edst)) 182 return (0); /* if not yet resolved */ 183 eh->ether_type = htons(ETHERTYPE_IP); 184 break; 185 #endif 186 #ifdef INET6 187 case AF_INET6: 188 if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst)) 189 return (0); /* Something bad happenned. */ 190 eh->ether_type = htons(ETHERTYPE_IPV6); 191 break; 192 #endif 193 #ifdef IPX 194 case AF_IPX: 195 if (ef_outputp != NULL) { 196 error = ef_outputp(ifp, &m, dst, &eh->ether_type, 197 &hlen); 198 if (error) 199 goto bad; 200 } else { 201 eh->ether_type = htons(ETHERTYPE_IPX); 202 bcopy(&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host), 203 edst, ETHER_ADDR_LEN); 204 } 205 break; 206 #endif 207 #ifdef NETATALK 208 case AF_APPLETALK: { 209 struct at_ifaddr *aa; 210 211 if ((aa = at_ifawithnet((struct sockaddr_at *)dst)) == NULL) { 212 error = 0; /* XXX */ 213 goto bad; 214 } 215 /* 216 * In the phase 2 case, need to prepend an mbuf for 217 * the llc header. Since we must preserve the value 218 * of m, which is passed to us by value, we m_copy() 219 * the first mbuf, and use it for our llc header. 220 */ 221 if (aa->aa_flags & AFA_PHASE2) { 222 struct llc llc; 223 224 M_PREPEND(m, sizeof(struct llc), MB_DONTWAIT); 225 eh = mtod(m, struct ether_header *); 226 edst = eh->ether_dhost; 227 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 228 llc.llc_control = LLC_UI; 229 bcopy(at_org_code, llc.llc_snap_org_code, 230 sizeof at_org_code); 231 llc.llc_snap_ether_type = htons(ETHERTYPE_AT); 232 bcopy(&llc, 233 mtod(m, caddr_t) + sizeof(struct ether_header), 234 sizeof(struct llc)); 235 eh->ether_type = htons(m->m_pkthdr.len); 236 hlen = sizeof(struct llc) + ETHER_HDR_LEN; 237 } else { 238 eh->ether_type = htons(ETHERTYPE_AT); 239 } 240 if (!aarpresolve(ac, m, (struct sockaddr_at *)dst, edst)) 241 return (0); 242 break; 243 } 244 #endif 245 #ifdef NS 246 case AF_NS: 247 switch(ns_nettype) { 248 default: 249 case 0x8137: /* Novell Ethernet_II Ethernet TYPE II */ 250 eh->ether_type = 0x8137; 251 break; 252 case 0x0: /* Novell 802.3 */ 253 eh->ether_type = htons(m->m_pkthdr.len); 254 break; 255 case 0xe0e0: /* Novell 802.2 and Token-Ring */ 256 M_PREPEND(m, 3, MB_DONTWAIT); 257 eh = mtod(m, struct ether_header *); 258 edst = eh->ether_dhost; 259 eh->ether_type = htons(m->m_pkthdr.len); 260 cp = mtod(m, u_char *) + sizeof(struct ether_header); 261 *cp++ = 0xE0; 262 *cp++ = 0xE0; 263 *cp++ = 0x03; 264 break; 265 } 266 bcopy(&(((struct sockaddr_ns *)dst)->sns_addr.x_host), edst, 267 ETHER_ADDR_LEN); 268 /* 269 * XXX if ns_thishost is the same as the node's ethernet 270 * address then just the default code will catch this anyhow. 271 * So I'm not sure if this next clause should be here at all? 272 * [JRE] 273 */ 274 if (bcmp(edst, &ns_thishost, ETHER_ADDR_LEN) == 0) { 275 m->m_pkthdr.rcvif = ifp; 276 netisr_dispatch(NETISR_NS, m); 277 return (error); 278 } 279 if (bcmp(edst, &ns_broadhost, ETHER_ADDR_LEN) == 0) 280 m->m_flags |= M_BCAST; 281 break; 282 #endif 283 case pseudo_AF_HDRCMPLT: 284 case AF_UNSPEC: 285 loop_copy = -1; /* if this is for us, don't do it */ 286 deh = (struct ether_header *)dst->sa_data; 287 memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN); 288 eh->ether_type = deh->ether_type; 289 break; 290 291 default: 292 printf("%s: can't handle