xref: /dflybsd-src/sys/net/if.c (revision cfc9634056ea0cd181df744a3d243a686e85bab3)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_inet.h"
40 #include "opt_ifpoll.h"
41 
42 #include <sys/param.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/priv.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/socketops.h>
52 #include <sys/protosw.h>
53 #include <sys/kernel.h>
54 #include <sys/ktr.h>
55 #include <sys/mutex.h>
56 #include <sys/sockio.h>
57 #include <sys/syslog.h>
58 #include <sys/sysctl.h>
59 #include <sys/domain.h>
60 #include <sys/thread.h>
61 #include <sys/serialize.h>
62 #include <sys/bus.h>
63 
64 #include <sys/thread2.h>
65 #include <sys/msgport2.h>
66 #include <sys/mutex2.h>
67 
68 #include <net/if.h>
69 #include <net/if_arp.h>
70 #include <net/if_dl.h>
71 #include <net/if_types.h>
72 #include <net/if_var.h>
73 #include <net/ifq_var.h>
74 #include <net/radix.h>
75 #include <net/route.h>
76 #include <net/if_clone.h>
77 #include <net/netisr.h>
78 #include <net/netmsg2.h>
79 
80 #include <machine/atomic.h>
81 #include <machine/stdarg.h>
82 #include <machine/smp.h>
83 
84 #if defined(INET) || defined(INET6)
85 /*XXX*/
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 #include <netinet/if_ether.h>
89 #ifdef INET6
90 #include <netinet6/in6_var.h>
91 #include <netinet6/in6_ifattach.h>
92 #endif
93 #endif
94 
95 #if defined(COMPAT_43)
96 #include <emulation/43bsd/43bsd_socket.h>
97 #endif /* COMPAT_43 */
98 
99 struct netmsg_ifaddr {
100 	struct netmsg_base base;
101 	struct ifaddr	*ifa;
102 	struct ifnet	*ifp;
103 	int		tail;
104 };
105 
106 struct ifsubq_stage_head {
107 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
108 } __cachealign;
109 
110 /*
111  * System initialization
112  */
113 static void	if_attachdomain(void *);
114 static void	if_attachdomain1(struct ifnet *);
115 static int	ifconf(u_long, caddr_t, struct ucred *);
116 static void	ifinit(void *);
117 static void	ifnetinit(void *);
118 static void	if_slowtimo(void *);
119 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
120 static int	if_rtdel(struct radix_node *, void *);
121 
122 /* Helper functions */
123 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
124 
125 #ifdef INET6
126 /*
127  * XXX: declare here to avoid to include many inet6 related files..
128  * should be more generalized?
129  */
130 extern void	nd6_setmtu(struct ifnet *);
131 #endif
132 
133 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
134 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
135 
136 static int ifsq_stage_cntmax = 4;
137 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
138 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
139     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
140 
141 static int if_stats_compat = 0;
142 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
143     &if_stats_compat, 0, "Compat the old ifnet stats");
144 
145 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
146 /* Must be after netisr_init */
147 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
148 
149 static  if_com_alloc_t *if_com_alloc[256];
150 static  if_com_free_t *if_com_free[256];
151 
152 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
153 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
154 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
155 
156 int			ifqmaxlen = IFQ_MAXLEN;
157 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
158 
159 struct callout		if_slowtimo_timer;
160 
161 int			if_index = 0;
162 struct ifnet		**ifindex2ifnet = NULL;
163 static struct thread	ifnet_threads[MAXCPU];
164 
165 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
166 
167 #ifdef notyet
168 #define IFQ_KTR_STRING		"ifq=%p"
169 #define IFQ_KTR_ARGS	struct ifaltq *ifq
170 #ifndef KTR_IFQ
171 #define KTR_IFQ			KTR_ALL
172 #endif
173 KTR_INFO_MASTER(ifq);
174 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
175 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
176 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
177 
178 #define IF_START_KTR_STRING	"ifp=%p"
179 #define IF_START_KTR_ARGS	struct ifnet *ifp
180 #ifndef KTR_IF_START
181 #define KTR_IF_START		KTR_ALL
182 #endif
183 KTR_INFO_MASTER(if_start);
184 KTR_INFO(KTR_IF_START, if_start, run, 0,
185 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
186 KTR_INFO(KTR_IF_START, if_start, sched, 1,
187 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
188 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
189 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
190 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
191 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
192 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
193 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
194 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
195 #endif
196 
197 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
198 
199 /*
200  * Network interface utility routines.
201  *
202  * Routines with ifa_ifwith* names take sockaddr *'s as
203  * parameters.
204  */
205 /* ARGSUSED*/
206 void
207 ifinit(void *dummy)
208 {
209 	struct ifnet *ifp;
210 
211 	callout_init(&if_slowtimo_timer);
212 
213 	crit_enter();
214 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
215 		if (ifp->if_snd.altq_maxlen == 0) {
216 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
217 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
218 		}
219 	}
220 	crit_exit();
221 
222 	if_slowtimo(0);
223 }
224 
225 static void
226 ifsq_ifstart_ipifunc(void *arg)
227 {
228 	struct ifaltq_subque *ifsq = arg;
229 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
230 
231 	crit_enter();
232 	if (lmsg->ms_flags & MSGF_DONE)
233 		lwkt_sendmsg(netisr_portfn(mycpuid), lmsg);
234 	crit_exit();
235 }
236 
237 static __inline void
238 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
239 {
240 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
241 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
242 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
243 	stage->stg_cnt = 0;
244 	stage->stg_len = 0;
245 }
246 
247 static __inline void
248 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
249 {
250 	KKASSERT((stage->stg_flags &
251 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
252 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
253 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
254 }
255 
256 /*
257  * Schedule ifnet.if_start on ifnet's CPU
258  */
259 static void
260 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
261 {
262 	int cpu;
263 
264 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
265 	    ifsq_stage_cntmax > 0) {
266 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
267 
268 		stage->stg_cnt = 0;
269 		stage->stg_len = 0;
270 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
271 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
272 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
273 		return;
274 	}
275 
276 	cpu = ifsq_get_cpuid(ifsq);
277 	if (cpu != mycpuid)
278 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
279 	else
280 		ifsq_ifstart_ipifunc(ifsq);
281 }
282 
283 /*
284  * NOTE:
285  * This function will release ifnet.if_start interlock,
286  * if ifnet.if_start does not need to be scheduled
287  */
288 static __inline int
289 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
290 {
291 	if (!running || ifsq_is_empty(ifsq)
292 #ifdef ALTQ
293 	    || ifsq->ifsq_altq->altq_tbr != NULL
294 #endif
295 	) {
296 		ALTQ_SQ_LOCK(ifsq);
297 		/*
298 		 * ifnet.if_start interlock is released, if:
299 		 * 1) Hardware can not take any packets, due to
300 		 *    o  interface is marked down
301 		 *    o  hardware queue is full (ifq_is_oactive)
302 		 *    Under the second situation, hardware interrupt
303 		 *    or polling(4) will call/schedule ifnet.if_start
304 		 *    when hardware queue is ready
305 		 * 2) There is not packet in the ifnet.if_snd.
306 		 *    Further ifq_dispatch or ifq_handoff will call/
307 		 *    schedule ifnet.if_start
308 		 * 3) TBR is used and it does not allow further
309 		 *    dequeueing.
310 		 *    TBR callout will call ifnet.if_start
311 		 */
312 		if (!running || !ifsq_data_ready(ifsq)) {
313 			ifsq_clr_started(ifsq);
314 			ALTQ_SQ_UNLOCK(ifsq);
315 			return 0;
316 		}
317 		ALTQ_SQ_UNLOCK(ifsq);
318 	}
319 	return 1;
320 }
321 
322 static void
323 ifsq_ifstart_dispatch(netmsg_t msg)
324 {
325 	struct lwkt_msg *lmsg = &msg->base.lmsg;
326 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
327 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
328 	int running = 0, need_sched;
329 
330 	crit_enter();
331 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
332 	crit_exit();
333 
334 	if (mycpuid != ifsq_get_cpuid(ifsq)) {
335 		/*
336 		 * We need to chase the ifnet CPU change.
337 		 */
338 		ifsq_ifstart_schedule(ifsq, 1);
339 		return;
340 	}
341 
342 	ifnet_serialize_tx(ifp, ifsq);
343 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
344 		ifp->if_start(ifp, ifsq);
345 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
346 			running = 1;
347 	}
348 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
349 	ifnet_deserialize_tx(ifp, ifsq);
350 
351 	if (need_sched) {
352 		/*
353 		 * More data need to be transmitted, ifnet.if_start is
354 		 * scheduled on ifnet's CPU, and we keep going.
355 		 * NOTE: ifnet.if_start interlock is not released.
356 		 */
357 		ifsq_ifstart_schedule(ifsq, 0);
358 	}
359 }
360 
361 /* Device driver ifnet.if_start helper function */
362 void
363 ifsq_devstart(struct ifaltq_subque *ifsq)
364 {
365 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
366 	int running = 0;
367 
368 	ASSERT_IFNET_SERIALIZED_TX(ifp, ifsq);
369 
370 	ALTQ_SQ_LOCK(ifsq);
371 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
372 		ALTQ_SQ_UNLOCK(ifsq);
373 		return;
374 	}
375 	ifsq_set_started(ifsq);
376 	ALTQ_SQ_UNLOCK(ifsq);
377 
378 	ifp->if_start(ifp, ifsq);
379 
380 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
381 		running = 1;
382 
383 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
384 		/*
385 		 * More data need to be transmitted, ifnet.if_start is
386 		 * scheduled on ifnet's CPU, and we keep going.
387 		 * NOTE: ifnet.if_start interlock is not released.
388 		 */
389 		ifsq_ifstart_schedule(ifsq, 0);
390 	}
391 }
392 
393 void
394 if_devstart(struct ifnet *ifp)
395 {
396 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
397 }
398 
399 /* Device driver ifnet.if_start schedule helper function */
400 void
401 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
402 {
403 	ifsq_ifstart_schedule(ifsq, 1);
404 }
405 
406 void
407 if_devstart_sched(struct ifnet *ifp)
408 {
409 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
410 }
411 
412 static void
413 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
414 {
415 	lwkt_serialize_enter(ifp->if_serializer);
416 }
417 
418 static void
419 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
420 {
421 	lwkt_serialize_exit(ifp->if_serializer);
422 }
423 
424 static int
425 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
426 {
427 	return lwkt_serialize_try(ifp->if_serializer);
428 }
429 
430 #ifdef INVARIANTS
431 static void
432 if_default_serialize_assert(struct ifnet *ifp,
433 			    enum ifnet_serialize slz __unused,
434 			    boolean_t serialized)
435 {
436 	if (serialized)
437 		ASSERT_SERIALIZED(ifp->if_serializer);
438 	else
439 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
440 }
441 #endif
442 
443 /*
444  * Attach an interface to the list of "active" interfaces.
445  *
446  * The serializer is optional.  If non-NULL access to the interface
447  * may be MPSAFE.
448  */
449 void
450 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
451 {
452 	unsigned socksize, ifasize;
453 	int namelen, masklen;
454 	struct sockaddr_dl *sdl;
455 	struct ifaddr *ifa;
456 	struct ifaltq *ifq;
457 	int i, q;
458 
459 	static int if_indexlim = 8;
460 
461 	if (ifp->if_serialize != NULL) {
462 		KASSERT(ifp->if_deserialize != NULL &&
463 			ifp->if_tryserialize != NULL &&
464 			ifp->if_serialize_assert != NULL,
465 			("serialize functions are partially setup"));
466 
467 		/*
468 		 * If the device supplies serialize functions,
469 		 * then clear if_serializer to catch any invalid
470 		 * usage of this field.
