xref: /dflybsd-src/sys/net/if.c (revision c9e3d8f96688a159959b1af2d4fef14b744173e3)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  * $DragonFly: src/sys/net/if.c,v 1.84 2008/11/15 11:58:16 sephe Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_inet.h"
41 #include "opt_polling.h"
42 #include "opt_ifpoll.h"
43 
44 #include <sys/param.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/socketops.h>
54 #include <sys/protosw.h>
55 #include <sys/kernel.h>
56 #include <sys/ktr.h>
57 #include <sys/sockio.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 #include <sys/domain.h>
61 #include <sys/thread.h>
62 #include <sys/thread2.h>
63 #include <sys/serialize.h>
64 #include <sys/msgport2.h>
65 #include <sys/bus.h>
66 
67 #include <net/if.h>
68 #include <net/if_arp.h>
69 #include <net/if_dl.h>
70 #include <net/if_types.h>
71 #include <net/if_var.h>
72 #include <net/ifq_var.h>
73 #include <net/radix.h>
74 #include <net/route.h>
75 #include <net/if_clone.h>
76 #include <net/netisr.h>
77 #include <net/netmsg2.h>
78 
79 #include <machine/atomic.h>
80 #include <machine/stdarg.h>
81 #include <machine/smp.h>
82 
83 #if defined(INET) || defined(INET6)
84 /*XXX*/
85 #include <netinet/in.h>
86 #include <netinet/in_var.h>
87 #include <netinet/if_ether.h>
88 #ifdef INET6
89 #include <netinet6/in6_var.h>
90 #include <netinet6/in6_ifattach.h>
91 #endif
92 #endif
93 
94 #if defined(COMPAT_43)
95 #include <emulation/43bsd/43bsd_socket.h>
96 #endif /* COMPAT_43 */
97 
98 struct netmsg_ifaddr {
99 	struct netmsg	netmsg;
100 	struct ifaddr	*ifa;
101 	struct ifnet	*ifp;
102 	int		tail;
103 };
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
115 static int	if_rtdel(struct radix_node *, void *);
116 
117 #ifdef INET6
118 /*
119  * XXX: declare here to avoid to include many inet6 related files..
120  * should be more generalized?
121  */
122 extern void	nd6_setmtu(struct ifnet *);
123 #endif
124 
125 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
126 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
127 
128 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
129 /* Must be after netisr_init */
130 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
131 
132 static  if_com_alloc_t *if_com_alloc[256];
133 static  if_com_free_t *if_com_free[256];
134 
135 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
136 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
137 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
138 
139 int			ifqmaxlen = IFQ_MAXLEN;
140 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
141 
142 /* In ifq_dispatch(), try to do direct ifnet.if_start first */
143 static int		ifq_dispatch_schedonly = 0;
144 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schedonly, CTLFLAG_RW,
145            &ifq_dispatch_schedonly, 0, "");
146 
147 /* In ifq_dispatch(), schedule ifnet.if_start without checking ifnet.if_snd */
148 static int		ifq_dispatch_schednochk = 0;
149 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schednochk, CTLFLAG_RW,
150            &ifq_dispatch_schednochk, 0, "");
151 
152 /* In if_devstart(), try to do direct ifnet.if_start first */
153 static int		if_devstart_schedonly = 0;
154 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schedonly, CTLFLAG_RW,
155            &if_devstart_schedonly, 0, "");
156 
157 /* In if_devstart(), schedule ifnet.if_start without checking ifnet.if_snd */
158 static int		if_devstart_schednochk = 0;
159 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schednochk, CTLFLAG_RW,
160            &if_devstart_schednochk, 0, "");
161 
162 #ifdef SMP
163 /* Schedule ifnet.if_start on the current CPU */
164 static int		if_start_oncpu_sched = 0;
165 SYSCTL_INT(_net_link_generic, OID_AUTO, if_start_oncpu_sched, CTLFLAG_RW,
166            &if_start_oncpu_sched, 0, "");
167 #endif
168 
169 struct callout		if_slowtimo_timer;
170 
171 int			if_index = 0;
172 struct ifnet		**ifindex2ifnet = NULL;
173 static struct thread	ifnet_threads[MAXCPU];
174 static int		ifnet_mpsafe_thread = NETMSG_SERVICE_MPSAFE;
175 
176 #define IFQ_KTR_STRING		"ifq=%p"
177 #define IFQ_KTR_ARG_SIZE	(sizeof(void *))
178 #ifndef KTR_IFQ
179 #define KTR_IFQ			KTR_ALL
180 #endif
181 KTR_INFO_MASTER(ifq);
182 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
183 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
184 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
185 
186 #define IF_START_KTR_STRING	"ifp=%p"
187 #define IF_START_KTR_ARG_SIZE	(sizeof(void *))
188 #ifndef KTR_IF_START
189 #define KTR_IF_START		KTR_ALL
190 #endif
191 KTR_INFO_MASTER(if_start);
192 KTR_INFO(KTR_IF_START, if_start, run, 0,
193 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
194 KTR_INFO(KTR_IF_START, if_start, sched, 1,
195 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
196 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
197 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
198 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
199 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
200 #ifdef SMP
201 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
202 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
203 #endif
204 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
205 
206 /*
207  * Network interface utility routines.
208  *
209  * Routines with ifa_ifwith* names take sockaddr *'s as
210  * parameters.
211  */
212 /* ARGSUSED*/
213 void
214 ifinit(void *dummy)
215 {
216 	struct ifnet *ifp;
217 
218 	callout_init(&if_slowtimo_timer);
219 
220 	crit_enter();
221 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
222 		if (ifp->if_snd.ifq_maxlen == 0) {
223 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
224 			ifp->if_snd.ifq_maxlen = ifqmaxlen;
225 		}
226 	}
227 	crit_exit();
228 
229 	if_slowtimo(0);
230 }
231 
232 static int
233 if_start_cpuid(struct ifnet *ifp)
234 {
235 	return ifp->if_cpuid;
236 }
237 
238 #ifdef DEVICE_POLLING
239 static int
240 if_start_cpuid_poll(struct ifnet *ifp)
241 {
242 	int poll_cpuid = ifp->if_poll_cpuid;
243 
244 	if (poll_cpuid >= 0)
245 		return poll_cpuid;
246 	else
247 		return ifp->if_cpuid;
248 }
249 #endif
250 
251 static void
252 if_start_ipifunc(void *arg)
253 {
254 	struct ifnet *ifp = arg;
255 	struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].nm_lmsg;
256 
257 	crit_enter();
258 	if (lmsg->ms_flags & MSGF_DONE)
259 		lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
260 	crit_exit();
261 }
262 
263 /*
264  * Schedule ifnet.if_start on ifnet's CPU
265  */
266 static void
267 if_start_schedule(struct ifnet *ifp)
268 {
269 #ifdef SMP
270 	int cpu;
271 
272 	if (if_start_oncpu_sched)
273 		cpu = mycpuid;
274 	else
275 		cpu = ifp->if_start_cpuid(ifp);
276 
277 	if (cpu != mycpuid)
278 		lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp);
279 	else
280 #endif
281 	if_start_ipifunc(ifp);
282 }
283 
284 /*
285  * NOTE:
286  * This function will release ifnet.if_start interlock,
287  * if ifnet.if_start does not need to be scheduled
288  */
289 static __inline int
290 if_start_need_schedule(struct ifaltq *ifq, int running)
291 {
292 	if (!running || ifq_is_empty(ifq)
293 #ifdef ALTQ
294 	    || ifq->altq_tbr != NULL
295 #endif
296 	) {
297 		ALTQ_LOCK(ifq);
298 		/*
299 		 * ifnet.if_start interlock is released, if:
300 		 * 1) Hardware can not take any packets, due to
301 		 *    o  interface is marked down
302 		 *    o  hardware queue is full (IFF_OACTIVE)
303 		 *    Under the second situation, hardware interrupt
304 		 *    or polling(4) will call/schedule ifnet.if_start
305 		 *    when hardware queue is ready
306 		 * 2) There is not packet in the ifnet.if_snd.
307 		 *    Further ifq_dispatch or ifq_handoff will call/
308 		 *    schedule ifnet.if_start
309 		 * 3) TBR is used and it does not allow further
310 		 *    dequeueing.
