1 /* 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 30 * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $ 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ipx.h" 36 #include "opt_mpls.h" 37 #include "opt_netgraph.h" 38 #include "opt_carp.h" 39 #include "opt_rss.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/globaldata.h> 44 #include <sys/kernel.h> 45 #include <sys/ktr.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/msgport.h> 50 #include <sys/socket.h> 51 #include <sys/sockio.h> 52 #include <sys/sysctl.h> 53 #include <sys/thread.h> 54 55 #include <sys/thread2.h> 56 #include <sys/mplock2.h> 57 58 #include <net/if.h> 59 #include <net/netisr.h> 60 #include <net/route.h> 61 #include <net/if_llc.h> 62 #include <net/if_dl.h> 63 #include <net/if_types.h> 64 #include <net/ifq_var.h> 65 #include <net/bpf.h> 66 #include <net/ethernet.h> 67 #include <net/vlan/if_vlan_ether.h> 68 #include <net/vlan/if_vlan_var.h> 69 #include <net/netmsg2.h> 70 #include <net/netisr2.h> 71 72 #if defined(INET) || defined(INET6) 73 #include <netinet/in.h> 74 #include <netinet/ip_var.h> 75 #include <netinet/tcp_var.h> 76 #include <netinet/if_ether.h> 77 #include <netinet/ip_flow.h> 78 #include <net/ipfw/ip_fw.h> 79 #include <net/dummynet/ip_dummynet.h> 80 #endif 81 #ifdef INET6 82 #include <netinet6/nd6.h> 83 #endif 84 85 #ifdef CARP 86 #include <netinet/ip_carp.h> 87 #endif 88 89 #ifdef IPX 90 #include <netproto/ipx/ipx.h> 91 #include <netproto/ipx/ipx_if.h> 92 int (*ef_inputp)(struct ifnet*, const struct ether_header *eh, struct mbuf *m); 93 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst, 94 short *tp, int *hlen); 95 #endif 96 97 #ifdef MPLS 98 #include <netproto/mpls/mpls.h> 99 #endif 100 101 /* netgraph node hooks for ng_ether(4) */ 102 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 103 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 104 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 105 void (*ng_ether_attach_p)(struct ifnet *ifp); 106 void (*ng_ether_detach_p)(struct ifnet *ifp); 107 108 void (*vlan_input_p)(struct mbuf *); 109 110 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *, 111 struct rtentry *); 112 static void ether_restore_header(struct mbuf **, const struct ether_header *, 113 const struct ether_header *); 114 static int ether_characterize(struct mbuf **); 115 static void ether_dispatch(int, struct mbuf *); 116 117 /* 118 * if_bridge support 119 */ 120 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 121 int (*bridge_output_p)(struct ifnet *, struct mbuf *); 122 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 123 struct ifnet *(*bridge_interface_p)(void *if_bridge); 124 125 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 126 struct sockaddr *); 127 128 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = { 129 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 130 }; 131 132 #define gotoerr(e) do { error = (e); goto bad; } while (0) 133 #define IFP2AC(ifp) ((struct arpcom *)(ifp)) 134 135 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, 136 struct ip_fw **rule, 137 const struct ether_header *eh); 138 139 static int ether_ipfw; 140 static u_long ether_restore_hdr; 141 static u_long ether_prepend_hdr; 142 static u_long ether_input_wronghash; 143 static int ether_debug; 144 145 #ifdef RSS_DEBUG 146 static u_long ether_pktinfo_try; 147 static u_long ether_pktinfo_hit; 148 static u_long ether_rss_nopi; 149 static u_long ether_rss_nohash; 150 static u_long ether_input_requeue; 151 #endif 152 static u_long ether_input_wronghwhash; 153 static int ether_input_ckhash; 154 155 #define ETHER_TSOLEN_DEFAULT (4 * ETHERMTU) 156 157 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT; 158 TUNABLE_INT("net.link.ether.tsolen", ðer_tsolen_default); 159 160 SYSCTL_DECL(_net_link); 161 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 162 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW, 163 ðer_debug, 0, "Ether debug"); 164 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW, 165 ðer_ipfw, 0, "Pass ether pkts through firewall"); 166 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW, 167 ðer_restore_hdr, 0, "# of ether header restoration"); 168 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW, 169 ðer_prepend_hdr, 0, 170 "# of ether header restoration which prepends mbuf"); 171 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW, 172 ðer_input_wronghash, 0, "# of input packets with wrong hash"); 173 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW, 174 ðer_tsolen_default, 0, "Default max TSO length"); 175 176 #ifdef RSS_DEBUG 177 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW, 178 ðer_rss_nopi, 0, "# of packets do not have pktinfo"); 179 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW, 180 ðer_rss_nohash, 0, "# of packets do not have hash"); 181 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW, 182 ðer_pktinfo_try, 0, 183 "# of tries to find packets' msgport using pktinfo"); 184 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW, 185 ðer_pktinfo_hit, 0, 186 "# of packets whose msgport are found using pktinfo"); 187 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW, 188 ðer_input_requeue, 0, "# of input packets gets requeued"); 189 #endif 190 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW, 191 ðer_input_wronghwhash, 0, "# of input packets with wrong hw hash"); 192 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW, 193 ðer_input_ckhash, 0, "always check hash"); 194 195 #define ETHER_KTR_STR "ifp=%p" 196 #define ETHER_KTR_ARGS struct ifnet *ifp 197 #ifndef KTR_ETHERNET 198 #define KTR_ETHERNET KTR_ALL 199 #endif 200 KTR_INFO_MASTER(ether); 201 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS); 202 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS); 203 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS); 204 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS); 205 #define logether(name, arg) KTR_LOG(ether_ ## name, arg) 206 207 /* 208 * Ethernet output routine. 