471 		 */
472 		KASSERT(serializer == NULL,
473 			("both serialize functions and default serializer "
474 			 "are supplied"));
475 		ifp->if_serializer = NULL;
476 	} else {
477 		KASSERT(ifp->if_deserialize == NULL &&
478 			ifp->if_tryserialize == NULL &&
479 			ifp->if_serialize_assert == NULL,
480 			("serialize functions are partially setup"));
481 		ifp->if_serialize = if_default_serialize;
482 		ifp->if_deserialize = if_default_deserialize;
483 		ifp->if_tryserialize = if_default_tryserialize;
484 #ifdef INVARIANTS
485 		ifp->if_serialize_assert = if_default_serialize_assert;
486 #endif
487 
488 		/*
489 		 * The serializer can be passed in from the device,
490 		 * allowing the same serializer to be used for both
491 		 * the interrupt interlock and the device queue.
492 		 * If not specified, the netif structure will use an
493 		 * embedded serializer.
494 		 */
495 		if (serializer == NULL) {
496 			serializer = &ifp->if_default_serializer;
497 			lwkt_serialize_init(serializer);
498 		}
499 		ifp->if_serializer = serializer;
500 	}
501 
502 	mtx_init(&ifp->if_ioctl_mtx);
503 	mtx_lock(&ifp->if_ioctl_mtx);
504 
505 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
506 	ifp->if_index = ++if_index;
507 
508 	/*
509 	 * XXX -
510 	 * The old code would work if the interface passed a pre-existing
511 	 * chain of ifaddrs to this code.  We don't trust our callers to
512 	 * properly initialize the tailq, however, so we no longer allow
513 	 * this unlikely case.
514 	 */
515 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
516 				    M_IFADDR, M_WAITOK | M_ZERO);
517 	for (i = 0; i < ncpus; ++i)
518 		TAILQ_INIT(&ifp->if_addrheads[i]);
519 
520 	TAILQ_INIT(&ifp->if_prefixhead);
521 	TAILQ_INIT(&ifp->if_multiaddrs);
522 	TAILQ_INIT(&ifp->if_groups);
523 	getmicrotime(&ifp->if_lastchange);
524 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
525 		unsigned int n;
526 		struct ifnet **q;
527 
528 		if_indexlim <<= 1;
529 
530 		/* grow ifindex2ifnet */
531 		n = if_indexlim * sizeof(*q);
532 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
533 		if (ifindex2ifnet) {
534 			bcopy(ifindex2ifnet, q, n/2);
535 			kfree(ifindex2ifnet, M_IFADDR);
536 		}
537 		ifindex2ifnet = q;
538 	}
539 
540 	ifindex2ifnet[if_index] = ifp;
541 
542 	/*
543 	 * create a Link Level name for this device
544 	 */
545 	namelen = strlen(ifp->if_xname);
546 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
547 	socksize = masklen + ifp->if_addrlen;
548 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
549 	if (socksize < sizeof(*sdl))
550 		socksize = sizeof(*sdl);
551 	socksize = ROUNDUP(socksize);
552 #undef ROUNDUP
553 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
554 	ifa = ifa_create(ifasize, M_WAITOK);
555 	sdl = (struct sockaddr_dl *)(ifa + 1);
556 	sdl->sdl_len = socksize;
557 	sdl->sdl_family = AF_LINK;
558 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
559 	sdl->sdl_nlen = namelen;
560 	sdl->sdl_index = ifp->if_index;
561 	sdl->sdl_type = ifp->if_type;
562 	ifp->if_lladdr = ifa;
563 	ifa->ifa_ifp = ifp;
564 	ifa->ifa_rtrequest = link_rtrequest;
565 	ifa->ifa_addr = (struct sockaddr *)sdl;
566 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
567 	ifa->ifa_netmask = (struct sockaddr *)sdl;
568 	sdl->sdl_len = masklen;
569 	while (namelen != 0)
570 		sdl->sdl_data[--namelen] = 0xff;
571 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
572 
573 	ifp->if_data_pcpu = kmalloc_cachealign(
574 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
575 
576 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
577 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
578 
579 	if (ifp->if_mapsubq == NULL)
580 		ifp->if_mapsubq = ifq_mapsubq_default;
581 
582 	ifq = &ifp->if_snd;
583 	ifq->altq_type = 0;
584 	ifq->altq_disc = NULL;
585 	ifq->altq_flags &= ALTQF_CANTCHANGE;
586 	ifq->altq_tbr = NULL;
587 	ifq->altq_ifp = ifp;
588 
589 	if (ifq->altq_subq_cnt <= 0)
590 		ifq->altq_subq_cnt = 1;
591 	ifq->altq_subq = kmalloc_cachealign(
592 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
593 	    M_DEVBUF, M_WAITOK | M_ZERO);
594 
595 	if (ifq->altq_maxlen == 0) {
596 		if_printf(ifp, "driver didn't set ifq_maxlen\n");
597 		ifq_set_maxlen(ifq, ifqmaxlen);
598 	}
599 
600 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
601 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
602 
603 		ALTQ_SQ_LOCK_INIT(ifsq);
604 		ifsq->ifsq_index = q;
605 
606 		ifsq->ifsq_altq = ifq;
607 		ifsq->ifsq_ifp = ifp;
608 
609 		ifsq->ifq_maxlen = ifq->altq_maxlen;
610 		ifsq->ifsq_prepended = NULL;
611 		ifsq->ifsq_started = 0;
612 		ifsq->ifsq_hw_oactive = 0;
613 		ifsq_set_cpuid(ifsq, 0);
614 
615 		ifsq->ifsq_stage =
616 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
617 		    M_DEVBUF, M_WAITOK | M_ZERO);
618 		for (i = 0; i < ncpus; ++i)
619 			ifsq->ifsq_stage[i].stg_subq = ifsq;
620 
621 		ifsq->ifsq_ifstart_nmsg =
622 		    kmalloc(ncpus * sizeof(struct netmsg_base),
623 		    M_LWKTMSG, M_WAITOK);
624 		for (i = 0; i < ncpus; ++i) {
625 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
626 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
627 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
628 		}
629 	}
630 	ifq_set_classic(ifq);
631 
632 	if (!SLIST_EMPTY(&domains))
633 		if_attachdomain1(ifp);
634 
635 	/* Announce the interface. */
636 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
637 
638 	mtx_unlock(&ifp->if_ioctl_mtx);
639 }
640 
641 static void
642 if_attachdomain(void *dummy)
643 {
644 	struct ifnet *ifp;
645 
646 	crit_enter();
647 	TAILQ_FOREACH(ifp, &ifnet, if_list)
648 		if_attachdomain1(ifp);
649 	crit_exit();
650 }
651 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
652 	if_attachdomain, NULL);
653 
654 static void
655 if_attachdomain1(struct ifnet *ifp)
656 {
657 	struct domain *dp;
658 
659 	crit_enter();
660 
661 	/* address family dependent data region */
662 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
663 	SLIST_FOREACH(dp, &domains, dom_next)
664 		if (dp->dom_ifattach)
665 			ifp->if_afdata[dp->dom_family] =
666 				(*dp->dom_ifattach)(ifp);
667 	crit_exit();
668 }
669 
670 /*
671  * Purge all addresses whose type is _not_ AF_LINK
672  */
673 void
674 if_purgeaddrs_nolink(struct ifnet *ifp)
675 {
676 	struct ifaddr_container *ifac, *next;
677 
678 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
679 			      ifa_link, next) {
680 		struct ifaddr *ifa = ifac->ifa;
681 
682 		/* Leave link ifaddr as it is */
683 		if (ifa->ifa_addr->sa_family == AF_LINK)
684 			continue;
685 #ifdef INET
686 		/* XXX: Ugly!! ad hoc just for INET */
687 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
688 			struct ifaliasreq ifr;
689 #ifdef IFADDR_DEBUG_VERBOSE
690 			int i;
691 
692 			kprintf("purge in4 addr %p: ", ifa);
693 			for (i = 0; i < ncpus; ++i)
694 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
695 			kprintf("\n");
696 #endif
697 
698 			bzero(&ifr, sizeof ifr);
699 			ifr.ifra_addr = *ifa->ifa_addr;
700 			if (ifa->ifa_dstaddr)
701 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
702 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
703 				       NULL) == 0)
704 				continue;
705 		}
706 #endif /* INET */
707 #ifdef INET6
708 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
709 #ifdef IFADDR_DEBUG_VERBOSE
710 			int i;
711 
712 			kprintf("purge in6 addr %p: ", ifa);
713 			for (i = 0; i < ncpus; ++i)
714 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
715 			kprintf("\n");
716 #endif
717 
718 			in6_purgeaddr(ifa);
719 			/* ifp_addrhead is already updated */
720 			continue;
721 		}
722 #endif /* INET6 */
723 		ifa_ifunlink(ifa, ifp);
724 		ifa_destroy(ifa);
725 	}
726 }
727 
728 static void
729 ifq_stage_detach_handler(netmsg_t nmsg)
730 {
731 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
732 	int q;
733 
734 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
735 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
736 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
737 
738 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
739 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
740 	}
741 	lwkt_replymsg(&nmsg->lmsg, 0);
742 }
743 
744 static void
745 ifq_stage_detach(struct ifaltq *ifq)
746 {
747 	struct netmsg_base base;
748 	int cpu;
749 
750 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
751 	    ifq_stage_detach_handler);
752 	base.lmsg.u.ms_resultp = ifq;
753 
754 	for (cpu = 0; cpu < ncpus; ++cpu)
755 		lwkt_domsg(netisr_portfn(cpu), &base.lmsg, 0);
756 }
757 
758 /*
759  * Detach an interface, removing it from the
760  * list of "active" interfaces.
761  */
762 void
763 if_detach(struct ifnet *ifp)
764 {
765 	struct radix_node_head	*rnh;
766 	int i, q;
767 	int cpu, origcpu;
768 	struct domain *dp;
769 
770 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
771 
772 	/*
773 	 * Remove routes and flush queues.
774 	 */
775 	crit_enter();
776 #ifdef IFPOLL_ENABLE
777 	if (ifp->if_flags & IFF_NPOLLING)
778 		ifpoll_deregister(ifp);
779 #endif
780 	if_down(ifp);
781 
782 #ifdef ALTQ
783 	if (ifq_is_enabled(&ifp->if_snd))
784 		altq_disable(&ifp->if_snd);
785 	if (ifq_is_attached(&ifp->if_snd))
786 		altq_detach(&ifp->if_snd);
787 #endif
788 
789 	/*
790 	 * Clean up all addresses.
791 	 */
792 	ifp->if_lladdr = NULL;
793 
794 	if_purgeaddrs_nolink(ifp);
795 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
796 		struct ifaddr *ifa;
797 
798 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
799 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
800 			("non-link ifaddr is left on if_addrheads"));
801 
802 		ifa_ifunlink(ifa, ifp);
803 		ifa_destroy(ifa);
804 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
805 			("there are still ifaddrs left on if_addrheads"));
806 	}
807 
808 #ifdef INET
809 	/*
810 	 * Remove all IPv4 kernel structures related to ifp.
811 	 */
812 	in_ifdetach(ifp);
813 #endif
814 
815 #ifdef INET6
816 	/*
817 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
818 	 * before removing routing entries below, since IPv6 interface direct
819 	 * routes are expected to be removed by the IPv6-specific kernel API.
