1 /* 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $ 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipx.h" 40 #include "opt_mpls.h" 41 #include "opt_netgraph.h" 42 #include "opt_carp.h" 43 #include "opt_rss.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/globaldata.h> 48 #include <sys/kernel.h> 49 #include <sys/ktr.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/msgport.h> 54 #include <sys/socket.h> 55 #include <sys/sockio.h> 56 #include <sys/sysctl.h> 57 #include <sys/thread.h> 58 59 #include <sys/thread2.h> 60 #include <sys/mplock2.h> 61 62 #include <net/if.h> 63 #include <net/netisr.h> 64 #include <net/route.h> 65 #include <net/if_llc.h> 66 #include <net/if_dl.h> 67 #include <net/if_types.h> 68 #include <net/ifq_var.h> 69 #include <net/bpf.h> 70 #include <net/ethernet.h> 71 #include <net/vlan/if_vlan_ether.h> 72 #include <net/vlan/if_vlan_var.h> 73 #include <net/netmsg2.h> 74 75 #if defined(INET) || defined(INET6) 76 #include <netinet/in.h> 77 #include <netinet/ip_var.h> 78 #include <netinet/tcp_var.h> 79 #include <netinet/if_ether.h> 80 #include <netinet/ip_flow.h> 81 #include <net/ipfw/ip_fw.h> 82 #include <net/dummynet/ip_dummynet.h> 83 #endif 84 #ifdef INET6 85 #include <netinet6/nd6.h> 86 #endif 87 88 #ifdef CARP 89 #include <netinet/ip_carp.h> 90 #endif 91 92 #ifdef IPX 93 #include <netproto/ipx/ipx.h> 94 #include <netproto/ipx/ipx_if.h> 95 int (*ef_inputp)(struct ifnet*, const struct ether_header *eh, struct mbuf *m); 96 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst, 97 short *tp, int *hlen); 98 #endif 99 100 #ifdef MPLS 101 #include <netproto/mpls/mpls.h> 102 #endif 103 104 /* netgraph node hooks for ng_ether(4) */ 105 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 106 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); 107 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 108 void (*ng_ether_attach_p)(struct ifnet *ifp); 109 void (*ng_ether_detach_p)(struct ifnet *ifp); 110 111 void (*vlan_input_p)(struct mbuf *); 112 113 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *, 114 struct rtentry *); 115 static void ether_restore_header(struct mbuf **, const struct ether_header *, 116 const struct ether_header *); 117 static int ether_characterize(struct mbuf **); 118 static void ether_dispatch(int, struct mbuf *); 119 120 /* 121 * if_bridge support 122 */ 123 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 124 int (*bridge_output_p)(struct ifnet *, struct mbuf *); 125 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 126 struct ifnet *(*bridge_interface_p)(void *if_bridge); 127 128 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 129 struct sockaddr *); 130 131 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = { 132 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 133 }; 134 135 #define gotoerr(e) do { error = (e); goto bad; } while (0) 136 #define IFP2AC(ifp) ((struct arpcom *)(ifp)) 137 138 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, 139 struct ip_fw **rule, 140 const struct ether_header *eh); 141 142 static int ether_ipfw; 143 static u_long ether_restore_hdr; 144 static u_long ether_prepend_hdr; 145 static u_long ether_input_wronghash; 146 static int ether_debug; 147 148 #ifdef RSS_DEBUG 149 static u_long ether_pktinfo_try; 150 static u_long ether_pktinfo_hit; 151 static u_long ether_rss_nopi; 152 static u_long ether_rss_nohash; 153 static u_long ether_input_requeue; 154 static u_long ether_input_wronghwhash; 155 static int ether_input_ckhash; 156 #endif 157 158 SYSCTL_DECL(_net_link); 159 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 160 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW, 161 ðer_debug, 0, "Ether debug"); 162 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW, 163 ðer_ipfw, 0, "Pass ether pkts through firewall"); 164 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW, 165 ðer_restore_hdr, 0, "# of ether header restoration"); 166 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW, 167 ðer_prepend_hdr, 0, 168 "# of ether header restoration which prepends mbuf"); 169 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW, 170 ðer_input_wronghash, 0, "# of input packets with wrong hash"); 171 #ifdef RSS_DEBUG 172 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW, 173 ðer_rss_nopi, 0, "# of packets do not have pktinfo"); 174 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW, 175 ðer_rss_nohash, 0, "# of packets do not have hash"); 176 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW, 177 ðer_pktinfo_try, 0, 178 "# of tries to find packets' msgport using pktinfo"); 179 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW, 180 ðer_pktinfo_hit, 0, 181 "# of packets whose msgport are found using pktinfo"); 182 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW, 183 ðer_input_requeue, 0, "# of input packets gets requeued"); 184 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW, 185 ðer_input_wronghwhash, 0, "# of input packets with wrong hw hash"); 186 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW, 187 ðer_input_ckhash, 0, "always check hash"); 188 #endif 189 190 #define ETHER_KTR_STR "ifp=%p" 191 #define ETHER_KTR_ARGS struct ifnet *ifp 192 #ifndef KTR_ETHERNET 193 #define KTR_ETHERNET KTR_ALL 194 #endif 195 KTR_INFO_MASTER(ether); 196 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS); 197 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS); 198 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS); 199 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS); 200 #define logether(name, arg) KTR_LOG(ether_ ## name, arg) 201 202 /* 203 * Ethernet output routine. 