209 * Encapsulate a packet of type family for the local net. 210 * Use trailer local net encapsulation if enough data in first 211 * packet leaves a multiple of 512 bytes of data in remainder. 212 * Assumes that ifp is actually pointer to arpcom structure. 213 */ 214 static int 215 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, 216 struct rtentry *rt) 217 { 218 struct ether_header *eh, *deh; 219 u_char *edst; 220 int loop_copy = 0; 221 int hlen = ETHER_HDR_LEN; /* link layer header length */ 222 struct arpcom *ac = IFP2AC(ifp); 223 int error; 224 225 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 226 227 if (ifp->if_flags & IFF_MONITOR) 228 gotoerr(ENETDOWN); 229 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 230 gotoerr(ENETDOWN); 231 232 M_PREPEND(m, sizeof(struct ether_header), MB_DONTWAIT); 233 if (m == NULL) 234 return (ENOBUFS); 235 m->m_pkthdr.csum_lhlen = sizeof(struct ether_header); 236 eh = mtod(m, struct ether_header *); 237 edst = eh->ether_dhost; 238 239 /* 240 * Fill in the destination ethernet address and frame type. 241 */ 242 switch (dst->sa_family) { 243 #ifdef INET 244 case AF_INET: 245 if (!arpresolve(ifp, rt, m, dst, edst)) 246 return (0); /* if not yet resolved */ 247 #ifdef MPLS 248 if (m->m_flags & M_MPLSLABELED) 249 eh->ether_type = htons(ETHERTYPE_MPLS); 250 else 251 #endif 252 eh->ether_type = htons(ETHERTYPE_IP); 253 break; 254 #endif 255 #ifdef INET6 256 case AF_INET6: 257 if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst)) 258 return (0); /* Something bad happenned. */ 259 eh->ether_type = htons(ETHERTYPE_IPV6); 260 break; 261 #endif 262 #ifdef IPX 263 case AF_IPX: 264 if (ef_outputp != NULL) { 265 /* 266 * Hold BGL and recheck ef_outputp 267 */ 268 get_mplock(); 269 if (ef_outputp != NULL) { 270 error = ef_outputp(ifp, &m, dst, 271 &eh->ether_type, &hlen); 272 rel_mplock(); 273 if (error) 274 goto bad; 275 else 276 break; 277 } 278 rel_mplock(); 279 } 280 eh->ether_type = htons(ETHERTYPE_IPX); 281 bcopy(&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host), 282 edst, ETHER_ADDR_LEN); 283 break; 284 #endif 285 case pseudo_AF_HDRCMPLT: 286 case AF_UNSPEC: 287 loop_copy = -1; /* if this is for us, don't do it */ 288 deh = (struct ether_header *)dst->sa_data; 289 memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN); 290 eh->ether_type = deh->ether_type; 291 break; 292 293 default: 294 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 295 gotoerr(EAFNOSUPPORT); 296 } 297 298 if (dst->sa_family == pseudo_AF_HDRCMPLT) /* unlikely */ 299 memcpy(eh->ether_shost, 300 ((struct ether_header *)dst->sa_data)->ether_shost, 301 ETHER_ADDR_LEN); 302 else 303 memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN); 304 305 /* 306 * Bridges require special output handling. 307 */ 308 if (ifp->if_bridge) { 309 KASSERT(bridge_output_p != NULL, 310 ("%s: if_bridge not loaded!", __func__)); 311 return bridge_output_p(ifp, m); 312 } 313 314 /* 315 * If a simplex interface, and the packet is being sent to our 316 * Ethernet address or a broadcast address, loopback a copy. 317 * XXX To make a simplex device behave exactly like a duplex 318 * device, we should copy in the case of sending to our own 319 * ethernet address (thus letting the original actually appear 320 * on the wire). However, we don't do that here for security 321 * reasons and compatibility with the original behavior. 322 */ 323 if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) { 324 int csum_flags = 0; 325 326 if (m->m_pkthdr.csum_flags & CSUM_IP) 327 csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); 328 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 329 csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 330 if ((m->m_flags & M_BCAST) || (loop_copy > 0)) { 331 struct mbuf *n; 332 333 if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) { 334 n->m_pkthdr.csum_flags |= csum_flags; 335 if (csum_flags & CSUM_DATA_VALID) 336 n->m_pkthdr.csum_data = 0xffff; 337 if_simloop(ifp, n, dst->sa_family, hlen); 338 } else 339 IFNET_STAT_INC(ifp, iqdrops, 1); 340 } else if (bcmp(eh->ether_dhost, eh->ether_shost, 341 ETHER_ADDR_LEN) == 0) { 342 m->m_pkthdr.csum_flags |= csum_flags; 343 if (csum_flags & CSUM_DATA_VALID) 344 m->m_pkthdr.csum_data = 0xffff; 345 if_simloop(ifp, m, dst->sa_family, hlen); 346 return (0); /* XXX */ 347 } 348 } 349 350 #ifdef CARP 351 if (ifp->if_type == IFT_CARP) { 352 ifp = carp_parent(ifp); 353 if (ifp == NULL) 354 gotoerr(ENETUNREACH); 355 356 ac = IFP2AC(ifp); 357 358 /* 359 * Check precondition again 360 */ 361 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 362 363 if (ifp->if_flags & IFF_MONITOR) 364 gotoerr(ENETDOWN); 365 