1 /* 2 * Copyright (c) 1982, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $ 35 * $DragonFly: src/sys/net/if_ethersubr.c,v 1.74 2008/06/25 11:45:07 sephe Exp $ 36 */ 37 38 #include "opt_atalk.h" 39 #include "opt_inet.h" 40 #include "opt_inet6.h" 41 #include "opt_ipx.h" 42 #include "opt_netgraph.h" 43 #include "opt_carp.h" 44 #include "opt_ethernet.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/globaldata.h> 49 #include <sys/kernel.h> 50 #include <sys/malloc.h> 51 #include <sys/mbuf.h> 52 #include <sys/msgport.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/sysctl.h> 56 #include <sys/thread.h> 57 #include <sys/thread2.h> 58 59 #include <net/if.h> 60 #include <net/netisr.h> 61 #include <net/route.h> 62 #include <net/if_llc.h> 63 #include <net/if_dl.h> 64 #include <net/if_types.h> 65 #include <net/ifq_var.h> 66 #include <net/bpf.h> 67 #include <net/ethernet.h> 68 #include <net/vlan/if_vlan_ether.h> 69 #include <net/netmsg2.h> 70 71 #if defined(INET) || defined(INET6) 72 #include <netinet/in.h> 73 #include <netinet/in_var.h> 74 #include <netinet/if_ether.h> 75 #include <net/ipfw/ip_fw.h> 76 #include <net/dummynet/ip_dummynet.h> 77 #endif 78 #ifdef INET6 79 #include <netinet6/nd6.h> 80 #endif 81 82 #ifdef CARP 83 #include <netinet/ip_carp.h> 84 #endif 85 86 #ifdef IPX 87 #include <netproto/ipx/ipx.h> 88 #include <netproto/ipx/ipx_if.h> 89 int (*ef_inputp)(struct ifnet*, const struct ether_header *eh, struct mbuf *m); 90 int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst, 91 short *tp, int *hlen); 92 #endif 93 94 #ifdef NS 95 #include <netns/ns.h> 96 #include <netns/ns_if.h> 97 ushort ns_nettype; 98 int ether_outputdebug = 0; 99 int ether_inputdebug = 0; 100 #endif 101 102 #ifdef NETATALK 103 #include <netproto/atalk/at.h> 104 #include <netproto/atalk/at_var.h> 105 #include <netproto/atalk/at_extern.h> 106 107 #define llc_snap_org_code llc_un.type_snap.org_code 108 #define llc_snap_ether_type llc_un.type_snap.ether_type 109 110 extern u_char at_org_code[3]; 111 extern u_char aarp_org_code[3]; 112 #endif /* NETATALK */ 113 114 /* netgraph node hooks for ng_ether(4) */ 115 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); 116 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, 117 struct mbuf *m, const struct ether_header *eh); 118 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); 119 void (*ng_ether_attach_p)(struct ifnet *ifp); 120 void (*ng_ether_detach_p)(struct ifnet *ifp); 121 122 int (*vlan_input_p)(struct mbuf *, struct mbuf_chain *); 123 void (*vlan_input2_p)(struct mbuf *); 124 125 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *, 126 struct rtentry *); 127 static void ether_restore_header(struct mbuf **, const struct ether_header *, 128 const struct ether_header *); 129 static void ether_demux_chain(struct ifnet *, struct mbuf *, 130 struct mbuf_chain *); 131 132 /* 133 * if_bridge support 134 */ 135 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); 136 int (*bridge_output_p)(struct ifnet *, struct mbuf *); 137 void (*bridge_dn_p)(struct mbuf *, struct ifnet *); 138 139 static int ether_resolvemulti(struct ifnet *, struct sockaddr **, 140 struct sockaddr *); 141 142 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = { 143 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 144 }; 145 146 #define gotoerr(e) do { error = (e); goto bad; } while (0) 147 #define IFP2AC(ifp) ((struct arpcom *)(ifp)) 148 149 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, 150 struct ip_fw **rule, 151 const struct ether_header *eh); 152 153 static int ether_ipfw; 154 static u_int ether_restore_hdr; 155 static u_int ether_prepend_hdr; 156 157 SYSCTL_DECL(_net_link); 158 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); 159 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW, 160 ðer_ipfw, 0, "Pass ether pkts through firewall"); 161 SYSCTL_UINT(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW, 162 ðer_restore_hdr, 0, "# of ether header restoration"); 163 SYSCTL_UINT(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW, 164 ðer_prepend_hdr, 0, 165 "# of ether header restoration which prepends mbuf"); 166 167 /* 168 * Ethernet output routine. 169 * Encapsulate a packet of type family for the local net. 170 * Use trailer local net encapsulation if enough data in first 171 * packet leaves a multiple of 512 bytes of data in remainder. 172 * Assumes that ifp is actually pointer to arpcom structure. 173 */ 174 static int 175 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, 176 struct rtentry *rt) 177 { 178 struct ether_header *eh, *deh; 179 u_char *edst; 180 int loop_copy = 0; 181 int hlen = ETHER_HDR_LEN; /* link layer header length */ 182 struct arpcom *ac = IFP2AC(ifp); 183 int error; 184 185 ASSERT_NOT_SERIALIZED(ifp->if_serializer); 186 187 if (ifp->if_flags & IFF_MONITOR) 188 gotoerr(ENETDOWN); 189 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 190 gotoerr(ENETDOWN); 191 192 M_PREPEND(m, sizeof(struct ether_header), MB_DONTWAIT); 193 if (m == NULL) 194 return (ENOBUFS); 195 eh = mtod(m, struct ether_header *); 196 edst = eh->ether_dhost; 197 198 /* 199 * Fill in the destination ethernet address and frame type. 200 */ 201 switch (dst->sa_family) { 202 #ifdef INET 203 case AF_INET: 204 if (!arpresolve(ifp, rt, m, dst, edst)) 205 return (0); /* if not yet resolved */ 206 eh->ether_type = htons(ETHERTYPE_IP); 207 break; 208 #endif 209 #ifdef INET6 210 case AF_INET6: 211 if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, edst)) 212 return (0); /* Something bad happenned. */ 213 eh->ether_type = htons(ETHERTYPE_IPV6); 214 break; 215 #endif 216 #ifdef IPX 217 case AF_IPX: 218 if (ef_outputp != NULL) { 219 error = ef_outputp(ifp, &m, dst, &eh->ether_type, 220 &hlen); 221 if (error) 222 goto bad; 223 } else { 224 eh->ether_type = htons(ETHERTYPE_IPX); 225 bcopy(&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host), 226 edst, ETHER_ADDR_LEN); 227 } 228 break; 229 #endif 230 #ifdef NETATALK 231 case AF_APPLETALK: { 232 struct at_ifaddr *aa; 233 234 if ((aa = at_ifawithnet((struct sockaddr_at *)dst)) == NULL) { 235 error = 0; /* XXX */ 236 goto bad; 237 } 238 /* 239 * In the phase 2 case, need to prepend an mbuf for 240 * the llc header. Since we must preserve the value 241 * of m, which is passed to us by value, we m_copy() 242 * the first mbuf, and use it for our llc header. 