204 * Encapsulate a packet of type family for the local net. 205 * Use trailer local net encapsulation if enough data in first 206 * packet leaves a multiple of 512 bytes of data in remainder. 207 * Assumes that ifp is actually pointer to arpcom structure. 208 */ 209 static int 210 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, 211 struct rtentry *rt) 212 { 213 struct ether_header *eh, *deh; 214 u_char *edst; 215 int loop_copy = 0; 216 int hlen = ETHER_HDR_LEN; /* link layer header length */ 217 struct arpcom *ac = IFP2AC(ifp); 218 int error; 219 220 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 221 222 if (ifp->if_flags & IFF_MONITOR) 223 gotoerr(ENETDOWN); 224 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 225 gotoerr(ENETDOWN); 226 227 M_PREPEND(m, sizeof(struct ether_header), MB_DONTWAIT); 228 if (m == NULL) 229 return (ENOBUFS); 230 m->m_pkthdr.csum_lhlen = sizeof(struct ether_header); 231 eh = mtod(m, struct ether_header *); 232 edst = eh->ether_dhost; 233 234 /* 235 * Fill in the destination ethernet address and frame type. 236 */ 237 switch (dst->sa_family) { 238 #ifdef INET 239 case AF_INET: 240 if (!arpresolve(ifp, rt, m, dst, edst)) 241 return (0); /* if not yet resolved */ 242 #ifdef MPLS 243 if (m->m_flags & M_MPLSLABELED) 244 eh->ether_type = htons(ETHERTYPE_MPLS); 245 else 246 #endif 247 eh->ether_type = htons(ETHERTYPE_IP); 248 break; 249 #endif 250 #ifdef INET6 251 case AF_INET6: 252 if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst)) 253 return (0); /* Something bad happenned. */ 254 eh->ether_type = htons(ETHERTYPE_IPV6); 255 break; 256 #endif 257 #ifdef IPX 258 case AF_IPX: 259 if (ef_outputp != NULL) { 260 /* 261 * Hold BGL and recheck ef_outputp 262 */ 263 get_mplock(); 264 if (ef_outputp != NULL) { 265 error = ef_outputp(ifp, &m, dst, 266 &eh->ether_type, &hlen); 267 rel_mplock(); 268 if (error) 269 goto bad; 270 else 271 break; 272 } 273 rel_mplock(); 274 } 275 eh->ether_type = htons(ETHERTYPE_IPX); 276 bcopy(&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host), 277 edst, ETHER_ADDR_LEN); 278 break; 279 #endif 280 case pseudo_AF_HDRCMPLT: 281 case AF_UNSPEC: 282 loop_copy = -1; /* if this is for us, don't do it */ 283 deh = (struct ether_header *)dst->sa_data; 284 memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN); 285 eh->ether_type = deh->ether_type; 286 break; 287 288 default: 289 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 290 gotoerr(EAFNOSUPPORT); 291 } 292 293 if (dst->sa_family == pseudo_AF_HDRCMPLT) /* unlikely */ 294 memcpy(eh->ether_shost, 295 ((struct ether_header *)dst->sa_data)->ether_shost, 296 ETHER_ADDR_LEN); 297 else 298 memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN); 299 300 /* 301 * Bridges require special output handling. 302 */ 303 if (ifp->if_bridge) { 304 KASSERT(bridge_output_p != NULL, 305 ("%s: if_bridge not loaded!", __func__)); 306 return bridge_output_p(ifp, m); 307 } 308 309 /* 310 * If a simplex interface, and the packet is being sent to our 311 * Ethernet address or a broadcast address, loopback a copy. 312 * XXX To make a simplex device behave exactly like a duplex 313 * device, we should copy in the case of sending to our own 314 * ethernet address (thus letting the original actually appear 315 * on the wire). However, we don't do that here for security 316 * reasons and compatibility with the original behavior. 317 */ 318 if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) { 319 int csum_flags = 0; 320 321 if (m->m_pkthdr.csum_flags & CSUM_IP) 322 csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); 323 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 324 csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 325 if ((m->m_flags & M_BCAST) || (loop_copy > 0)) { 326 struct mbuf *n; 327 328 if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) { 329 n->m_pkthdr.csum_flags |= csum_flags; 330 if (csum_flags & CSUM_DATA_VALID) 331 n->m_pkthdr.csum_data = 0xffff; 332 if_simloop(ifp, n, dst->sa_family, hlen); 333 } else 334 ifp->if_iqdrops++; 335 } else if (bcmp(eh->ether_dhost, eh->ether_shost, 336 ETHER_ADDR_LEN) == 0) { 337 m->m_pkthdr.csum_flags |= csum_flags; 338 if (csum_flags & CSUM_DATA_VALID) 339 m->m_pkthdr.csum_data = 0xffff; 340 if_simloop(ifp, m, dst->sa_family, hlen); 341 return (0); /* XXX */ 342 } 343 } 344 345 #ifdef CARP 346 if (ifp->if_type == IFT_CARP) { 347 ifp = carp_parent(ifp); 348 if (ifp == NULL) 349 gotoerr(ENETUNREACH); 350 351 ac = IFP2AC(ifp); 352 353 /* 354 * Check precondition again 355 */ 356 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 357 358 if (ifp->if_flags & IFF_MONITOR) 359 gotoerr(ENETDOWN); 360 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 361 (IFF_UP | IFF_RUNNING)) 362 gotoerr(ENETDOWN); 363 } 364 #endif 365 366 /* Handle ng_ether(4) processing, if any */ 367 if (ng_ether_output_p != NULL) { 368 /* 369 * Hold BGL and recheck ng_ether_output_p 370 */ 371 get_mplock(); 372 if (ng_ether_output_p != NULL) { 373 if ((error = ng_ether_output_p(ifp, &m)) != 0) { 374 rel_mplock(); 375 goto bad; 376 } 377 if (m == NULL) { 378 rel_mplock(); 379 return (0); 380 } 381 } 382 rel_mplock(); 383 } 384 385 /* Continue with link-layer output */ 386 return ether_output_frame(ifp, m); 387 388 bad: 389 m_freem(m); 390 return (error); 391 } 392 393 /* 394 * Returns the bridge interface an ifp is associated 395 * with. 396 * 397 * Only call if ifp->if_bridge != NULL. 398 */ 399 struct ifnet * 400 ether_bridge_interface(struct ifnet *ifp) 401 { 402 if (bridge_interface_p) 403 return(bridge_interface_p(ifp->if_bridge)); 404 return (ifp); 405 } 406 407 /* 408 * Ethernet link layer output routine to send a raw frame to the device. 