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 366 (IFF_UP | IFF_RUNNING)) 367 gotoerr(ENETDOWN); 368 } 369 #endif 370 371 /* Handle ng_ether(4) processing, if any */ 372 if (ng_ether_output_p != NULL) { 373 /* 374 * Hold BGL and recheck ng_ether_output_p 375 */ 376 get_mplock(); 377 if (ng_ether_output_p != NULL) { 378 if ((error = ng_ether_output_p(ifp, &m)) != 0) { 379 rel_mplock(); 380 goto bad; 381 } 382 if (m == NULL) { 383 rel_mplock(); 384 return (0); 385 } 386 } 387 rel_mplock(); 388 } 389 390 /* Continue with link-layer output */ 391 return ether_output_frame(ifp, m); 392 393 bad: 394 m_freem(m); 395 return (error); 396 } 397 398 /* 399 * Returns the bridge interface an ifp is associated 400 * with. 401 * 402 * Only call if ifp->if_bridge != NULL. 403 */ 404 struct ifnet * 405 ether_bridge_interface(struct ifnet *ifp) 406 { 407 if (bridge_interface_p) 408 return(bridge_interface_p(ifp->if_bridge)); 409 return (ifp); 410 } 411 412 /* 413 * Ethernet link layer output routine to send a raw frame to the device. 414 * 415 * This assumes that the 14 byte Ethernet header is present and contiguous 416 * in the first mbuf. 417 */ 418 int 419 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 420 { 421 struct ip_fw *rule = NULL; 422 int error = 0; 423 struct altq_pktattr pktattr; 424 425 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 426 427 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) { 428 struct m_tag *mtag; 429 430 /* Extract info from dummynet tag */ 431 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 432 KKASSERT(mtag != NULL); 433 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 434 KKASSERT(rule != NULL); 435 436 m_tag_delete(m, mtag); 437 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED; 438 } 439 440 if (ifq_is_enabled(&ifp->if_snd)) 441 altq_etherclassify(&ifp->if_snd, m, &pktattr); 442 crit_enter(); 443 if (IPFW_LOADED && ether_ipfw != 0) { 444 struct ether_header save_eh, *eh; 445 446 eh = mtod(m, struct ether_header *); 447 save_eh = *eh; 448 m_adj(m, ETHER_HDR_LEN); 449 if (!ether_ipfw_chk(&m, ifp, &rule, eh)) { 450 crit_exit(); 451 if (m != NULL) { 452 m_freem(m); 453 return ENOBUFS; /* pkt dropped */ 454 } else 455 return 0; /* consumed e.g. in a pipe */ 456 } 457 458 /* packet was ok, restore the ethernet header */ 459 ether_restore_header(&m, eh, &save_eh); 460 if (m == NULL) { 461 crit_exit(); 462 return ENOBUFS; 463 } 464 } 465 crit_exit(); 466 467 /* 468 * Queue message on interface, update output statistics if 469 * successful, and start output if interface not yet active. 470 */ 471 error = ifq_dispatch(ifp, m, &pktattr); 472 return (error); 473 } 474 475 /* 476 * ipfw processing for ethernet packets (in and out). 477 * The second parameter is NULL from ether_demux(), and ifp from 478 * ether_output_frame(). 479 */ 480 static boolean_t 481 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule, 482 const struct ether_header *eh) 483 { 484 struct ether_header save_eh = *eh; /* might be a ptr in *m0 */ 485 struct ip_fw_args args; 486 struct m_tag *mtag; 487 struct mbuf *m; 488 int i; 489 490 if (*rule != NULL && fw_one_pass) 491 return TRUE; /* dummynet packet, already partially processed */ 492 493 /* 494 * I need some amount of data to be contiguous. 495 */ 496 i = min((*m0)->m_pkthdr.len, max_protohdr); 497 if ((*m0)->m_len < i) { 498 *m0 = m_pullup(*m0, i); 499 if (*m0 == NULL) 500 return FALSE; 501 } 502 503 /* 504 * Clean up tags 505 */ 506 if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL) 507 m_tag_delete(*m0, mtag); 508 if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) { 509 mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL); 510 KKASSERT(mtag != NULL); 511 m_tag_delete(*m0, mtag); 512 (*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED; 513 } 514 515 args.m = *m0; /* the packet we are looking at */ 516 args.oif = dst; /* destination, if any */ 517 args.rule = *rule; /* matching rule to restart */ 518 args.eh = &save_eh; /* MAC header for bridged/MAC packets */ 519 i = ip_fw_chk_ptr(&args); 520 *m0 = args.m; 521 *rule = args.rule; 522 523 if (*m0 == NULL) 524 return FALSE; 525 526 switch (i) { 527 case IP_FW_PASS: 528 return TRUE; 529 530 case IP_FW_DIVERT: 531 case IP_FW_TEE: 532 case IP_FW_DENY: 533 /* 534 * XXX at some point add support for divert/forward actions. 535 * If none of the above matches, we have to drop the pkt. 536 */ 537 return FALSE; 538 539 case IP_FW_DUMMYNET: 540 /* 541 * Pass the pkt to dummynet, which consumes it. 542 */ 543 m = *m0; /* pass the original to dummynet */ 544 *m0 = NULL; /* and nothing back to the caller */ 545 546 ether_restore_header(&m, eh, &save_eh); 547 if (m == NULL) 548 return FALSE; 549 550 ip_fw_dn_io_ptr(m, args.cookie, 551 dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args); 552 ip_dn_queue(m); 553 return FALSE; 554 555 default: 556 panic("unknown ipfw return value: %d", i); 557 } 558 } 559 560 static void 561 ether_input(struct ifnet *ifp, struct mbuf *m) 562 { 563 ether_input_pkt(ifp, m, NULL); 564 } 565 566 /* 567 * Perform common duties while attaching to interface list 568 */ 569 void 570 ether_ifattach(struct ifnet *ifp, uint8_t *lla, lwkt_serialize_t serializer) 571 { 572 ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header), 573 serializer); 574 } 575 576 void 577 ether_ifattach_bpf(struct ifnet *ifp, uint8_t *lla, u_int