243 */ 244 if (aa->aa_flags & AFA_PHASE2) { 245 struct llc llc; 246 247 M_PREPEND(m, sizeof(struct llc), MB_DONTWAIT); 248 eh = mtod(m, struct ether_header *); 249 edst = eh->ether_dhost; 250 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 251 llc.llc_control = LLC_UI; 252 bcopy(at_org_code, llc.llc_snap_org_code, 253 sizeof at_org_code); 254 llc.llc_snap_ether_type = htons(ETHERTYPE_AT); 255 bcopy(&llc, 256 mtod(m, caddr_t) + sizeof(struct ether_header), 257 sizeof(struct llc)); 258 eh->ether_type = htons(m->m_pkthdr.len); 259 hlen = sizeof(struct llc) + ETHER_HDR_LEN; 260 } else { 261 eh->ether_type = htons(ETHERTYPE_AT); 262 } 263 if (!aarpresolve(ac, m, (struct sockaddr_at *)dst, edst)) 264 return (0); 265 break; 266 } 267 #endif 268 #ifdef NS 269 case AF_NS: 270 switch(ns_nettype) { 271 default: 272 case 0x8137: /* Novell Ethernet_II Ethernet TYPE II */ 273 eh->ether_type = 0x8137; 274 break; 275 case 0x0: /* Novell 802.3 */ 276 eh->ether_type = htons(m->m_pkthdr.len); 277 break; 278 case 0xe0e0: /* Novell 802.2 and Token-Ring */ 279 M_PREPEND(m, 3, MB_DONTWAIT); 280 eh = mtod(m, struct ether_header *); 281 edst = eh->ether_dhost; 282 eh->ether_type = htons(m->m_pkthdr.len); 283 cp = mtod(m, u_char *) + sizeof(struct ether_header); 284 *cp++ = 0xE0; 285 *cp++ = 0xE0; 286 *cp++ = 0x03; 287 break; 288 } 289 bcopy(&(((struct sockaddr_ns *)dst)->sns_addr.x_host), edst, 290 ETHER_ADDR_LEN); 291 /* 292 * XXX if ns_thishost is the same as the node's ethernet 293 * address then just the default code will catch this anyhow. 294 * So I'm not sure if this next clause should be here at all? 295 * [JRE] 296 */ 297 if (bcmp(edst, &ns_thishost, ETHER_ADDR_LEN) == 0) { 298 m->m_pkthdr.rcvif = ifp; 299 netisr_dispatch(NETISR_NS, m); 300 return (error); 301 } 302 if (bcmp(edst, &ns_broadhost, ETHER_ADDR_LEN) == 0) 303 m->m_flags |= M_BCAST; 304 break; 305 #endif 306 case pseudo_AF_HDRCMPLT: 307 case AF_UNSPEC: 308 loop_copy = -1; /* if this is for us, don't do it */ 309 deh = (struct ether_header *)dst->sa_data; 310 memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN); 311 eh->ether_type = deh->ether_type; 312 break; 313 314 default: 315 if_printf(ifp, "can't handle af%d\n", dst->sa_family); 316 gotoerr(EAFNOSUPPORT); 317 } 318 319 if (dst->sa_family == pseudo_AF_HDRCMPLT) /* unlikely */ 320 memcpy(eh->ether_shost, 321 ((struct ether_header *)dst->sa_data)->ether_shost, 322 ETHER_ADDR_LEN); 323 else 324 memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN); 325 326 /* 327 * Bridges require special output handling. 328 */ 329 if (ifp->if_bridge) { 330 KASSERT(bridge_output_p != NULL, 331 ("%s: if_bridge not loaded!", __func__)); 332 return bridge_output_p(ifp, m); 333 } 334 335 /* 336 * If a simplex interface, and the packet is being sent to our 337 * Ethernet address or a broadcast address, loopback a copy. 338 * XXX To make a simplex device behave exactly like a duplex 339 * device, we should copy in the case of sending to our own 340 * ethernet address (thus letting the original actually appear 341 * on the wire). However, we don't do that here for security 342 * reasons and compatibility with the original behavior. 343 */ 344 if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) { 345 int csum_flags = 0; 346 347 if (m->m_pkthdr.csum_flags & CSUM_IP) 348 csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); 349 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) 350 csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 351 if ((m->m_flags & M_BCAST) || (loop_copy > 0)) { 352 struct mbuf *n; 353 354 if ((n = m_copypacket(m, MB_DONTWAIT)) != NULL) { 355 n->m_pkthdr.csum_flags |= csum_flags; 356 if (csum_flags & CSUM_DATA_VALID) 357 n->m_pkthdr.csum_data = 0xffff; 358 if_simloop(ifp, n, dst->sa_family, hlen); 359 } else 360 ifp->if_iqdrops++; 361 } else if (bcmp(eh->ether_dhost, eh->ether_shost, 362 ETHER_ADDR_LEN) == 0) { 363 m->m_pkthdr.csum_flags |= csum_flags; 364 if (csum_flags & CSUM_DATA_VALID) 365 m->m_pkthdr.csum_data = 0xffff; 366 if_simloop(ifp, m, dst->sa_family, hlen); 367 return (0); /* XXX */ 368 } 369 } 370 371 #ifdef CARP 372 if (ifp->if_carp && (error = carp_output(ifp, m, dst, NULL))) 373 goto bad; 374 #endif 375 376 377 /* Handle ng_ether(4) processing, if any */ 378 if (ng_ether_output_p != NULL) { 379 if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) 380 goto bad; 381 if (m == NULL) 382 return (0); 383 } 384 385 /* Continue with link-layer output */ 386 return ether_output_frame(ifp, m); 387 388 bad: 389 m_freem(m); 390 return (error); 391 } 392 393 /* 394 * Ethernet link layer output routine to send a raw frame to the device. 