409 * 410 * This assumes that the 14 byte Ethernet header is present and contiguous 411 * in the first mbuf. 412 */ 413 int 414 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 415 { 416 struct ip_fw *rule = NULL; 417 int error = 0; 418 struct altq_pktattr pktattr; 419 420 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp); 421 422 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) { 423 struct m_tag *mtag; 424 425 /* Extract info from dummynet tag */ 426 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 427 KKASSERT(mtag != NULL); 428 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 429 KKASSERT(rule != NULL); 430 431 m_tag_delete(m, mtag); 432 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED; 433 } 434 435 if (ifq_is_enabled(&ifp->if_snd)) 436 altq_etherclassify(&ifp->if_snd, m, &pktattr); 437 crit_enter(); 438 if (IPFW_LOADED && ether_ipfw != 0) { 439 struct ether_header save_eh, *eh; 440 441 eh = mtod(m, struct ether_header *); 442 save_eh = *eh; 443 m_adj(m, ETHER_HDR_LEN); 444 if (!ether_ipfw_chk(&m, ifp, &rule, eh)) { 445 crit_exit(); 446 if (m != NULL) { 447 m_freem(m); 448 return ENOBUFS; /* pkt dropped */ 449 } else 450 return 0; /* consumed e.g. in a pipe */ 451 } 452 453 /* packet was ok, restore the ethernet header */ 454 ether_restore_header(&m, eh, &save_eh); 455 if (m == NULL) { 456 crit_exit(); 457 return ENOBUFS; 458 } 459 } 460 crit_exit(); 461 462 /* 463 * Queue message on interface, update output statistics if 464 * successful, and start output if interface not yet active. 465 */ 466 error = ifq_dispatch(ifp, m, &pktattr); 467 return (error); 468 } 469 470 /* 471 * ipfw processing for ethernet packets (in and out). 472 * The second parameter is NULL from ether_demux(), and ifp from 473 * ether_output_frame(). 474 */ 475 static boolean_t 476 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule, 477 const struct ether_header *eh) 478 { 479 struct ether_header save_eh = *eh; /* might be a ptr in *m0 */ 480 struct ip_fw_args args; 481 struct m_tag *mtag; 482 struct mbuf *m; 483 int i; 484 485 if (*rule != NULL && fw_one_pass) 486 return TRUE; /* dummynet packet, already partially processed */ 487 488 /* 489 * I need some amount of data to be contiguous. 490 */ 491 i = min((*m0)->m_pkthdr.len, max_protohdr); 492 if ((*m0)->m_len < i) { 493 *m0 = m_pullup(*m0, i); 494 if (*m0 == NULL) 495 return FALSE; 496 } 497 498 /* 499 * Clean up tags 500 */ 501 if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL) 502 m_tag_delete(*m0, mtag); 503 if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) { 504 mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL); 505 KKASSERT(mtag != NULL); 506 m_tag_delete(*m0, mtag); 507 (*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED; 508 } 509 510 args.m = *m0; /* the packet we are looking at */ 511 args.oif = dst; /* destination, if any */ 512 args.rule = *rule; /* matching rule to restart */ 513 args.eh = &save_eh; /* MAC header for bridged/MAC packets */ 514 i = ip_fw_chk_ptr(&args); 515 *m0 = args.m; 516 *rule = args.rule; 517 518 if (*m0 == NULL) 519 return FALSE; 520 521 switch (i) { 522 case IP_FW_PASS: 523 return TRUE; 524 525 case IP_FW_DIVERT: 526 case IP_FW_TEE: 527 case IP_FW_DENY: 528 /* 529 * XXX at some point add support for divert/forward actions. 530 * If none of the above matches, we have to drop the pkt. 531 */ 532 return FALSE; 533 534 case IP_FW_DUMMYNET: 535 /* 536 * Pass the pkt to dummynet, which consumes it. 537 */ 538 m = *m0; /* pass the original to dummynet */ 539 *m0 = NULL; /* and nothing back to the caller */ 540 541 ether_restore_header(&m, eh, &save_eh); 542 if (m == NULL) 543 return FALSE; 544 545 ip_fw_dn_io_ptr(m, args.cookie, 546 dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args); 547 ip_dn_queue(m); 548 return FALSE; 549 550 default: 551 panic("unknown ipfw return value: %d", i); 552 } 553 } 554 555 static void 556 ether_input(struct ifnet *ifp, struct mbuf *m) 557 { 558 ether_input_pkt(ifp, m, NULL); 559 } 560 561 /* 562 * Perform common duties while attaching to interface list 563 */ 564 void 565 ether_ifattach(struct ifnet *ifp, uint8_t *lla, lwkt_serialize_t serializer) 566 { 567 ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header), 568 serializer); 569 } 570 571 void 572 ether_ifattach_bpf(struct ifnet *ifp, uint8_t *lla, u_int dlt, u_int hdrlen, 573 lwkt_serialize_t serializer) 574 { 575 struct sockaddr_dl *sdl; 576 577 ifp->if_type = IFT_ETHER; 578 ifp->if_addrlen = ETHER_ADDR_LEN; 579 ifp->if_hdrlen = ETHER_HDR_LEN; 580 if_attach(ifp, serializer); 581 ifp->if_mtu = ETHERMTU; 582 if (ifp->if_baudrate == 0) 583 ifp->if_baudrate = 10000000; 584 ifp->if_output = ether_output; 585 ifp->if_input = ether_input; 586 ifp->if_resolvemulti = ether_resolvemulti; 587 ifp->if_broadcastaddr = etherbroadcastaddr; 588 sdl = IF_LLSOCKADDR(ifp); 589 sdl->sdl_type = IFT_ETHER; 590 sdl->sdl_alen = ifp->if_addrlen; 591 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 592 /* 593 * XXX Keep the current drivers happy. 