311 		 *    TBR callout will call ifnet.if_start
312 		 */
313 		if (!running || !ifq_data_ready(ifq)) {
314 			ifq->altq_started = 0;
315 			ALTQ_UNLOCK(ifq);
316 			return 0;
317 		}
318 		ALTQ_UNLOCK(ifq);
319 	}
320 	return 1;
321 }
322 
323 static void
324 if_start_dispatch(struct netmsg *nmsg)
325 {
326 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
327 	struct ifnet *ifp = lmsg->u.ms_resultp;
328 	struct ifaltq *ifq = &ifp->if_snd;
329 	int running = 0;
330 
331 	crit_enter();
332 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
333 	crit_exit();
334 
335 #ifdef SMP
336 	if (!if_start_oncpu_sched && mycpuid != ifp->if_start_cpuid(ifp)) {
337 		/*
338 		 * If the ifnet is still up, we need to
339 		 * chase its CPU change.
340 		 */
341 		if (ifp->if_flags & IFF_UP) {
342 			logifstart(chase_sched, ifp);
343 			if_start_schedule(ifp);
344 			return;
345 		} else {
346 			goto check;
347 		}
348 	}
349 #endif
350 
351 	if (ifp->if_flags & IFF_UP) {
352 		ifnet_serialize_tx(ifp); /* XXX try? */
353 		if ((ifp->if_flags & IFF_OACTIVE) == 0) {
354 			logifstart(run, ifp);
355 			ifp->if_start(ifp);
356 			if ((ifp->if_flags &
357 			(IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
358 				running = 1;
359 		}
360 		ifnet_deserialize_tx(ifp);
361 	}
362 #ifdef SMP
363 check:
364 #endif
365 	if (if_start_need_schedule(ifq, running)) {
366 		crit_enter();
367 		if (lmsg->ms_flags & MSGF_DONE)	{ /* XXX necessary? */
368 			logifstart(sched, ifp);
369 			lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
370 		}
371 		crit_exit();
372 	}
373 }
374 
375 /* Device driver ifnet.if_start helper function */
376 void
377 if_devstart(struct ifnet *ifp)
378 {
379 	struct ifaltq *ifq = &ifp->if_snd;
380 	int running = 0;
381 
382 	ASSERT_IFNET_SERIALIZED_TX(ifp);
383 
384 	ALTQ_LOCK(ifq);
385 	if (ifq->altq_started || !ifq_data_ready(ifq)) {
386 		logifstart(avoid, ifp);
387 		ALTQ_UNLOCK(ifq);
388 		return;
389 	}
390 	ifq->altq_started = 1;
391 	ALTQ_UNLOCK(ifq);
392 
393 	if (if_devstart_schedonly) {
394 		/*
395 		 * Always schedule ifnet.if_start on ifnet's CPU,
396 		 * short circuit the rest of this function.
397 		 */
398 		logifstart(sched, ifp);
399 		if_start_schedule(ifp);
400 		return;
401 	}
402 
403 	logifstart(run, ifp);
404 	ifp->if_start(ifp);
405 
406 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
407 		running = 1;
408 
409 	if (if_devstart_schednochk || if_start_need_schedule(ifq, running)) {
410 		/*
411 		 * More data need to be transmitted, ifnet.if_start is
412 		 * scheduled on ifnet's CPU, and we keep going.
413 		 * NOTE: ifnet.if_start interlock is not released.
414 		 */
415 		logifstart(sched, ifp);
416 		if_start_schedule(ifp);
417 	}
418 }
419 
420 static void
421 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
422 {
423 	lwkt_serialize_enter(ifp->if_serializer);
424 }
425 
426 static void
427 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
428 {
429 	lwkt_serialize_exit(ifp->if_serializer);
430 }
431 
432 static int
433 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
434 {
435 	return lwkt_serialize_try(ifp->if_serializer);
436 }
437 
438 #ifdef INVARIANTS
439 static void
440 if_default_serialize_assert(struct ifnet *ifp,
441 			    enum ifnet_serialize slz __unused,
442 			    boolean_t serialized)
443 {
444 	if (serialized)
445 		ASSERT_SERIALIZED(ifp->if_serializer);
446 	else
447 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
448 }
449 #endif
450 
451 /*
452  * Attach an interface to the list of "active" interfaces.
453  *
454  * The serializer is optional.  If non-NULL access to the interface
455  * may be MPSAFE.
456  */
457 void
458 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
459 {
460 	unsigned socksize, ifasize;
461 	int namelen, masklen;
462 	struct sockaddr_dl *sdl;
463 	struct ifaddr *ifa;
464 	struct ifaltq *ifq;
465 	int i;
466 
467 	static int if_indexlim = 8;
468 
469 	if (ifp->if_serialize != NULL) {
470 		KASSERT(ifp->if_deserialize != NULL &&
471 			ifp->if_tryserialize != NULL &&
472 			ifp->if_serialize_assert != NULL,
473 			("serialize functions are partially setup\n"));
474 
475 		/*
476 		 * If the device supplies serialize functions,
477 		 * then clear if_serializer to catch any invalid
478 		 * usage of this field.
479 		 */
480 		KASSERT(serializer == NULL,
481 			("both serialize functions and default serializer "
482 			 "are supplied\n"));
483 		ifp->if_serializer = NULL;
484 	} else {
485 		KASSERT(ifp->if_deserialize == NULL &&
486 			ifp->if_tryserialize == NULL &&
487 			ifp->if_serialize_assert == NULL,
488 			("serialize functions are partially setup\n"));
489 		ifp->if_serialize = if_default_serialize;
490 		ifp->if_deserialize = if_default_deserialize;
491 		ifp->if_tryserialize = if_default_tryserialize;
492 #ifdef INVARIANTS
493 		ifp->if_serialize_assert = if_default_serialize_assert;
494 #endif
495 
496 		/*
497 		 * The serializer can be passed in from the device,
498 		 * allowing the same serializer to be used for both
499 		 * the interrupt interlock and the device queue.
500 		 * If not specified, the netif structure will use an
501 		 * embedded serializer.
502 		 */
503 		if (serializer == NULL) {
504 			serializer = &ifp->if_default_serializer;
505 			lwkt_serialize_init(serializer);
506 		}
507 		ifp->if_serializer = serializer;
508 	}
509 
510 	ifp->if_start_cpuid = if_start_cpuid;
511 	ifp->if_cpuid = 0;
512 
513 #ifdef DEVICE_POLLING
514 	/* Device is not in polling mode by default */
515 	ifp->if_poll_cpuid = -1;
516 	if (ifp->if_poll != NULL)
517 		ifp->if_start_cpuid = if_start_cpuid_poll;
518 #endif
519 
520 	ifp->if_start_nmsg = kmalloc(ncpus * sizeof(struct netmsg),
521 				     M_LWKTMSG, M_WAITOK);
522 	for (i = 0; i < ncpus; ++i) {
523 		netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport,
524 			    0, if_start_dispatch);
525 		ifp->if_start_nmsg[i].nm_lmsg.u.ms_resultp = ifp;
526 	}
527 
528 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
529 	ifp->if_index = ++if_index;
530 
531 	/*
532 	 * XXX -
533 	 * The old code would work if the interface passed a pre-existing
534 	 * chain of ifaddrs to this code.  We don't trust our callers to
535 	 * properly initialize the tailq, however, so we no longer allow
536 	 * this unlikely case.