395 * 396 * This assumes that the 14 byte Ethernet header is present and contiguous 397 * in the first mbuf. 398 */ 399 int 400 ether_output_frame(struct ifnet *ifp, struct mbuf *m) 401 { 402 struct ip_fw *rule = NULL; 403 int error = 0; 404 struct altq_pktattr pktattr; 405 struct m_tag *mtag; 406 407 ASSERT_NOT_SERIALIZED(ifp->if_serializer); 408 409 /* Extract info from dummynet tag */ 410 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 411 if (mtag != NULL) { 412 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 413 414 m_tag_delete(m, mtag); 415 mtag = NULL; 416 } 417 418 if (ifq_is_enabled(&ifp->if_snd)) 419 altq_etherclassify(&ifp->if_snd, m, &pktattr); 420 crit_enter(); 421 if (IPFW_LOADED && ether_ipfw != 0) { 422 struct ether_header save_eh, *eh; 423 424 eh = mtod(m, struct ether_header *); 425 save_eh = *eh; 426 m_adj(m, ETHER_HDR_LEN); 427 if (!ether_ipfw_chk(&m, ifp, &rule, eh)) { 428 crit_exit(); 429 if (m != NULL) { 430 m_freem(m); 431 return ENOBUFS; /* pkt dropped */ 432 } else 433 return 0; /* consumed e.g. in a pipe */ 434 } 435 436 /* packet was ok, restore the ethernet header */ 437 ether_restore_header(&m, eh, &save_eh); 438 if (m == NULL) { 439 crit_exit(); 440 return ENOBUFS; 441 } 442 } 443 crit_exit(); 444 445 /* 446 * Queue message on interface, update output statistics if 447 * successful, and start output if interface not yet active. 448 */ 449 error = ifq_dispatch(ifp, m, &pktattr); 450 return (error); 451 } 452 453 /* 454 * ipfw processing for ethernet packets (in and out). 455 * The second parameter is NULL from ether_demux(), and ifp from 456 * ether_output_frame(). 457 */ 458 static boolean_t 459 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule, 460 const struct ether_header *eh) 461 { 462 struct ether_header save_eh = *eh; /* might be a ptr in m */ 463 struct ip_fw_args args; 464 struct m_tag *mtag; 465 int i; 466 467 if (*rule != NULL && fw_one_pass) 468 return TRUE; /* dummynet packet, already partially processed */ 469 470 /* 471 * I need some amount of data to be contiguous. 472 */ 473 i = min((*m0)->m_pkthdr.len, max_protohdr); 474 if ((*m0)->m_len < i) { 475 *m0 = m_pullup(*m0, i); 476 if (*m0 == NULL) 477 return FALSE; 478 } 479 480 args.m = *m0; /* the packet we are looking at */ 481 args.oif = dst; /* destination, if any */ 482 if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL) 483 m_tag_delete(*m0, mtag); 484 args.rule = *rule; /* matching rule to restart */ 485 args.next_hop = NULL; /* we do not support forward yet */ 486 args.eh = &save_eh; /* MAC header for bridged/MAC packets */ 487 i = ip_fw_chk_ptr(&args); 488 *m0 = args.m; 489 *rule = args.rule; 490 491 if ((i & IP_FW_PORT_DENY_FLAG) || *m0 == NULL) /* drop */ 492 return FALSE; 493 494 if (i == 0) /* a PASS rule. */ 495 return TRUE; 496 497 if (i & IP_FW_PORT_DYNT_FLAG) { 498 /* 499 * Pass the pkt to dummynet, which consumes it. 500 */ 501 struct mbuf *m; 502 503 m = *m0; /* pass the original to dummynet */ 504 *m0 = NULL; /* and nothing back to the caller */ 505 506 ether_restore_header(&m, eh, &save_eh); 507 if (m == NULL) 508 return FALSE; 509 510 ip_fw_dn_io_ptr(m, (i & 0xffff), 511 dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args); 512 return FALSE; 513 } 514 /* 515 * XXX at some point add support for divert/forward actions. 516 * If none of the above matches, we have to drop the pkt. 517 */ 518 return FALSE; 519 } 520 521 /* 522 * Process a received Ethernet packet. 523 * 524 * The ethernet header is assumed to be in the mbuf so the caller 525 * MUST MAKE SURE that there are at least sizeof(struct ether_header) 526 * bytes in the first mbuf. 527 * 528 * This allows us to concentrate in one place a bunch of code which 529 * is replicated in all device drivers. Also, many functions called 530 * from ether_input() try to put the eh back into the mbuf, so we 531 * can later propagate the 'contiguous packet' interface to them. 532 * 533 * NOTA BENE: for all drivers "eh" is a pointer into the first mbuf or 534 * cluster, right before m_data. So be very careful when working on m, 535 * as you could destroy *eh !! 536 * 537 * First we perform any link layer operations, then continue to the 538 * upper layers with ether_demux(). 539 */ 540 void 541 ether_input_chain(struct ifnet *ifp, struct mbuf *m, struct mbuf_chain *chain) 542 { 543 struct ether_header *eh; 544 545 ASSERT_SERIALIZED(ifp->if_serializer); 546 M_ASSERTPKTHDR(m); 547 548 /* Discard packet if interface is not up */ 549 if (!(ifp->if_flags & IFF_UP)) { 550 m_freem(m); 551 return; 552 } 553 554 if (m->m_len < sizeof(struct ether_header)) { 555 /* XXX error in the caller. */ 556 m_freem(m); 557 return; 558 } 559 eh = mtod(m, struct ether_header *); 560 561 if (ntohs(eh->ether_type) == ETHERTYPE_VLAN && 562 (m->m_flags & M_VLANTAG) == 0) { 563 /* 564 * Extract vlan tag if hardware does not do it for us 565 */ 566 vlan_ether_decap(&m); 567 if (m == NULL) 568 return; 569 eh = mtod(m, struct ether_header *); 570 } 571 572 m->m_pkthdr.rcvif = ifp; 573 574 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 575 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost, 576 ifp->if_addrlen) == 0) 577 m->m_flags |= M_BCAST; 578 else 579 m->m_flags |= M_MCAST; 580 ifp->if_imcasts++; 581 } 582 583 ETHER_BPF_MTAP(ifp, m); 584 585 ifp->if_ibytes += m->m_pkthdr.len; 586 587 if (ifp->if_flags & IFF_MONITOR) { 588 /* 589 * Interface marked for monitoring; discard packet. 590 */ 591 m_freem(m); 592 return; 593 } 594 595 /* 596 * Tap the packet off here for a bridge. bridge_input() 597 * will return NULL if it has consumed the packet, otherwise 598 * it gets processed as normal. Note that bridge_input() 599 * will always return the original packet if we need to 600 * process it locally. 601 */ 602 if (ifp->if_bridge) { 603 KASSERT(bridge_input_p != NULL, 604 ("%s: if_bridge not loaded!", __func__)); 605 606 if(m->m_flags & M_PROTO1) { 607 m->m_flags &= ~M_PROTO1; 608 } else { 609 /* clear M_PROMISC, in case the packets comes from a vlan */ 610 /* m->m_flags &= ~M_PROMISC; */ 611 lwkt_serialize_exit(ifp->if_serializer); 612 m = bridge_input_p(ifp, m); 613 lwkt_serialize_enter(ifp->if_serializer); 614 if (m == NULL) 615 return; 616 617 KASSERT(ifp == m->m_pkthdr.rcvif, 618 ("bridge_input_p changed rcvif\n")); 619 620 /* 'm' may be changed by bridge_input_p() */ 621 eh = mtod(m, struct ether_header *); 622 } 623 } 624 625 /* Handle ng_ether(4) processing, if any */ 626 if (ng_ether_input_p != NULL) { 627 ng_ether_input_p(ifp, &m); 628 if (m == NULL) 629 return; 630 631 /* 'm' may be changed by ng_ether_input_p() */ 632 eh = mtod(m, struct ether_header *); 633 } 634 635 /* Continue with upper layer processing */ 636 ether_demux_chain(ifp, m, chain); 637 } 638 639 void 640 ether_input(struct ifnet *ifp, struct mbuf *m) 641 { 642 ether_input_chain(ifp, m, NULL); 643 } 644 645 /* 646 * Upper layer processing for a received Ethernet packet. 