594 * XXX Remove once all drivers have been cleaned up 595 */ 596 if (lla != IFP2AC(ifp)->ac_enaddr) 597 bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen); 598 bpfattach(ifp, dlt, hdrlen); 599 if (ng_ether_attach_p != NULL) 600 (*ng_ether_attach_p)(ifp); 601 602 if_printf(ifp, "MAC address: %6D\n", lla, ":"); 603 } 604 605 /* 606 * Perform common duties while detaching an Ethernet interface 607 */ 608 void 609 ether_ifdetach(struct ifnet *ifp) 610 { 611 if_down(ifp); 612 613 if (ng_ether_detach_p != NULL) 614 (*ng_ether_detach_p)(ifp); 615 bpfdetach(ifp); 616 if_detach(ifp); 617 } 618 619 int 620 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 621 { 622 struct ifaddr *ifa = (struct ifaddr *) data; 623 struct ifreq *ifr = (struct ifreq *) data; 624 int error = 0; 625 626 #define IF_INIT(ifp) \ 627 do { \ 628 if (((ifp)->if_flags & IFF_UP) == 0) { \ 629 (ifp)->if_flags |= IFF_UP; \ 630 (ifp)->if_init((ifp)->if_softc); \ 631 } \ 632 } while (0) 633 634 ASSERT_IFNET_SERIALIZED_ALL(ifp); 635 636 switch (command) { 637 case SIOCSIFADDR: 638 switch (ifa->ifa_addr->sa_family) { 639 #ifdef INET 640 case AF_INET: 641 IF_INIT(ifp); /* before arpwhohas */ 642 arp_ifinit(ifp, ifa); 643 break; 644 #endif 645 #ifdef IPX 646 /* 647 * XXX - This code is probably wrong 648 */ 649 case AF_IPX: 650 { 651 struct ipx_addr *ina = &IA_SIPX(ifa)->sipx_addr; 652 struct arpcom *ac = IFP2AC(ifp); 653 654 if (ipx_nullhost(*ina)) 655 ina->x_host = *(union ipx_host *) ac->ac_enaddr; 656 else 657 bcopy(ina->x_host.c_host, ac->ac_enaddr, 658 sizeof ac->ac_enaddr); 659 660 IF_INIT(ifp); /* Set new address. */ 661 break; 662 } 663 #endif 664 default: 665 IF_INIT(ifp); 666 break; 667 } 668 break; 669 670 case SIOCGIFADDR: 671 bcopy(IFP2AC(ifp)->ac_enaddr, 672 ((struct sockaddr *)ifr->ifr_data)->sa_data, 673 ETHER_ADDR_LEN); 674 break; 675 676 case SIOCSIFMTU: 677 /* 678 * Set the interface MTU. 679 */ 680 if (ifr->ifr_mtu > ETHERMTU) { 681 error = EINVAL; 682 } else { 683 ifp->if_mtu = ifr->ifr_mtu; 684 } 685 break; 686 default: 687 error = EINVAL; 688 break; 689 } 690 return (error); 691 692 #undef IF_INIT 693 } 694 695 int 696 ether_resolvemulti( 697 struct ifnet *ifp, 698 struct sockaddr **llsa, 699 struct sockaddr *sa) 700 { 701 struct sockaddr_dl *sdl; 702 #ifdef INET 703 struct sockaddr_in *sin; 704 #endif 705 #ifdef INET6 706 struct sockaddr_in6 *sin6; 707 #endif 708 u_char *e_addr; 709 710 switch(sa->sa_family) { 711 case AF_LINK: 712 /* 713 * No mapping needed. Just check that it's a valid MC address. 714 */ 715 sdl = (struct sockaddr_dl *)sa; 716 e_addr = LLADDR(sdl); 717 if ((e_addr[0] & 1) != 1) 718 return EADDRNOTAVAIL; 719 *llsa = NULL; 720 return 0; 721 722 #ifdef INET 723 case AF_INET: 724 sin = (struct sockaddr_in *)sa; 725 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 726 return EADDRNOTAVAIL; 727 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO); 728 sdl->sdl_len = sizeof *sdl; 729 sdl->sdl_family = AF_LINK; 730 sdl->sdl_index = ifp->if_index; 731 sdl->sdl_type = IFT_ETHER; 732 sdl->sdl_alen = ETHER_ADDR_LEN; 733 e_addr = LLADDR(sdl); 734 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 735 *llsa = (struct sockaddr *)sdl; 736 return 0; 737 #endif 738 #ifdef INET6 739 case AF_INET6: 740 sin6 = (struct sockaddr_in6 *)sa; 741 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 742 /* 743 * An IP6 address of 0 means listen to all 744 * of the Ethernet multicast address used for IP6. 745 * (This is used for multicast routers.) 746 */ 747 ifp->if_flags |= IFF_ALLMULTI; 748 *llsa = NULL; 749 return 0; 750 } 751 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 752 return EADDRNOTAVAIL; 753 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO); 754 sdl->sdl_len = sizeof *sdl; 755 sdl->sdl_family = AF_LINK; 756 sdl->sdl_index = ifp->if_index; 757 sdl->sdl_type = IFT_ETHER; 758 sdl->sdl_alen = ETHER_ADDR_LEN; 759 e_addr = LLADDR(sdl); 760 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 761 *llsa = (struct sockaddr *)sdl; 762 return 0; 763 #endif 764 765 default: 766 /* 767 * Well, the text isn't quite right, but it's the name 768 * that counts... 