820 	 * Otherwise, the kernel will detect some inconsistency and bark it.
821 	 */
822 	in6_ifdetach(ifp);
823 #endif
824 
825 	/*
826 	 * Delete all remaining routes using this interface
827 	 * Unfortuneatly the only way to do this is to slog through
828 	 * the entire routing table looking for routes which point
829 	 * to this interface...oh well...
830 	 */
831 	origcpu = mycpuid;
832 	for (cpu = 0; cpu < ncpus; cpu++) {
833 		lwkt_migratecpu(cpu);
834 		for (i = 1; i <= AF_MAX; i++) {
835 			if ((rnh = rt_tables[cpu][i]) == NULL)
836 				continue;
837 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
838 		}
839 	}
840 	lwkt_migratecpu(origcpu);
841 
842 	/* Announce that the interface is gone. */
843 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
844 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
845 
846 	SLIST_FOREACH(dp, &domains, dom_next)
847 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
848 			(*dp->dom_ifdetach)(ifp,
849 				ifp->if_afdata[dp->dom_family]);
850 
851 	/*
852 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
853 	 */
854 	ifindex2ifnet[ifp->if_index] = NULL;
855 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
856 		if_index--;
857 
858 	TAILQ_REMOVE(&ifnet, ifp, if_link);
859 	kfree(ifp->if_addrheads, M_IFADDR);
860 
861 	lwkt_synchronize_ipiqs("if_detach");
862 	ifq_stage_detach(&ifp->if_snd);
863 
864 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
865 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
866 
867 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
868 		kfree(ifsq->ifsq_stage, M_DEVBUF);
869 	}
870 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
871 
872 	kfree(ifp->if_data_pcpu, M_DEVBUF);
873 
874 	crit_exit();
875 }
876 
877 /*
878  * Create interface group without members
879  */
880 struct ifg_group *
881 if_creategroup(const char *groupname)
882 {
883         struct ifg_group        *ifg = NULL;
884 
885         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
886             M_TEMP, M_NOWAIT)) == NULL)
887                 return (NULL);
888 
889         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
890         ifg->ifg_refcnt = 0;
891         ifg->ifg_carp_demoted = 0;
892         TAILQ_INIT(&ifg->ifg_members);
893 #if NPF > 0
894         pfi_attach_ifgroup(ifg);
895 #endif
896         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
897 
898         return (ifg);
899 }
900 
901 /*
902  * Add a group to an interface
903  */
904 int
905 if_addgroup(struct ifnet *ifp, const char *groupname)
906 {
907 	struct ifg_list		*ifgl;
908 	struct ifg_group	*ifg = NULL;
909 	struct ifg_member	*ifgm;
910 
911 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
912 	    groupname[strlen(groupname) - 1] <= '9')
913 		return (EINVAL);
914 
915 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
916 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
917 			return (EEXIST);
918 
919 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
920 		return (ENOMEM);
921 
922 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
923 		kfree(ifgl, M_TEMP);
924 		return (ENOMEM);
925 	}
926 
927 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
928 		if (!strcmp(ifg->ifg_group, groupname))
929 			break;
930 
931 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
932 		kfree(ifgl, M_TEMP);
933 		kfree(ifgm, M_TEMP);
934 		return (ENOMEM);
935 	}
936 
937 	ifg->ifg_refcnt++;
938 	ifgl->ifgl_group = ifg;
939 	ifgm->ifgm_ifp = ifp;
940 
941 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
942 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
943 
944 #if NPF > 0
945 	pfi_group_change(groupname);
946 #endif
947 
948 	return (0);
949 }
950 
951 /*
952  * Remove a group from an interface
953  */
954 int
955 if_delgroup(struct ifnet *ifp, const char *groupname)
956 {
957 	struct ifg_list		*ifgl;
958 	struct ifg_member	*ifgm;
959 
960 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
961 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
962 			break;
963 	if (ifgl == NULL)
964 		return (ENOENT);
965 
966 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
967 
968 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
969 		if (ifgm->ifgm_ifp == ifp)
970 			break;
971 
972 	if (ifgm != NULL) {
973 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
974 		kfree(ifgm, M_TEMP);
975 	}
976 
977 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
978 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
979 #if NPF > 0
980 		pfi_detach_ifgroup(ifgl->ifgl_group);
981 #endif
982 		kfree(ifgl->ifgl_group, M_TEMP);
983 	}
984 
985 	kfree(ifgl, M_TEMP);
986 
987 #if NPF > 0
988 	pfi_group_change(groupname);
989 #endif
990 
991 	return (0);
992 }
993 
994 /*
995  * Stores all groups from an interface in memory pointed
996  * to by data
997  */
998 int
999 if_getgroup(caddr_t data, struct ifnet *ifp)
1000 {
1001 	int			 len, error;
1002 	struct ifg_list		*ifgl;
1003 	struct ifg_req		 ifgrq, *ifgp;
1004 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1005 
1006 	if (ifgr->ifgr_len == 0) {
1007 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1008 			ifgr->ifgr_len += sizeof(struct ifg_req);
1009 		return (0);
1010 	}
1011 
1012 	len = ifgr->ifgr_len;
1013 	ifgp = ifgr->ifgr_groups;
1014 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1015 		if (len < sizeof(ifgrq))
1016 			return (EINVAL);
1017 		bzero(&ifgrq, sizeof ifgrq);
1018 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1019 		    sizeof(ifgrq.ifgrq_group));
1020 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1021 		    sizeof(struct ifg_req))))
1022 			return (error);
1023 		len -= sizeof(ifgrq);
1024 		ifgp++;
1025 	}
1026 
1027 	return (0);
1028 }
1029 
1030 /*
1031  * Stores all members of a group in memory pointed to by data
1032  */
1033 int
1034 if_getgroupmembers(caddr_t data)
1035 {
1036 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1037 	struct ifg_group	*ifg;
1038 	struct ifg_member	*ifgm;
1039 	struct ifg_req		 ifgrq, *ifgp;
1040 	int			 len, error;
1041 
1042 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1043 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1044 			break;
1045 	if (ifg == NULL)
1046 		return (ENOENT);
1047 
1048 	if (ifgr->ifgr_len == 0) {
1049 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1050 			ifgr->ifgr_len += sizeof(ifgrq);
1051 		return (0);
1052 	}
1053 
1054 	len = ifgr->ifgr_len;
1055 	ifgp = ifgr->ifgr_groups;
1056 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1057 		if (len < sizeof(ifgrq))
1058 			return (EINVAL);
1059 		bzero(&ifgrq, sizeof ifgrq);
1060 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1061 		    sizeof(ifgrq.ifgrq_member));
1062 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1063 		    sizeof(struct ifg_req))))
1064 			return (error);
1065 		len -= sizeof(ifgrq);
1066 		ifgp++;
1067 	}
1068 
1069 	return (0);
1070 }
1071 
1072 /*
1073  * Delete Routes for a Network Interface
1074  *
1075  * Called for each routing entry via the rnh->rnh_walktree() call above
1076  * to delete all route entries referencing a detaching network interface.
1077  *
1078  * Arguments:
1079  *	rn	pointer to node in the routing table
1080  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1081  *
1082  * Returns:
1083  *	0	successful
1084  *	errno	failed - reason indicated
1085  *
1086  */
1087 static int
1088 if_rtdel(struct radix_node *rn, void *arg)
1089 {
1090 	struct rtentry	*rt = (struct rtentry *)rn;
1091 	struct ifnet	*ifp = arg;
1092 	int		err;
1093 
1094 	if (rt->rt_ifp == ifp) {
1095 
1096 		/*
1097 		 * Protect (sorta) against walktree recursion problems
1098 		 * with cloned routes
1099 		 */
1100 		if (!(rt->rt_flags & RTF_UP))
1101 			return (0);
1102 
1103 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1104 				rt_mask(rt), rt->rt_flags,
1105 				NULL);
1106 		if (err) {
1107 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1108 		}
1109 	}
1110 
1111 	return (0);
1112 }
1113 
1114 /*
1115  * Locate an interface based on a complete address.
1116  */
1117 struct ifaddr *
1118 ifa_ifwithaddr(struct sockaddr *addr)
1119 {
1120 	struct ifnet *ifp;
1121 
1122 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1123 		struct ifaddr_container *ifac;
1124 
1125 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1126 			struct ifaddr *ifa = ifac->ifa;
1127 
1128 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1129 				continue;
1130 			if (sa_equal(addr, ifa->ifa_addr))
1131 				return (ifa);
1132 			if ((ifp->if_flags & IFF_BROADCAST) &&
1133 			    ifa->ifa_broadaddr &&
1134 			    /* IPv6 doesn't have broadcast */
1135 			    ifa->ifa_broadaddr->sa_len != 0 &&
1136 			    sa_equal(ifa->ifa_broadaddr, addr))
1137 				return (ifa);
1138 		}
1139 	}
1140 	return (NULL);
1141 }
1142 /*
1143  * Locate the point to point interface with a given destination address.
1144  */
1145 struct ifaddr *
1146 ifa_ifwithdstaddr(struct sockaddr *addr)
1147 {
1148 	struct ifnet *ifp;
1149 
1150 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1151 		struct ifaddr_container *ifac;
1152 
1153 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1154 			continue;
1155 
1156 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1157 			struct ifaddr *ifa = ifac->ifa;
1158 
1159 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1160 				continue;
1161 			if (ifa->ifa_dstaddr &&
1162 			    sa_equal(addr, ifa->ifa_dstaddr))
1163 				return (ifa);
1164 		}
1165 	}
1166 	return (NULL);
1167 }
1168 
1169 /*
1170  * Find an interface on a specific network.  If many, choice
1171  * is most specific found.
1172  */
1173 struct ifaddr *
1174 ifa_ifwithnet(struct sockaddr *addr)
1175 {
1176 	struct ifnet *ifp;
1177 	struct ifaddr *ifa_maybe = NULL;
1178 	u_int af = addr->sa_family;
1179 	char *addr_data = addr->sa_data, *cplim;
1180 
1181 	/*
1182 	 * AF_LINK addresses can be looked up directly by their index number,
1183 	 * so do that if we can.
1184 	 */
1185 	if (af == AF_LINK) {
1186 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1187 
1188 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1189 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1190 	}
1191 
1192 	/*
1193 	 * Scan though each interface, looking for ones that have
1194 	 * addresses in this address family.
1195 	 */
1196 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1197 		struct ifaddr_container *ifac;
1198 
1199 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1200 			struct ifaddr *ifa = ifac->ifa;
1201 			char *cp, *cp2, *cp3;
1202 
1203 			if (ifa->ifa_addr->sa_family != af)
1204 next:				continue;
1205 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1206 				/*
1207 				 * This is a bit broken as it doesn't
1208 				 * take into account that the remote end may
1209 				 * be a single node in the network we are
1210 				 * looking for.
1211 				 * The trouble is that we don't know the
1212 				 * netmask for the remote end.
1213 				 */
1214 				if (ifa->ifa_dstaddr != NULL &&
1215 				    sa_equal(addr, ifa->ifa_dstaddr))
1216 					return (ifa);
1217 			} else {
1218 				/*
1219 				 * if we have a special address handler,
1220 				 * then use it instead of the generic one.
1221 				 */
1222 				if (ifa->ifa_claim_addr) {
1223 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1224 						return (ifa);
1225 					} else {
1226 						continue;
1227 					}
1228 				}
1229 
1230 				/*
1231 				 * Scan all the bits in the ifa's address.
1232 				 * If a bit dissagrees with what we are
1233 				 * looking for, mask it with the netmask
1234 				 * to see if it really matters.