647 */ 648 static void 649 ether_demux_chain(struct ifnet *ifp, struct mbuf *m, struct mbuf_chain *chain) 650 { 651 struct ether_header save_eh, *eh; 652 int isr; 653 u_short ether_type; 654 struct ip_fw *rule = NULL; 655 struct m_tag *mtag; 656 #ifdef NETATALK 657 struct llc *l; 658 #endif 659 660 M_ASSERTPKTHDR(m); 661 KASSERT(m->m_len >= ETHER_HDR_LEN, 662 ("ether header is no contiguous!\n")); 663 664 eh = mtod(m, struct ether_header *); 665 save_eh = *eh; 666 667 /* XXX old crufty stuff, needs to be removed */ 668 m_adj(m, sizeof(struct ether_header)); 669 670 /* Extract info from dummynet tag */ 671 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 672 if (mtag != NULL) { 673 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 674 KKASSERT(ifp == NULL); 675 ifp = m->m_pkthdr.rcvif; 676 677 m_tag_delete(m, mtag); 678 mtag = NULL; 679 } 680 if (rule) /* packet is passing the second time */ 681 goto post_stats; 682 683 #ifdef CARP 684 /* 685 * XXX: Okay, we need to call carp_forus() and - if it is for 686 * us jump over code that does the normal check 687 * "ac_enaddr == ether_dhost". The check sequence is a bit 688 * different from OpenBSD, so we jump over as few code as 689 * possible, to catch _all_ sanity checks. This needs 690 * evaluation, to see if the carp ether_dhost values break any 691 * of these checks! 692 */ 693 if (ifp->if_carp && carp_forus(ifp->if_carp, eh->ether_dhost)) 694 goto post_stats; 695 #endif 696 697 /* 698 * Discard packet if upper layers shouldn't see it because 699 * it was unicast to a different Ethernet address. If the 700 * driver is working properly, then this situation can only 701 * happen when the interface is in promiscuous mode. 702 */ 703 if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) && 704 (eh->ether_dhost[0] & 1) == 0 && 705 bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) { 706 m_freem(m); 707 return; 708 } 709 710 post_stats: 711 if (IPFW_LOADED && ether_ipfw != 0) { 712 if (!ether_ipfw_chk(&m, NULL, &rule, eh)) { 713 m_freem(m); 714 return; 715 } 716 } 717 718 ether_type = ntohs(save_eh.ether_type); 719 720 if (m->m_flags & M_VLANTAG) { 721 if (ether_type == ETHERTYPE_VLAN) { 722 /* 723 * To prevent possible dangerous recursion, 724 * we don't do vlan-in-vlan 725 */ 726 m->m_pkthdr.rcvif->if_noproto++; 727 m_freem(m); 728 return; 729 } 730 731 if (vlan_input_p != NULL) { 732 ether_restore_header(&m, eh, &save_eh); 733 if (m != NULL) 734 vlan_input_p(m, chain); 735 } else { 736 m->m_pkthdr.rcvif->if_noproto++; 737 m_freem(m); 738 } 739 return; 740 } 741 KKASSERT(ether_type != ETHERTYPE_VLAN); 742 743 switch (ether_type) { 744 #ifdef INET 745 case ETHERTYPE_IP: 746 if (ipflow_fastforward(m, ifp->if_serializer)) 747 return; 748 isr = NETISR_IP; 749 break; 750 751 case ETHERTYPE_ARP: 752 if (ifp->if_flags & IFF_NOARP) { 753 /* Discard packet if ARP is disabled on interface */ 754 m_freem(m); 755 return; 756 } 757 isr = NETISR_ARP; 758 break; 759 #endif 760 761 #ifdef INET6 762 case ETHERTYPE_IPV6: 763 isr = NETISR_IPV6; 764 break; 765 #endif 766 767 #ifdef IPX 768 case ETHERTYPE_IPX: 769 if (ef_inputp && ef_inputp(ifp, &save_eh, m) == 0) 770 return; 771 isr = NETISR_IPX; 772 break; 773 #endif 774 775 #ifdef NS 776 case 0x8137: /* Novell Ethernet_II Ethernet TYPE II */ 777 isr = NETISR_NS; 778 break; 779 780 #endif 781 782 #ifdef NETATALK 783 case ETHERTYPE_AT: 784 isr = NETISR_ATALK1; 785 break; 786 case ETHERTYPE_AARP: 787 isr = NETISR_AARP; 788 break; 789 #endif 790 791 default: 792 #ifdef IPX 793 if (ef_inputp && ef_inputp(ifp, &save_eh, m) == 0) 794 return; 795 #endif 796 #ifdef NS 797 checksum = mtod(m, ushort *); 798 /* Novell 802.3 */ 799 if ((ether_type <= ETHERMTU) && 800 ((*checksum == 0xffff) || (*checksum == 0xE0E0))) { 801 if (*checksum == 0xE0E0) { 802 m->m_pkthdr.len -= 3; 803 m->m_len -= 3; 804 m->m_data += 3; 805 } 806 isr = NETISR_NS; 807 break; 808 } 809 #endif 810 #ifdef NETATALK 811 if (ether_type > ETHERMTU) 812 goto dropanyway; 813 l = mtod(m, struct llc *); 814 if (l->llc_dsap == LLC_SNAP_LSAP && 815 l->llc_ssap == LLC_SNAP_LSAP && 816 l->llc_control == LLC_UI) { 817 if (bcmp(&(l->llc_snap_org_code)[0], at_org_code, 818 sizeof at_org_code) == 0 && 819 ntohs(l->llc_snap_ether_type) == ETHERTYPE_AT) { 820 m_adj(m, sizeof(struct llc)); 821 isr = NETISR_ATALK2; 822 break; 823 } 824 if (bcmp(&(l->llc_snap_org_code)[0], aarp_org_code, 825 sizeof aarp_org_code) == 0 && 826 ntohs(l->llc_snap_ether_type) == ETHERTYPE_AARP) { 827 m_adj(m, sizeof(struct llc)); 828 isr = NETISR_AARP; 829 break; 830 } 831 } 832 dropanyway: 833 #endif 834 if (ng_ether_input_orphan_p != NULL) 835 (*ng_ether_input_orphan_p)(ifp, m, &save_eh); 836 else 837 m_freem(m); 838 return; 839 } 840 841 #ifdef ETHER_INPUT_CHAIN 842 if (chain != NULL) { 843 struct mbuf_chain *c; 844 lwkt_port_t port; 845 int cpuid; 846 847 port = netisr_mport(isr, &m); 848 if (port == NULL) 849 return; 850 851 m->m_pkthdr.header = port; /* XXX */ 852 cpuid = port->mpu_td->td_gd->gd_cpuid; 853 854 c = &chain[cpuid]; 855 if (c->mc_head == NULL) { 856 c->mc_head = c->mc_tail = m; 857 } else { 858 c->mc_tail->m_nextpkt = m; 859 c->mc_tail = m; 860 } 861 m->m_nextpkt = NULL; 862 } else 863 #endif /* ETHER_INPUT_CHAIN */ 864 