769 */ 770 return EAFNOSUPPORT; 771 } 772 } 773 774 #if 0 775 /* 776 * This is for reference. We have a table-driven version 777 * of the little-endian crc32 generator, which is faster 778 * than the double-loop. 779 */ 780 uint32_t 781 ether_crc32_le(const uint8_t *buf, size_t len) 782 { 783 uint32_t c, crc, carry; 784 size_t i, j; 785 786 crc = 0xffffffffU; /* initial value */ 787 788 for (i = 0; i < len; i++) { 789 c = buf[i]; 790 for (j = 0; j < 8; j++) { 791 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 792 crc >>= 1; 793 c >>= 1; 794 if (carry) 795 crc = (crc ^ ETHER_CRC_POLY_LE); 796 } 797 } 798 799 return (crc); 800 } 801 #else 802 uint32_t 803 ether_crc32_le(const uint8_t *buf, size_t len) 804 { 805 static const uint32_t crctab[] = { 806 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 807 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 808 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 809 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 810 }; 811 uint32_t crc; 812 size_t i; 813 814 crc = 0xffffffffU; /* initial value */ 815 816 for (i = 0; i < len; i++) { 817 crc ^= buf[i]; 818 crc = (crc >> 4) ^ crctab[crc & 0xf]; 819 crc = (crc >> 4) ^ crctab[crc & 0xf]; 820 } 821 822 return (crc); 823 } 824 #endif 825 826 uint32_t 827 ether_crc32_be(const uint8_t *buf, size_t len) 828 { 829 uint32_t c, crc, carry; 830 size_t i, j; 831 832 crc = 0xffffffffU; /* initial value */ 833 834 for (i = 0; i < len; i++) { 835 c = buf[i]; 836 for (j = 0; j < 8; j++) { 837 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 838 crc <<= 1; 839 c >>= 1; 840 if (carry) 841 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 842 } 843 } 844 845 return (crc); 846 } 847 848 /* 849 * find the size of ethernet header, and call classifier 850 */ 851 void 852 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m, 853 struct altq_pktattr *pktattr) 854 { 855 struct ether_header *eh; 856 uint16_t ether_type; 857 int hlen, af, hdrsize; 858 caddr_t hdr; 859 860 hlen = sizeof(struct ether_header); 861 eh = mtod(m, struct ether_header *); 862 863 ether_type = ntohs(eh->ether_type); 864 if (ether_type < ETHERMTU) { 865 /* ick! LLC/SNAP */ 866 struct llc *llc = (struct llc *)(eh + 1); 867 hlen += 8; 868 869 if (m->m_len < hlen || 870 llc->llc_dsap != LLC_SNAP_LSAP || 871 llc->llc_ssap != LLC_SNAP_LSAP || 872 llc->llc_control != LLC_UI) 873 goto bad; /* not snap! */ 874 875 ether_type = ntohs(llc->llc_un.type_snap.ether_type); 876 } 877 878 if (ether_type == ETHERTYPE_IP) { 879 af = AF_INET; 880 hdrsize = 20; /* sizeof(struct ip) */ 881 #ifdef INET6 882 } else if (ether_type == ETHERTYPE_IPV6) { 883 af = AF_INET6; 884 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 885 #endif 886 } else 887 goto bad; 888 889 while (m->m_len <= hlen) { 890 hlen -= m->m_len; 891 m = m->m_next; 892 } 893 hdr = m->m_data + hlen; 894 if (m->m_len < hlen + hdrsize) { 895 /* 896 * ip header is not in a single mbuf. this should not 897 * happen in the current code. 898 * (todo: use m_pulldown in the future) 899 */ 900 goto bad; 901 } 902 m->m_data += hlen; 903 m->m_len -= hlen; 904 ifq_classify(ifq, m, af, pktattr); 905 m->m_data -= hlen; 906 m->m_len += hlen; 907 908 return; 909 910 bad: 911 pktattr->pattr_class = NULL; 912 pktattr->pattr_hdr = NULL; 913 pktattr->pattr_af = AF_UNSPEC; 914 } 915 916 static void 917 ether_restore_header(struct mbuf **m0, const struct ether_header *eh, 918 const struct ether_header *save_eh) 919 { 920 struct mbuf *m = *m0; 921 922 ether_restore_hdr++; 923 924 /* 925 * Prepend the header, optimize for the common case of 926 * eh pointing into the mbuf. 927 */ 928 if ((const void *)(eh + 1) == (void *)m->m_data) { 929 m->m_data -= ETHER_HDR_LEN; 930 m->m_len += ETHER_HDR_LEN; 931 m->m_pkthdr.len += ETHER_HDR_LEN; 932 } else { 933 ether_prepend_hdr++; 934 935 M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT); 936 if (m != NULL) { 937 bcopy(save_eh, mtod(m, struct ether_header *), 938 ETHER_HDR_LEN); 939 } 940 } 941 *m0 = m; 942 } 943 944 /* 945 * Upper layer processing for a received Ethernet packet. 946 */ 947 void 948 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m) 949 { 950 struct ether_header *eh; 951 int isr, discard = 0; 952 u_short ether_type; 953 struct ip_fw *rule = NULL; 954 955 M_ASSERTPKTHDR(m); 956 KASSERT(m->m_len >= ETHER_HDR_LEN, 957 ("ether header is not contiguous!")); 958 959 eh = mtod(m, struct ether_header *); 960 961 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) { 962 struct m_tag *mtag; 963 964 /* Extract info from dummynet tag */ 965 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 966 KKASSERT(mtag != NULL); 967 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 968 KKASSERT(rule != NULL); 969 970 m_tag_delete(m, mtag); 971 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED; 972 973 /* packet is passing the second time */ 974 goto post_stats; 975 } 976 977 /* 978 * We got a packet which was unicast to a different Ethernet 979 * address. If the driver is working properly, then this 980 * situation can only happen when the interface is in 981 * promiscuous mode. We defer the packet discarding until the 982 * vlan processing is done, so that vlan/bridge or vlan/netgraph 983 * could work. 984 */ 985 if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) && 986 !ETHER_IS_MULTICAST(eh->ether_dhost) && 987 bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) { 988 if (ether_debug & 1) { 989 kprintf("%02x:%02x:%02x:%02x:%02x:%02x " 990 "%02x:%02x:%02x:%02x:%02x:%02x " 991 "%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n", 992 eh->ether_dhost[0], 993 eh->ether_dhost[1], 994 eh->ether_dhost[2], 995 eh->ether_dhost[3], 996 eh->ether_dhost[4], 997 eh->ether_dhost[5], 998 eh->ether_shost[0], 999 eh->ether_shost[1], 1000 eh->ether_shost[2], 1001 eh->ether_shost[3], 1002 eh->ether_shost[4], 1003 eh->ether_shost[5], 1004 eh->ether_type, 1005 ((u_char *)IFP2AC(ifp)->ac_enaddr)[0], 