1235 				 * (A byte at a time)
1236 				 */
1237 				if (ifa->ifa_netmask == 0)
1238 					continue;
1239 				cp = addr_data;
1240 				cp2 = ifa->ifa_addr->sa_data;
1241 				cp3 = ifa->ifa_netmask->sa_data;
1242 				cplim = ifa->ifa_netmask->sa_len +
1243 					(char *)ifa->ifa_netmask;
1244 				while (cp3 < cplim)
1245 					if ((*cp++ ^ *cp2++) & *cp3++)
1246 						goto next; /* next address! */
1247 				/*
1248 				 * If the netmask of what we just found
1249 				 * is more specific than what we had before
1250 				 * (if we had one) then remember the new one
1251 				 * before continuing to search
1252 				 * for an even better one.
1253 				 */
1254 				if (ifa_maybe == NULL ||
1255 				    rn_refines((char *)ifa->ifa_netmask,
1256 					       (char *)ifa_maybe->ifa_netmask))
1257 					ifa_maybe = ifa;
1258 			}
1259 		}
1260 	}
1261 	return (ifa_maybe);
1262 }
1263 
1264 /*
1265  * Find an interface address specific to an interface best matching
1266  * a given address.
1267  */
1268 struct ifaddr *
1269 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1270 {
1271 	struct ifaddr_container *ifac;
1272 	char *cp, *cp2, *cp3;
1273 	char *cplim;
1274 	struct ifaddr *ifa_maybe = NULL;
1275 	u_int af = addr->sa_family;
1276 
1277 	if (af >= AF_MAX)
1278 		return (0);
1279 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1280 		struct ifaddr *ifa = ifac->ifa;
1281 
1282 		if (ifa->ifa_addr->sa_family != af)
1283 			continue;
1284 		if (ifa_maybe == NULL)
1285 			ifa_maybe = ifa;
1286 		if (ifa->ifa_netmask == NULL) {
1287 			if (sa_equal(addr, ifa->ifa_addr) ||
1288 			    (ifa->ifa_dstaddr != NULL &&
1289 			     sa_equal(addr, ifa->ifa_dstaddr)))
1290 				return (ifa);
1291 			continue;
1292 		}
1293 		if (ifp->if_flags & IFF_POINTOPOINT) {
1294 			if (sa_equal(addr, ifa->ifa_dstaddr))
1295 				return (ifa);
1296 		} else {
1297 			cp = addr->sa_data;
1298 			cp2 = ifa->ifa_addr->sa_data;
1299 			cp3 = ifa->ifa_netmask->sa_data;
1300 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1301 			for (; cp3 < cplim; cp3++)
1302 				if ((*cp++ ^ *cp2++) & *cp3)
1303 					break;
1304 			if (cp3 == cplim)
1305 				return (ifa);
1306 		}
1307 	}
1308 	return (ifa_maybe);
1309 }
1310 
1311 /*
1312  * Default action when installing a route with a Link Level gateway.
1313  * Lookup an appropriate real ifa to point to.
1314  * This should be moved to /sys/net/link.c eventually.
1315  */
1316 static void
1317 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1318 {
1319 	struct ifaddr *ifa;
1320 	struct sockaddr *dst;
1321 	struct ifnet *ifp;
1322 
1323 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1324 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1325 		return;
1326 	ifa = ifaof_ifpforaddr(dst, ifp);
1327 	if (ifa != NULL) {
1328 		IFAFREE(rt->rt_ifa);
1329 		IFAREF(ifa);
1330 		rt->rt_ifa = ifa;
1331 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1332 			ifa->ifa_rtrequest(cmd, rt, info);
1333 	}
1334 }
1335 
1336 /*
1337  * Mark an interface down and notify protocols of
1338  * the transition.
1339  * NOTE: must be called at splnet or eqivalent.
1340  */
1341 void
1342 if_unroute(struct ifnet *ifp, int flag, int fam)
1343 {
1344 	struct ifaddr_container *ifac;
1345 
1346 	ifp->if_flags &= ~flag;
1347 	getmicrotime(&ifp->if_lastchange);
1348 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1349 		struct ifaddr *ifa = ifac->ifa;
1350 
1351 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1352 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1353 	}
1354 	ifq_purge_all(&ifp->if_snd);
1355 	rt_ifmsg(ifp);
1356 }
1357 
1358 /*
1359  * Mark an interface up and notify protocols of
1360  * the transition.
1361  * NOTE: must be called at splnet or eqivalent.
1362  */
1363 void
1364 if_route(struct ifnet *ifp, int flag, int fam)
1365 {
1366 	struct ifaddr_container *ifac;
1367 
1368 	ifq_purge_all(&ifp->if_snd);
1369 	ifp->if_flags |= flag;
1370 	getmicrotime(&ifp->if_lastchange);
1371 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1372 		struct ifaddr *ifa = ifac->ifa;
1373 
1374 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1375 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1376 	}
1377 	rt_ifmsg(ifp);
1378 #ifdef INET6
1379 	in6_if_up(ifp);
1380 #endif
1381 }
1382 
1383 /*
1384  * Mark an interface down and notify protocols of the transition.  An
1385  * interface going down is also considered to be a synchronizing event.
1386  * We must ensure that all packet processing related to the interface
1387  * has completed before we return so e.g. the caller can free the ifnet
1388  * structure that the mbufs may be referencing.
1389  *
1390  * NOTE: must be called at splnet or eqivalent.
1391  */
1392 void
1393 if_down(struct ifnet *ifp)
1394 {
1395 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1396 	netmsg_service_sync();
1397 }
1398 
1399 /*
1400  * Mark an interface up and notify protocols of
1401  * the transition.
1402  * NOTE: must be called at splnet or eqivalent.
1403  */
1404 void
1405 if_up(struct ifnet *ifp)
1406 {
1407 	if_route(ifp, IFF_UP, AF_UNSPEC);
1408 }
1409 
1410 /*
1411  * Process a link state change.
1412  * NOTE: must be called at splsoftnet or equivalent.
1413  */
1414 void
1415 if_link_state_change(struct ifnet *ifp)
1416 {
1417 	int link_state = ifp->if_link_state;
1418 
1419 	rt_ifmsg(ifp);
1420 	devctl_notify("IFNET", ifp->if_xname,
1421 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1422 }
1423 
1424 /*
1425  * Handle interface watchdog timer routines.  Called
1426  * from softclock, we decrement timers (if set) and
1427  * call the appropriate interface routine on expiration.
1428  */
1429 static void
1430 if_slowtimo(void *arg)
1431 {
1432 	struct ifnet *ifp;
1433 
1434 	crit_enter();
1435 
1436 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1437 		if (if_stats_compat) {
1438 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1439 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1440 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1441 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1442 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1443 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1444 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1445 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1446 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1447 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1448 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1449 		}
1450 
1451 		if (ifp->if_timer == 0 || --ifp->if_timer)
1452 			continue;
1453 		if (ifp->if_watchdog) {
1454 			if (ifnet_tryserialize_all(ifp)) {
1455 				(*ifp->if_watchdog)(ifp);
1456 				ifnet_deserialize_all(ifp);
1457 			} else {
1458 				/* try again next timeout */
1459 				++ifp->if_timer;
1460 			}
1461 		}
1462 	}
1463 
1464 	crit_exit();
1465 
1466 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1467 }
1468 
1469 /*
1470  * Map interface name to
1471  * interface structure pointer.
1472  */
1473 struct ifnet *
1474 ifunit(const char *name)
1475 {
1476 	struct ifnet *ifp;
1477 
1478 	/*
1479 	 * Search all the interfaces for this name/number
1480 	 */
1481 
1482 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1483 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1484 			break;
1485 	}
1486 	return (ifp);
1487 }
1488 
1489 
1490 /*
1491  * Map interface name in a sockaddr_dl to
1492  * interface structure pointer.
1493  */
1494 struct ifnet *
1495 if_withname(struct sockaddr *sa)
1496 {
1497 	char ifname[IFNAMSIZ+1];
1498 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1499 
1500 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1501 	     (sdl->sdl_nlen > IFNAMSIZ) )
1502 		return NULL;
1503 
1504 	/*
1505 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1506 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1507 	 * and there might not be room to put the trailing null anyway, so we
1508 	 * make a local copy that we know we can null terminate safely.
1509 	 */
1510 
1511 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1512 	ifname[sdl->sdl_nlen] = '\0';
1513 	return ifunit(ifname);
1514 }
1515 
1516 
1517 /*
1518  * Interface ioctls.
1519  */
1520 int
1521 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1522 {
1523 	struct ifnet *ifp;
1524 	struct ifreq *ifr;
1525 	struct ifstat *ifs;
1526 	int error;
1527 	short oif_flags;
1528 	int new_flags;
1529 #ifdef COMPAT_43
1530 	int ocmd;
1531 #endif
1532 	size_t namelen, onamelen;
1533 	char new_name[IFNAMSIZ];
1534 	struct ifaddr *ifa;
1535 	struct sockaddr_dl *sdl;
1536 
1537 	switch (cmd) {
1538 	case SIOCGIFCONF:
1539 	case OSIOCGIFCONF:
1540 		return (ifconf(cmd, data, cred));
1541 	default:
1542 		break;
1543 	}
1544 
1545 	ifr = (struct ifreq *)data;
1546 
1547 	switch (cmd) {
1548 	case SIOCIFCREATE:
1549 	case SIOCIFCREATE2:
1550 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1551 			return (error);
1552 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1553 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1554 	case SIOCIFDESTROY:
1555 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1556 			return (error);
1557 		return (if_clone_destroy(ifr->ifr_name));
1558 	case SIOCIFGCLONERS:
1559 		return (if_clone_list((struct if_clonereq *)data));
1560 	default:
1561 		break;
1562 	}
1563 
1564 	/*
1565 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1566 	 * lock to serialize the ifconfig ioctl operation.