af%d\n", ifp->if_xname, 293 dst->sa_family); 294 gotoerr(EAFNOSUPPORT); 295 } 296 297 if (dst->sa_family == pseudo_AF_HDRCMPLT) /* unlikely */ 298 memcpy(eh->ether_shost, 299 ((struct ether_header *)dst->sa_data)->ether_shost, 300 ETHER_ADDR_LEN); 301 else 302 memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN); 303 304 /* 305 * If a simplex interface, and the packet is being sent to our 306 * Ethernet address or a broadcast address, loopback a copy. 307 * XXX To make a simplex device behave exactly like a duplex 308 * device, we should copy in the case of sending to our own 309 * ethernet address (thus letting the original actually appear 310 * on the wire). However, we don't do that here for security 311 * reasons and compatibility with the original behavior. 312 */ 313 if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) { 314 int csum_flags = 0; 315 316 if (m->m_pkthdr.csum_flags & CSUM_IP) 317 csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); 318 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 319 csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 320 if ((m->m_flags & M_BCAST) || (loop_copy > 0)) { 321 struct mbuf *n; 322 323 if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) { 324 n->m_pkthdr.csum_flags |= csum_flags; 325 if (csum_flags & CSUM_DATA_VALID) 326 n->m_pkthdr.csum_data = 0xffff; 327 if_simloop(ifp, n, dst->sa_family, hlen); 328 } else 329 ifp->if_iqdrops++; 330 } else if (bcmp(eh->ether_dhost, eh->ether_shost, 331 ETHER_ADDR_LEN) == 0) { 332 m->m_pkthdr.csum_flags |= csum_flags; 333 if (csum_flags & CSUM_DATA_VALID) 334 m->m_pkthdr.csum_data = 0xffff; 335 if_simloop(ifp, m, dst->sa_family, hlen); 336 return (0); /* XXX */ 337 } 338 } 339 340 /* Handle ng_ether(4) processing, if any */ 341 if (ng_ether_output_p != NULL) { 342 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) 343 goto bad; 344 if (m == NULL) 345 return (0); 346 } 347 348 /* Continue with link-layer output */ 349 return ether_output_frame(ifp, m); 350 351 bad: 352 m_freem(m); 353 return (error); 354 } 355 356 /* 357 * Ethernet link layer output routine to send a raw frame to the device. 358 * 359 * This assumes that the 14 byte Ethernet header is present and contiguous 360 * in the first mbuf (if BRIDGE'ing). 361 */ 362 int 363 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 364 { 365 struct ip_fw *rule = NULL; 366 int error = 0; 367 int s; 368 struct altq_pktattr pktattr; 369 370 /* Extract info from dummynet tag, ignore others */ 371 while (m->m_type == MT_TAG) { 372 if (m->m_flags == PACKET_TAG_DUMMYNET) { 373 rule = ((struct dn_pkt *)m)->rule; 374 break; 375 } 376 m = m->m_next; 377 } 378 if (rule != NULL) /* packet was already bridged */ 379 goto no_bridge; 380 381 if (BDG_ACTIVE(ifp)) { 382 struct ether_header *eh; /* a pointer suffices */ 383 384 m->m_pkthdr.rcvif = NULL; 385 eh = mtod(m, struct ether_header *); 386 m_adj(m, ETHER_HDR_LEN); 387 m = bdg_forward_ptr(m, eh, ifp); 388 m_freem(m); 389 return (0); 390 } 391 392 no_bridge: 393 if (ifq_is_enabled(&ifp->if_snd)) 394 altq_etherclassify(&ifp->if_snd, m, &pktattr); 395 s = splimp(); 396 if (IPFW_LOADED && ether_ipfw != 0) { 397 struct ether_header save_eh, *eh; 398 399 eh = mtod(m, struct ether_header *); 400 save_eh = *eh; 401 