1006 ((u_char *)IFP2AC(ifp)->ac_enaddr)[1], 1007 ((u_char *)IFP2AC(ifp)->ac_enaddr)[2], 1008 ((u_char *)IFP2AC(ifp)->ac_enaddr)[3], 1009 ((u_char *)IFP2AC(ifp)->ac_enaddr)[4], 1010 ((u_char *)IFP2AC(ifp)->ac_enaddr)[5] 1011 ); 1012 } 1013 if ((ether_debug & 2) == 0) 1014 discard = 1; 1015 } 1016 1017 post_stats: 1018 if (IPFW_LOADED && ether_ipfw != 0 && !discard) { 1019 struct ether_header save_eh = *eh; 1020 1021 /* XXX old crufty stuff, needs to be removed */ 1022 m_adj(m, sizeof(struct ether_header)); 1023 1024 if (!ether_ipfw_chk(&m, NULL, &rule, eh)) { 1025 m_freem(m); 1026 return; 1027 } 1028 1029 ether_restore_header(&m, eh, &save_eh); 1030 if (m == NULL) 1031 return; 1032 eh = mtod(m, struct ether_header *); 1033 } 1034 1035 ether_type = ntohs(eh->ether_type); 1036 KKASSERT(ether_type != ETHERTYPE_VLAN); 1037 1038 if (m->m_flags & M_VLANTAG) { 1039 void (*vlan_input_func)(struct mbuf *); 1040 1041 vlan_input_func = vlan_input_p; 1042 if (vlan_input_func != NULL) { 1043 vlan_input_func(m); 1044 } else { 1045 m->m_pkthdr.rcvif->if_noproto++; 1046 m_freem(m); 1047 } 1048 return; 1049 } 1050 1051 /* 1052 * If we have been asked to discard this packet 1053 * (e.g. not for us), drop it before entering 1054 * the upper layer. 1055 */ 1056 if (discard) { 1057 m_freem(m); 1058 return; 1059 } 1060 1061 /* 1062 * Clear protocol specific flags, 1063 * before entering the upper layer. 1064 */ 1065 m->m_flags &= ~M_ETHER_FLAGS; 1066 1067 /* Strip ethernet header. */ 1068 m_adj(m, sizeof(struct ether_header)); 1069 1070 switch (ether_type) { 1071 #ifdef INET 1072 case ETHERTYPE_IP: 1073 if ((m->m_flags & M_LENCHECKED) == 0) { 1074 if (!ip_lengthcheck(&m, 0)) 1075 return; 1076 } 1077 if (ipflow_fastforward(m)) 1078 return; 1079 isr = NETISR_IP; 1080 break; 1081 1082 case ETHERTYPE_ARP: 1083 if (ifp->if_flags & IFF_NOARP) { 1084 /* Discard packet if ARP is disabled on interface */ 1085 m_freem(m); 1086 return; 1087 } 1088 isr = NETISR_ARP; 1089 break; 1090 #endif 1091 1092 #ifdef INET6 1093 case ETHERTYPE_IPV6: 1094 isr = NETISR_IPV6; 1095 break; 1096 #endif 1097 1098 #ifdef IPX 1099 case ETHERTYPE_IPX: 1100 if (ef_inputp) { 1101 /* 1102 * Hold BGL and recheck ef_inputp 1103 */ 1104 get_mplock(); 1105 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) { 1106 rel_mplock(); 1107 return; 1108 } 1109 rel_mplock(); 1110 } 1111 isr = NETISR_IPX; 1112 break; 1113 #endif 1114 1115 #ifdef MPLS 1116 case ETHERTYPE_MPLS: 1117 case ETHERTYPE_MPLS_MCAST: 1118 /* Should have been set by ether_input_pkt(). */ 1119 KKASSERT(m->m_flags & M_MPLSLABELED); 1120 isr = NETISR_MPLS; 1121 break; 1122 #endif 1123 1124 default: 1125 /* 1126 * The accurate msgport is not determined before 1127 * we reach here, so recharacterize packet. 1128 */ 1129 m->m_flags &= ~M_HASH; 1130 #ifdef IPX 1131 if (ef_inputp) { 1132 /* 1133 * Hold BGL and recheck ef_inputp 1134 */ 1135 get_mplock(); 1136 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) { 1137 rel_mplock(); 1138 return; 1139 } 1140 rel_mplock(); 1141 } 1142 #endif 1143 if (ng_ether_input_orphan_p != NULL) { 1144 /* 1145 * Put back the ethernet header so netgraph has a 1146 * consistent view of inbound packets. 1147 */ 1148 M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT); 1149 if (m == NULL) { 1150 /* 1151 * M_PREPEND frees the mbuf in case of failure. 1152 */ 1153 return; 1154 } 1155 /* 1156 * Hold BGL and recheck ng_ether_input_orphan_p 1157 */ 1158 get_mplock(); 1159 if (ng_ether_input_orphan_p != NULL) { 1160 ng_ether_input_orphan_p(ifp, m); 1161 rel_mplock(); 1162 return; 1163 } 1164 rel_mplock(); 1165 } 1166 m_freem(m); 1167 return; 1168 } 1169 1170 if (m->m_flags & M_HASH) { 1171 if (&curthread->td_msgport == cpu_portfn(m->m_pkthdr.hash)) { 1172 netisr_handle(isr, m); 1173 return; 1174 } else { 1175 /* 1176 * XXX Something is wrong, 1177 * we probably should panic here! 1178 */ 1179 m->m_flags &= ~M_HASH; 1180 atomic_add_long(ðer_input_wronghash, 1); 1181 } 1182 } 1183 #ifdef RSS_DEBUG 1184 atomic_add_long(ðer_input_requeue, 1); 1185 #endif 1186 netisr_queue(isr, m); 1187 } 1188 1189 /* 1190 * First we perform any link layer operations, then continue to the 1191 * upper layers with ether_demux_oncpu(). 1192 */ 1193 static void 1194 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m) 1195 { 1196 #ifdef CARP 1197 void *carp; 1198 #endif 1199 1200 if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) { 1201 /* 1202 * Receiving interface's flags are changed, when this 1203 * packet is waiting for processing; discard it. 1204 */ 1205 m_freem(m); 1206 return; 1207 } 1208 1209 /* 1210 * Tap the packet off here for a bridge. bridge_input() 1211 * will return NULL if it has consumed the packet, otherwise 1212 * it gets processed as normal. Note that bridge_input() 1213 * will always return the original packet if we need to 1214 * process it locally. 