netisr_dispatch(isr, m); 865 } 866 867 void 868 ether_demux(struct ifnet *ifp, struct mbuf *m) 869 { 870 ether_demux_chain(ifp, m, NULL); 871 } 872 873 /* 874 * Perform common duties while attaching to interface list 875 */ 876 877 void 878 ether_ifattach(struct ifnet *ifp, uint8_t *lla, lwkt_serialize_t serializer) 879 { 880 ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header), 881 serializer); 882 } 883 884 void 885 ether_ifattach_bpf(struct ifnet *ifp, uint8_t *lla, u_int dlt, u_int hdrlen, 886 lwkt_serialize_t serializer) 887 { 888 struct sockaddr_dl *sdl; 889 890 ifp->if_type = IFT_ETHER; 891 ifp->if_addrlen = ETHER_ADDR_LEN; 892 ifp->if_hdrlen = ETHER_HDR_LEN; 893 if_attach(ifp, serializer); 894 ifp->if_mtu = ETHERMTU; 895 if (ifp->if_baudrate == 0) 896 ifp->if_baudrate = 10000000; 897 ifp->if_output = ether_output; 898 ifp->if_input = ether_input; 899 ifp->if_resolvemulti = ether_resolvemulti; 900 ifp->if_broadcastaddr = etherbroadcastaddr; 901 sdl = IF_LLSOCKADDR(ifp); 902 sdl->sdl_type = IFT_ETHER; 903 sdl->sdl_alen = ifp->if_addrlen; 904 bcopy(lla, LLADDR(sdl), ifp->if_addrlen); 905 /* 906 * XXX Keep the current drivers happy. 907 * XXX Remove once all drivers have been cleaned up 908 */ 909 if (lla != IFP2AC(ifp)->ac_enaddr) 910 bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen); 911 bpfattach(ifp, dlt, hdrlen); 912 if (ng_ether_attach_p != NULL) 913 (*ng_ether_attach_p)(ifp); 914 915 if_printf(ifp, "MAC address: %6D\n", lla, ":"); 916 } 917 918 /* 919 * Perform common duties while detaching an Ethernet interface 920 */ 921 void 922 ether_ifdetach(struct ifnet *ifp) 923 { 924 if_down(ifp); 925 926 if (ng_ether_detach_p != NULL) 927 (*ng_ether_detach_p)(ifp); 928 bpfdetach(ifp); 929 if_detach(ifp); 930 } 931 932 int 933 ether_ioctl(struct ifnet *ifp, int command, caddr_t data) 934 { 935 struct ifaddr *ifa = (struct ifaddr *) data; 936 struct ifreq *ifr = (struct ifreq *) data; 937 int error = 0; 938 939 #define IF_INIT(ifp) \ 940 do { \ 941 if (((ifp)->if_flags & IFF_UP) == 0) { \ 942 (ifp)->if_flags |= IFF_UP; \ 943 (ifp)->if_init((ifp)->if_softc); \ 944 } \ 945 } while (0) 946 947 ASSERT_SERIALIZED(ifp->if_serializer); 948 949 switch (command) { 950 case SIOCSIFADDR: 951 switch (ifa->ifa_addr->sa_family) { 952 #ifdef INET 953 case AF_INET: 954 IF_INIT(ifp); /* before arpwhohas */ 955 arp_ifinit(ifp, ifa); 956 break; 957 #endif 958 #ifdef IPX 959 /* 960 * XXX - This code is probably wrong 961 */ 962 case AF_IPX: 963 { 964 struct ipx_addr *ina = &IA_SIPX(ifa)->sipx_addr; 965 struct arpcom *ac = IFP2AC(ifp); 966 967 if (ipx_nullhost(*ina)) 968 ina->x_host = *(union ipx_host *) ac->ac_enaddr; 969 else 970 bcopy(ina->x_host.c_host, ac->ac_enaddr, 971 sizeof ac->ac_enaddr); 972 973 IF_INIT(ifp); /* Set new address. */ 974 break; 975 } 976 #endif 977 #ifdef NS 978 /* 979 * XXX - This code is probably wrong 980 */ 981 case AF_NS: 982 { 983 struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr); 984 struct arpcom *ac = IFP2AC(ifp); 985 986 if (ns_nullhost(*ina)) 987 ina->x_host = *(union ns_host *)(ac->ac_enaddr); 988 else 989 bcopy(ina->x_host.c_host, ac->ac_enaddr, 990 sizeof ac->ac_enaddr); 991 992 /* 993 * Set new address 994 */ 995 IF_INIT(ifp); 996 break; 997 } 998 #endif 999 default: 1000 IF_INIT(ifp); 1001 break; 1002 } 1003 break; 1004 1005 case SIOCGIFADDR: 1006 bcopy(IFP2AC(ifp)->ac_enaddr, 1007 ((struct sockaddr *)ifr->ifr_data)->sa_data, 1008 ETHER_ADDR_LEN); 1009 break; 1010 1011 case SIOCSIFMTU: 1012 /* 1013 * Set the interface MTU. 1014 */ 1015 if (ifr->ifr_mtu > ETHERMTU) { 1016 error = EINVAL; 1017 } else { 1018 ifp->if_mtu = ifr->ifr_mtu; 1019 } 1020 break; 1021 default: 1022 error = EINVAL; 1023 break; 1024 } 1025 return (error); 1026 1027 #undef IF_INIT 1028 } 1029 1030 int 1031 ether_resolvemulti( 1032 struct ifnet *ifp, 1033 struct sockaddr **llsa, 1034 struct sockaddr *sa) 1035 { 1036 struct sockaddr_dl *sdl; 1037 struct sockaddr_in *sin; 1038 #ifdef INET6 1039 struct sockaddr_in6 *sin6; 1040 #endif 1041 u_char *e_addr; 1042 1043 switch(sa->sa_family) { 1044 case AF_LINK: 1045 /* 1046 * No mapping needed. Just check that it's a valid MC address. 1047 */ 1048 sdl = (struct sockaddr_dl *)sa; 1049 e_addr = LLADDR(sdl); 1050 if ((e_addr[0] & 1) != 1) 1051 return EADDRNOTAVAIL; 1052 *llsa = 0; 1053 return 0; 1054 1055 #ifdef INET 1056 case AF_INET: 1057 sin = (struct sockaddr_in *)sa; 1058 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) 1059 return EADDRNOTAVAIL; 1060 MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR, 1061 M_WAITOK | M_ZERO); 1062 sdl->sdl_len = sizeof *sdl; 1063 sdl->sdl_family = AF_LINK; 1064 sdl->sdl_index = ifp->if_index; 1065 sdl->sdl_type = IFT_ETHER; 1066 sdl->sdl_alen = ETHER_ADDR_LEN; 1067 e_addr = LLADDR(sdl); 1068 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); 1069 *llsa = (struct sockaddr *)sdl; 1070 return 0; 1071 #endif 1072 #ifdef INET6 1073 case AF_INET6: 1074 sin6 = (struct sockaddr_in6 *)sa; 1075 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1076 /* 1077 * An IP6 address of 0 means listen to all 1078 * of the Ethernet multicast address used for IP6. 1079 * (This is used for multicast routers.) 1080 */ 1081 ifp->if_flags |= IFF_ALLMULTI; 1082 *llsa = 0; 1083 return 0; 1084 } 1085 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) 1086 return EADDRNOTAVAIL; 1087 MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR, 1088 M_WAITOK | M_ZERO); 1089 sdl->sdl_len = sizeof *sdl; 1090 sdl->sdl_family = AF_LINK; 1091 sdl->sdl_index = ifp->if_index; 1092 sdl->sdl_type = IFT_ETHER; 1093 sdl->sdl_alen = ETHER_ADDR_LEN; 1094 e_addr = LLADDR(sdl); 1095 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); 1096 *llsa = (struct sockaddr *)sdl; 1097 return 0; 1098 #endif 1099 1100 default: 1101 /* 1102 * Well, the text isn't quite right, but it's the name 1103 * that counts... 