dlt, u_int hdrlen, 578 lwkt_serialize_t serializer) 579 { 580 struct sockaddr_dl *sdl; 581 char ethstr[ETHER_ADDRSTRLEN + 1]; 582 583 ifp->if_type = IFT_ETHER; 584 ifp->if_addrlen = ETHER_ADDR_LEN; 585 ifp->if_hdrlen = ETHER_HDR_LEN; 586 if_attach(ifp, serializer); 587 ifp->if_mtu = ETHERMTU; 588 if (ifp->if_tsolen <= 0) { 589 if ((ether_tsolen_default / ETHERMTU) < 2) { 590 kprintf("ether TSO maxlen %d -> %d\n", 591 ether_tsolen_default, ETHER_TSOLEN_DEFAULT); 592 ether_tsolen_default = ETHER_TSOLEN_DEFAULT; 593 } 594 ifp->if_tsolen = ether_tsolen_default; 595 } 596 if (ifp->if_baudrate == 0) 597 ifp->if_baudrate = 10000000; 598 ifp->if_output = ether_output; 599 ifp->if_input = ether_input; 600 ifp->if_resolvemulti = ether_resolvemulti; 601 ifp->if_broadcastaddr = etherbroadcastaddr; 602 sdl = IF_LLSOCKADDR(ifp); 603 sdl->sdl_type = IFT_ETHER; 604 sdl->sdl_alen = ifp->if_addrlen; 605 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 606 /* 607 * XXX Keep the current drivers happy. 608 * XXX Remove once all drivers have been cleaned up 609 */ 610 if (lla != IFP2AC(ifp)->ac_enaddr) 611 bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen); 612 bpfattach(ifp, dlt, hdrlen); 613 if (ng_ether_attach_p != NULL) 614 (*ng_ether_attach_p)(ifp); 615 616 if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr)); 617 } 618 619 /* 620 * Perform common duties while detaching an Ethernet interface 621 */ 622 void 623 ether_ifdetach(struct ifnet *ifp) 624 { 625 if_down(ifp); 626 627 if (ng_ether_detach_p != NULL) 628 (*ng_ether_detach_p)(ifp); 629 bpfdetach(ifp); 630 if_detach(ifp); 631 } 632 633 int 634 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 635 { 636 struct ifaddr *ifa = (struct ifaddr *) data; 637 struct ifreq *ifr = (struct ifreq *) data; 638 int error = 0; 639 640 #define IF_INIT(ifp) \ 641 do { \ 642 if (((ifp)->if_flags & IFF_UP) == 0) { \ 643 (ifp)->if_flags |= IFF_UP; \ 644 (ifp)->if_init((ifp)->if_softc); \ 645 } \ 646 } while (0) 647 648 ASSERT_IFNET_SERIALIZED_ALL(ifp); 649 650 switch (command) { 651 case SIOCSIFADDR: 652 switch (ifa->ifa_addr->sa_family) { 653 #ifdef INET 654 case AF_INET: 655 IF_INIT(ifp); /* before arpwhohas */ 656 arp_ifinit(ifp, ifa); 657 break; 658 #endif 659 #ifdef IPX 660 /* 661 * XXX - This code is probably wrong 662 */ 663 case AF_IPX: 664 { 665 struct ipx_addr *ina = &IA_SIPX(ifa)->sipx_addr; 666 struct arpcom *ac = IFP2AC(ifp); 667 668 if (ipx_nullhost(*ina)) 669 ina->x_host = *(union ipx_host *) ac->ac_enaddr; 670 else 671 bcopy(ina->x_host.c_host, ac->ac_enaddr, 672 sizeof ac->ac_enaddr); 673 674 IF_INIT(ifp); /* Set new address. */ 675 break; 676 } 677 #endif 678 default: 679 IF_INIT(ifp); 680 break; 681 } 682 break; 683 684 case SIOCGIFADDR: 685 bcopy(IFP2AC(ifp)->ac_enaddr, 686 ((struct sockaddr *)ifr->ifr_data)->sa_data, 687 ETHER_ADDR_LEN); 688 break; 689 690 case SIOCSIFMTU: 691 /* 692 * Set the interface MTU. 693 */ 694 if (ifr->ifr_mtu > ETHERMTU) { 695 error = EINVAL; 696 } else { 697 ifp->if_mtu = ifr->ifr_mtu; 698 } 699 break; 700 default: 701 error = EINVAL; 702 break; 703 } 704 return (error); 705 706 #undef IF_INIT 707 } 708 709 int 710 ether_resolvemulti( 711 struct ifnet *ifp, 712 struct sockaddr **llsa, 713 struct sockaddr *sa) 714 { 715 struct sockaddr_dl *sdl; 716 #ifdef INET 717 struct sockaddr_in *sin; 718 #endif 719 #ifdef INET6 720 struct sockaddr_in6 *sin6; 721 #endif 722 u_char *e_addr; 723 724 switch(sa->sa_family) { 725 case AF_LINK: 726 /* 727 * No mapping needed. Just check that it's a valid MC address. 728 */ 729 sdl = (struct sockaddr_dl *)sa; 730 e_addr = LLADDR(sdl); 731 if ((e_addr[0] & 1) != 1) 732 return EADDRNOTAVAIL; 733 *llsa = NULL; 734 return 0; 735 736 #ifdef INET 737 case AF_INET: 738 sin = (struct sockaddr_in *)sa; 739 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 740 return EADDRNOTAVAIL; 741 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO); 742 sdl->sdl_len = sizeof *sdl; 743 sdl->sdl_family = AF_LINK; 744 sdl->sdl_index = ifp->if_index; 745 sdl->sdl_type = IFT_ETHER; 746 sdl->sdl_alen = ETHER_ADDR_LEN; 747 e_addr = LLADDR(sdl); 748 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 749 *llsa = (struct sockaddr *)sdl; 750 return 0; 751 #endif 752 #ifdef INET6 753 case AF_INET6: 754 sin6 = (struct sockaddr_in6 *)sa; 755 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 756 /* 757 * An IP6 address of 0 means listen to all 758 * of the Ethernet multicast address used for IP6. 759 * (This is used for multicast routers.) 760 */ 761 ifp->if_flags |= IFF_ALLMULTI; 762 *llsa = NULL; 763 return 0; 764 } 765 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 766 return EADDRNOTAVAIL; 767 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO); 768 sdl->sdl_len = sizeof *sdl; 769 sdl->sdl_family = AF_LINK; 770 sdl->sdl_index = ifp->if_index; 771 sdl->sdl_type = IFT_ETHER; 772 sdl->sdl_alen = ETHER_ADDR_LEN; 773 e_addr = LLADDR(sdl); 774 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 775 *llsa = (struct sockaddr *)sdl; 776 return 0; 777 #endif 778 779 default: 780 /* 781 * Well, the text isn't quite right, but it's the name 782 * that counts... 