m_adj(m, ETHER_HDR_LEN); 402 if (!ether_ipfw_chk(&m, ifp, &rule, eh, FALSE)) { 403 if (m != NULL) { 404 m_freem(m); 405 return ENOBUFS; /* pkt dropped */ 406 } else 407 return 0; /* consumed e.g. in a pipe */ 408 } 409 eh = mtod(m, struct ether_header *); 410 /* packet was ok, restore the ethernet header */ 411 if ((void *)(eh + 1) == (void *)m->m_data) { 412 m->m_data -= ETHER_HDR_LEN ; 413 m->m_len += ETHER_HDR_LEN ; 414 m->m_pkthdr.len += ETHER_HDR_LEN ; 415 } else { 416 M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT); 417 if (m == NULL) /* nope... */ 418 return ENOBUFS; 419 bcopy(&save_eh, mtod(m, struct ether_header *), 420 ETHER_HDR_LEN); 421 } 422 } 423 424 /* 425 * Queue message on interface, update output statistics if 426 * successful, and start output if interface not yet active. 427 */ 428 error = ifq_handoff(ifp, m, &pktattr); 429 splx(s); 430 return (error); 431 } 432 433 /* 434 * ipfw processing for ethernet packets (in and out). 435 * The second parameter is NULL from ether_demux(), and ifp from 436 * ether_output_frame(). This section of code could be used from 437 * bridge.c as well as long as we use some extra info 438 * to distinguish that case from ether_output_frame(). 439 */ 440 static boolean_t 441 ether_ipfw_chk( 442 struct mbuf **m0, 443 struct ifnet *dst, 444 struct ip_fw **rule, 445 struct ether_header *eh, 446 boolean_t shared) 447 { 448 struct ether_header save_eh = *eh; /* might be a ptr in m */ 449 struct ip_fw_args args; 450 struct m_tag *mtag; 451 int i; 452 453 if (*rule != NULL && fw_one_pass) 454 return TRUE; /* dummynet packet, already partially processed */ 455 456 /* 457 * I need some amount of data to be contiguous, and in case others 458 * need the packet (shared==TRUE), it also better be in the first mbuf. 459 */ 460 i = min((*m0)->m_pkthdr.len, max_protohdr); 461 if (shared || (*m0)->m_len < i) { 462 *m0 = m_pullup(*m0, i); 463 if (*m0 == NULL) 464 return FALSE; 465 } 466 467 args.m = *m0; /* the packet we are looking at */ 468 args.oif = dst; /* destination, if any */ 469 if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL) 470 m_tag_delete(*m0, mtag); 471 args.rule = *rule; /* matching rule to restart */ 472 args.next_hop = NULL; /* we do not support forward yet */ 473 args.eh = &save_eh; /* MAC header for bridged/MAC packets */ 474 i = ip_fw_chk_ptr(&args); 475 *m0 = args.m; 476 *rule = args.rule; 477 478 if ((i & IP_FW_PORT_DENY_FLAG) || *m0 == NULL) /* drop */ 479 return FALSE; 480 481 if (i == 0) /* a PASS rule. */ 482 return TRUE; 483 484 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) { 485 /* 486 * Pass the pkt to dummynet, which consumes it. 487 * If shared, make a copy and keep the original. 488 */ 489 struct mbuf *m ; 490 491 if (shared) { 492 m = m_copypacket(*m0, MB_DONTWAIT); 493 if (m == NULL) 494 return FALSE; 495 } else { 496 m = *m0 ; /* pass the original to dummynet */ 497 *m0 = NULL ; /* and nothing back to the caller */ 498 } 499 /* 500 * Prepend the header, optimize for the common case of 501 * eh pointing into the mbuf. 502 */ 503 if ((void *)(eh + 1) == (void *)m->m_data) { 504 m->m_data -= ETHER_HDR_LEN ; 505 m->m_len += ETHER_HDR_LEN ; 506 m->m_pkthdr.len += ETHER_HDR_LEN ; 507 } else { 508 M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT); 509 if (m == NULL) 510 return FALSE; 511 bcopy(&save_eh, mtod(m, struct ether_header *), 512 ETHER_HDR_LEN); 513 } 514 ip_dn_io_ptr(m, (i & 0xffff), 515 dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args); 516 return FALSE; 517 } 518 /* 519 * XXX at some point add support for divert/forward actions. 