1104 */ 1105 return EAFNOSUPPORT; 1106 } 1107 } 1108 1109 #if 0 1110 /* 1111 * This is for reference. We have a table-driven version 1112 * of the little-endian crc32 generator, which is faster 1113 * than the double-loop. 1114 */ 1115 uint32_t 1116 ether_crc32_le(const uint8_t *buf, size_t len) 1117 { 1118 uint32_t c, crc, carry; 1119 size_t i, j; 1120 1121 crc = 0xffffffffU; /* initial value */ 1122 1123 for (i = 0; i < len; i++) { 1124 c = buf[i]; 1125 for (j = 0; j < 8; j++) { 1126 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1127 crc >>= 1; 1128 c >>= 1; 1129 if (carry) 1130 crc = (crc ^ ETHER_CRC_POLY_LE); 1131 } 1132 } 1133 1134 return (crc); 1135 } 1136 #else 1137 uint32_t 1138 ether_crc32_le(const uint8_t *buf, size_t len) 1139 { 1140 static const uint32_t crctab[] = { 1141 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1142 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1143 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1144 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1145 }; 1146 uint32_t crc; 1147 size_t i; 1148 1149 crc = 0xffffffffU; /* initial value */ 1150 1151 for (i = 0; i < len; i++) { 1152 crc ^= buf[i]; 1153 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1154 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1155 } 1156 1157 return (crc); 1158 } 1159 #endif 1160 1161 uint32_t 1162 ether_crc32_be(const uint8_t *buf, size_t len) 1163 { 1164 uint32_t c, crc, carry; 1165 size_t i, j; 1166 1167 crc = 0xffffffffU; /* initial value */ 1168 1169 for (i = 0; i < len; i++) { 1170 c = buf[i]; 1171 for (j = 0; j < 8; j++) { 1172 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1173 crc <<= 1; 1174 c >>= 1; 1175 if (carry) 1176 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1177 } 1178 } 1179 1180 return (crc); 1181 } 1182 1183 /* 1184 * find the size of ethernet header, and call classifier 1185 */ 1186 void 1187 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m, 1188 struct altq_pktattr *pktattr) 1189 { 1190 struct ether_header *eh; 1191 uint16_t ether_type; 1192 int hlen, af, hdrsize; 1193 caddr_t hdr; 1194 1195 hlen = sizeof(struct ether_header); 1196 eh = mtod(m, struct ether_header *); 1197 1198 ether_type = ntohs(eh->ether_type); 1199 if (ether_type < ETHERMTU) { 1200 /* ick! LLC/SNAP */ 1201 struct llc *llc = (struct llc *)(eh + 1); 1202 hlen += 8; 1203 1204 if (m->m_len < hlen || 1205 llc->llc_dsap != LLC_SNAP_LSAP || 1206 llc->llc_ssap != LLC_SNAP_LSAP || 1207 llc->llc_control != LLC_UI) 1208 goto bad; /* not snap! */ 1209 1210 ether_type = ntohs(llc->llc_un.type_snap.ether_type); 1211 } 1212 1213 if (ether_type == ETHERTYPE_IP) { 1214 af = AF_INET; 1215 hdrsize = 20; /* sizeof(struct ip) */ 1216 #ifdef INET6 1217 } else if (ether_type == ETHERTYPE_IPV6) { 1218 af = AF_INET6; 1219 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 1220 #endif 1221 } else 1222 goto bad; 1223 1224 while (m->m_len <= hlen) { 1225 hlen -= m->m_len; 1226 m = m->m_next; 1227 } 1228 hdr = m->m_data + hlen; 1229 if (m->m_len < hlen + hdrsize) { 1230 /* 1231 * ip header is not in a single mbuf. this should not 1232 * happen in the current code. 1233 * (todo: use m_pulldown in the future) 1234 */ 1235 goto bad; 1236 } 1237 m->m_data += hlen; 1238 m->m_len -= hlen; 1239 ifq_classify(ifq, m, af, pktattr); 1240 m->m_data -= hlen; 1241 m->m_len += hlen; 1242 1243 return; 1244 1245 bad: 1246 pktattr->pattr_class = NULL; 1247 pktattr->pattr_hdr = NULL; 1248 pktattr->pattr_af = AF_UNSPEC; 1249 } 1250 1251 static void 1252 ether_restore_header(struct mbuf **m0, const struct ether_header *eh, 1253 const struct ether_header *save_eh) 1254 { 1255 struct mbuf *m = *m0; 1256 1257 ether_restore_hdr++; 1258 1259 /* 1260 * Prepend the header, optimize for the common case of 1261 * eh pointing into the mbuf. 1262 */ 1263 if ((const void *)(eh + 1) == (void *)m->m_data) { 1264 m->m_data -= ETHER_HDR_LEN; 1265 m->m_len += ETHER_HDR_LEN; 1266 m->m_pkthdr.len += ETHER_HDR_LEN; 1267 } else { 1268 ether_prepend_hdr++; 1269 1270 M_PREPEND(m, ETHER_HDR_LEN, MB_DONTWAIT); 1271 if (m != NULL) { 1272 bcopy(save_eh, mtod(m, struct ether_header *), 1273 ETHER_HDR_LEN); 1274 } 1275 } 1276 *m0 = m; 1277 } 1278 1279 #ifdef ETHER_INPUT_CHAIN 1280 1281 static void 1282 ether_input_ipifunc(void *arg) 1283 { 1284 struct mbuf *m, *next; 1285 lwkt_port_t port; 1286 1287 m = arg; 1288 do { 1289 next = m->m_nextpkt; 1290 m->m_nextpkt = NULL; 1291 1292 port = m->m_pkthdr.header; 1293 m->m_pkthdr.header = NULL; 1294 1295 lwkt_sendmsg(port, 1296 &m->m_hdr.mh_netmsg.nm_netmsg.nm_lmsg); 1297 1298 m = next; 1299 } while (m != NULL); 1300 } 1301 1302 void 1303 ether_input_dispatch(struct mbuf_chain *chain) 1304 { 1305 #ifdef SMP 1306 int i; 1307 1308 for (i = 0; i < ncpus; ++i) { 1309 if (chain[i].mc_head != NULL) { 1310 lwkt_send_ipiq(globaldata_find(i), 1311 ether_input_ipifunc, chain[i].mc_head); 1312 } 1313 } 1314 #else 1315 if (chain->mc_head != NULL) 1316 ether_input_ipifunc(chain->mc_head); 1317 #endif 1318 } 1319 1320 void 1321 ether_input_chain_init(struct mbuf_chain *chain) 1322 { 1323 #ifdef SMP 1324 int i; 1325 1326 for (i = 0; i < ncpus; ++i) 1327 chain[i].mc_head = chain[i].mc_tail = NULL; 1328 #else 1329 chain->mc_head = chain->mc_tail = NULL; 1330 #endif 1331 } 1332 1333 #endif /* ETHER_INPUT_CHAIN */ 1334 1335 #ifdef ETHER_INPUT2 1336 1337 static void 1338 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m) 1339 { 1340 struct ether_header *eh; 1341 int isr, redispatch; 1342 u_short ether_type; 1343 struct ip_fw *rule = NULL; 1344 struct m_tag *mtag; 1345 #ifdef NETATALK 1346 struct llc *l; 1347 #endif 1348 1349 M_ASSERTPKTHDR(m); 1350 KASSERT(m->m_len >= ETHER_HDR_LEN, 1351 ("ether header is no contiguous!