783 */ 784 return EAFNOSUPPORT; 785 } 786 } 787 788 #if 0 789 /* 790 * This is for reference. We have a table-driven version 791 * of the little-endian crc32 generator, which is faster 792 * than the double-loop. 793 */ 794 uint32_t 795 ether_crc32_le(const uint8_t *buf, size_t len) 796 { 797 uint32_t c, crc, carry; 798 size_t i, j; 799 800 crc = 0xffffffffU; /* initial value */ 801 802 for (i = 0; i < len; i++) { 803 c = buf[i]; 804 for (j = 0; j < 8; j++) { 805 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 806 crc >>= 1; 807 c >>= 1; 808 if (carry) 809 crc = (crc ^ ETHER_CRC_POLY_LE); 810 } 811 } 812 813 return (crc); 814 } 815 #else 816 uint32_t 817 ether_crc32_le(const uint8_t *buf, size_t len) 818 { 819 static const uint32_t crctab[] = { 820 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 821 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 822 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 823 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 824 }; 825 uint32_t crc; 826 size_t i; 827 828 crc = 0xffffffffU; /* initial value */ 829 830 for (i = 0; i < len; i++) { 831 crc ^= buf[i]; 832 crc = (crc >> 4) ^ crctab[crc & 0xf]; 833 crc = (crc >> 4) ^ crctab[crc & 0xf]; 834 } 835 836 return (crc); 837 } 838 #endif 839 840 uint32_t 841 ether_crc32_be(const uint8_t *buf, size_t len) 842 { 843 uint32_t c, crc, carry; 844 size_t i, j; 845 846 crc = 0xffffffffU; /* initial value */ 847 848 for (i = 0; i < len; i++) { 849 c = buf[i]; 850 for (j = 0; j < 8; j++) { 851 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 852 crc <<= 1; 853 c >>= 1; 854 if (carry) 855 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 856 } 857 } 858 859 return (crc); 860 } 861 862 /* 863 * find the size of ethernet header, and call classifier 864 */ 865 void 866 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m, 867 struct altq_pktattr *pktattr) 868 { 869 struct ether_header *eh; 870 uint16_t ether_type; 871 int hlen, af, hdrsize; 872 873 hlen = sizeof(struct ether_header); 874 eh = mtod(m, struct ether_header *); 875 876 ether_type = ntohs(eh->ether_type); 877 if (ether_type < ETHERMTU) { 878 /* ick! LLC/SNAP */ 879 struct llc *llc = (struct llc *)(eh + 1); 880 hlen += 8; 881 882 if (m->m_len < hlen || 883 llc->llc_dsap != LLC_SNAP_LSAP || 884 llc->llc_ssap != LLC_SNAP_LSAP || 885 llc->llc_control != LLC_UI) 886 goto bad; /* not snap! */ 887 888 ether_type = ntohs(llc->llc_un.type_snap.ether_type); 889 } 890 891 if (ether_type == ETHERTYPE_IP) { 892 af = AF_INET; 893 hdrsize = 20; /* sizeof(struct ip) */ 894 #ifdef INET6 895 } else if (ether_type == ETHERTYPE_IPV6) { 896 af = AF_INET6; 897 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 898 #endif 899 } else 900 goto bad; 901 902 while (m->m_len <= hlen) { 903 hlen -= m->m_len; 904 m = m->m_next; 905 } 906 if (m->m_len < hlen + hdrsize) { 907 /* 908 * ip header is not in a single mbuf. this should not 909 * happen in the current code. 910 * (todo: use m_pulldown in the future) 911 */ 912 goto bad; 913 } 914 m->m_data += hlen; 915 m->m_len -= hlen; 916 ifq_classify(ifq, m, af, pktattr); 917 m->m_data -= hlen; 918 m->m_len += hlen; 919 920 return; 921 922 bad: 923 pktattr->pattr_class = NULL; 924 pktattr->pattr_hdr = NULL; 925 pktattr->pattr_af = AF_UNSPEC; 926 } 927 928 static void 929 ether_restore_header(struct mbuf **m0, const struct ether_header *eh, 930 const struct ether_header *save_eh) 931 { 932 struct mbuf *m = *m0; 933 934 ether_restore_hdr++; 935 936 /* 937 * Prepend the header, optimize for the common case of 938 * eh pointing into the mbuf. 939 */ 940 if ((const void *)(eh + 1) == (void *)m->m_data) { 941 m->m_data -= ETHER_HDR_LEN; 942 m->m_len += ETHER_HDR_LEN; 943 m->m_pkthdr.len += ETHER_HDR_LEN; 944 } else { 945 ether_prepend_hdr++; 946 947 M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT); 948 if (m != NULL) { 949 bcopy(save_eh, mtod(m, struct ether_header *), 950 ETHER_HDR_LEN); 951 } 952 } 953 *m0 = m; 954 } 955 956 /* 957 * Upper layer processing for a received Ethernet packet. 958 */ 959 void 960 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m) 961 { 962 struct ether_header *eh; 963 int isr, discard = 0; 964 u_short ether_type; 965 struct ip_fw *rule = NULL; 966 967 M_ASSERTPKTHDR(m); 968 KASSERT(m->m_len >= ETHER_HDR_LEN, 969 ("ether header is not contiguous!")); 970 971 eh = mtod(m, struct ether_header *); 972 973 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) { 974 struct m_tag *mtag; 975 976 /* Extract info from dummynet tag */ 977 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 978 KKASSERT(mtag != NULL); 979 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 980 KKASSERT(rule != NULL); 981 982 m_tag_delete(m, mtag); 983 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED; 984 985 /* packet is passing the second time */ 986 goto post_stats; 987 } 988 989 /* 990 * We got a packet which was unicast to a different Ethernet 991 * address. If the driver is working properly, then this 992 * situation can only happen when the interface is in 993 * promiscuous mode. We defer the packet discarding until the 994 * vlan processing is done, so that vlan/bridge or vlan/netgraph 995 * could work. 996 */ 997 if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) && 998 !ETHER_IS_MULTICAST(eh->ether_dhost) && 999 bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) { 1000 if (ether_debug & 1) { 1001 kprintf("%02x:%02x:%02x:%02x:%02x:%02x " 1002 "%02x:%02x:%02x:%02x:%02x:%02x " 1003 "%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n", 1004 