520 * If none of the above matches, we have to drop the pkt. 521 */ 522 return FALSE; 523 } 524 525 /* 526 * XXX merge this function with ether_input. 527 */ 528 static void 529 ether_input_internal(struct ifnet *ifp, struct mbuf *m) 530 { 531 ether_input(ifp, NULL, m); 532 } 533 534 /* 535 * Process a received Ethernet packet. We have two different interfaces: 536 * one (conventional) assumes the packet in the mbuf, with the ethernet 537 * header provided separately in *eh. The second one (new) has everything 538 * in the mbuf, and we can tell it because eh == NULL. 539 * The caller MUST MAKE SURE that there are at least 540 * sizeof(struct ether_header) bytes in the first mbuf. 541 * 542 * This allows us to concentrate in one place a bunch of code which 543 * is replicated in all device drivers. Also, many functions called 544 * from ether_input() try to put the eh back into the mbuf, so we 545 * can later propagate the 'contiguous packet' interface to them, 546 * and handle the old interface just here. 547 * 548 * NOTA BENE: for many drivers "eh" is a pointer into the first mbuf or 549 * cluster, right before m_data. So be very careful when working on m, 550 * as you could destroy *eh !! 551 * 552 * First we perform any link layer operations, then continue 553 * to the upper layers with ether_demux(). 554 */ 555 void 556 ether_input(struct ifnet *ifp, struct ether_header *eh, struct mbuf *m) 557 { 558 struct ether_header save_eh; 559 560 if (eh == NULL) { 561 if (m->m_len < sizeof(struct ether_header)) { 562 /* XXX error in the caller. */ 563 m_freem(m); 564 return; 565 } 566 m->m_pkthdr.rcvif = ifp; 567 eh = mtod(m, struct ether_header *); 568 m_adj(m, sizeof(struct ether_header)); 569 /* XXX */ 570 /* m->m_pkthdr.len = m->m_len; */ 571 } 572 573 if (ifp->if_bpf) 574 bpf_ptap(ifp->if_bpf, m, eh, ETHER_HDR_LEN); 575 576 ifp->if_ibytes += m->m_pkthdr.len + (sizeof *eh); 577 578 /* Handle ng_ether(4) processing, if any */ 579 if (ng_ether_input_p != NULL) { 580 (*ng_ether_input_p)(ifp, &m, eh); 581 if (m == NULL) 582 return; 583 } 584 585 /* Check for bridging mode */ 586 if (BDG_ACTIVE(ifp)) { 587 struct ifnet *bif; 588 589 /* Check with bridging code */ 590 if ((bif = bridge_in_ptr(ifp, eh)) == BDG_DROP) { 591 m_freem(m); 592 return; 593 } 594 if (bif != BDG_LOCAL) { 595 save_eh = *eh ; /* because it might change */ 596 m = bdg_forward_ptr(m, eh, bif); /* needs forwarding */ 597 /* 598 * Do not continue if bdg_forward_ptr() processed our 599 * packet (and cleared the mbuf pointer m) or if 600 * it dropped (m_free'd) the packet itself. 601 */ 602 if (m == NULL) { 603 if (bif == BDG_BCAST || bif == BDG_MCAST) 604 printf("bdg_forward drop MULTICAST PKT\n"); 605 return; 606 } 607 eh = &save_eh ; 608 } 609 if (bif == BDG_LOCAL || bif == BDG_BCAST || bif == BDG_MCAST) 610 goto recvLocal; /* receive locally */ 611 612 /* If not local and not multicast, just drop it */ 613 m_freem(m); 614 return; 615 } 616 617 recvLocal: 618 /* Continue with upper layer processing */ 619 ether_demux(ifp, eh, m); 620 } 621 622 /* 623 * Upper layer processing for a received Ethernet packet. 