537 	 */
538 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
539 				    M_IFADDR, M_WAITOK | M_ZERO);
540 	for (i = 0; i < ncpus; ++i)
541 		TAILQ_INIT(&ifp->if_addrheads[i]);
542 
543 	TAILQ_INIT(&ifp->if_prefixhead);
544 	LIST_INIT(&ifp->if_multiaddrs);
545 	getmicrotime(&ifp->if_lastchange);
546 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
547 		unsigned int n;
548 		struct ifnet **q;
549 
550 		if_indexlim <<= 1;
551 
552 		/* grow ifindex2ifnet */
553 		n = if_indexlim * sizeof(*q);
554 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
555 		if (ifindex2ifnet) {
556 			bcopy(ifindex2ifnet, q, n/2);
557 			kfree(ifindex2ifnet, M_IFADDR);
558 		}
559 		ifindex2ifnet = q;
560 	}
561 
562 	ifindex2ifnet[if_index] = ifp;
563 
564 	/*
565 	 * create a Link Level name for this device
566 	 */
567 	namelen = strlen(ifp->if_xname);
568 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
569 	masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
570 	socksize = masklen + ifp->if_addrlen;
571 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
572 	if (socksize < sizeof(*sdl))
573 		socksize = sizeof(*sdl);
574 	socksize = ROUNDUP(socksize);
575 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
576 	ifa = ifa_create(ifasize, M_WAITOK);
577 	sdl = (struct sockaddr_dl *)(ifa + 1);
578 	sdl->sdl_len = socksize;
579 	sdl->sdl_family = AF_LINK;
580 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
581 	sdl->sdl_nlen = namelen;
582 	sdl->sdl_index = ifp->if_index;
583 	sdl->sdl_type = ifp->if_type;
584 	ifp->if_lladdr = ifa;
585 	ifa->ifa_ifp = ifp;
586 	ifa->ifa_rtrequest = link_rtrequest;
587 	ifa->ifa_addr = (struct sockaddr *)sdl;
588 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
589 	ifa->ifa_netmask = (struct sockaddr *)sdl;
590 	sdl->sdl_len = masklen;
591 	while (namelen != 0)
592 		sdl->sdl_data[--namelen] = 0xff;
593 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
594 
595 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
596 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
597 
598 	ifq = &ifp->if_snd;
599 	ifq->altq_type = 0;
600 	ifq->altq_disc = NULL;
601 	ifq->altq_flags &= ALTQF_CANTCHANGE;
602 	ifq->altq_tbr = NULL;
603 	ifq->altq_ifp = ifp;
604 	ifq->altq_started = 0;
605 	ifq->altq_prepended = NULL;
606 	ALTQ_LOCK_INIT(ifq);
607 	ifq_set_classic(ifq);
608 
609 	if (!SLIST_EMPTY(&domains))
610 		if_attachdomain1(ifp);
611 
612 	/* Announce the interface. */
613 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
614 }
615 
616 static void
617 if_attachdomain(void *dummy)
618 {
619 	struct ifnet *ifp;
620 
621 	crit_enter();
622 	TAILQ_FOREACH(ifp, &ifnet, if_list)
623 		if_attachdomain1(ifp);
624 	crit_exit();
625 }
626 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
627 	if_attachdomain, NULL);
628 
629 static void
630 if_attachdomain1(struct ifnet *ifp)
631 {
632 	struct domain *dp;
633 
634 	crit_enter();
635 
636 	/* address family dependent data region */
637 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
638 	SLIST_FOREACH(dp, &domains, dom_next)
639 		if (dp->dom_ifattach)
640 			ifp->if_afdata[dp->dom_family] =
641 				(*dp->dom_ifattach)(ifp);
642 	crit_exit();
643 }
644 
645 /*
646  * Purge all addresses whose type is _not_ AF_LINK
647  */
648 void
649 if_purgeaddrs_nolink(struct ifnet *ifp)
650 {
651 	struct ifaddr_container *ifac, *next;
652 
653 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
654 			      ifa_link, next) {
655 		struct ifaddr *ifa = ifac->ifa;
656 
657 		/* Leave link ifaddr as it is */
658 		if (ifa->ifa_addr->sa_family == AF_LINK)
659 			continue;
660 #ifdef INET
661 		/* XXX: Ugly!! ad hoc just for INET */
662 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
663 			struct ifaliasreq ifr;
664 #ifdef IFADDR_DEBUG_VERBOSE
665 			int i;
666 
667 			kprintf("purge in4 addr %p: ", ifa);
668 			for (i = 0; i < ncpus; ++i)
669 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
670 			kprintf("\n");
671 #endif
672 
673 			bzero(&ifr, sizeof ifr);
674 			ifr.ifra_addr = *ifa->ifa_addr;
675 			if (ifa->ifa_dstaddr)
676 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
677 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
678 				       NULL) == 0)
679 				continue;
680 		}
681 #endif /* INET */
682 #ifdef INET6
683 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
684 #ifdef IFADDR_DEBUG_VERBOSE
685 			int i;
686 
687 			kprintf("purge in6 addr %p: ", ifa);
688 			for (i = 0; i < ncpus; ++i)
689 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
690 			kprintf("\n");
691 #endif
692 
693 			in6_purgeaddr(ifa);
694 			/* ifp_addrhead is already updated */
695 			continue;
696 		}
697 #endif /* INET6 */
698 		ifa_ifunlink(ifa, ifp);
699 		ifa_destroy(ifa);
700 	}
701 }
702 
703 /*
704  * Detach an interface, removing it from the
705  * list of "active" interfaces.
706  */
707 void
708 if_detach(struct ifnet *ifp)
709 {
710 	struct radix_node_head	*rnh;
711 	int i;
712 	int cpu, origcpu;
713 	struct domain *dp;
714 
715 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
716 
717 	/*
718 	 * Remove routes and flush queues.
719 	 */
720 	crit_enter();
721 #ifdef DEVICE_POLLING
722 	if (ifp->if_flags & IFF_POLLING)
723 		ether_poll_deregister(ifp);
724 #endif
725 #ifdef IFPOLL_ENABLE
726 	if (ifp->if_flags & IFF_NPOLLING)
727 		ifpoll_deregister(ifp);
728 #endif
729 	if_down(ifp);
730 
731 	if (ifq_is_enabled(&ifp->if_snd))
732 		altq_disable(&ifp->if_snd);
733 	if (ifq_is_attached(&ifp->if_snd))
734 		altq_detach(&ifp->if_snd);
735 
736 	/*
737 	 * Clean up all addresses.
738 	 */
739 	ifp->if_lladdr = NULL;
740 
741 	if_purgeaddrs_nolink(ifp);
742 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
743 		struct ifaddr *ifa;
744 
745 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
746 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
747 			("non-link ifaddr is left on if_addrheads"));
748 
749 		ifa_ifunlink(ifa, ifp);
750 		ifa_destroy(ifa);
751 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
752 			("there are still ifaddrs left on if_addrheads"));
753 	}
754 
755 #ifdef INET
756 	/*
757 	 * Remove all IPv4 kernel structures related to ifp.
758 	 */
759 	in_ifdetach(ifp);
760 #endif
761 
762 #ifdef INET6
763 	/*
764 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
765 	 * before removing routing entries below, since IPv6 interface direct
766 	 * routes are expected to be removed by the IPv6-specific kernel API.
767 	 * Otherwise, the kernel will detect some inconsistency and bark it.
768 	 */
769 	in6_ifdetach(ifp);
770 #endif
771 
772 	/*
773 	 * Delete all remaining routes using this interface
774 	 * Unfortuneatly the only way to do this is to slog through
775 	 * the entire routing table looking for routes which point
776 	 * to this interface...oh well...
777 	 */
778 	origcpu = mycpuid;
779 	for (cpu = 0; cpu < ncpus2; cpu++) {
780 		lwkt_migratecpu(cpu);
781 		for (i = 1; i <= AF_MAX; i++) {
782 			if ((rnh = rt_tables[cpu][i]) == NULL)
783 				continue;
784 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
785 		}
786 	}
787 	lwkt_migratecpu(origcpu);
788 
789 	/* Announce that the interface is gone. */
790 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
791 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
792 
793 	SLIST_FOREACH(dp, &domains, dom_next)
794 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
795 			(*dp->dom_ifdetach)(ifp,
796 				ifp->if_afdata[dp->dom_family]);
797 
798 	/*
799 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
800 	 */
801 	ifindex2ifnet[ifp->if_index] = NULL;
802 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
803 		if_index--;
804 
805 	TAILQ_REMOVE(&ifnet, ifp, if_link);
806 	kfree(ifp->if_addrheads, M_IFADDR);
807 	kfree(ifp->if_start_nmsg, M_LWKTMSG);
808 	crit_exit();
809 }
810 
811 /*
812  * Delete Routes for a Network Interface
813  *
814  * Called for each routing entry via the rnh->rnh_walktree() call above
815  * to delete all route entries referencing a detaching network interface.
816  *
817  * Arguments:
818  *	rn	pointer to node in the routing table
819  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
820  *
821  * Returns:
822  *	0	successful
823  *	errno	failed - reason indicated
824  *
825  */
826 static int
827 if_rtdel(struct radix_node *rn, void *arg)
828 {
829 	struct rtentry	*rt = (struct rtentry *)rn;
830 	struct ifnet	*ifp = arg;
831 	int		err;
832 
833 	if (rt->rt_ifp == ifp) {
834 
835 		/*
836 		 * Protect (sorta) against walktree recursion problems
837 		 * with cloned routes
838 		 */
839 		if (!(rt->rt_flags & RTF_UP))
840 			return (0);
841 
842 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
843 				rt_mask(rt), rt->rt_flags,
844 				NULL);
845 		if (err) {
846 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
847 		}
848 	}
849 
850 	return (0);
851 }
852 
853 /*
854  * Locate an interface based on a complete address.
855  */
856 struct ifaddr *
857 ifa_ifwithaddr(struct sockaddr *addr)
858 {
859 	struct ifnet *ifp;
860 
861 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
862 		struct ifaddr_container *ifac;
863 
864 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
865 			struct ifaddr *ifa = ifac->ifa;
866 
867 			if (ifa->ifa_addr->sa_family != addr->sa_family)
868 				continue;
869 			if (sa_equal(addr, ifa->ifa_addr))
870 				return (ifa);
871 			if ((ifp->if_flags & IFF_BROADCAST) &&
872 			    ifa->ifa_broadaddr &&
873 			    /* IPv6 doesn't have broadcast */
874 			    ifa->ifa_broadaddr->sa_len != 0 &&
875 			    sa_equal(ifa->ifa_broadaddr, addr))
876 				return (ifa);
877 		}
878 	}
879 	return (NULL);
880 }
881 /*
882  * Locate the point to point interface with a given destination address.