1215 */ 1216 if (ifp->if_bridge) { 1217 KASSERT(bridge_input_p != NULL, 1218 ("%s: if_bridge not loaded!", __func__)); 1219 1220 if(m->m_flags & M_ETHER_BRIDGED) { 1221 m->m_flags &= ~M_ETHER_BRIDGED; 1222 } else { 1223 m = bridge_input_p(ifp, m); 1224 if (m == NULL) 1225 return; 1226 1227 KASSERT(ifp == m->m_pkthdr.rcvif, 1228 ("bridge_input_p changed rcvif")); 1229 } 1230 } 1231 1232 #ifdef CARP 1233 carp = ifp->if_carp; 1234 if (carp) { 1235 m = carp_input(carp, m); 1236 if (m == NULL) 1237 return; 1238 KASSERT(ifp == m->m_pkthdr.rcvif, 1239 ("carp_input changed rcvif")); 1240 } 1241 #endif 1242 1243 /* Handle ng_ether(4) processing, if any */ 1244 if (ng_ether_input_p != NULL) { 1245 /* 1246 * Hold BGL and recheck ng_ether_input_p 1247 */ 1248 get_mplock(); 1249 if (ng_ether_input_p != NULL) 1250 ng_ether_input_p(ifp, &m); 1251 rel_mplock(); 1252 1253 if (m == NULL) 1254 return; 1255 } 1256 1257 /* Continue with upper layer processing */ 1258 ether_demux_oncpu(ifp, m); 1259 } 1260 1261 /* 1262 * Perform certain functions of ether_input_pkt(): 1263 * - Test IFF_UP 1264 * - Update statistics 1265 * - Run bpf(4) tap if requested 1266 * Then pass the packet to ether_input_oncpu(). 1267 * 1268 * This function should be used by pseudo interface (e.g. vlan(4)), 1269 * when it tries to claim that the packet is received by it. 1270 * 1271 * REINPUT_KEEPRCVIF 1272 * REINPUT_RUNBPF 1273 */ 1274 void 1275 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags) 1276 { 1277 /* Discard packet if interface is not up */ 1278 if (!(ifp->if_flags & IFF_UP)) { 1279 m_freem(m); 1280 return; 1281 } 1282 1283 /* 1284 * Change receiving interface. The bridge will often pass a flag to 1285 * ask that this not be done so ARPs get applied to the correct 1286 * side. 1287 */ 1288 if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 || 1289 m->m_pkthdr.rcvif == NULL) { 1290 m->m_pkthdr.rcvif = ifp; 1291 } 1292 1293 /* Update statistics */ 1294 ifp->if_ipackets++; 1295 ifp->if_ibytes += m->m_pkthdr.len; 1296 if (m->m_flags & (M_MCAST | M_BCAST)) 1297 ifp->if_imcasts++; 1298 1299 if (reinput_flags & REINPUT_RUNBPF) 1300 BPF_MTAP(ifp, m); 1301 1302 ether_input_oncpu(ifp, m); 1303 } 1304 1305 static __inline boolean_t 1306 ether_vlancheck(struct mbuf **m0) 1307 { 1308 struct mbuf *m = *m0; 1309 struct ether_header *eh; 1310 uint16_t ether_type; 1311 1312 eh = mtod(m, struct ether_header *); 1313 ether_type = ntohs(eh->ether_type); 1314 1315 if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG) == 0) { 1316 /* 1317 * Extract vlan tag if hardware does not do it for us 1318 */ 1319 vlan_ether_decap(&m); 1320 if (m == NULL) 1321 goto failed; 1322 1323 eh = mtod(m, struct ether_header *); 1324 ether_type = ntohs(eh->ether_type); 1325 } 1326 1327 if (ether_type == ETHERTYPE_VLAN && (m->m_flags & M_VLANTAG)) { 1328 /* 1329 * To prevent possible dangerous recursion, 1330 * we don't do vlan-in-vlan 1331 */ 1332 m->m_pkthdr.rcvif->if_noproto++; 1333 goto failed; 1334 } 1335 KKASSERT(ether_type != ETHERTYPE_VLAN); 1336 1337 m->m_flags |= M_ETHER_VLANCHECKED; 1338 *m0 = m; 1339 return TRUE; 1340 failed: 1341 if (m != NULL) 1342 m_freem(m); 1343 *m0 = NULL; 1344 return FALSE; 1345 } 1346 1347 static void 1348 ether_input_handler(netmsg_t nmsg) 1349 { 1350 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */ 1351 struct ether_header *eh; 1352 struct ifnet *ifp; 1353 struct mbuf *m; 1354 1355 m = nmp->nm_packet; 1356 M_ASSERTPKTHDR(m); 1357 1358 if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) { 1359 if (!ether_vlancheck(&m)) { 1360 KKASSERT(m == NULL); 1361 return; 1362 } 1363 } 1364 if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) 1365 #ifdef RSS_DEBUG 1366 || ether_input_ckhash 1367 #endif 1368 ) { 1369 int isr; 1370 1371 /* 1372 * Need to verify the hash supplied by the hardware 1373 * which could be wrong. 1374 */ 1375 m->m_flags &= ~(M_HASH | M_CKHASH); 1376 isr = ether_characterize(&m); 1377 if (m == NULL) 1378 return; 1379 KKASSERT(m->m_flags & M_HASH); 1380 1381 if (m->m_pkthdr.hash != mycpuid) { 1382 /* 1383 * Wrong hardware supplied hash; redispatch 1384 */ 1385 ether_dispatch(isr, m); 1386 #ifdef RSS_DEBUG 1387 atomic_add_long(ðer_input_wronghwhash, 1); 1388 #endif 1389 return; 1390 } 1391 } 1392 ifp = m->m_pkthdr.rcvif; 1393 1394 eh = mtod(m, struct ether_header *); 1395 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 1396 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost, 1397 ifp->if_addrlen) == 0) 1398 m->m_flags |= M_BCAST; 1399 else 1400 m->m_flags |= M_MCAST; 1401 ifp->if_imcasts++; 1402 } 1403 1404 ether_input_oncpu(ifp, m); 1405 } 1406 1407 /* 1408 * Send the packet to the target msgport 1409 * 1410 * At this point the packet had better be characterized (M_HASH set), 1411 * so we know which cpu to send it to. 1412 */ 1413 static void 1414 ether_dispatch(int isr, struct mbuf *m) 1415 { 1416 struct netmsg_packet *pmsg; 1417 1418 KKASSERT(m->m_flags & M_HASH); 1419 pmsg = &m->m_hdr.mh_netmsg; 1420 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 1421 0, ether_input_handler); 1422 pmsg->nm_packet = m; 1423 pmsg->base.lmsg.u.ms_result = isr; 1424 1425 logether(disp_beg, NULL); 1426 lwkt_sendmsg(cpu_portfn(m->m_pkthdr.hash), &pmsg->base.lmsg); 1427 logether(disp_end, NULL); 1428 } 1429 1430 /* 1431 * Process a received Ethernet packet. 1432 * 1433 * The ethernet header is assumed to be in the mbuf so the caller 1434 * MUST MAKE SURE that there are at least sizeof(struct ether_header) 1435 * bytes in the first mbuf. 1436 */ 1437 void 1438 ether_input_pkt(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi) 1439 { 1440 int isr; 1441 1442 M_ASSERTPKTHDR(m); 1443 1444 /* Discard packet if interface is not up */ 1445 if (!