624 */ 625 void 626 ether_demux(struct ifnet *ifp, struct ether_header *eh, struct mbuf *m) 627 { 628 int isr; 629 u_short ether_type; 630 struct ip_fw *rule = NULL; 631 #ifdef NETATALK 632 struct llc *l; 633 #endif 634 635 /* Extract info from dummynet tag, ignore others */ 636 while (m->m_type == MT_TAG) { 637 if (m->m_flags == PACKET_TAG_DUMMYNET) { 638 rule = ((struct dn_pkt *)m)->rule; 639 ifp = m->m_next->m_pkthdr.rcvif; 640 break; 641 } 642 m = m->m_next; 643 } 644 if (rule) /* packet was already bridged */ 645 goto post_stats; 646 647 /* 648 * Discard packet if upper layers shouldn't see it because 649 * it was unicast to a different Ethernet address. If the 650 * driver is working properly, then this situation can only 651 * happen when the interface is in promiscuous mode. 652 */ 653 if (!BDG_ACTIVE(ifp) && 654 ((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) && 655 (eh->ether_dhost[0] & 1) == 0 && 656 bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) { 657 m_freem(m); 658 return; 659 } 660 /* Discard packet if interface is not up */ 661 if (!(ifp->if_flags & IFF_UP)) { 662 m_freem(m); 663 return; 664 } 665 if (eh->ether_dhost[0] & 1) { 666 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost, 667 ifp->if_addrlen) == 0) 668 m->m_flags |= M_BCAST; 669 else 670 m->m_flags |= M_MCAST; 671 ifp->if_imcasts++; 672 } 673 674 post_stats: 675 if (IPFW_LOADED && ether_ipfw != 0) { 676 if (!ether_ipfw_chk(&m, NULL, &rule, eh, FALSE)) { 677 m_freem(m); 678 return; 679 } 680 eh = mtod(m, struct ether_header *); 681 } 682 683 ether_type = ntohs(eh->ether_type); 684 685 switch (ether_type) { 686 #ifdef INET 687 case ETHERTYPE_IP: 688 if (ipflow_fastforward(m)) 689 return; 690 isr = NETISR_IP; 691 break; 692 693 case ETHERTYPE_ARP: 694 if (ifp->if_flags & IFF_NOARP) { 695 /* Discard packet if ARP is disabled on interface */ 696 m_freem(m); 697 return; 698 } 699 isr = NETISR_ARP; 700 break; 701 #endif 702 703 #ifdef INET6 704 case ETHERTYPE_IPV6: 705 isr = NETISR_IPV6; 706 break; 707 #endif 708 709 #ifdef IPX 710 case ETHERTYPE_IPX: 711 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) 712 return; 713 isr = NETISR_IPX; 714 break; 715 #endif 716 717 #ifdef NS 718 case 0x8137: /* Novell Ethernet_II Ethernet TYPE II */ 719 isr = NETISR_NS; 720 break; 721 722 #endif 723 724 #ifdef NETATALK 725 case ETHERTYPE_AT: 726 isr = NETISR_ATALK1; 727 break; 728 case ETHERTYPE_AARP: 729 isr = NETISR_AARP; 730 break; 731 #endif 732 733 case ETHERTYPE_VLAN: 734 if (vlan_input_p != NULL) 735 (*vlan_input_p)(eh, m); 736 else { 737 m->m_pkthdr.rcvif->if_noproto++; 738 m_freem(m); 739 } 740 return; 741 742 default: 743 #ifdef IPX 744 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) 745 return; 746 #endif 747 #ifdef NS 748 checksum = mtod(m, ushort *); 749 /* Novell 802.3 */ 750 if ((ether_type <= ETHERMTU) && 751 ((*checksum == 0xffff) || (*checksum == 0xE0E0))) { 752 if (*checksum == 0xE0E0) { 753 m->m_pkthdr.len -= 3; 754 m->m_len -= 3; 755 m->m_data += 3; 756 } 757 isr = NETISR_NS; 758 break; 759 } 760 #endif 761 #ifdef NETATALK 762 if (ether_type > ETHERMTU) 763 