883  */
884 struct ifaddr *
885 ifa_ifwithdstaddr(struct sockaddr *addr)
886 {
887 	struct ifnet *ifp;
888 
889 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
890 		struct ifaddr_container *ifac;
891 
892 		if (!(ifp->if_flags & IFF_POINTOPOINT))
893 			continue;
894 
895 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
896 			struct ifaddr *ifa = ifac->ifa;
897 
898 			if (ifa->ifa_addr->sa_family != addr->sa_family)
899 				continue;
900 			if (ifa->ifa_dstaddr &&
901 			    sa_equal(addr, ifa->ifa_dstaddr))
902 				return (ifa);
903 		}
904 	}
905 	return (NULL);
906 }
907 
908 /*
909  * Find an interface on a specific network.  If many, choice
910  * is most specific found.
911  */
912 struct ifaddr *
913 ifa_ifwithnet(struct sockaddr *addr)
914 {
915 	struct ifnet *ifp;
916 	struct ifaddr *ifa_maybe = NULL;
917 	u_int af = addr->sa_family;
918 	char *addr_data = addr->sa_data, *cplim;
919 
920 	/*
921 	 * AF_LINK addresses can be looked up directly by their index number,
922 	 * so do that if we can.
923 	 */
924 	if (af == AF_LINK) {
925 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
926 
927 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
928 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
929 	}
930 
931 	/*
932 	 * Scan though each interface, looking for ones that have
933 	 * addresses in this address family.
934 	 */
935 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
936 		struct ifaddr_container *ifac;
937 
938 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
939 			struct ifaddr *ifa = ifac->ifa;
940 			char *cp, *cp2, *cp3;
941 
942 			if (ifa->ifa_addr->sa_family != af)
943 next:				continue;
944 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
945 				/*
946 				 * This is a bit broken as it doesn't
947 				 * take into account that the remote end may
948 				 * be a single node in the network we are
949 				 * looking for.
950 				 * The trouble is that we don't know the
951 				 * netmask for the remote end.
952 				 */
953 				if (ifa->ifa_dstaddr != NULL &&
954 				    sa_equal(addr, ifa->ifa_dstaddr))
955 					return (ifa);
956 			} else {
957 				/*
958 				 * if we have a special address handler,
959 				 * then use it instead of the generic one.
960 				 */
961 				if (ifa->ifa_claim_addr) {
962 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
963 						return (ifa);
964 					} else {
965 						continue;
966 					}
967 				}
968 
969 				/*
970 				 * Scan all the bits in the ifa's address.
971 				 * If a bit dissagrees with what we are
972 				 * looking for, mask it with the netmask
973 				 * to see if it really matters.
974 				 * (A byte at a time)
975 				 */
976 				if (ifa->ifa_netmask == 0)
977 					continue;
978 				cp = addr_data;
979 				cp2 = ifa->ifa_addr->sa_data;
980 				cp3 = ifa->ifa_netmask->sa_data;
981 				cplim = ifa->ifa_netmask->sa_len +
982 					(char *)ifa->ifa_netmask;
983 				while (cp3 < cplim)
984 					if ((*cp++ ^ *cp2++) & *cp3++)
985 						goto next; /* next address! */
986 				/*
987 				 * If the netmask of what we just found
988 				 * is more specific than what we had before
989 				 * (if we had one) then remember the new one
990 				 * before continuing to search
991 				 * for an even better one.
992 				 */
993 				if (ifa_maybe == 0 ||
994 				    rn_refines((char *)ifa->ifa_netmask,
995 					       (char *)ifa_maybe->ifa_netmask))
996 					ifa_maybe = ifa;
997 			}
998 		}
999 	}
1000 	return (ifa_maybe);
1001 }
1002 
1003 /*
1004  * Find an interface address specific to an interface best matching
1005  * a given address.
1006  */
1007 struct ifaddr *
1008 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1009 {
1010 	struct ifaddr_container *ifac;
1011 	char *cp, *cp2, *cp3;
1012 	char *cplim;
1013 	struct ifaddr *ifa_maybe = 0;
1014 	u_int af = addr->sa_family;
1015 
1016 	if (af >= AF_MAX)
1017 		return (0);
1018 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1019 		struct ifaddr *ifa = ifac->ifa;
1020 
1021 		if (ifa->ifa_addr->sa_family != af)
1022 			continue;
1023 		if (ifa_maybe == 0)
1024 			ifa_maybe = ifa;
1025 		if (ifa->ifa_netmask == NULL) {
1026 			if (sa_equal(addr, ifa->ifa_addr) ||
1027 			    (ifa->ifa_dstaddr != NULL &&
1028 			     sa_equal(addr, ifa->ifa_dstaddr)))
1029 				return (ifa);
1030 			continue;
1031 		}
1032 		if (ifp->if_flags & IFF_POINTOPOINT) {
1033 			if (sa_equal(addr, ifa->ifa_dstaddr))
1034 				return (ifa);
1035 		} else {
1036 			cp = addr->sa_data;
1037 			cp2 = ifa->ifa_addr->sa_data;
1038 			cp3 = ifa->ifa_netmask->sa_data;
1039 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1040 			for (; cp3 < cplim; cp3++)
1041 				if ((*cp++ ^ *cp2++) & *cp3)
1042 					break;
1043 			if (cp3 == cplim)
1044 				return (ifa);
1045 		}
1046 	}
1047 	return (ifa_maybe);
1048 }
1049 
1050 /*
1051  * Default action when installing a route with a Link Level gateway.
1052  * Lookup an appropriate real ifa to point to.
1053  * This should be moved to /sys/net/link.c eventually.
1054  */
1055 static void
1056 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1057 {
1058 	struct ifaddr *ifa;
1059 	struct sockaddr *dst;
1060 	struct ifnet *ifp;
1061 
1062 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1063 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1064 		return;
1065 	ifa = ifaof_ifpforaddr(dst, ifp);
1066 	if (ifa != NULL) {
1067 		IFAFREE(rt->rt_ifa);
1068 		IFAREF(ifa);
1069 		rt->rt_ifa = ifa;
1070 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1071 			ifa->ifa_rtrequest(cmd, rt, info);
1072 	}
1073 }
1074 
1075 /*
1076  * Mark an interface down and notify protocols of
1077  * the transition.
1078  * NOTE: must be called at splnet or eqivalent.
1079  */
1080 void
1081 if_unroute(struct ifnet *ifp, int flag, int fam)
1082 {
1083 	struct ifaddr_container *ifac;
1084 
1085 	ifp->if_flags &= ~flag;
1086 	getmicrotime(&ifp->if_lastchange);
1087 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1088 		struct ifaddr *ifa = ifac->ifa;
1089 
1090 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1091 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1092 	}
1093 	ifq_purge(&ifp->if_snd);
1094 	rt_ifmsg(ifp);
1095 }
1096 
1097 /*
1098  * Mark an interface up and notify protocols of
1099  * the transition.
1100  * NOTE: must be called at splnet or eqivalent.
1101  */
1102 void
1103 if_route(struct ifnet *ifp, int flag, int fam)
1104 {
1105 	struct ifaddr_container *ifac;
1106 
1107 	ifq_purge(&ifp->if_snd);
1108 	ifp->if_flags |= flag;
1109 	getmicrotime(&ifp->if_lastchange);
1110 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1111 		struct ifaddr *ifa = ifac->ifa;
1112 
1113 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1114 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1115 	}
1116 	rt_ifmsg(ifp);
1117 #ifdef INET6
1118 	in6_if_up(ifp);
1119 #endif
1120 }
1121 
1122 /*
1123  * Mark an interface down and notify protocols of the transition.  An
1124  * interface going down is also considered to be a synchronizing event.
1125  * We must ensure that all packet processing related to the interface
1126  * has completed before we return so e.g. the caller can free the ifnet
1127  * structure that the mbufs may be referencing.
1128  *
1129  * NOTE: must be called at splnet or eqivalent.
1130  */
1131 void
1132 if_down(struct ifnet *ifp)
1133 {
1134 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1135 	netmsg_service_sync();
1136 }
1137 
1138 /*
1139  * Mark an interface up and notify protocols of
1140  * the transition.
1141  * NOTE: must be called at splnet or eqivalent.