\n")); 1352 1353 eh = mtod(m, struct ether_header *); 1354 1355 /* Extract info from dummynet tag */ 1356 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL); 1357 if (mtag != NULL) { 1358 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv; 1359 KKASSERT(ifp == NULL); 1360 ifp = m->m_pkthdr.rcvif; 1361 1362 m_tag_delete(m, mtag); 1363 mtag = NULL; 1364 } 1365 if (rule) /* packet is passing the second time */ 1366 goto post_stats; 1367 1368 #ifdef CARP 1369 /* 1370 * XXX: Okay, we need to call carp_forus() and - if it is for 1371 * us jump over code that does the normal check 1372 * "ac_enaddr == ether_dhost". The check sequence is a bit 1373 * different from OpenBSD, so we jump over as few code as 1374 * possible, to catch _all_ sanity checks. This needs 1375 * evaluation, to see if the carp ether_dhost values break any 1376 * of these checks! 1377 */ 1378 if (ifp->if_carp && carp_forus(ifp->if_carp, eh->ether_dhost)) 1379 goto post_stats; 1380 #endif 1381 1382 /* 1383 * Discard packet if upper layers shouldn't see it because 1384 * it was unicast to a different Ethernet address. If the 1385 * driver is working properly, then this situation can only 1386 * happen when the interface is in promiscuous mode. 1387 */ 1388 if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) && 1389 (eh->ether_dhost[0] & 1) == 0 && 1390 bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) { 1391 m_freem(m); 1392 return; 1393 } 1394 1395 post_stats: 1396 if (IPFW_LOADED && ether_ipfw != 0) { 1397 struct ether_header save_eh = *eh; 1398 1399 /* XXX old crufty stuff, needs to be removed */ 1400 m_adj(m, sizeof(struct ether_header)); 1401 1402 if (!ether_ipfw_chk(&m, NULL, &rule, eh)) { 1403 m_freem(m); 1404 return; 1405 } 1406 1407 ether_restore_header(&m, eh, &save_eh); 1408 if (m == NULL) 1409 return; 1410 eh = mtod(m, struct ether_header *); 1411 } 1412 1413 ether_type = ntohs(eh->ether_type); 1414 KKASSERT(ether_type != ETHERTYPE_VLAN); 1415 1416 if (m->m_flags & M_VLANTAG) { 1417 if (vlan_input2_p != NULL) { 1418 vlan_input2_p(m); 1419 } else { 1420 m->m_pkthdr.rcvif->if_noproto++; 1421 m_freem(m); 1422 } 1423 return; 1424 } 1425 1426 m_adj(m, sizeof(struct ether_header)); 1427 redispatch = 0; 1428 1429 switch (ether_type) { 1430 #ifdef INET 1431 case ETHERTYPE_IP: 1432 #ifdef notyet 1433 if (ipflow_fastforward(m, ifp->if_serializer)) 1434 return; 1435 #endif 1436 isr = NETISR_IP; 1437 break; 1438 1439 case ETHERTYPE_ARP: 1440 if (ifp->if_flags & IFF_NOARP) { 1441 /* Discard packet if ARP is disabled on interface */ 1442 m_freem(m); 1443 return; 1444 } 1445 isr = NETISR_ARP; 1446 break; 1447 #endif 1448 1449 #ifdef INET6 1450 case ETHERTYPE_IPV6: 1451 isr = NETISR_IPV6; 1452 break; 1453 #endif 1454 1455 #ifdef IPX 1456 case ETHERTYPE_IPX: 1457 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) 1458 return; 1459 isr = NETISR_IPX; 1460 break; 1461 #endif 1462 1463 #ifdef NS 1464 case 0x8137: /* Novell Ethernet_II Ethernet TYPE II */ 1465 isr = NETISR_NS; 1466 break; 1467 1468 #endif 1469 1470 #ifdef NETATALK 1471 case ETHERTYPE_AT: 1472 isr = NETISR_ATALK1; 1473 break; 1474 case ETHERTYPE_AARP: 1475 isr = NETISR_AARP; 1476 break; 1477 #endif 1478 1479 default: 1480 /* 1481 * The accurate msgport is not determined before 1482 * we reach here, so redo the dispatching 1483 */ 1484 redispatch = 1; 1485 #ifdef IPX 1486 if (ef_inputp && ef_inputp(ifp, eh, m) == 0) 1487 return; 1488 #endif 1489 #ifdef NS 1490 checksum = mtod(m, ushort *); 1491 /* Novell 802.3 */ 1492 if ((ether_type <= ETHERMTU) && 1493 ((*checksum == 0xffff) || (*checksum == 0xE0E0))) { 1494 if (*checksum == 0xE0E0) { 1495 m->m_pkthdr.len -= 3; 1496 m->m_len -= 3; 1497 m->m_data += 3; 1498 } 1499 isr = NETISR_NS; 1500 break; 1501 } 1502 #endif 1503 #ifdef NETATALK 1504 if (ether_type > ETHERMTU) 1505 goto dropanyway; 1506 l = mtod(m, struct llc *); 1507 if (l->llc_dsap == LLC_SNAP_LSAP && 1508 l->llc_ssap == LLC_SNAP_LSAP && 1509 l->llc_control == LLC_UI) { 1510 if (bcmp(&(l->llc_snap_org_code)[0], at_org_code, 1511 sizeof at_org_code) == 0 && 1512 ntohs(l->llc_snap_ether_type) == ETHERTYPE_AT) { 1513 m_adj(m, sizeof(struct llc)); 1514 isr = NETISR_ATALK2; 1515 break; 1516 } 1517 if (bcmp(&(l->llc_snap_org_code)[0], aarp_org_code, 1518 sizeof aarp_org_code) == 0 && 1519 ntohs(l->llc_snap_ether_type) == ETHERTYPE_AARP) { 1520 m_adj(m, sizeof(struct llc)); 1521 isr = NETISR_AARP; 1522 break; 1523 } 1524 } 1525 dropanyway: 1526 #endif 1527 if (ng_ether_input_orphan_p != NULL) 1528 ng_ether_input_orphan_p(ifp, m, eh); 1529 else 1530 m_freem(m); 1531 return; 1532 } 1533 1534 if (!redispatch) 1535 netisr_run(isr, m); 1536 else 1537 netisr_dispatch(isr, m); 1538 } 1539 1540 void 1541 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m) 1542 { 1543 if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) { 1544 /* 1545 * Receiving interface's flags are changed, when this 1546 * packet is waiting for processing; discard it. 1547 */ 1548 m_freem(m); 1549 return; 1550 } 1551 1552 /* 1553 * Tap the packet off here for a bridge. bridge_input() 1554 * will return NULL if it has consumed the packet, otherwise 1555 * it gets processed as normal. Note that bridge_input() 1556 * will always return the original packet if we need to 1557 * process it locally. 