1567 	 */
1568 	ifp = ifunit(ifr->ifr_name);
1569 	if (ifp == NULL)
1570 		return (ENXIO);
1571 	error = 0;
1572 	mtx_lock(&ifp->if_ioctl_mtx);
1573 
1574 	switch (cmd) {
1575 	case SIOCGIFINDEX:
1576 		ifr->ifr_index = ifp->if_index;
1577 		break;
1578 
1579 	case SIOCGIFFLAGS:
1580 		ifr->ifr_flags = ifp->if_flags;
1581 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1582 		break;
1583 
1584 	case SIOCGIFCAP:
1585 		ifr->ifr_reqcap = ifp->if_capabilities;
1586 		ifr->ifr_curcap = ifp->if_capenable;
1587 		break;
1588 
1589 	case SIOCGIFMETRIC:
1590 		ifr->ifr_metric = ifp->if_metric;
1591 		break;
1592 
1593 	case SIOCGIFMTU:
1594 		ifr->ifr_mtu = ifp->if_mtu;
1595 		break;
1596 
1597 	case SIOCGIFTSOLEN:
1598 		ifr->ifr_tsolen = ifp->if_tsolen;
1599 		break;
1600 
1601 	case SIOCGIFDATA:
1602 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1603 				sizeof(ifp->if_data));
1604 		break;
1605 
1606 	case SIOCGIFPHYS:
1607 		ifr->ifr_phys = ifp->if_physical;
1608 		break;
1609 
1610 	case SIOCGIFPOLLCPU:
1611 		ifr->ifr_pollcpu = -1;
1612 		break;
1613 
1614 	case SIOCSIFPOLLCPU:
1615 		break;
1616 
1617 	case SIOCSIFFLAGS:
1618 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1619 		if (error)
1620 			break;
1621 		new_flags = (ifr->ifr_flags & 0xffff) |
1622 		    (ifr->ifr_flagshigh << 16);
1623 		if (ifp->if_flags & IFF_SMART) {
1624 			/* Smart drivers twiddle their own routes */
1625 		} else if (ifp->if_flags & IFF_UP &&
1626 		    (new_flags & IFF_UP) == 0) {
1627 			crit_enter();
1628 			if_down(ifp);
1629 			crit_exit();
1630 		} else if (new_flags & IFF_UP &&
1631 		    (ifp->if_flags & IFF_UP) == 0) {
1632 			crit_enter();
1633 			if_up(ifp);
1634 			crit_exit();
1635 		}
1636 
1637 #ifdef IFPOLL_ENABLE
1638 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1639 			if (new_flags & IFF_NPOLLING)
1640 				ifpoll_register(ifp);
1641 			else
1642 				ifpoll_deregister(ifp);
1643 		}
1644 #endif
1645 
1646 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1647 			(new_flags &~ IFF_CANTCHANGE);
1648 		if (new_flags & IFF_PPROMISC) {
1649 			/* Permanently promiscuous mode requested */
1650 			ifp->if_flags |= IFF_PROMISC;
1651 		} else if (ifp->if_pcount == 0) {
1652 			ifp->if_flags &= ~IFF_PROMISC;
1653 		}
1654 		if (ifp->if_ioctl) {
1655 			ifnet_serialize_all(ifp);
1656 			ifp->if_ioctl(ifp, cmd, data, cred);
1657 			ifnet_deserialize_all(ifp);
1658 		}
1659 		getmicrotime(&ifp->if_lastchange);
1660 		break;
1661 
1662 	case SIOCSIFCAP:
1663 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1664 		if (error)
1665 			break;
1666 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1667 			error = EINVAL;
1668 			break;
1669 		}
1670 		ifnet_serialize_all(ifp);
1671 		ifp->if_ioctl(ifp, cmd, data, cred);
1672 		ifnet_deserialize_all(ifp);
1673 		break;
1674 
1675 	case SIOCSIFNAME:
1676 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1677 		if (error)
1678 			break;
1679 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1680 		if (error)
1681 			break;
1682 		if (new_name[0] == '\0') {
1683 			error = EINVAL;
1684 			break;
1685 		}
1686 		if (ifunit(new_name) != NULL) {
1687 			error = EEXIST;
1688 			break;
1689 		}
1690 
1691 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1692 
1693 		/* Announce the departure of the interface. */
1694 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1695 
1696 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1697 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1698 		/* XXX IFA_LOCK(ifa); */
1699 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1700 		namelen = strlen(new_name);
1701 		onamelen = sdl->sdl_nlen;
1702 		/*
1703 		 * Move the address if needed.  This is safe because we
1704 		 * allocate space for a name of length IFNAMSIZ when we
1705 		 * create this in if_attach().
1706 		 */
1707 		if (namelen != onamelen) {
1708 			bcopy(sdl->sdl_data + onamelen,
1709 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1710 		}
1711 		bcopy(new_name, sdl->sdl_data, namelen);
1712 		sdl->sdl_nlen = namelen;
1713 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1714 		bzero(sdl->sdl_data, onamelen);
1715 		while (namelen != 0)
1716 			sdl->sdl_data[--namelen] = 0xff;
1717 		/* XXX IFA_UNLOCK(ifa) */
1718 
1719 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1720 
1721 		/* Announce the return of the interface. */
1722 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1723 		break;
1724 
1725 	case SIOCSIFMETRIC:
1726 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1727 		if (error)
1728 			break;
1729 		ifp->if_metric = ifr->ifr_metric;
1730 		getmicrotime(&ifp->if_lastchange);
1731 		break;
1732 
1733 	case SIOCSIFPHYS:
1734 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1735 		if (error)
1736 			break;
1737 		if (ifp->if_ioctl == NULL) {
1738 		        error = EOPNOTSUPP;
1739 			break;
1740 		}
1741 		ifnet_serialize_all(ifp);
1742 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1743 		ifnet_deserialize_all(ifp);
1744 		if (error == 0)
1745 			getmicrotime(&ifp->if_lastchange);
1746 		break;
1747 
1748 	case SIOCSIFMTU:
1749 	{
1750 		u_long oldmtu = ifp->if_mtu;
1751 
1752 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1753 		if (error)
1754 			break;
1755 		if (ifp->if_ioctl == NULL) {
1756 			error = EOPNOTSUPP;
1757 			break;
1758 		}
1759 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1760 			error = EINVAL;
1761 			break;
1762 		}
1763 		ifnet_serialize_all(ifp);
1764 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1765 		ifnet_deserialize_all(ifp);
1766 		if (error == 0) {
1767 			getmicrotime(&ifp->if_lastchange);
1768 			rt_ifmsg(ifp);
1769 		}
1770 		/*
1771 		 * If the link MTU changed, do network layer specific procedure.
1772 		 */
1773 		if (ifp->if_mtu != oldmtu) {
1774 #ifdef INET6
1775 			nd6_setmtu(ifp);
1776 #endif
1777 		}
1778 		break;
1779 	}
1780 
1781 	case SIOCSIFTSOLEN:
1782 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1783 		if (error)
1784 			break;
1785 
1786 		/* XXX need driver supplied upper limit */
1787 		if (ifr->ifr_tsolen <= 0) {
1788 			error = EINVAL;
1789 			break;
1790 		}
1791 		ifp->if_tsolen = ifr->ifr_tsolen;
1792 		break;
1793 
1794 	case SIOCADDMULTI:
1795 	case SIOCDELMULTI:
1796 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1797 		if (error)
1798 			break;
1799 
1800 		/* Don't allow group membership on non-multicast interfaces. */
1801 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1802 			error = EOPNOTSUPP;
1803 			break;
1804 		}
1805 
1806 		/* Don't let users screw up protocols' entries. */
1807 		if (ifr->ifr_addr.sa_family != AF_LINK) {
1808 			error = EINVAL;
1809 			break;
1810 		}
1811 
1812 		if (cmd == SIOCADDMULTI) {
1813 			struct ifmultiaddr *ifma;
1814 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1815 		} else {
1816 			error = if_delmulti(ifp, &ifr->ifr_addr);
1817 		}
1818 		if (error == 0)
1819 			getmicrotime(&ifp->if_lastchange);
1820 		break;
1821 
1822 	case SIOCSIFPHYADDR:
1823 	case SIOCDIFPHYADDR:
1824 #ifdef INET6
1825 	case SIOCSIFPHYADDR_IN6:
1826 #endif
1827 	case SIOCSLIFPHYADDR:
1828         case SIOCSIFMEDIA:
1829 	case SIOCSIFGENERIC:
1830 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1831 		if (error)
1832 			break;
1833 		if (ifp->if_ioctl == 0) {
1834 			error = EOPNOTSUPP;
1835 			break;
1836 		}
1837 		ifnet_serialize_all(ifp);
1838 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1839 		ifnet_deserialize_all(ifp);
1840 		if (error == 0)
1841 			getmicrotime(&ifp->if_lastchange);
1842 		break;
1843 
1844 	case SIOCGIFSTATUS:
1845 		ifs = (struct ifstat *)data;
1846 		ifs->ascii[0] = '\0';
1847 		/* fall through */
1848 	case SIOCGIFPSRCADDR:
1849 	case SIOCGIFPDSTADDR:
1850 	case SIOCGLIFPHYADDR:
1851 	case SIOCGIFMEDIA:
1852 	case SIOCGIFGENERIC:
1853 		if (ifp->if_ioctl == NULL) {
1854 			error = EOPNOTSUPP;
1855 			break;
1856 		}
1857 		ifnet_serialize_all(ifp);
1858 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1859 		ifnet_deserialize_all(ifp);
1860 		break;
1861 
1862 	case SIOCSIFLLADDR:
1863 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1864 		if (error)
1865 			break;
1866 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
1867 				     ifr->ifr_addr.sa_len);
1868 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1869 		break;
1870 
1871 	default:
1872 		oif_flags = ifp->if_flags;
1873 		if (so->so_proto == 0) {
1874 			error = EOPNOTSUPP;
1875 			break;
1876 		}
1877 #ifndef COMPAT_43
1878 		error = so_pru_control_direct(so, cmd, data, ifp);
1879 #else
1880 		ocmd = cmd;
1881 
1882 		switch (cmd) {
1883 		case SIOCSIFDSTADDR:
1884 		case SIOCSIFADDR:
1885 		case SIOCSIFBRDADDR:
1886 		case SIOCSIFNETMASK:
1887 #if BYTE_ORDER != BIG_ENDIAN
1888 			if (ifr->ifr_addr.sa_family == 0 &&
1889 			    ifr->ifr_addr.sa_len < 16) {
1890 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1891 				ifr->ifr_addr.sa_len = 16;
1892 			}
1893 #else
1894 			if (ifr->ifr_addr.sa_len == 0)
1895 				ifr->ifr_addr.sa_len = 16;
1896 #endif
1897 			break;
1898 		case OSIOCGIFADDR:
1899 			cmd = SIOCGIFADDR;
1900 			break;
1901 		case OSIOCGIFDSTADDR:
1902 			cmd = SIOCGIFDSTADDR;
1903 			break;
1904 		case OSIOCGIFBRDADDR:
1905 			cmd = SIOCGIFBRDADDR;
1906 			break;
1907 		case OSIOCGIFNETMASK:
1908 			cmd = SIOCGIFNETMASK;
1909 			break;
1910 		default:
1911 			break;
1912 		}
1913 
1914 		error = so_pru_control_direct(so, cmd, data, ifp);
1915 
1916 		switch (ocmd) {
1917 		case OSIOCGIFADDR:
1918 		case OSIOCGIFDSTADDR:
1919 		case OSIOCGIFBRDADDR:
1920 		case OSIOCGIFNETMASK:
1921 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1922 			break;
1923 		}
1924 #endif /* COMPAT_43 */
1925 
1926 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1927 #ifdef INET6
1928 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1929 			if (ifp->if_flags & IFF_UP) {
1930 				crit_enter();
1931 				in6_if_up(ifp);
1932 				crit_exit();
1933 			}
1934 #endif
1935 		}
1936 		break;
1937 	}
1938 
1939 	mtx_unlock(&ifp->if_ioctl_mtx);
1940 	return (error);
1941 }
1942 
1943 /*
1944  * Set/clear promiscuous mode on interface ifp based on the truth value
1945  * of pswitch.  The calls are reference counted so that only the first
1946  * "on" request actually has an effect, as does the final "off" request.
1947  * Results are undefined if the "off" and "on" requests are not matched.
1948  */
1949 int
1950 ifpromisc(struct ifnet *ifp, int pswitch)
1951 {
1952 	struct ifreq ifr;
1953 	int error;
1954 	int oldflags;
1955 
1956 	oldflags = ifp->if_flags;
1957 	if (ifp->if_flags & IFF_PPROMISC) {
1958 		/* Do nothing if device is in permanently promiscuous mode */
1959 		ifp->if_pcount += pswitch ? 1 : -1;
1960 		return (0);
1961 	}
1962 	if (pswitch) {
1963 		/*
1964 		 * If the device is not configured up, we cannot put it in
1965 		 * promiscuous mode.