1142  */
1143 void
1144 if_up(struct ifnet *ifp)
1145 {
1146 	if_route(ifp, IFF_UP, AF_UNSPEC);
1147 }
1148 
1149 /*
1150  * Process a link state change.
1151  * NOTE: must be called at splsoftnet or equivalent.
1152  */
1153 void
1154 if_link_state_change(struct ifnet *ifp)
1155 {
1156 	int link_state = ifp->if_link_state;
1157 
1158 	rt_ifmsg(ifp);
1159 	devctl_notify("IFNET", ifp->if_xname,
1160 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1161 }
1162 
1163 /*
1164  * Handle interface watchdog timer routines.  Called
1165  * from softclock, we decrement timers (if set) and
1166  * call the appropriate interface routine on expiration.
1167  */
1168 static void
1169 if_slowtimo(void *arg)
1170 {
1171 	struct ifnet *ifp;
1172 
1173 	crit_enter();
1174 
1175 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1176 		if (ifp->if_timer == 0 || --ifp->if_timer)
1177 			continue;
1178 		if (ifp->if_watchdog) {
1179 			if (ifnet_tryserialize_all(ifp)) {
1180 				(*ifp->if_watchdog)(ifp);
1181 				ifnet_deserialize_all(ifp);
1182 			} else {
1183 				/* try again next timeout */
1184 				++ifp->if_timer;
1185 			}
1186 		}
1187 	}
1188 
1189 	crit_exit();
1190 
1191 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1192 }
1193 
1194 /*
1195  * Map interface name to
1196  * interface structure pointer.
1197  */
1198 struct ifnet *
1199 ifunit(const char *name)
1200 {
1201 	struct ifnet *ifp;
1202 
1203 	/*
1204 	 * Search all the interfaces for this name/number
1205 	 */
1206 
1207 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1208 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1209 			break;
1210 	}
1211 	return (ifp);
1212 }
1213 
1214 
1215 /*
1216  * Map interface name in a sockaddr_dl to
1217  * interface structure pointer.
1218  */
1219 struct ifnet *
1220 if_withname(struct sockaddr *sa)
1221 {
1222 	char ifname[IFNAMSIZ+1];
1223 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1224 
1225 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1226 	     (sdl->sdl_nlen > IFNAMSIZ) )
1227 		return NULL;
1228 
1229 	/*
1230 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1231 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1232 	 * and there might not be room to put the trailing null anyway, so we
1233 	 * make a local copy that we know we can null terminate safely.
1234 	 */
1235 
1236 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1237 	ifname[sdl->sdl_nlen] = '\0';
1238 	return ifunit(ifname);
1239 }
1240 
1241 
1242 /*
1243  * Interface ioctls.
1244  */
1245 int
1246 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1247 {
1248 	struct ifnet *ifp;
1249 	struct ifreq *ifr;
1250 	struct ifstat *ifs;
1251 	int error;
1252 	short oif_flags;
1253 	int new_flags;
1254 	size_t namelen, onamelen;
1255 	char new_name[IFNAMSIZ];
1256 	struct ifaddr *ifa;
1257 	struct sockaddr_dl *sdl;
1258 
1259 	switch (cmd) {
1260 
1261 	case SIOCGIFCONF:
1262 	case OSIOCGIFCONF:
1263 		return (ifconf(cmd, data, cred));
1264 	}
1265 	ifr = (struct ifreq *)data;
1266 
1267 	switch (cmd) {
1268 	case SIOCIFCREATE:
1269 	case SIOCIFCREATE2:
1270 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1271 			return (error);
1272 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1273 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1274 	case SIOCIFDESTROY:
1275 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1276 			return (error);
1277 		return (if_clone_destroy(ifr->ifr_name));
1278 
1279 	case SIOCIFGCLONERS:
1280 		return (if_clone_list((struct if_clonereq *)data));
1281 	}
1282 
1283 	ifp = ifunit(ifr->ifr_name);
1284 	if (ifp == 0)
1285 		return (ENXIO);
1286 	switch (cmd) {
1287 
1288 	case SIOCGIFINDEX:
1289 		ifr->ifr_index = ifp->if_index;
1290 		break;
1291 
1292 	case SIOCGIFFLAGS:
1293 		ifr->ifr_flags = ifp->if_flags;
1294 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1295 		break;
1296 
1297 	case SIOCGIFCAP:
1298 		ifr->ifr_reqcap = ifp->if_capabilities;
1299 		ifr->ifr_curcap = ifp->if_capenable;
1300 		break;
1301 
1302 	case SIOCGIFMETRIC:
1303 		ifr->ifr_metric = ifp->if_metric;
1304 		break;
1305 
1306 	case SIOCGIFMTU:
1307 		ifr->ifr_mtu = ifp->if_mtu;
1308 		break;
1309 
1310 	case SIOCGIFPHYS:
1311 		ifr->ifr_phys = ifp->if_physical;
1312 		break;
1313 
1314 	case SIOCGIFPOLLCPU:
1315 #ifdef DEVICE_POLLING
1316 		ifr->ifr_pollcpu = ifp->if_poll_cpuid;
1317 #else
1318 		ifr->ifr_pollcpu = -1;
1319 #endif
1320 		break;
1321 
1322 	case SIOCSIFPOLLCPU:
1323 #ifdef DEVICE_POLLING
1324 		if ((ifp->if_flags & IFF_POLLING) == 0)
1325 			ether_pollcpu_register(ifp, ifr->ifr_pollcpu);
1326 #endif
1327 		break;
1328 
1329 	case SIOCSIFFLAGS:
1330 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1331 		if (error)
1332 			return (error);
1333 		new_flags = (ifr->ifr_flags & 0xffff) |
1334 		    (ifr->ifr_flagshigh << 16);
1335 		if (ifp->if_flags & IFF_SMART) {
1336 			/* Smart drivers twiddle their own routes */
1337 		} else if (ifp->if_flags & IFF_UP &&
1338 		    (new_flags & IFF_UP) == 0) {
1339 			crit_enter();
1340 			if_down(ifp);
1341 			crit_exit();
1342 		} else if (new_flags & IFF_UP &&
1343 		    (ifp->if_flags & IFF_UP) == 0) {
1344 			crit_enter();
1345 			if_up(ifp);
1346 			crit_exit();
1347 		}
1348 
1349 #ifdef DEVICE_POLLING
1350 		if ((new_flags ^ ifp->if_flags) & IFF_POLLING) {
1351 			if (new_flags & IFF_POLLING) {
1352 				ether_poll_register(ifp);
1353 			} else {
1354 				ether_poll_deregister(ifp);
1355 			}
1356 		}
1357 #endif
1358 #ifdef IFPOLL_ENABLE
1359 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1360 			if (new_flags & IFF_NPOLLING)
1361 				ifpoll_register(ifp);
1362 			else
1363 				ifpoll_deregister(ifp);
1364 		}
1365 #endif
1366 
1367 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1368 			(new_flags &~ IFF_CANTCHANGE);
1369 		if (new_flags & IFF_PPROMISC) {
1370 			/* Permanently promiscuous mode requested */
1371 			ifp->if_flags |= IFF_PROMISC;
1372 		} else if (ifp->if_pcount == 0) {
1373 			ifp->if_flags &= ~IFF_PROMISC;
1374 		}
1375 		if (ifp->if_ioctl) {
1376 			ifnet_serialize_all(ifp);
1377 			ifp->if_ioctl(ifp, cmd, data, cred);
1378 			ifnet_deserialize_all(ifp);
1379 		}
1380 		getmicrotime(&ifp->if_lastchange);
1381 		break;
1382 
1383 	case SIOCSIFCAP:
1384 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1385 		if (error)
1386 			return (error);
1387 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
1388 			return (EINVAL);
1389 		ifnet_serialize_all(ifp);
1390 		ifp->if_ioctl(ifp, cmd, data, cred);
1391 		ifnet_deserialize_all(ifp);
1392 		break;
1393 
1394 	case SIOCSIFNAME:
1395 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1396 		if (error != 0)
1397 			return (error);
1398 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1399 		if (error != 0)
1400 			return (error);
1401 		if (new_name[0] == '\0')
1402 			return (EINVAL);
1403 		if (ifunit(new_name) != NULL)
1404 			return (EEXIST);
1405 
1406 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1407 
1408 		/* Announce the departure of the interface. */
1409 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1410 
1411 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1412 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1413 		/* XXX IFA_LOCK(ifa); */
1414 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1415 		namelen = strlen(new_name);
1416 		onamelen = sdl->sdl_nlen;
1417 		/*
1418 		 * Move the address if needed.  This is safe because we
1419 		 * allocate space for a name of length IFNAMSIZ when we
1420 		 * create this in if_attach().