(ifp->if_flags & IFF_UP)) { 1446 m_freem(m); 1447 return; 1448 } 1449 1450 if (m->m_len < sizeof(struct ether_header)) { 1451 /* XXX error in the caller. */ 1452 m_freem(m); 1453 return; 1454 } 1455 1456 m->m_pkthdr.rcvif = ifp; 1457 1458 logether(pkt_beg, ifp); 1459 1460 ETHER_BPF_MTAP(ifp, m); 1461 1462 ifp->if_ibytes += m->m_pkthdr.len; 1463 1464 if (ifp->if_flags & IFF_MONITOR) { 1465 struct ether_header *eh; 1466 1467 eh = mtod(m, struct ether_header *); 1468 if (ETHER_IS_MULTICAST(eh->ether_dhost)) 1469 ifp->if_imcasts++; 1470 1471 /* 1472 * Interface marked for monitoring; discard packet. 1473 */ 1474 m_freem(m); 1475 1476 logether(pkt_end, ifp); 1477 return; 1478 } 1479 1480 /* 1481 * If the packet has been characterized (pi->pi_netisr / M_HASH) 1482 * we can dispatch it immediately without further inspection. 1483 */ 1484 if (pi != NULL && (m->m_flags & M_HASH)) { 1485 #ifdef RSS_DEBUG 1486 atomic_add_long(ðer_pktinfo_try, 1); 1487 #endif 1488 netisr_hashcheck(pi->pi_netisr, m, pi); 1489 if (m->m_flags & M_HASH) { 1490 ether_dispatch(pi->pi_netisr, m); 1491 #ifdef RSS_DEBUG 1492 atomic_add_long(ðer_pktinfo_hit, 1); 1493 #endif 1494 logether(pkt_end, ifp); 1495 return; 1496 } 1497 } 1498 #ifdef RSS_DEBUG 1499 else if (ifp->if_capenable & IFCAP_RSS) { 1500 if (pi == NULL) 1501 atomic_add_long(ðer_rss_nopi, 1); 1502 else 1503 atomic_add_long(ðer_rss_nohash, 1); 1504 } 1505 #endif 1506 1507 /* 1508 * Packet hash will be recalculated by software, so clear 1509 * the M_HASH and M_CKHASH flag set by the driver; the hash 1510 * value calculated by the hardware may not be exactly what 1511 * we want. 1512 */ 1513 m->m_flags &= ~(M_HASH | M_CKHASH); 1514 1515 if (!ether_vlancheck(&m)) { 1516 KKASSERT(m == NULL); 1517 logether(pkt_end, ifp); 1518 return; 1519 } 1520 1521 isr = ether_characterize(&m); 1522 if (m == NULL) { 1523 logether(pkt_end, ifp); 1524 return; 1525 } 1526 1527 /* 1528 * Finally dispatch it 1529 */ 1530 ether_dispatch(isr, m); 1531 1532 logether(pkt_end, ifp); 1533 } 1534 1535 static int 1536 ether_characterize(struct mbuf **m0) 1537 { 1538 struct mbuf *m = *m0; 1539 struct ether_header *eh; 1540 uint16_t ether_type; 1541 int isr; 1542 1543 eh = mtod(m, struct ether_header *); 1544 ether_type = ntohs(eh->ether_type); 1545 1546 /* 1547 * Map ether type to netisr id. 1548 */ 1549 switch (ether_type) { 1550 #ifdef INET 1551 case ETHERTYPE_IP: 1552 isr = NETISR_IP; 1553 break; 1554 1555 case ETHERTYPE_ARP: 1556 isr = NETISR_ARP; 1557 break; 1558 #endif 1559 1560 #ifdef INET6 1561 case ETHERTYPE_IPV6: 1562 isr = NETISR_IPV6; 1563 break; 1564 #endif 1565 1566 #ifdef IPX 1567 case ETHERTYPE_IPX: 1568 isr = NETISR_IPX; 1569 break; 1570 #endif 1571 1572 #ifdef MPLS 1573 case ETHERTYPE_MPLS: 1574 case ETHERTYPE_MPLS_MCAST: 1575 m->m_flags |= M_MPLSLABELED; 1576 isr = NETISR_MPLS; 1577 break; 1578 #endif 1579 1580 default: 1581 /* 1582 * NETISR_MAX is an invalid value; it is chosen to let 1583 * netisr_characterize() know that we have no clear 1584 * idea where this packet should go. 1585 */ 1586 isr = NETISR_MAX; 1587 break; 1588 } 1589 1590 /* 1591 * Ask the isr to characterize the packet since we couldn't. 1592 * This is an attempt to optimally get us onto the correct protocol 1593 * thread. 1594 */ 1595 netisr_characterize(isr, &m, sizeof(struct ether_header)); 1596 1597 *m0 = m; 1598 return isr; 1599 } 1600 1601 static void 1602 ether_demux_handler(netmsg_t nmsg) 1603 { 1604 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */ 1605 struct ifnet *ifp; 1606 struct mbuf *m; 1607 1608 m = nmp->nm_packet; 1609 M_ASSERTPKTHDR(m); 1610 ifp = m->m_pkthdr.rcvif; 1611 1612 ether_demux_oncpu(ifp, m); 1613 } 1614 1615 void 1616 ether_demux(struct mbuf *m) 1617 { 1618 struct netmsg_packet *pmsg; 1619 int isr; 1620 1621 isr = ether_characterize(&m); 1622 if (m == NULL) 1623 return; 1624 1625 KKASSERT(m->m_flags & M_HASH); 1626 pmsg = &m->m_hdr.mh_netmsg; 1627 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 1628 0, ether_demux_handler); 1629 pmsg->nm_packet = m; 1630 pmsg->base.lmsg.u.ms_result = isr; 1631 1632 lwkt_sendmsg(cpu_portfn(m->m_pkthdr.hash), &pmsg->base.lmsg); 1633 } 1634 1635 boolean_t 1636 ether_tso_pullup(struct mbuf **mp, int *hoff0, struct ip **ip, int *iphlen, 1637 struct tcphdr **th, int *thoff) 1638 { 1639 struct mbuf *m = *mp; 1640 struct ether_header *eh; 1641 uint16_t type; 1642 int hoff; 1643 1644 KASSERT(M_WRITABLE(m), ("not writable")); 1645 1646 hoff = ETHER_HDR_LEN; 1647 if (m->m_len < hoff) { 1648 m = m_pullup(m, hoff); 1649 if (m == NULL) 1650 goto failed; 1651 } 1652 eh = mtod(m, struct ether_header *); 1653 type = eh->ether_type; 1654 1655 if (type == htons(ETHERTYPE_VLAN)) { 1656 struct ether_vlan_header *evh; 1657 1658 hoff += EVL_ENCAPLEN; 1659 if (m->m_len < hoff) { 1660 m = m_pullup(m, hoff); 1661 if (m == NULL) 1662 goto failed; 1663 } 1664 evh = mtod(m, struct ether_vlan_header *); 1665 type = evh->evl_proto; 1666 } 1667 KASSERT(type == htons(ETHERTYPE_IP), ("not IP %d", ntohs(type))); 1668 1669 *mp = m; 1670 *hoff0 = hoff; 1671 return tcp_tso_pullup(mp, hoff, ip, iphlen, th, thoff); 1672 1673 failed: 1674 if (m != NULL) 1675 m_freem(m); 1676 *mp = NULL; 1677 return FALSE; 1678 } 1679 1680 MODULE_VERSION(ether, 1); 1681