1966 		 */
1967 		if ((ifp->if_flags & IFF_UP) == 0)
1968 			return (ENETDOWN);
1969 		if (ifp->if_pcount++ != 0)
1970 			return (0);
1971 		ifp->if_flags |= IFF_PROMISC;
1972 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1973 		    ifp->if_xname);
1974 	} else {
1975 		if (--ifp->if_pcount > 0)
1976 			return (0);
1977 		ifp->if_flags &= ~IFF_PROMISC;
1978 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1979 		    ifp->if_xname);
1980 	}
1981 	ifr.ifr_flags = ifp->if_flags;
1982 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1983 	ifnet_serialize_all(ifp);
1984 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1985 	ifnet_deserialize_all(ifp);
1986 	if (error == 0)
1987 		rt_ifmsg(ifp);
1988 	else
1989 		ifp->if_flags = oldflags;
1990 	return error;
1991 }
1992 
1993 /*
1994  * Return interface configuration
1995  * of system.  List may be used
1996  * in later ioctl's (above) to get
1997  * other information.
1998  */
1999 static int
2000 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2001 {
2002 	struct ifconf *ifc = (struct ifconf *)data;
2003 	struct ifnet *ifp;
2004 	struct sockaddr *sa;
2005 	struct ifreq ifr, *ifrp;
2006 	int space = ifc->ifc_len, error = 0;
2007 
2008 	ifrp = ifc->ifc_req;
2009 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2010 		struct ifaddr_container *ifac;
2011 		int addrs;
2012 
2013 		if (space <= sizeof ifr)
2014 			break;
2015 
2016 		/*
2017 		 * Zero the stack declared structure first to prevent
2018 		 * memory disclosure.
2019 		 */
2020 		bzero(&ifr, sizeof(ifr));
2021 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2022 		    >= sizeof(ifr.ifr_name)) {
2023 			error = ENAMETOOLONG;
2024 			break;
2025 		}
2026 
2027 		addrs = 0;
2028 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2029 			struct ifaddr *ifa = ifac->ifa;
2030 
2031 			if (space <= sizeof ifr)
2032 				break;
2033 			sa = ifa->ifa_addr;
2034 			if (cred->cr_prison &&
2035 			    prison_if(cred, sa))
2036 				continue;
2037 			addrs++;
2038 #ifdef COMPAT_43
2039 			if (cmd == OSIOCGIFCONF) {
2040 				struct osockaddr *osa =
2041 					 (struct osockaddr *)&ifr.ifr_addr;
2042 				ifr.ifr_addr = *sa;
2043 				osa->sa_family = sa->sa_family;
2044 				error = copyout(&ifr, ifrp, sizeof ifr);
2045 				ifrp++;
2046 			} else
2047 #endif
2048 			if (sa->sa_len <= sizeof(*sa)) {
2049 				ifr.ifr_addr = *sa;
2050 				error = copyout(&ifr, ifrp, sizeof ifr);
2051 				ifrp++;
2052 			} else {
2053 				if (space < (sizeof ifr) + sa->sa_len -
2054 					    sizeof(*sa))
2055 					break;
2056 				space -= sa->sa_len - sizeof(*sa);
2057 				error = copyout(&ifr, ifrp,
2058 						sizeof ifr.ifr_name);
2059 				if (error == 0)
2060 					error = copyout(sa, &ifrp->ifr_addr,
2061 							sa->sa_len);
2062 				ifrp = (struct ifreq *)
2063 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2064 			}
2065 			if (error)
2066 				break;
2067 			space -= sizeof ifr;
2068 		}
2069 		if (error)
2070 			break;
2071 		if (!addrs) {
2072 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2073 			error = copyout(&ifr, ifrp, sizeof ifr);
2074 			if (error)
2075 				break;
2076 			space -= sizeof ifr;
2077 			ifrp++;
2078 		}
2079 	}
2080 	ifc->ifc_len -= space;
2081 	return (error);
2082 }
2083 
2084 /*
2085  * Just like if_promisc(), but for all-multicast-reception mode.
2086  */
2087 int
2088 if_allmulti(struct ifnet *ifp, int onswitch)
2089 {
2090 	int error = 0;
2091 	struct ifreq ifr;
2092 
2093 	crit_enter();
2094 
2095 	if (onswitch) {
2096 		if (ifp->if_amcount++ == 0) {
2097 			ifp->if_flags |= IFF_ALLMULTI;
2098 			ifr.ifr_flags = ifp->if_flags;
2099 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2100 			ifnet_serialize_all(ifp);
2101 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2102 					      NULL);
2103 			ifnet_deserialize_all(ifp);
2104 		}
2105 	} else {
2106 		if (ifp->if_amcount > 1) {
2107 			ifp->if_amcount--;
2108 		} else {
2109 			ifp->if_amcount = 0;
2110 			ifp->if_flags &= ~IFF_ALLMULTI;
2111 			ifr.ifr_flags = ifp->if_flags;
2112 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2113 			ifnet_serialize_all(ifp);
2114 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2115 					      NULL);
2116 			ifnet_deserialize_all(ifp);
2117 		}
2118 	}
2119 
2120 	crit_exit();
2121 
2122 	if (error == 0)
2123 		rt_ifmsg(ifp);
2124 	return error;
2125 }
2126 
2127 /*
2128  * Add a multicast listenership to the interface in question.
2129  * The link layer provides a routine which converts
2130  */
2131 int
2132 if_addmulti(
2133 	struct ifnet *ifp,	/* interface to manipulate */
2134 	struct sockaddr *sa,	/* address to add */
2135 	struct ifmultiaddr **retifma)
2136 {
2137 	struct sockaddr *llsa, *dupsa;
2138 	int error;
2139 	struct ifmultiaddr *ifma;
2140 
2141 	/*
2142 	 * If the matching multicast address already exists
2143 	 * then don't add a new one, just add a reference
2144 	 */
2145 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2146 		if (sa_equal(sa, ifma->ifma_addr)) {
2147 			ifma->ifma_refcount++;
2148 			if (retifma)
2149 				*retifma = ifma;
2150 			return 0;
2151 		}
2152 	}
2153 
2154 	/*
2155 	 * Give the link layer a chance to accept/reject it, and also
2156 	 * find out which AF_LINK address this maps to, if it isn't one
2157 	 * already.
2158 	 */
2159 	if (ifp->if_resolvemulti) {
2160 		ifnet_serialize_all(ifp);
2161 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2162 		ifnet_deserialize_all(ifp);
2163 		if (error)
2164 			return error;
2165 	} else {
2166 		llsa = NULL;
2167 	}
2168 
2169 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2170 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK);
2171 	bcopy(sa, dupsa, sa->sa_len);
2172 
2173 	ifma->ifma_addr = dupsa;
2174 	ifma->ifma_lladdr = llsa;
2175 	ifma->ifma_ifp = ifp;
2176 	ifma->ifma_refcount = 1;
2177 	ifma->ifma_protospec = 0;
2178 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2179 
2180 	/*
2181 	 * Some network interfaces can scan the address list at
2182 	 * interrupt time; lock them out.
2183 	 */
2184 	crit_enter();
2185 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2186 	crit_exit();
2187 	if (retifma)
2188 		*retifma = ifma;
2189 
2190 	if (llsa != NULL) {
2191 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2192 			if (sa_equal(ifma->ifma_addr, llsa))
2193 				break;
2194 		}
2195 		if (ifma) {
2196 			ifma->ifma_refcount++;
2197 		} else {
2198 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2199 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK);
2200 			bcopy(llsa, dupsa, llsa->sa_len);
2201 			ifma->ifma_addr = dupsa;
2202 			ifma->ifma_ifp = ifp;
2203 			ifma->ifma_refcount = 1;
2204 			crit_enter();
2205 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2206 			crit_exit();
2207 		}
2208 	}
2209 	/*
2210 	 * We are certain we have added something, so call down to the
2211 	 * interface to let them know about it.
2212 	 */
2213 	crit_enter();
2214 	ifnet_serialize_all(ifp);
2215 	if (ifp->if_ioctl)
2216 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2217 	ifnet_deserialize_all(ifp);
2218 	crit_exit();
2219 
2220 	return 0;
2221 }
2222 
2223 /*
2224  * Remove a reference to a multicast address on this interface.  Yell
2225  * if the request does not match an existing membership.
2226  */
2227 int
2228 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2229 {
2230 	struct ifmultiaddr *ifma;
2231 
2232 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2233 		if (sa_equal(sa, ifma->ifma_addr))
2234 			break;
2235 	if (ifma == NULL)
2236 		return ENOENT;
2237 
2238 	if (ifma->ifma_refcount > 1) {
2239 		ifma->ifma_refcount--;
2240 		return 0;
2241 	}
2242 
2243 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2244 	sa = ifma->ifma_lladdr;
2245 	crit_enter();
2246 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2247 	/*
2248 	 * Make sure the interface driver is notified
2249 	 * in the case of a link layer mcast group being left.
2250 	 */
2251 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) {
2252 		ifnet_serialize_all(ifp);
2253 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2254 		ifnet_deserialize_all(ifp);
2255 	}
2256 	crit_exit();
2257 	kfree(ifma->ifma_addr, M_IFMADDR);
2258 	kfree(ifma, M_IFMADDR);
2259 	if (sa == NULL)
2260 		return 0;
2261 
2262 	/*
2263 	 * Now look for the link-layer address which corresponds to
2264 	 * this network address.  It had been squirreled away in
2265 	 * ifma->ifma_lladdr for this purpose (so we don't have
2266 	 * to call ifp->if_resolvemulti() again), and we saved that
2267 	 * value in sa above.  If some nasty deleted the
2268 	 * link-layer address out from underneath us, we can deal because
2269 	 * the address we stored was is not the same as the one which was
2270 	 * in the record for the link-layer address.  (So we don't complain
2271 	 * in that case.)
2272 	 */
2273 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2274 		if (sa_equal(sa, ifma->ifma_addr))
2275 			break;
2276 	if (ifma == NULL)
2277 		return 0;
2278 
2279 	if (ifma->ifma_refcount > 1) {
2280 		ifma->ifma_refcount--;
2281 		return 0;
2282 	}
2283 
2284 	crit_enter();
2285 	ifnet_serialize_all(ifp);
2286 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2287 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2288 	ifnet_deserialize_all(ifp);
2289 	crit_exit();
2290 	kfree(ifma->ifma_addr, M_IFMADDR);
2291 	kfree(sa, M_IFMADDR);
2292 	kfree(ifma, M_IFMADDR);
2293 
2294 	return 0;
2295 }
2296 
2297 /*
2298  * Delete all multicast group membership for an interface.
2299  * Should be used to quickly flush all multicast filters.
2300  */
2301 void
2302 if_delallmulti(struct ifnet *ifp)
2303 {
2304 	struct ifmultiaddr *ifma;
2305 	struct ifmultiaddr *next;
2306 
2307 	TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
2308 		if_delmulti(ifp, ifma->ifma_addr);
2309 }
2310 
2311 
2312 /*
2313  * Set the link layer address on an interface.
2314  *
2315  * At this time we only support certain types of interfaces,
2316  * and we don't allow the length of the address to change.
2317  */
2318 int
2319 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2320 {
2321 	struct sockaddr_dl *sdl;
2322 	struct ifreq ifr;
2323 
2324 	sdl = IF_LLSOCKADDR(ifp);
2325 	if (sdl == NULL)
2326 		return (EINVAL);
2327 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2328 		return (EINVAL);
2329 	switch (ifp->if_type) {
2330 	case IFT_ETHER:			/* these types use struct arpcom */
2331 	case IFT_XETHER:
2332 	case IFT_L2VLAN:
2333 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2334 		bcopy(lladdr, LLADDR(sdl), len);
2335 		break;
2336 	default:
2337 		return (ENODEV);
2338 	}
2339 	/*
2340 	 * If the interface is already up, we need
2341 	 * to re-init it in order to reprogram its
2342 	 * address filter.