1421 		 */
1422 		if (namelen != onamelen) {
1423 			bcopy(sdl->sdl_data + onamelen,
1424 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1425 		}
1426 		bcopy(new_name, sdl->sdl_data, namelen);
1427 		sdl->sdl_nlen = namelen;
1428 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1429 		bzero(sdl->sdl_data, onamelen);
1430 		while (namelen != 0)
1431 			sdl->sdl_data[--namelen] = 0xff;
1432 		/* XXX IFA_UNLOCK(ifa) */
1433 
1434 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1435 
1436 		/* Announce the return of the interface. */
1437 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1438 		break;
1439 
1440 	case SIOCSIFMETRIC:
1441 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1442 		if (error)
1443 			return (error);
1444 		ifp->if_metric = ifr->ifr_metric;
1445 		getmicrotime(&ifp->if_lastchange);
1446 		break;
1447 
1448 	case SIOCSIFPHYS:
1449 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1450 		if (error)
1451 			return error;
1452 		if (!ifp->if_ioctl)
1453 		        return EOPNOTSUPP;
1454 		ifnet_serialize_all(ifp);
1455 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1456 		ifnet_deserialize_all(ifp);
1457 		if (error == 0)
1458 			getmicrotime(&ifp->if_lastchange);
1459 		return (error);
1460 
1461 	case SIOCSIFMTU:
1462 	{
1463 		u_long oldmtu = ifp->if_mtu;
1464 
1465 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1466 		if (error)
1467 			return (error);
1468 		if (ifp->if_ioctl == NULL)
1469 			return (EOPNOTSUPP);
1470 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
1471 			return (EINVAL);
1472 		ifnet_serialize_all(ifp);
1473 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1474 		ifnet_deserialize_all(ifp);
1475 		if (error == 0) {
1476 			getmicrotime(&ifp->if_lastchange);
1477 			rt_ifmsg(ifp);
1478 		}
1479 		/*
1480 		 * If the link MTU changed, do network layer specific procedure.
1481 		 */
1482 		if (ifp->if_mtu != oldmtu) {
1483 #ifdef INET6
1484 			nd6_setmtu(ifp);
1485 #endif
1486 		}
1487 		return (error);
1488 	}
1489 
1490 	case SIOCADDMULTI:
1491 	case SIOCDELMULTI:
1492 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1493 		if (error)
1494 			return (error);
1495 
1496 		/* Don't allow group membership on non-multicast interfaces. */
1497 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
1498 			return EOPNOTSUPP;
1499 
1500 		/* Don't let users screw up protocols' entries. */
1501 		if (ifr->ifr_addr.sa_family != AF_LINK)
1502 			return EINVAL;
1503 
1504 		if (cmd == SIOCADDMULTI) {
1505 			struct ifmultiaddr *ifma;
1506 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1507 		} else {
1508 			error = if_delmulti(ifp, &ifr->ifr_addr);
1509 		}
1510 		if (error == 0)
1511 			getmicrotime(&ifp->if_lastchange);
1512 		return error;
1513 
1514 	case SIOCSIFPHYADDR:
1515 	case SIOCDIFPHYADDR:
1516 #ifdef INET6
1517 	case SIOCSIFPHYADDR_IN6:
1518 #endif
1519 	case SIOCSLIFPHYADDR:
1520         case SIOCSIFMEDIA:
1521 	case SIOCSIFGENERIC:
1522 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1523 		if (error)
1524 			return (error);
1525 		if (ifp->if_ioctl == 0)
1526 			return (EOPNOTSUPP);
1527 		ifnet_serialize_all(ifp);
1528 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1529 		ifnet_deserialize_all(ifp);
1530 		if (error == 0)
1531 			getmicrotime(&ifp->if_lastchange);
1532 		return error;
1533 
1534 	case SIOCGIFSTATUS:
1535 		ifs = (struct ifstat *)data;
1536 		ifs->ascii[0] = '\0';
1537 
1538 	case SIOCGIFPSRCADDR:
1539 	case SIOCGIFPDSTADDR:
1540 	case SIOCGLIFPHYADDR:
1541 	case SIOCGIFMEDIA:
1542 	case SIOCGIFGENERIC:
1543 		if (ifp->if_ioctl == NULL)
1544 			return (EOPNOTSUPP);
1545 		ifnet_serialize_all(ifp);
1546 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1547 		ifnet_deserialize_all(ifp);
1548 		return (error);
1549 
1550 	case SIOCSIFLLADDR:
1551 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1552 		if (error)
1553 			return (error);
1554 		error = if_setlladdr(ifp,
1555 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
1556 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1557 		return (error);
1558 
1559 	default:
1560 		oif_flags = ifp->if_flags;
1561 		if (so->so_proto == 0)
1562 			return (EOPNOTSUPP);
1563 #ifndef COMPAT_43
1564 		error = so_pru_control(so, cmd, data, ifp);
1565 #else
1566 	    {
1567 		int ocmd = cmd;
1568 
1569 		switch (cmd) {
1570 
1571 		case SIOCSIFDSTADDR:
1572 		case SIOCSIFADDR:
1573 		case SIOCSIFBRDADDR:
1574 		case SIOCSIFNETMASK:
1575 #if BYTE_ORDER != BIG_ENDIAN
1576 			if (ifr->ifr_addr.sa_family == 0 &&
1577 			    ifr->ifr_addr.sa_len < 16) {
1578 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1579 				ifr->ifr_addr.sa_len = 16;
1580 			}
1581 #else
1582 			if (ifr->ifr_addr.sa_len == 0)
1583 				ifr->ifr_addr.sa_len = 16;
1584 #endif
1585 			break;
1586 
1587 		case OSIOCGIFADDR:
1588 			cmd = SIOCGIFADDR;
1589 			break;
1590 
1591 		case OSIOCGIFDSTADDR:
1592 			cmd = SIOCGIFDSTADDR;
1593 			break;
1594 
1595 		case OSIOCGIFBRDADDR:
1596 			cmd = SIOCGIFBRDADDR;
1597 			break;
1598 
1599 		case OSIOCGIFNETMASK:
1600 			cmd = SIOCGIFNETMASK;
1601 		}
1602 		error =  so_pru_control(so, cmd, data, ifp);
1603 		switch (ocmd) {
1604 
1605 		case OSIOCGIFADDR:
1606 		case OSIOCGIFDSTADDR:
1607 		case OSIOCGIFBRDADDR:
1608 		case OSIOCGIFNETMASK:
1609 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1610 
1611 		}
1612 	    }
1613 #endif /* COMPAT_43 */
1614 
1615 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1616 #ifdef INET6
1617 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1618 			if (ifp->if_flags & IFF_UP) {
1619 				crit_enter();
1620 				in6_if_up(ifp);
1621 				crit_exit();
1622 			}
1623 #endif
1624 		}
1625 		return (error);
1626 
1627 	}
1628 	return (0);
1629 }
1630 
1631 /*
1632  * Set/clear promiscuous mode on interface ifp based on the truth value
1633  * of pswitch.  The calls are reference counted so that only the first
1634  * "on" request actually has an effect, as does the final "off" request.
1635  * Results are undefined if the "off" and "on" requests are not matched.
1636  */
1637 int
1638 ifpromisc(struct ifnet *ifp, int pswitch)
1639 {
1640 	struct ifreq ifr;
1641 	int error;
1642 	int oldflags;
1643 
1644 	oldflags = ifp->if_flags;
1645 	if (ifp->if_flags & IFF_PPROMISC) {
1646 		/* Do nothing if device is in permanently promiscuous mode */
1647 		ifp->if_pcount += pswitch ? 1 : -1;
1648 		return (0);
1649 	}
1650 	if (pswitch) {
1651 		/*
1652 		 * If the device is not configured up, we cannot put it in
1653 		 * promiscuous mode.
1654 		 */
1655 		if ((ifp->if_flags & IFF_UP) == 0)
1656 			return (ENETDOWN);
1657 		if (ifp->if_pcount++ != 0)
1658 			return (0);
1659 		ifp->if_flags |= IFF_PROMISC;
1660 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1661 		    ifp->if_xname);
1662 	} else {
1663 		if (--ifp->if_pcount > 0)
1664 			return (0);
1665 		ifp->if_flags &= ~IFF_PROMISC;
1666 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1667 		    ifp->if_xname);
1668 	}
1669 	ifr.ifr_flags = ifp->if_flags;
1670 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1671 	ifnet_serialize_all(ifp);
1672 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1673 	ifnet_deserialize_all(ifp);
1674 	if (error == 0)
1675 		rt_ifmsg(ifp);
1676 	else
1677 		ifp->if_flags = oldflags;
1678 	return error;
1679 }
1680 
1681 /*
1682  * Return interface configuration
1683  * of system.  List may be used
1684  * in later ioctl's (above) to get
1685  * other information.