goto dropanyway; 764 l = mtod(m, struct llc *); 765 if (l->llc_dsap == LLC_SNAP_LSAP && 766 l->llc_ssap == LLC_SNAP_LSAP && 767 l->llc_control == LLC_UI) { 768 if (bcmp(&(l->llc_snap_org_code)[0], at_org_code, 769 sizeof at_org_code) == 0 && 770 ntohs(l->llc_snap_ether_type) == ETHERTYPE_AT) { 771 m_adj(m, sizeof(struct llc)); 772 isr = NETISR_ATALK2; 773 break; 774 } 775 if (bcmp(&(l->llc_snap_org_code)[0], aarp_org_code, 776 sizeof aarp_org_code) == 0 && 777 ntohs(l->llc_snap_ether_type) == ETHERTYPE_AARP) { 778 m_adj(m, sizeof(struct llc)); 779 isr = NETISR_AARP; 780 break; 781 } 782 } 783 dropanyway: 784 #endif 785 if (ng_ether_input_orphan_p != NULL) 786 (*ng_ether_input_orphan_p)(ifp, m, eh); 787 else 788 m_freem(m); 789 return; 790 } 791 netisr_dispatch(isr, m); 792 } 793 794 /* 795 * Perform common duties while attaching to interface list 796 */ 797 798 void 799 ether_ifattach(struct ifnet *ifp, uint8_t *lla) 800 { 801 ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header)); 802 } 803 804 void 805 ether_ifattach_bpf(struct ifnet *ifp, uint8_t *lla, u_int dlt, u_int hdrlen) 806 { 807 struct sockaddr_dl *sdl; 808 809 ifp->if_type = IFT_ETHER; 810 ifp->if_addrlen = ETHER_ADDR_LEN; 811 ifp->if_hdrlen = ETHER_HDR_LEN; 812 if_attach(ifp); 813 ifp->if_mtu = ETHERMTU; 814 if (ifp->if_baudrate == 0) 815 ifp->if_baudrate = 10000000; 816 ifp->if_output = ether_output; 817 ifp->if_input = ether_input_internal; 818 ifp->if_resolvemulti = ether_resolvemulti; 819 ifp->if_broadcastaddr = etherbroadcastaddr; 820 sdl = IF_LLSOCKADDR(ifp); 821 sdl->sdl_type = IFT_ETHER; 822 sdl->sdl_alen = ifp->if_addrlen; 823 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 824 /* 825 * XXX Keep the current drivers happy. 826 * XXX Remove once all drivers have been cleaned up 827 */ 828 if (lla != IFP2AC(ifp)->ac_enaddr) 829 bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen); 830 bpfattach(ifp, dlt, hdrlen); 831 if (ng_ether_attach_p != NULL) 832 (*ng_ether_attach_p)(ifp); 833 if (BDG_LOADED) 834 bdgtakeifaces_ptr(); 835 836 if_printf(ifp, "MAC address: %6D\n", lla, ":"); 837 } 838 839 /* 840 * Perform common duties while detaching an Ethernet interface 841 */ 842 void 843 ether_ifdetach(struct ifnet *ifp) 844 { 845 int s; 846 847 s = splnet(); 848 if_down(ifp); 849 splx(s); 850 851 if (ng_ether_detach_p != NULL) 852 (*ng_ether_detach_p)(ifp); 853 bpfdetach(ifp); 854 if_detach(ifp); 855 if (BDG_LOADED) 856 bdgtakeifaces_ptr(); 857 } 858 859 int 860 ether_ioctl(struct ifnet *ifp, int command, caddr_t data) 861 { 862 struct ifaddr *ifa = (struct ifaddr *) data; 863 struct ifreq *ifr = (struct ifreq *) data; 864 int error = 0; 865 866 switch (command) { 867 case SIOCSIFADDR: 868 ifp->if_flags |= IFF_UP; 869 870 switch (ifa->ifa_addr->sa_family) { 871 #ifdef INET 872 case AF_INET: 873 ifp->if_init(ifp->if_softc); /* before arpwhohas */ 874 arp_ifinit(ifp, ifa); 875 break; 876 #endif 877 #ifdef IPX 878 /* 879 * XXX - This code is probably wrong 880 */ 881 case AF_IPX: 882 { 883 struct ipx_addr *ina = &IA_SIPX(ifa)->sipx_addr; 884 struct arpcom *ac = IFP2AC(ifp); 885 886 if (ipx_nullhost(*ina)) 887 ina->x_host = *(union ipx_host *) ac->ac_enaddr; 888 else 889 bcopy(ina->x_host.c_host, ac->ac_enaddr, 890 sizeof ac->ac_enaddr); 891 892 