eh->ether_dhost[0], 1005 eh->ether_dhost[1], 1006 eh->ether_dhost[2], 1007 eh->ether_dhost[3], 1008 eh->ether_dhost[4], 1009 eh->ether_dhost[5], 1010 eh->ether_shost[0], 1011 eh->ether_shost[1], 1012 eh->ether_shost[2], 1013 eh->ether_shost[3], 1014 eh->ether_shost[4], 1015 eh->ether_shost[5], 1016 eh->ether_type, 1017 ((u_char *)IFP2AC(ifp)->ac_enaddr)[0], 1018 ((u_char *)IFP2AC(ifp)->ac_enaddr)[1], 1019 ((u_char *)IFP2AC(ifp)->ac_enaddr)[2], 1020 ((u_char *)IFP2AC(ifp)->ac_enaddr)[3], 1021 ((u_char *)IFP2AC(ifp)->ac_enaddr)[4], 1022 ((u_char *)IFP2AC(ifp)->ac_enaddr)[5] 1023 ); 1024 } 1025 if ((ether_debug & 2) == 0) 1026 discard = 1; 1027 } 1028 1029 post_stats: 1030 if (IPFW_LOADED && ether_ipfw != 0 && !discard) { 1031 struct ether_header save_eh = *eh; 1032 1033 /* XXX old crufty stuff, needs to be removed */ 1034 m_adj(m, sizeof(struct ether_header)); 1035 1036 if (!ether_ipfw_chk(&m, NULL, &rule, eh)) { 1037 m_freem(m); 1038 return; 1039 } 1040 1041 ether_restore_header(&m, eh, &save_eh); 1042 if (m == NULL) 1043 return; 1044 eh = mtod(m, struct ether_header *); 1045 } 1046 1047 ether_type = ntohs(eh->ether_type); 1048 KKASSERT(ether_type != ETHERTYPE_VLAN); 1049 1050 if (m->m_flags & M_VLANTAG) { 1051 void (*vlan_input_func)(struct mbuf *); 1052 1053 vlan_input_func = vlan_input_p; 1054 if (vlan_input_func != NULL) { 1055 vlan_input_func(m); 1056 } else { 1057 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1); 1058 m_freem(m); 1059 } 1060 return; 1061 } 1062 1063 /* 1064 * If we have been asked to discard this packet 1065 * (e.g. not for us), drop it before entering 1066 * the upper layer. 1067 */ 1068 if (discard) { 1069 m_freem(m); 1070 return; 1071 } 1072 1073 /* 1074 * Clear protocol specific flags, 1075 * before entering the upper layer. 1076 */ 1077 m->m_flags &= ~M_ETHER_FLAGS; 1078 1079 /* Strip ethernet header. */ 1080 m_adj(m, sizeof(struct ether_header)); 1081 1082 switch (ether_type) { 1083 #ifdef INET 1084 case ETHERTYPE_IP: 1085 if ((m->m_flags & M_LENCHECKED) == 0) { 1086 if (!ip_lengthcheck(&m, 0)) 1087 return; 1088 } 1089 if (ipflow_fastforward(m)) 1090 return; 1091 isr = NETISR_IP; 1092 break; 1093 1094 case ETHERTYPE_ARP: 1095 if (ifp->if_flags & IFF_NOARP) { 1096 /* Discard packet if ARP is disabled on interface */ 1097 m_freem(m); 1098 return; 1099 } 1100 isr = NETISR_ARP; 1101 break; 1102 #endif 1103 1104 #ifdef INET6 1105 case ETHERTYPE_IPV6: 1106 isr = NETISR_IPV6; 1107 break; 1108 #endif 1109 1110 #ifdef IPX 1111 case ETHERTYPE_IPX: 1112 if (ef_inputp) { 1113 /* 1114 * Hold BGL and recheck ef_inputp 1115 */ 1116 get_mplock(); 1117 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) { 1118 rel_mplock(); 1119 return; 1120 } 1121 rel_mplock(); 1122 } 1123 isr = NETISR_IPX; 1124 break; 1125 #endif 1126 1127 #ifdef MPLS 1128 case ETHERTYPE_MPLS: 1129 case ETHERTYPE_MPLS_MCAST: 1130 /* Should have been set by ether_input_pkt(). */ 1131 KKASSERT(m->m_flags & M_MPLSLABELED); 1132 isr = NETISR_MPLS; 1133 break; 1134 #endif 1135 1136 default: 1137 /* 1138 * The accurate msgport is not determined before 1139 * we reach here, so recharacterize packet. 1140 */ 1141 m->m_flags &= ~M_HASH; 1142 #ifdef IPX 1143 if (ef_inputp) { 1144 /* 1145 * Hold BGL and recheck ef_inputp 1146 */ 1147 get_mplock(); 1148 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) { 1149 rel_mplock(); 1150 return; 1151 } 1152 rel_mplock(); 1153 } 1154 #endif 1155 if (ng_ether_input_orphan_p != NULL) { 1156 /* 1157 * Put back the ethernet header so netgraph has a 1158 * consistent view of inbound packets. 1159 */ 1160 M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT); 1161 if (m == NULL) { 1162 /* 1163 * M_PREPEND frees the mbuf in case of failure. 1164 */ 1165 return; 1166 } 1167 /* 1168 * Hold BGL and recheck ng_ether_input_orphan_p 1169 */ 1170 get_mplock(); 1171 if (ng_ether_input_orphan_p != NULL) { 1172 ng_ether_input_orphan_p(ifp, m); 1173 rel_mplock(); 1174 return; 1175 } 1176 rel_mplock(); 1177 } 1178 m_freem(m); 1179 return; 1180 } 1181 1182 if (m->m_flags & M_HASH) { 1183 if (&curthread->td_msgport == 1184 netisr_hashport(m->m_pkthdr.hash)) { 1185 netisr_handle(isr, m); 1186 return; 1187 } else { 1188 /* 1189 * XXX Something is wrong, 1190 * we probably should panic here! 1191 */ 1192 m->m_flags &= ~M_HASH; 1193 atomic_add_long(ðer_input_wronghash, 1); 1194 } 1195 } 1196 #ifdef RSS_DEBUG 1197 atomic_add_long(ðer_input_requeue, 1); 1198 #endif 1199 netisr_queue(isr, m); 1200 } 1201 1202 /* 1203 * First we perform any link layer operations, then continue to the 1204 * upper layers with ether_demux_oncpu(). 1205 */ 1206 static void 1207 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m) 1208 { 1209 #ifdef CARP 1210 void *carp; 1211 #endif 1212 1213 if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) { 1214 /* 1215 * Receiving interface's flags are changed, when this 1216 * packet is waiting for processing; discard it. 1217 */ 1218 m_freem(m); 1219 return; 1220 } 1221 1222 /* 1223 * Tap the packet off here for a bridge. bridge_input() 1224 * will return NULL if it has consumed the packet, otherwise 1225 * it gets processed as normal. Note that bridge_input() 1226 * will always return the original packet if we need to 1227 * process it locally. 