1686  */
1687 static int
1688 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1689 {
1690 	struct ifconf *ifc = (struct ifconf *)data;
1691 	struct ifnet *ifp;
1692 	struct sockaddr *sa;
1693 	struct ifreq ifr, *ifrp;
1694 	int space = ifc->ifc_len, error = 0;
1695 
1696 	ifrp = ifc->ifc_req;
1697 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1698 		struct ifaddr_container *ifac;
1699 		int addrs;
1700 
1701 		if (space <= sizeof ifr)
1702 			break;
1703 
1704 		/*
1705 		 * Zero the stack declared structure first to prevent
1706 		 * memory disclosure.
1707 		 */
1708 		bzero(&ifr, sizeof(ifr));
1709 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
1710 		    >= sizeof(ifr.ifr_name)) {
1711 			error = ENAMETOOLONG;
1712 			break;
1713 		}
1714 
1715 		addrs = 0;
1716 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1717 			struct ifaddr *ifa = ifac->ifa;
1718 
1719 			if (space <= sizeof ifr)
1720 				break;
1721 			sa = ifa->ifa_addr;
1722 			if (cred->cr_prison &&
1723 			    prison_if(cred, sa))
1724 				continue;
1725 			addrs++;
1726 #ifdef COMPAT_43
1727 			if (cmd == OSIOCGIFCONF) {
1728 				struct osockaddr *osa =
1729 					 (struct osockaddr *)&ifr.ifr_addr;
1730 				ifr.ifr_addr = *sa;
1731 				osa->sa_family = sa->sa_family;
1732 				error = copyout(&ifr, ifrp, sizeof ifr);
1733 				ifrp++;
1734 			} else
1735 #endif
1736 			if (sa->sa_len <= sizeof(*sa)) {
1737 				ifr.ifr_addr = *sa;
1738 				error = copyout(&ifr, ifrp, sizeof ifr);
1739 				ifrp++;
1740 			} else {
1741 				if (space < (sizeof ifr) + sa->sa_len -
1742 					    sizeof(*sa))
1743 					break;
1744 				space -= sa->sa_len - sizeof(*sa);
1745 				error = copyout(&ifr, ifrp,
1746 						sizeof ifr.ifr_name);
1747 				if (error == 0)
1748 					error = copyout(sa, &ifrp->ifr_addr,
1749 							sa->sa_len);
1750 				ifrp = (struct ifreq *)
1751 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
1752 			}
1753 			if (error)
1754 				break;
1755 			space -= sizeof ifr;
1756 		}
1757 		if (error)
1758 			break;
1759 		if (!addrs) {
1760 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
1761 			error = copyout(&ifr, ifrp, sizeof ifr);
1762 			if (error)
1763 				break;
1764 			space -= sizeof ifr;
1765 			ifrp++;
1766 		}
1767 	}
1768 	ifc->ifc_len -= space;
1769 	return (error);
1770 }
1771 
1772 /*
1773  * Just like if_promisc(), but for all-multicast-reception mode.
1774  */
1775 int
1776 if_allmulti(struct ifnet *ifp, int onswitch)
1777 {
1778 	int error = 0;
1779 	struct ifreq ifr;
1780 
1781 	crit_enter();
1782 
1783 	if (onswitch) {
1784 		if (ifp->if_amcount++ == 0) {
1785 			ifp->if_flags |= IFF_ALLMULTI;
1786 			ifr.ifr_flags = ifp->if_flags;
1787 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1788 			ifnet_serialize_all(ifp);
1789 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1790 					      NULL);
1791 			ifnet_deserialize_all(ifp);
1792 		}
1793 	} else {
1794 		if (ifp->if_amcount > 1) {
1795 			ifp->if_amcount--;
1796 		} else {
1797 			ifp->if_amcount = 0;
1798 			ifp->if_flags &= ~IFF_ALLMULTI;
1799 			ifr.ifr_flags = ifp->if_flags;
1800 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1801 			ifnet_serialize_all(ifp);
1802 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1803 					      NULL);
1804 			ifnet_deserialize_all(ifp);
1805 		}
1806 	}
1807 
1808 	crit_exit();
1809 
1810 	if (error == 0)
1811 		rt_ifmsg(ifp);
1812 	return error;
1813 }
1814 
1815 /*
1816  * Add a multicast listenership to the interface in question.
1817  * The link layer provides a routine which converts
1818  */
1819 int
1820 if_addmulti(
1821 	struct ifnet *ifp,	/* interface to manipulate */
1822 	struct sockaddr *sa,	/* address to add */
1823 	struct ifmultiaddr **retifma)
1824 {
1825 	struct sockaddr *llsa, *dupsa;
1826 	int error;
1827 	struct ifmultiaddr *ifma;
1828 
1829 	/*
1830 	 * If the matching multicast address already exists
1831 	 * then don't add a new one, just add a reference
1832 	 */
1833 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1834 		if (sa_equal(sa, ifma->ifma_addr)) {
1835 			ifma->ifma_refcount++;
1836 			if (retifma)
1837 				*retifma = ifma;
1838 			return 0;
1839 		}
1840 	}
1841 
1842 	/*
1843 	 * Give the link layer a chance to accept/reject it, and also
1844 	 * find out which AF_LINK address this maps to, if it isn't one
1845 	 * already.
1846 	 */
1847 	if (ifp->if_resolvemulti) {
1848 		ifnet_serialize_all(ifp);
1849 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
1850 		ifnet_deserialize_all(ifp);
1851 		if (error)
1852 			return error;
1853 	} else {
1854 		llsa = 0;
1855 	}
1856 
1857 	MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK);
1858 	MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK);
1859 	bcopy(sa, dupsa, sa->sa_len);
1860 
1861 	ifma->ifma_addr = dupsa;
1862 	ifma->ifma_lladdr = llsa;
1863 	ifma->ifma_ifp = ifp;
1864 	ifma->ifma_refcount = 1;
1865 	ifma->ifma_protospec = 0;
1866 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
1867 
1868 	/*
1869 	 * Some network interfaces can scan the address list at
1870 	 * interrupt time; lock them out.
1871 	 */
1872 	crit_enter();
1873 	LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1874 	crit_exit();
1875 	if (retifma)
1876 		*retifma = ifma;
1877 
1878 	if (llsa != 0) {
1879 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1880 			if (sa_equal(ifma->ifma_addr, llsa))
1881 				break;
1882 		}
1883 		if (ifma) {
1884 			ifma->ifma_refcount++;
1885 		} else {
1886 			MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma,
1887 			       M_IFMADDR, M_WAITOK);
1888 			MALLOC(dupsa, struct sockaddr *, llsa->sa_len,
1889 			       M_IFMADDR, M_WAITOK);
1890 			bcopy(llsa, dupsa, llsa->sa_len);
1891 			ifma->ifma_addr = dupsa;
1892 			ifma->ifma_ifp = ifp;
1893 			ifma->ifma_refcount = 1;
1894 			crit_enter();
1895 			LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1896 			crit_exit();
1897 		}
1898 	}
1899 	/*
1900 	 * We are certain we have added something, so call down to the
1901 	 * interface to let them know about it.
1902 	 */
1903 	crit_enter();
1904 	ifnet_serialize_all(ifp);
1905 	if (ifp->if_ioctl)
1906 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
1907 	ifnet_deserialize_all(ifp);
1908 	crit_exit();
1909 
1910 	return 0;
1911 }
1912 
1913 /*
1914  * Remove a reference to a multicast address on this interface.  Yell
1915  * if the request does not match an existing membership.
1916  */
1917 int
1918 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
1919 {
1920 	struct ifmultiaddr *ifma;
1921 
1922 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1923 		if (sa_equal(sa, ifma->ifma_addr))
1924 			break;
1925 	if (ifma == 0)
1926 		return ENOENT;
1927 
1928 	if (ifma->ifma_refcount > 1) {
1929 		ifma->ifma_refcount--;
1930 		return 0;
1931 	}
1932 
1933 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
1934 	sa = ifma->ifma_lladdr;
1935 	crit_enter();
1936 	LIST_REMOVE(ifma, ifma_link);
1937 	/*
1938 	 * Make sure the interface driver is notified
1939 	 * in the case of a link layer mcast group being left.