ifp->if_init(ifp->if_softc); /* Set new address. */ 893 break; 894 } 895 #endif 896 #ifdef NS 897 /* 898 * XXX - This code is probably wrong 899 */ 900 case AF_NS: 901 { 902 struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr); 903 struct arpcom *ac = IFP2AC(ifp); 904 905 if (ns_nullhost(*ina)) 906 ina->x_host = *(union ns_host *)(ac->ac_enaddr); 907 else 908 bcopy(ina->x_host.c_host, ac->ac_enaddr, 909 sizeof ac->ac_enaddr); 910 911 /* 912 * Set new address 913 */ 914 ifp->if_init(ifp->if_softc); 915 break; 916 } 917 #endif 918 default: 919 ifp->if_init(ifp->if_softc); 920 break; 921 } 922 break; 923 924 case SIOCGIFADDR: 925 bcopy(IFP2AC(ifp)->ac_enaddr, 926 ((struct sockaddr *)ifr->ifr_data)->sa_data, 927 ETHER_ADDR_LEN); 928 break; 929 930 case SIOCSIFMTU: 931 /* 932 * Set the interface MTU. 933 */ 934 if (ifr->ifr_mtu > ETHERMTU) { 935 error = EINVAL; 936 } else { 937 ifp->if_mtu = ifr->ifr_mtu; 938 } 939 break; 940 default: 941 error = EINVAL; 942 break; 943 } 944 return (error); 945 } 946 947 int 948 ether_resolvemulti( 949 struct ifnet *ifp, 950 struct sockaddr **llsa, 951 struct sockaddr *sa) 952 { 953 struct sockaddr_dl *sdl; 954 struct sockaddr_in *sin; 955 #ifdef INET6 956 struct sockaddr_in6 *sin6; 957 #endif 958 u_char *e_addr; 959 960 switch(sa->sa_family) { 961 case AF_LINK: 962 /* 963 * No mapping needed. Just check that it's a valid MC address. 964 */ 965 sdl = (struct sockaddr_dl *)sa; 966 e_addr = LLADDR(sdl); 967 if ((e_addr[0] & 1) != 1) 968 return EADDRNOTAVAIL; 969 *llsa = 0; 970 return 0; 971 972 #ifdef INET 973 case AF_INET: 974 sin = (struct sockaddr_in *)sa; 975 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 976 return EADDRNOTAVAIL; 977 MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR, 978 M_WAITOK | M_ZERO); 979 sdl->sdl_len = sizeof *sdl; 980 sdl->sdl_family = AF_LINK; 981 sdl->sdl_index = ifp->if_index; 982 sdl->sdl_type = IFT_ETHER; 983 sdl->sdl_alen = ETHER_ADDR_LEN; 984 e_addr = LLADDR(sdl); 985 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 986 *llsa = (struct sockaddr *)sdl; 987 return 0; 988 #endif 989 #ifdef INET6 990 case AF_INET6: 991 sin6 = (struct sockaddr_in6 *)sa; 992 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 993 /* 994 * An IP6 address of 0 means listen to all 995 * of the Ethernet multicast address used for IP6. 996 * (This is used for multicast routers.) 997 */ 998 ifp->if_flags |= IFF_ALLMULTI; 999 *llsa = 0; 1000 return 0; 1001 } 1002 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1003 return EADDRNOTAVAIL; 1004 MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR, 1005 M_WAITOK | M_ZERO); 1006 sdl->sdl_len = sizeof *sdl; 1007 sdl->sdl_family = AF_LINK; 1008 sdl->sdl_index = ifp->if_index; 1009 sdl->sdl_type = IFT_ETHER; 1010 sdl->sdl_alen = ETHER_ADDR_LEN; 1011 e_addr = LLADDR(sdl); 1012 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1013 *llsa = (struct sockaddr *)sdl; 1014 return 0; 1015 #endif 1016 1017 default: 1018 /* 1019 * Well, the text isn't quite right, but it's the name 1020 * that counts... 