1558 */ 1559 if (ifp->if_bridge) { 1560 KASSERT(bridge_input_p != NULL, 1561 ("%s: if_bridge not loaded!", __func__)); 1562 1563 if(m->m_flags & M_PROTO1) { 1564 m->m_flags &= ~M_PROTO1; 1565 } else { 1566 /* clear M_PROMISC, in case the packets comes from a vlan */ 1567 /* m->m_flags &= ~M_PROMISC; */ 1568 m = bridge_input_p(ifp, m); 1569 if (m == NULL) 1570 return; 1571 1572 KASSERT(ifp == m->m_pkthdr.rcvif, 1573 ("bridge_input_p changed rcvif\n")); 1574 } 1575 } 1576 1577 /* Handle ng_ether(4) processing, if any */ 1578 if (ng_ether_input_p != NULL) { 1579 ng_ether_input_p(ifp, &m); 1580 if (m == NULL) 1581 return; 1582 } 1583 1584 /* Continue with upper layer processing */ 1585 ether_demux_oncpu(ifp, m); 1586 } 1587 1588 static void 1589 ether_input_handler(struct netmsg *nmsg) 1590 { 1591 struct netmsg_packet *nmp = (struct netmsg_packet *)nmsg; 1592 struct ifnet *ifp; 1593 struct mbuf *m; 1594 1595 m = nmp->nm_packet; 1596 M_ASSERTPKTHDR(m); 1597 ifp = m->m_pkthdr.rcvif; 1598 1599 ether_input_oncpu(ifp, m); 1600 } 1601 1602 static __inline void 1603 ether_init_netpacket(int num, struct mbuf *m) 1604 { 1605 struct netmsg_packet *pmsg; 1606 1607 pmsg = &m->m_hdr.mh_netmsg; 1608 netmsg_init(&pmsg->nm_netmsg, &netisr_apanic_rport, 0, 1609 ether_input_handler); 1610 pmsg->nm_packet = m; 1611 pmsg->nm_netmsg.nm_lmsg.u.ms_result = num; 1612 } 1613 1614 static __inline struct lwkt_port * 1615 ether_mport(int num, struct mbuf **m0) 1616 { 1617 struct lwkt_port *port; 1618 struct mbuf *m = *m0; 1619 1620 if (num == NETISR_MAX) { 1621 /* 1622 * All packets whose target msgports can't be 1623 * determined here are dispatched to netisr0, 1624 * where further dispatching may happen. 1625 */ 1626 return cpu_portfn(0); 1627 } 1628 1629 port = netisr_find_port(num, &m); 1630 if (port == NULL) 1631 return NULL; 1632 1633 *m0 = m; 1634 return port; 1635 } 1636 1637 void 1638 ether_input_chain2(struct ifnet *ifp, struct mbuf *m, struct mbuf_chain *chain) 1639 { 1640 struct ether_header *eh, *save_eh, save_eh0; 1641 struct lwkt_port *port; 1642 uint16_t ether_type; 1643 int isr; 1644 1645 ASSERT_SERIALIZED(ifp->if_serializer); 1646 M_ASSERTPKTHDR(m); 1647 1648 /* Discard packet if interface is not up */ 1649 if (!(ifp->if_flags & IFF_UP)) { 1650 m_freem(m); 1651 return; 1652 } 1653 1654 if (m->m_len < sizeof(struct ether_header)) { 1655 /* XXX error in the caller. */ 1656 m_freem(m); 1657 return; 1658 } 1659 eh = mtod(m, struct ether_header *); 1660 1661 m->m_pkthdr.rcvif = ifp; 1662 1663 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 1664 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost, 1665 ifp->if_addrlen) == 0) 1666 m->m_flags |= M_BCAST; 1667 else 1668 m->m_flags |= M_MCAST; 1669 ifp->if_imcasts++; 1670 } 1671 1672 ETHER_BPF_MTAP(ifp, m); 1673 1674 ifp->if_ibytes += m->m_pkthdr.len; 1675 1676 if (ifp->if_flags & IFF_MONITOR) { 1677 /* 1678 * Interface marked for monitoring; discard packet. 1679 */ 1680 m_freem(m); 1681 return; 1682 } 1683 1684 if (ntohs(eh->ether_type) == ETHERTYPE_VLAN && 1685 (m->m_flags & M_VLANTAG) == 0) { 1686 /* 1687 * Extract vlan tag if hardware does not do it for us 1688 */ 1689 vlan_ether_decap(&m); 1690 if (m == NULL) 1691 return; 1692 eh = mtod(m, struct ether_header *); 1693 } 1694 ether_type = ntohs(eh->ether_type); 1695 1696 if ((m->m_flags & M_VLANTAG) && ether_type == ETHERTYPE_VLAN) { 1697 /* 1698 * To prevent possible dangerous recursion, 1699 * we don't do vlan-in-vlan 1700 */ 1701 ifp->if_noproto++; 1702 m_freem(m); 1703 return; 1704 } 1705 KKASSERT(ether_type != ETHERTYPE_VLAN); 1706 1707 /* 1708 * Map ether type to netisr id. 1709 */ 1710 switch (ether_type) { 1711 #ifdef INET 1712 case ETHERTYPE_IP: 1713 isr = NETISR_IP; 1714 break; 1715 1716 case ETHERTYPE_ARP: 1717 isr = NETISR_ARP; 1718 break; 1719 #endif 1720 1721 #ifdef INET6 1722 case ETHERTYPE_IPV6: 1723 isr = NETISR_IPV6; 1724 break; 1725 #endif 1726 1727 #ifdef IPX 1728 case ETHERTYPE_IPX: 1729 isr = NETISR_IPX; 1730 break; 1731 #endif 1732 1733 #ifdef NS 1734 case 0x8137: /* Novell Ethernet_II Ethernet TYPE II */ 1735 isr = NETISR_NS; 1736 break; 1737 #endif 1738 1739 #ifdef NETATALK 1740 case ETHERTYPE_AT: 1741 isr = NETISR_ATALK1; 1742 break; 1743 case ETHERTYPE_AARP: 1744 isr = NETISR_AARP; 1745 break; 1746 #endif 1747 1748 default: 1749 /* 1750 * NETISR_MAX is an invalid value; it is chosen to let 1751 * ether_mport() know that we are not able to decide 1752 * this packet's msgport here. 1753 */ 1754 isr = NETISR_MAX; 1755 break; 1756 } 1757 1758 /* 1759 * If the packet is in contiguous memory, following 1760 * m_adj() could ensure that the hidden ether header 1761 * will not be destroyed, else we will have to save 1762 * the ether header for the later restoration. 1763 */ 1764 if (m->m_pkthdr.len != m->m_len) { 1765 save_eh0 = *eh; 1766 save_eh = &save_eh0; 1767 } else { 1768 save_eh = NULL; 1769 } 1770 1771 /* 1772 * Temporarily remove ether header; ether_mport() 1773 * expects a packet without ether header. 1774 */ 1775 m_adj(m, sizeof(struct ether_header)); 1776 1777 /* 1778 * Find the packet's target msgport. 1779 */ 1780 port = ether_mport(isr, &m); 1781 if (port == NULL) { 1782 KKASSERT(m == NULL); 1783 return; 1784 } 1785 1786 /* 1787 * Restore ether header. 1788 */ 1789 if (save_eh != NULL) { 1790 ether_restore_header(&m, eh, save_eh); 1791 if (m == NULL) 1792 return; 1793 } else { 1794 m->m_data -= ETHER_HDR_LEN; 1795 m->m_len += ETHER_HDR_LEN; 1796 m->m_pkthdr.len += ETHER_HDR_LEN; 1797 } 1798 1799 /* 1800 * Initialize mbuf's netmsg packet _after_ possible 1801 * ether header restoration, else the initialized 1802 * netmsg packet may be lost during ether header 1803 * restoration. 1804 */ 1805 ether_init_netpacket(isr, m); 1806 1807 #ifdef ETHER_INPUT_CHAIN 1808 if (chain != NULL) { 1809 struct mbuf_chain *c; 1810 int cpuid; 1811 1812 m->m_pkthdr.header = port; /* XXX */ 1813 cpuid = port->mpu_td->td_gd->gd_cpuid; 1814 1815 c = &chain[cpuid]; 1816 if (c->mc_head == NULL) { 1817 c->mc_head = c->mc_tail = m; 1818 } else { 1819 c->mc_tail->m_nextpkt = m; 1820 c->mc_tail = m; 1821 } 1822 m->m_nextpkt = NULL; 1823 } else 1824 #endif /* ETHER_INPUT_CHAIN */ 1825 lwkt_sendmsg(port, &m->m_hdr.mh_netmsg.nm_netmsg.nm_lmsg); 1826 } 1827 1828 #endif /* ETHER_INPUT2 */ 1829