2343 	 */
2344 	ifnet_serialize_all(ifp);
2345 	if ((ifp->if_flags & IFF_UP) != 0) {
2346 #ifdef INET
2347 		struct ifaddr_container *ifac;
2348 #endif
2349 
2350 		ifp->if_flags &= ~IFF_UP;
2351 		ifr.ifr_flags = ifp->if_flags;
2352 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2353 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2354 			      NULL);
2355 		ifp->if_flags |= IFF_UP;
2356 		ifr.ifr_flags = ifp->if_flags;
2357 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2358 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2359 				 NULL);
2360 #ifdef INET
2361 		/*
2362 		 * Also send gratuitous ARPs to notify other nodes about
2363 		 * the address change.
2364 		 */
2365 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2366 			struct ifaddr *ifa = ifac->ifa;
2367 
2368 			if (ifa->ifa_addr != NULL &&
2369 			    ifa->ifa_addr->sa_family == AF_INET)
2370 				arp_gratuitous(ifp, ifa);
2371 		}
2372 #endif
2373 	}
2374 	ifnet_deserialize_all(ifp);
2375 	return (0);
2376 }
2377 
2378 struct ifmultiaddr *
2379 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2380 {
2381 	struct ifmultiaddr *ifma;
2382 
2383 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2384 		if (sa_equal(ifma->ifma_addr, sa))
2385 			break;
2386 
2387 	return ifma;
2388 }
2389 
2390 /*
2391  * This function locates the first real ethernet MAC from a network
2392  * card and loads it into node, returning 0 on success or ENOENT if
2393  * no suitable interfaces were found.  It is used by the uuid code to
2394  * generate a unique 6-byte number.
2395  */
2396 int
2397 if_getanyethermac(uint16_t *node, int minlen)
2398 {
2399 	struct ifnet *ifp;
2400 	struct sockaddr_dl *sdl;
2401 
2402 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2403 		if (ifp->if_type != IFT_ETHER)
2404 			continue;
2405 		sdl = IF_LLSOCKADDR(ifp);
2406 		if (sdl->sdl_alen < minlen)
2407 			continue;
2408 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2409 		      minlen);
2410 		return(0);
2411 	}
2412 	return (ENOENT);
2413 }
2414 
2415 /*
2416  * The name argument must be a pointer to storage which will last as
2417  * long as the interface does.  For physical devices, the result of
2418  * device_get_name(dev) is a good choice and for pseudo-devices a
2419  * static string works well.
2420  */
2421 void
2422 if_initname(struct ifnet *ifp, const char *name, int unit)
2423 {
2424 	ifp->if_dname = name;
2425 	ifp->if_dunit = unit;
2426 	if (unit != IF_DUNIT_NONE)
2427 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2428 	else
2429 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2430 }
2431 
2432 int
2433 if_printf(struct ifnet *ifp, const char *fmt, ...)
2434 {
2435 	__va_list ap;
2436 	int retval;
2437 
2438 	retval = kprintf("%s: ", ifp->if_xname);
2439 	__va_start(ap, fmt);
2440 	retval += kvprintf(fmt, ap);
2441 	__va_end(ap);
2442 	return (retval);
2443 }
2444 
2445 struct ifnet *
2446 if_alloc(uint8_t type)
2447 {
2448         struct ifnet *ifp;
2449 	size_t size;
2450 
2451 	/*
2452 	 * XXX temporary hack until arpcom is setup in if_l2com
2453 	 */
2454 	if (type == IFT_ETHER)
2455 		size = sizeof(struct arpcom);
2456 	else
2457 		size = sizeof(struct ifnet);
2458 
2459 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2460 
2461 	ifp->if_type = type;
2462 
2463 	if (if_com_alloc[type] != NULL) {
2464 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2465 		if (ifp->if_l2com == NULL) {
2466 			kfree(ifp, M_IFNET);
2467 			return (NULL);
2468 		}
2469 	}
2470 	return (ifp);
2471 }
2472 
2473 void
2474 if_free(struct ifnet *ifp)
2475 {
2476 	kfree(ifp, M_IFNET);
2477 }
2478 
2479 void
2480 ifq_set_classic(struct ifaltq *ifq)
2481 {
2482 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2483 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2484 }
2485 
2486 void
2487 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2488     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2489 {
2490 	int q;
2491 
2492 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2493 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2494 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2495 	KASSERT(request != NULL, ("request is not specified"));
2496 
2497 	ifq->altq_mapsubq = mapsubq;
2498 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2499 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2500 
2501 		ifsq->ifsq_enqueue = enqueue;
2502 		ifsq->ifsq_dequeue = dequeue;
2503 		ifsq->ifsq_request = request;
2504 	}
2505 }
2506 
2507 int
2508 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2509     struct altq_pktattr *pa __unused)
2510 {
2511 	if (IF_QFULL(ifsq)) {
2512 		m_freem(m);
2513 		return(ENOBUFS);
2514 	} else {
2515 		IF_ENQUEUE(ifsq, m);
2516 		return(0);
2517 	}
2518 }
2519 
2520 struct mbuf *
2521 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, struct mbuf *mpolled, int op)
2522 {
2523 	struct mbuf *m;
2524 
2525 	switch (op) {
2526 	case ALTDQ_POLL:
2527 		IF_POLL(ifsq, m);
2528 		break;
2529 	case ALTDQ_REMOVE:
2530 		IF_DEQUEUE(ifsq, m);
2531 		break;
2532 	default:
2533 		panic("unsupported ALTQ dequeue op: %d", op);
2534 	}
2535 	KKASSERT(mpolled == NULL || mpolled == m);
2536 	return(m);
2537 }
2538 
2539 int
2540 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2541 {
2542 	switch (req) {
2543 	case ALTRQ_PURGE:
2544 		IF_DRAIN(ifsq);
2545 		break;
2546 	default:
2547 		panic("unsupported ALTQ request: %d", req);
2548 	}
2549 	return(0);
2550 }
2551 
2552 static void
2553 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2554 {
2555 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2556 	int running = 0, need_sched;
2557 
2558 	/*
2559 	 * Try to do direct ifnet.if_start first, if there is
2560 	 * contention on ifnet's serializer, ifnet.if_start will
2561 	 * be scheduled on ifnet's CPU.
2562 	 */
2563 	if (!ifnet_tryserialize_tx(ifp, ifsq)) {
2564 		/*
2565 		 * ifnet serializer contention happened,
2566 		 * ifnet.if_start is scheduled on ifnet's
2567 		 * CPU, and we keep going.
2568 		 */
2569 		ifsq_ifstart_schedule(ifsq, 1);
2570 		return;
2571 	}
2572 
2573 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2574 		ifp->if_start(ifp, ifsq);
2575 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2576 			running = 1;
2577 	}
2578 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2579 
2580 	ifnet_deserialize_tx(ifp, ifsq);
2581 
2582 	if (need_sched) {
2583 		/*
2584 		 * More data need to be transmitted, ifnet.if_start is
2585 		 * scheduled on ifnet's CPU, and we keep going.
2586 		 * NOTE: ifnet.if_start interlock is not released.
2587 		 */
2588 		ifsq_ifstart_schedule(ifsq, force_sched);
2589 	}
2590 }
2591 
2592 /*
2593  * IFSUBQ packets staging mechanism:
2594  *
2595  * The packets enqueued into IFSUBQ are staged to a certain amount before the
2596  * ifnet's if_start is called.  In this way, the driver could avoid writing
2597  * to hardware registers upon every packet, instead, hardware registers
2598  * could be written when certain amount of packets are put onto hardware
2599  * TX ring.  The measurement on several modern NICs (emx(4), igb(4), bnx(4),
2600  * bge(4), jme(4)) shows that the hardware registers writing aggregation
2601  * could save ~20% CPU time when 18bytes UDP datagrams are transmitted at
2602  * 1.48Mpps.  The performance improvement by hardware registers writing
2603  * aggeregation is also mentioned by Luigi Rizzo's netmap paper
2604  * (http://info.iet.unipi.it/~luigi/netmap/).
2605  *
2606  * IFSUBQ packets staging is performed for two entry points into drivers's
2607  * transmission function:
2608  * - Direct ifnet's if_start calling, i.e. ifsq_ifstart_try()
2609  * - ifnet's if_start scheduling, i.e. ifsq_ifstart_schedule()
2610  *
2611  * IFSUBQ packets staging will be stopped upon any of the following conditions:
2612  * - If the count of packets enqueued on the current CPU is great than or
2613  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2614  * - If the total length of packets enqueued on the current CPU is great
2615  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2616  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2617  *   is usually less than hardware's MTU.
2618  * - ifsq_ifstart_schedule() is not pending on the current CPU and if_start
2619  *   interlock (if_snd.altq_started) is not released.
2620  * - The if_start_rollup(), which is registered as low priority netisr
2621  *   rollup function, is called; probably because no more work is pending
2622  *   for netisr.
2623  *
2624  * NOTE:
2625  * Currently IFSUBQ packet staging is only performed in netisr threads.