1228 */ 1229 if (ifp->if_bridge) { 1230 KASSERT(bridge_input_p != NULL, 1231 ("%s: if_bridge not loaded!", __func__)); 1232 1233 if(m->m_flags & M_ETHER_BRIDGED) { 1234 m->m_flags &= ~M_ETHER_BRIDGED; 1235 } else { 1236 m = bridge_input_p(ifp, m); 1237 if (m == NULL) 1238 return; 1239 1240 KASSERT(ifp == m->m_pkthdr.rcvif, 1241 ("bridge_input_p changed rcvif")); 1242 } 1243 } 1244 1245 #ifdef CARP 1246 carp = ifp->if_carp; 1247 if (carp) { 1248 m = carp_input(carp, m); 1249 if (m == NULL) 1250 return; 1251 KASSERT(ifp == m->m_pkthdr.rcvif, 1252 ("carp_input changed rcvif")); 1253 } 1254 #endif 1255 1256 /* Handle ng_ether(4) processing, if any */ 1257 if (ng_ether_input_p != NULL) { 1258 /* 1259 * Hold BGL and recheck ng_ether_input_p 1260 */ 1261 get_mplock(); 1262 if (ng_ether_input_p != NULL) 1263 ng_ether_input_p(ifp, &m); 1264 rel_mplock(); 1265 1266 if (m == NULL) 1267 return; 1268 } 1269 1270 /* Continue with upper layer processing */ 1271 ether_demux_oncpu(ifp, m); 1272 } 1273 1274 /* 1275 * Perform certain functions of ether_input_pkt(): 1276 * - Test IFF_UP 1277 * - Update statistics 1278 * - Run bpf(4) tap if requested 1279 * Then pass the packet to ether_input_oncpu(). 1280 * 1281 * This function should be used by pseudo interface (e.g. vlan(4)), 1282 * when it tries to claim that the packet is received by it. 1283 * 1284 * REINPUT_KEEPRCVIF 1285 * REINPUT_RUNBPF 1286 */ 1287 void 1288 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags) 1289 { 1290 /* Discard packet if interface is not up */ 1291 if (!(ifp->if_flags & IFF_UP)) { 1292 m_freem(m); 1293 return; 1294 } 1295 1296 /* 1297 * Change receiving interface. The bridge will often pass a flag to 1298 * ask that this not be done so ARPs get applied to the correct 1299 * side. 1300 */ 1301 if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 || 1302 m->m_pkthdr.rcvif == NULL) { 1303 m->m_pkthdr.rcvif = ifp; 1304 } 1305 1306 /* Update statistics */ 1307 IFNET_STAT_INC(ifp, ipackets, 1); 1308 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len); 1309 if (m->m_flags & (M_MCAST | M_BCAST)) 1310 IFNET_STAT_INC(ifp, imcasts, 1); 1311 1312 if (reinput_flags & REINPUT_RUNBPF) 1313 BPF_MTAP(ifp, m); 1314 1315 ether_input_oncpu(ifp, m); 1316 } 1317 1318 static __inline boolean_t 1319 ether_vlancheck(struct mbuf **m0) 1320 { 1321 struct mbuf *m = *m0; 1322 struct ether_header *eh; 1323 uint16_t ether_type; 1324 1325 eh = mtod(m, struct ether_header *); 1326 ether_type = ntohs(eh->ether_type); 1327 1328 if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) { 1329 /* 1330 * Extract vlan tag if hardware does not do it for us 1331 */ 1332 vlan_ether_decap(&m); 1333 if (m == NULL) 1334 goto failed; 1335 1336 eh = mtod(m, struct ether_header *); 1337 ether_type = ntohs(eh->ether_type); 1338 } 1339 1340 if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) { 1341 /* 1342 * To prevent possible dangerous recursion, 1343 * we don't do vlan-in-vlan 1344 */ 1345 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1); 1346 goto failed; 1347 } 1348 KKASSERT(ether_type != ETHERTYPE_VLAN); 1349 1350 m->m_flags |= M_ETHER_VLANCHECKED; 1351 *m0 = m; 1352 return TRUE; 1353 failed: 1354 if (m != NULL) 1355 m_freem(m); 1356 *m0 = NULL; 1357 return FALSE; 1358 } 1359 1360 static void 1361 ether_input_handler(netmsg_t nmsg) 1362 { 1363 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */ 1364 struct ether_header *eh; 1365 struct ifnet *ifp; 1366 struct mbuf *m; 1367 1368 m = nmp->nm_packet; 1369 M_ASSERTPKTHDR(m); 1370 1371 if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) { 1372 if (!ether_vlancheck(&m)) { 1373 KKASSERT(m == NULL); 1374 return; 1375 } 1376 } 1377 if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) || 1378 __predict_false(ether_input_ckhash)) { 1379 int isr; 1380 1381 /* 1382 * Need to verify the hash supplied by the hardware 1383 * which could be wrong. 1384 */ 1385 m->m_flags &= ~(M_HASH | M_CKHASH); 1386 isr = ether_characterize(&m); 1387 if (m == NULL) 1388 return; 1389 KKASSERT(m->m_flags & M_HASH); 1390 1391 if (netisr_hashcpu(m->m_pkthdr.hash) != mycpuid) { 1392 /* 1393 * Wrong hardware supplied hash; redispatch 1394 */ 1395 ether_dispatch(isr, m); 1396 if (__predict_false(ether_input_ckhash)) 1397 atomic_add_long(ðer_input_wronghwhash, 1); 1398 return; 1399 } 1400 } 1401 ifp = m->m_pkthdr.rcvif; 1402 1403 eh = mtod(m, struct ether_header *); 1404 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 1405 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost, 1406 ifp->if_addrlen) == 0) 1407 m->m_flags |= M_BCAST; 1408 else 1409 m->m_flags |= M_MCAST; 1410 IFNET_STAT_INC(ifp, imcasts, 1); 1411 } 1412 1413 ether_input_oncpu(ifp, m); 1414 } 1415 1416 /* 1417 * Send the packet to the target netisr msgport 1418 * 1419 * At this point the packet must be characterized (M_HASH set), 1420 * so we know which netisr to send it to. 1421 */ 1422 static void 1423 ether_dispatch(int isr, struct mbuf *m) 1424 { 1425 struct netmsg_packet *pmsg; 1426 1427 KKASSERT(m->m_flags & M_HASH); 1428 pmsg = &m->m_hdr.mh_netmsg; 1429 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 1430 0, ether_input_handler); 1431 pmsg->nm_packet = m; 1432 pmsg->base.lmsg.u.ms_result = isr; 1433 1434 logether(disp_beg, NULL); 1435 lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg); 1436 logether(disp_end, NULL); 1437 } 1438 1439 /* 1440 * Process a received Ethernet packet. 