1021 */ 1022 return EAFNOSUPPORT; 1023 } 1024 } 1025 1026 #if 0 1027 /* 1028 * This is for reference. We have a table-driven version 1029 * of the little-endian crc32 generator, which is faster 1030 * than the double-loop. 1031 */ 1032 uint32_t 1033 ether_crc32_le(const uint8_t *buf, size_t len) 1034 { 1035 uint32_t c, crc, carry; 1036 size_t i, j; 1037 1038 crc = 0xffffffffU; /* initial value */ 1039 1040 for (i = 0; i < len; i++) { 1041 c = buf[i]; 1042 for (j = 0; j < 8; j++) { 1043 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1044 crc >>= 1; 1045 c >>= 1; 1046 if (carry) 1047 crc = (crc ^ ETHER_CRC_POLY_LE); 1048 } 1049 } 1050 1051 return (crc); 1052 } 1053 #else 1054 uint32_t 1055 ether_crc32_le(const uint8_t *buf, size_t len) 1056 { 1057 static const uint32_t crctab[] = { 1058 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1059 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1060 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1061 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1062 }; 1063 uint32_t crc; 1064 size_t i; 1065 1066 crc = 0xffffffffU; /* initial value */ 1067 1068 for (i = 0; i < len; i++) { 1069 crc ^= buf[i]; 1070 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1071 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1072 } 1073 1074 return (crc); 1075 } 1076 #endif 1077 1078 uint32_t 1079 ether_crc32_be(const uint8_t *buf, size_t len) 1080 { 1081 uint32_t c, crc, carry; 1082 size_t i, j; 1083 1084 crc = 0xffffffffU; /* initial value */ 1085 1086 for (i = 0; i < len; i++) { 1087 c = buf[i]; 1088 for (j = 0; j < 8; j++) { 1089 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1090 crc <<= 1; 1091 c >>= 1; 1092 if (carry) 1093 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1094 } 1095 } 1096 1097 return (crc); 1098 } 1099 1100 /* 1101 * find the size of ethernet header, and call classifier 1102 */ 1103 void 1104 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m, 1105 struct altq_pktattr *pktattr) 1106 { 1107 struct ether_header *eh; 1108 uint16_t ether_type; 1109 int hlen, af, hdrsize; 1110 caddr_t hdr; 1111 1112 hlen = sizeof(struct ether_header); 1113 eh = mtod(m, struct ether_header *); 1114 1115 ether_type = ntohs(eh->ether_type); 1116 if (ether_type < ETHERMTU) { 1117 /* ick! LLC/SNAP */ 1118 struct llc *llc = (struct llc *)(eh + 1); 1119 hlen += 8; 1120 1121 if (m->m_len < hlen || 1122 llc->llc_dsap != LLC_SNAP_LSAP || 1123 llc->llc_ssap != LLC_SNAP_LSAP || 1124 llc->llc_control != LLC_UI) 1125 goto bad; /* not snap! */ 1126 1127 ether_type = ntohs(llc->llc_un.type_snap.ether_type); 1128 } 1129 1130 if (ether_type == ETHERTYPE_IP) { 1131 af = AF_INET; 1132 hdrsize = 20; /* sizeof(struct ip) */ 1133 #ifdef INET6 1134 } else if (ether_type == ETHERTYPE_IPV6) { 1135 af = AF_INET6; 1136 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 1137 #endif 1138 } else 1139 goto bad; 1140 1141 while (m->m_len <= hlen) { 1142 hlen -= m->m_len; 1143 m = m->m_next; 1144 } 1145 hdr = m->m_data + hlen; 1146 if (m->m_len < hlen + hdrsize) { 1147 /* 1148 * ip header is not in a single mbuf. this should not 1149 * happen in the current code. 1150 * (todo: use m_pulldown in the future) 1151 */ 1152 goto bad; 1153 } 1154 m->m_data += hlen; 1155 m->m_len -= hlen; 1156 ifq_classify(ifq, m, af, pktattr); 1157 m->m_data -= hlen; 1158 m->m_len += hlen; 1159 1160 return; 1161 1162 bad: 1163 pktattr->pattr_class = NULL; 1164 pktattr->pattr_hdr = NULL; 1165 pktattr->pattr_af = AF_UNSPEC; 1166 } 1167