2626  */
2627 int
2628 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2629 {
2630 	struct ifaltq *ifq = &ifp->if_snd;
2631 	struct ifaltq_subque *ifsq;
2632 	int error, start = 0, len, mcast = 0, avoid_start = 0;
2633 	struct ifsubq_stage_head *head = NULL;
2634 	struct ifsubq_stage *stage = NULL;
2635 
2636 	ifsq = ifq_map_subq(ifq, mycpuid);
2637 	ASSERT_IFNET_NOT_SERIALIZED_TX(ifp, ifsq);
2638 
2639 	len = m->m_pkthdr.len;
2640 	if (m->m_flags & M_MCAST)
2641 		mcast = 1;
2642 
2643 	if (curthread->td_type == TD_TYPE_NETISR) {
2644 		head = &ifsubq_stage_heads[mycpuid];
2645 		stage = ifsq_get_stage(ifsq, mycpuid);
2646 
2647 		stage->stg_cnt++;
2648 		stage->stg_len += len;
2649 		if (stage->stg_cnt < ifsq_stage_cntmax &&
2650 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
2651 			avoid_start = 1;
2652 	}
2653 
2654 	ALTQ_SQ_LOCK(ifsq);
2655 	error = ifsq_enqueue_locked(ifsq, m, pa);
2656 	if (error) {
2657 		if (!ifsq_data_ready(ifsq)) {
2658 			ALTQ_SQ_UNLOCK(ifsq);
2659 			return error;
2660 		}
2661 		avoid_start = 0;
2662 	}
2663 	if (!ifsq_is_started(ifsq)) {
2664 		if (avoid_start) {
2665 			ALTQ_SQ_UNLOCK(ifsq);
2666 
2667 			KKASSERT(!error);
2668 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
2669 				ifsq_stage_insert(head, stage);
2670 
2671 			IFNET_STAT_INC(ifp, obytes, len);
2672 			if (mcast)
2673 				IFNET_STAT_INC(ifp, omcasts, 1);
2674 			return error;
2675 		}
2676 
2677 		/*
2678 		 * Hold the interlock of ifnet.if_start
2679 		 */
2680 		ifsq_set_started(ifsq);
2681 		start = 1;
2682 	}
2683 	ALTQ_SQ_UNLOCK(ifsq);
2684 
2685 	if (!error) {
2686 		IFNET_STAT_INC(ifp, obytes, len);
2687 		if (mcast)
2688 			IFNET_STAT_INC(ifp, omcasts, 1);
2689 	}
2690 
2691 	if (stage != NULL) {
2692 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
2693 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
2694 			if (!avoid_start) {
2695 				ifsq_stage_remove(head, stage);
2696 				ifsq_ifstart_schedule(ifsq, 1);
2697 			}
2698 			return error;
2699 		}
2700 
2701 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
2702 			ifsq_stage_remove(head, stage);
2703 		} else {
2704 			stage->stg_cnt = 0;
2705 			stage->stg_len = 0;
2706 		}
2707 	}
2708 
2709 	if (!start)
2710 		return error;
2711 
2712 	ifsq_ifstart_try(ifsq, 0);
2713 	return error;
2714 }
2715 
2716 void *
2717 ifa_create(int size, int flags)
2718 {
2719 	struct ifaddr *ifa;
2720 	int i;
2721 
2722 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
2723 
2724 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2725 	if (ifa == NULL)
2726 		return NULL;
2727 
2728 	ifa->ifa_containers =
2729 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
2730 	        M_IFADDR, M_WAITOK | M_ZERO);
2731 	ifa->ifa_ncnt = ncpus;
2732 	for (i = 0; i < ncpus; ++i) {
2733 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2734 
2735 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2736 		ifac->ifa = ifa;
2737 		ifac->ifa_refcnt = 1;
2738 	}
2739 #ifdef IFADDR_DEBUG
2740 	kprintf("alloc ifa %p %d\n", ifa, size);
2741 #endif
2742 	return ifa;
2743 }
2744 
2745 void
2746 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2747 {
2748 	struct ifaddr *ifa = ifac->ifa;
2749 
2750 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2751 	KKASSERT(ifac->ifa_refcnt == 0);
2752 	KASSERT(ifac->ifa_listmask == 0,
2753 		("ifa is still on %#x lists", ifac->ifa_listmask));
2754 
2755 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2756 
2757 #ifdef IFADDR_DEBUG_VERBOSE
2758 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2759 #endif
2760 
2761 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2762 		("invalid # of ifac, %d", ifa->ifa_ncnt));
2763 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2764 #ifdef IFADDR_DEBUG
2765 		kprintf("free ifa %p\n", ifa);
2766 #endif
2767 		kfree(ifa->ifa_containers, M_IFADDR);
2768 		kfree(ifa, M_IFADDR);
2769 	}
2770 }
2771 
2772 static void
2773 ifa_iflink_dispatch(netmsg_t nmsg)
2774 {
2775 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2776 	struct ifaddr *ifa = msg->ifa;
2777 	struct ifnet *ifp = msg->ifp;
2778 	int cpu = mycpuid;
2779 	struct ifaddr_container *ifac;
2780 
2781 	crit_enter();
2782 
2783 	ifac = &ifa->ifa_containers[cpu];
2784 	ASSERT_IFAC_VALID(ifac);
2785 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2786 		("ifaddr is on if_addrheads"));
2787 
2788 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2789 	if (msg->tail)
2790 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2791 	else
2792 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2793 
2794 	crit_exit();
2795 
2796 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2797 }
2798 
2799 void
2800 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2801 {
2802 	struct netmsg_ifaddr msg;
2803 
2804 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2805 		    0, ifa_iflink_dispatch);
2806 	msg.ifa = ifa;
2807 	msg.ifp = ifp;
2808 	msg.tail = tail;
2809 
2810 	ifa_domsg(&msg.base.lmsg, 0);
2811 }
2812 
2813 static void
2814 ifa_ifunlink_dispatch(netmsg_t nmsg)
2815 {
2816 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2817 	struct ifaddr *ifa = msg->ifa;
2818 	struct ifnet *ifp = msg->ifp;
2819 	int cpu = mycpuid;
2820 	struct ifaddr_container *ifac;
2821 
2822 	crit_enter();
2823 
2824 	ifac = &ifa->ifa_containers[cpu];
2825 	ASSERT_IFAC_VALID(ifac);
2826 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2827 		("ifaddr is not on if_addrhead"));
2828 
2829 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2830 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2831 
2832 	crit_exit();
2833 
2834 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2835 }
2836 
2837 void
2838 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2839 {
2840 	struct netmsg_ifaddr msg;
2841 
2842 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2843 		    0, ifa_ifunlink_dispatch);
2844 	msg.ifa = ifa;
2845 	msg.ifp = ifp;
2846 
2847 	ifa_domsg(&msg.base.lmsg, 0);
2848 }
2849 
2850 static void
2851 ifa_destroy_dispatch(netmsg_t nmsg)
2852 {
2853 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2854 
2855 	IFAFREE(msg->ifa);
2856 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
2857 }
2858 
2859 void
2860 ifa_destroy(struct ifaddr *ifa)
2861 {
2862 	struct netmsg_ifaddr msg;
2863 
2864 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2865 		    0, ifa_destroy_dispatch);
2866 	msg.ifa = ifa;
2867 
2868 	ifa_domsg(&msg.base.lmsg, 0);
2869 }
2870 
2871 struct lwkt_port *
2872 ifnet_portfn(int cpu)
2873 {
2874 	return &ifnet_threads[cpu].td_msgport;
2875 }
2876 
2877 void
2878 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2879 {
2880 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2881 
2882 	if (next_cpu < ncpus)
2883 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2884 	else
2885 		lwkt_replymsg(lmsg, 0);
2886 }
2887 
2888 int
2889 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2890 {
2891 	KKASSERT(cpu < ncpus);
2892 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2893 }
2894 
2895 void
2896 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2897 {
2898 	KKASSERT(cpu < ncpus);
2899 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2900 }
2901 
2902 /*
2903  * Generic netmsg service loop.  Some protocols may roll their own but all
2904  * must do the basic command dispatch function call done here.
2905  */
2906 static void
2907 ifnet_service_loop(void *arg __unused)
2908 {
2909 	netmsg_t msg;
2910 
2911 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
2912 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
2913 		msg->base.nm_dispatch(msg);
2914 	}
2915 }
2916 
2917 static void
2918 if_start_rollup(void)
2919 {
2920 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
2921 	struct ifsubq_stage *stage;
2922 
2923 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
2924 		struct ifaltq_subque *ifsq = stage->stg_subq;
2925 		int is_sched = 0;
2926 
2927 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
2928 			is_sched = 1;
2929 		ifsq_stage_remove(head, stage);
2930 
2931 		if (is_sched) {
2932 			ifsq_ifstart_schedule(ifsq, 1);
2933 		} else {
2934 			int start = 0;
2935 
2936 			ALTQ_SQ_LOCK(ifsq);
2937 			if (!ifsq_is_started(ifsq)) {
2938 				/*
2939 				 * Hold the interlock of ifnet.if_start
2940 				 */
2941 				ifsq_set_started(ifsq);
2942 				start = 1;
2943 			}
2944 			ALTQ_SQ_UNLOCK(ifsq);
2945 
2946 			if (start)
2947 				ifsq_ifstart_try(ifsq, 1);
2948 		}
2949 		KKASSERT((stage->stg_flags &
2950 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
2951 	}
2952 }
2953 
2954 static void
2955 ifnetinit(void *dummy __unused)
2956 {
2957 	int i;
2958 
2959 	for (i = 0; i < ncpus; ++i) {
2960 		struct thread *thr = &ifnet_threads[i];
2961 
2962 		lwkt_create(ifnet_service_loop, NULL, NULL,
2963 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT,
2964 			    i, "ifnet %d", i);
2965 		netmsg_service_port_init(&thr->td_msgport);
2966 		lwkt_schedule(thr);
2967 	}
2968 
2969 	for (i = 0; i < ncpus; ++i)
2970 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
2971 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
2972 }
2973 
2974 struct ifnet *
2975 ifnet_byindex(unsigned short idx)
2976 {
2977 	if (idx > if_index)
2978 		return NULL;
2979 	return ifindex2ifnet[idx];
2980 }
2981 
2982 struct ifaddr *
2983 ifaddr_byindex(unsigned short idx)
2984 {
2985 	struct ifnet *ifp;
2986 
2987 	ifp = ifnet_byindex(idx);
2988 	if (!ifp)
2989 		return NULL;
2990 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2991 }
2992 
2993 void
2994 if_register_com_alloc(u_char type,
2995     if_com_alloc_t *a, if_com_free_t *f)
2996 {
2997 
2998         KASSERT(if_com_alloc[type] == NULL,
2999             ("if_register_com_alloc: %d already registered", type));
3000         KASSERT(if_com_free[type] == NULL,
3001             ("if_register_com_alloc: %d free already registered", type));
3002 
3003         if_com_alloc[type] = a;
3004         if_com_free[type] = f;
3005 }
3006 
3007 void
3008 if_deregister_com_alloc(u_char type)
3009 {
3010 
3011         KASSERT(if_com_alloc[type] != NULL,
3012             ("if_deregister_com_alloc: %d not registered", type));
3013         KASSERT(if_com_free[type] != NULL,
3014             ("if_deregister_com_alloc: %d free not registered", type));
3015         if_com_alloc[type] = NULL;
3016         if_com_free[type] = NULL;
3017 }
3018 
3019 int
3020 if_ring_count2(int cnt, int cnt_max)
3021 {
3022 	int shift = 0;
3023 
3024 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3025 	    ("invalid ring count max %d", cnt_max));
3026 
3027 	if (cnt <= 0)
3028 		cnt = cnt_max;
3029 	if (cnt > ncpus2)
3030 		cnt = ncpus2;
3031 	if (cnt > cnt_max)
3032 		cnt = cnt_max;
3033 
3034 	while ((1 << (shift + 1)) <= cnt)
3035 		++shift;
3036 	cnt = 1 << shift;
3037 
3038 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3039 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3040 	     cnt, ncpus2, cnt_max));
3041 	return cnt;
3042 }
3043 
3044 void
3045 ifq_set_maxlen(struct ifaltq *ifq, int len)
3046 {
3047 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3048 }
3049 
3050 int
3051 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3052 {
3053 	return ALTQ_SUBQ_INDEX_DEFAULT;
3054 }
3055 
3056 int
3057 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3058 {
3059 	return (cpuid & ifq->altq_subq_mask);
3060 }
3061 
3062 static void
3063 ifsq_watchdog(void *arg)
3064 {
3065 	struct ifsubq_watchdog *wd = arg;
3066 	struct ifnet *ifp;
3067 
3068 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3069 		goto done;
3070 
3071 	ifp = ifsq_get_ifp(wd->wd_subq);
3072 	if (ifnet_tryserialize_all(ifp)) {
3073 		wd->wd_watchdog(wd->wd_subq);
3074 		ifnet_deserialize_all(ifp);
3075 	} else {
3076 		/* try again next timeout */
3077 		wd->wd_timer = 1;
3078 	}
3079 done:
3080 	ifsq_watchdog_reset(wd);
3081 }
3082 
3083 static void
3084 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3085 {
3086 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3087 	    ifsq_get_cpuid(wd->wd_subq));
3088 }
3089 
3090 void
3091 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3092     ifsq_watchdog_t watchdog)
3093 {
3094 	callout_init_mp(&wd->wd_callout);
3095 	wd->wd_timer = 0;
3096 	wd->wd_subq = ifsq;
3097 	wd->wd_watchdog = watchdog;
3098 }
3099 
3100 void
3101 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3102 {
3103 	wd->wd_timer = 0;
3104 	ifsq_watchdog_reset(wd);
3105 }
3106 
3107 void
3108 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3109 {
3110 	wd->wd_timer = 0;
3111 	callout_stop(&wd->wd_callout);
3112 }
3113