1441 * 1442 * The ethernet header is assumed to be in the mbuf so the caller 1443 * MUST MAKE SURE that there are at least sizeof(struct ether_header) 1444 * bytes in the first mbuf. 1445 */ 1446 void 1447 ether_input_pkt(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi) 1448 { 1449 int isr; 1450 1451 M_ASSERTPKTHDR(m); 1452 1453 /* Discard packet if interface is not up */ 1454 if (!(ifp->if_flags & IFF_UP)) { 1455 m_freem(m); 1456 return; 1457 } 1458 1459 if (m->m_len < sizeof(struct ether_header)) { 1460 /* XXX error in the caller. */ 1461 m_freem(m); 1462 return; 1463 } 1464 1465 m->m_pkthdr.rcvif = ifp; 1466 1467 logether(pkt_beg, ifp); 1468 1469 ETHER_BPF_MTAP(ifp, m); 1470 1471 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len); 1472 1473 if (ifp->if_flags & IFF_MONITOR) { 1474 struct ether_header *eh; 1475 1476 eh = mtod(m, struct ether_header *); 1477 if (ETHER_IS_MULTICAST(eh->ether_dhost)) 1478 IFNET_STAT_INC(ifp, imcasts, 1); 1479 1480 /* 1481 * Interface marked for monitoring; discard packet. 1482 */ 1483 m_freem(m); 1484 1485 logether(pkt_end, ifp); 1486 return; 1487 } 1488 1489 /* 1490 * If the packet has been characterized (pi->pi_netisr / M_HASH) 1491 * we can dispatch it immediately with trivial checks. 1492 */ 1493 if (pi != NULL && (m->m_flags & M_HASH)) { 1494 #ifdef RSS_DEBUG 1495 atomic_add_long(ðer_pktinfo_try, 1); 1496 #endif 1497 netisr_hashcheck(pi->pi_netisr, m, pi); 1498 if (m->m_flags & M_HASH) { 1499 ether_dispatch(pi->pi_netisr, m); 1500 #ifdef RSS_DEBUG 1501 atomic_add_long(ðer_pktinfo_hit, 1); 1502 #endif 1503 logether(pkt_end, ifp); 1504 return; 1505 } 1506 } 1507 #ifdef RSS_DEBUG 1508 else if (ifp->if_capenable & IFCAP_RSS) { 1509 if (pi == NULL) 1510 atomic_add_long(ðer_rss_nopi, 1); 1511 else 1512 atomic_add_long(ðer_rss_nohash, 1); 1513 } 1514 #endif 1515 1516 /* 1517 * Packet hash will be recalculated by software, so clear 1518 * the M_HASH and M_CKHASH flag set by the driver; the hash 1519 * value calculated by the hardware may not be exactly what 1520 * we want. 1521 */ 1522 m->m_flags &= ~(M_HASH | M_CKHASH); 1523 1524 if (!ether_vlancheck(&m)) { 1525 KKASSERT(m == NULL); 1526 logether(pkt_end, ifp); 1527 return; 1528 } 1529 1530 isr = ether_characterize(&m); 1531 if (m == NULL) { 1532 logether(pkt_end, ifp); 1533 return; 1534 } 1535 1536 /* 1537 * Finally dispatch it 1538 */ 1539 ether_dispatch(isr, m); 1540 1541 logether(pkt_end, ifp); 1542 } 1543 1544 static int 1545 ether_characterize(struct mbuf **m0) 1546 { 1547 struct mbuf *m = *m0; 1548 struct ether_header *eh; 1549 uint16_t ether_type; 1550 int isr; 1551 1552 eh = mtod(m, struct ether_header *); 1553 ether_type = ntohs(eh->ether_type); 1554 1555 /* 1556 * Map ether type to netisr id. 1557 */ 1558 switch (ether_type) { 1559 #ifdef INET 1560 case ETHERTYPE_IP: 1561 isr = NETISR_IP; 1562 break; 1563 1564 case ETHERTYPE_ARP: 1565 isr = NETISR_ARP; 1566 break; 1567 #endif 1568 1569 #ifdef INET6 1570 case ETHERTYPE_IPV6: 1571 isr = NETISR_IPV6; 1572 break; 1573 #endif 1574 1575 #ifdef IPX 1576 case ETHERTYPE_IPX: 1577 isr = NETISR_IPX; 1578 break; 1579 #endif 1580 1581 #ifdef MPLS 1582 case ETHERTYPE_MPLS: 1583 case ETHERTYPE_MPLS_MCAST: 1584 m->m_flags |= M_MPLSLABELED; 1585 isr = NETISR_MPLS; 1586 break; 1587 #endif 1588 1589 default: 1590 /* 1591 * NETISR_MAX is an invalid value; it is chosen to let 1592 * netisr_characterize() know that we have no clear 1593 * idea where this packet should go. 1594 */ 1595 isr = NETISR_MAX; 1596 break; 1597 } 1598 1599 /* 1600 * Ask the isr to characterize the packet since we couldn't. 1601 * This is an attempt to optimally get us onto the correct protocol 1602 * thread. 1603 */ 1604 netisr_characterize(isr, &m, sizeof(struct ether_header)); 1605 1606 *m0 = m; 1607 return isr; 1608 } 1609 1610 static void 1611 ether_demux_handler(netmsg_t nmsg) 1612 { 1613 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */ 1614 struct ifnet *ifp; 1615 struct mbuf *m; 1616 1617 m = nmp->nm_packet; 1618 M_ASSERTPKTHDR(m); 1619 ifp = m->m_pkthdr.rcvif; 1620 1621 ether_demux_oncpu(ifp, m); 1622 } 1623 1624 void 1625 ether_demux(struct mbuf *m) 1626 { 1627 struct netmsg_packet *pmsg; 1628 int isr; 1629 1630 isr = ether_characterize(&m); 1631 if (m == NULL) 1632 return; 1633 1634 KKASSERT(m->m_flags & M_HASH); 1635 pmsg = &m->m_hdr.mh_netmsg; 1636 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 1637 0, ether_demux_handler); 1638 pmsg->nm_packet = m; 1639 pmsg->base.lmsg.u.ms_result = isr; 1640 1641 lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg); 1642 } 1643 1644 u_char * 1645 kether_aton(const char *macstr, u_char *addr) 1646 { 1647 unsigned int o0, o1, o2, o3, o4, o5; 1648 int n; 1649 1650 if (macstr == NULL || addr == NULL) 1651 return NULL; 1652 1653 n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2, 1654 &o3, &o4, &o5); 1655 if (n != 6) 1656 return NULL; 1657 1658 addr[0] = o0; 1659 addr[1] = o1; 1660 addr[2] = o2; 1661 addr[3] = o3; 1662 addr[4] = o4; 1663 addr[5] = o5; 1664 1665 return addr; 1666 } 1667 1668 char * 1669 kether_ntoa(const u_char *addr, char *buf) 1670 { 1671 int len = ETHER_ADDRSTRLEN + 1; 1672 int n; 1673 1674 n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0], 1675 addr[1], addr[2], addr[3], addr[4], addr[5]); 1676 1677 if (n < 17) 1678 return NULL; 1679 1680 return buf; 1681 } 1682 1683 MODULE_VERSION(ether, 1); 1684