1940 	 */
1941 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0) {
1942 		ifnet_serialize_all(ifp);
1943 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
1944 		ifnet_deserialize_all(ifp);
1945 	}
1946 	crit_exit();
1947 	kfree(ifma->ifma_addr, M_IFMADDR);
1948 	kfree(ifma, M_IFMADDR);
1949 	if (sa == 0)
1950 		return 0;
1951 
1952 	/*
1953 	 * Now look for the link-layer address which corresponds to
1954 	 * this network address.  It had been squirreled away in
1955 	 * ifma->ifma_lladdr for this purpose (so we don't have
1956 	 * to call ifp->if_resolvemulti() again), and we saved that
1957 	 * value in sa above.  If some nasty deleted the
1958 	 * link-layer address out from underneath us, we can deal because
1959 	 * the address we stored was is not the same as the one which was
1960 	 * in the record for the link-layer address.  (So we don't complain
1961 	 * in that case.)
1962 	 */
1963 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1964 		if (sa_equal(sa, ifma->ifma_addr))
1965 			break;
1966 	if (ifma == 0)
1967 		return 0;
1968 
1969 	if (ifma->ifma_refcount > 1) {
1970 		ifma->ifma_refcount--;
1971 		return 0;
1972 	}
1973 
1974 	crit_enter();
1975 	ifnet_serialize_all(ifp);
1976 	LIST_REMOVE(ifma, ifma_link);
1977 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
1978 	ifnet_deserialize_all(ifp);
1979 	crit_exit();
1980 	kfree(ifma->ifma_addr, M_IFMADDR);
1981 	kfree(sa, M_IFMADDR);
1982 	kfree(ifma, M_IFMADDR);
1983 
1984 	return 0;
1985 }
1986 
1987 /*
1988  * Delete all multicast group membership for an interface.
1989  * Should be used to quickly flush all multicast filters.
1990  */
1991 void
1992 if_delallmulti(struct ifnet *ifp)
1993 {
1994 	struct ifmultiaddr *ifma;
1995 	struct ifmultiaddr *next;
1996 
1997 	LIST_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
1998 		if_delmulti(ifp, ifma->ifma_addr);
1999 }
2000 
2001 
2002 /*
2003  * Set the link layer address on an interface.
2004  *
2005  * At this time we only support certain types of interfaces,
2006  * and we don't allow the length of the address to change.
2007  */
2008 int
2009 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2010 {
2011 	struct sockaddr_dl *sdl;
2012 	struct ifreq ifr;
2013 
2014 	sdl = IF_LLSOCKADDR(ifp);
2015 	if (sdl == NULL)
2016 		return (EINVAL);
2017 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2018 		return (EINVAL);
2019 	switch (ifp->if_type) {
2020 	case IFT_ETHER:			/* these types use struct arpcom */
2021 	case IFT_XETHER:
2022 	case IFT_L2VLAN:
2023 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2024 		bcopy(lladdr, LLADDR(sdl), len);
2025 		break;
2026 	default:
2027 		return (ENODEV);
2028 	}
2029 	/*
2030 	 * If the interface is already up, we need
2031 	 * to re-init it in order to reprogram its
2032 	 * address filter.
2033 	 */
2034 	ifnet_serialize_all(ifp);
2035 	if ((ifp->if_flags & IFF_UP) != 0) {
2036 		struct ifaddr_container *ifac;
2037 
2038 		ifp->if_flags &= ~IFF_UP;
2039 		ifr.ifr_flags = ifp->if_flags;
2040 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2041 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2042 			      NULL);
2043 		ifp->if_flags |= IFF_UP;
2044 		ifr.ifr_flags = ifp->if_flags;
2045 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2046 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2047 				 NULL);
2048 #ifdef INET
2049 		/*
2050 		 * Also send gratuitous ARPs to notify other nodes about
2051 		 * the address change.
2052 		 */
2053 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2054 			struct ifaddr *ifa = ifac->ifa;
2055 
2056 			if (ifa->ifa_addr != NULL &&
2057 			    ifa->ifa_addr->sa_family == AF_INET)
2058 				arp_ifinit(ifp, ifa);
2059 		}
2060 #endif
2061 	}
2062 	ifnet_deserialize_all(ifp);
2063 	return (0);
2064 }
2065 
2066 struct ifmultiaddr *
2067 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2068 {
2069 	struct ifmultiaddr *ifma;
2070 
2071 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2072 		if (sa_equal(ifma->ifma_addr, sa))
2073 			break;
2074 
2075 	return ifma;
2076 }
2077 
2078 /*
2079  * This function locates the first real ethernet MAC from a network
2080  * card and loads it into node, returning 0 on success or ENOENT if
2081  * no suitable interfaces were found.  It is used by the uuid code to
2082  * generate a unique 6-byte number.
2083  */
2084 int
2085 if_getanyethermac(uint16_t *node, int minlen)
2086 {
2087 	struct ifnet *ifp;
2088 	struct sockaddr_dl *sdl;
2089 
2090 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2091 		if (ifp->if_type != IFT_ETHER)
2092 			continue;
2093 		sdl = IF_LLSOCKADDR(ifp);
2094 		if (sdl->sdl_alen < minlen)
2095 			continue;
2096 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2097 		      minlen);
2098 		return(0);
2099 	}
2100 	return (ENOENT);
2101 }
2102 
2103 /*
2104  * The name argument must be a pointer to storage which will last as
2105  * long as the interface does.  For physical devices, the result of
2106  * device_get_name(dev) is a good choice and for pseudo-devices a
2107  * static string works well.
2108  */
2109 void
2110 if_initname(struct ifnet *ifp, const char *name, int unit)
2111 {
2112 	ifp->if_dname = name;
2113 	ifp->if_dunit = unit;
2114 	if (unit != IF_DUNIT_NONE)
2115 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2116 	else
2117 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2118 }
2119 
2120 int
2121 if_printf(struct ifnet *ifp, const char *fmt, ...)
2122 {
2123 	__va_list ap;
2124 	int retval;
2125 
2126 	retval = kprintf("%s: ", ifp->if_xname);
2127 	__va_start(ap, fmt);
2128 	retval += kvprintf(fmt, ap);
2129 	__va_end(ap);
2130 	return (retval);
2131 }
2132 
2133 struct ifnet *
2134 if_alloc(uint8_t type)
2135 {
2136         struct ifnet *ifp;
2137 
2138 	ifp = kmalloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO);
2139 
2140 	ifp->if_type = type;
2141 
2142 	if (if_com_alloc[type] != NULL) {
2143 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2144 		if (ifp->if_l2com == NULL) {
2145 			kfree(ifp, M_IFNET);
2146 			return (NULL);
2147 		}
2148 	}
2149 	return (ifp);
2150 }
2151 
2152 void
2153 if_free(struct ifnet *ifp)
2154 {
2155 	kfree(ifp, M_IFNET);
2156 }
2157 
2158 void
2159 ifq_set_classic(struct ifaltq *ifq)
2160 {
2161 	ifq->altq_enqueue = ifq_classic_enqueue;
2162 	ifq->altq_dequeue = ifq_classic_dequeue;
2163 	ifq->altq_request = ifq_classic_request;
2164 }
2165 
2166 int
2167 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m,
2168 		    struct altq_pktattr *pa __unused)
2169 {
2170 	logifq(enqueue, ifq);
2171 	if (IF_QFULL(ifq)) {
2172 		m_freem(m);
2173 		return(ENOBUFS);
2174 	} else {
2175 		IF_ENQUEUE(ifq, m);
2176 		return(0);
2177 	}
2178 }
2179 
2180 struct mbuf *
2181 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
2182 {
2183 	struct mbuf *m;
2184 
2185 	switch (op) {
2186 	case ALTDQ_POLL:
2187 		IF_POLL(ifq, m);
2188 		break;
2189 	case ALTDQ_REMOVE:
2190 		logifq(dequeue, ifq);
2191 		IF_DEQUEUE(ifq, m);
2192 		break;
2193 	default:
2194 		panic("unsupported ALTQ dequeue op: %d", op);
2195 	}
2196 	KKASSERT(mpolled == NULL || mpolled == m);
2197 	return(m);
2198 }
2199 
2200 int
2201 ifq_classic_request(struct ifaltq *ifq, int req, void *arg)
2202 {
2203 	switch (req) {
2204 	case ALTRQ_PURGE:
2205 		IF_DRAIN(ifq);
2206 		break;
2207 	default:
2208 		panic("unsupported ALTQ request: %d", req);
2209 	}
2210 	return(0);
2211 }
2212 
2213 int
2214 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2215 {
2216 	struct ifaltq *ifq = &ifp->if_snd;
2217 	int running = 0, error, start = 0;
2218 
2219 	ASSERT_IFNET_NOT_SERIALIZED_TX(ifp);
2220 
2221 	ALTQ_LOCK(ifq);
2222 	error = ifq_enqueue_locked(ifq, m, pa);
2223 	if (error) {
2224 		ALTQ_UNLOCK(ifq);
2225 		return error;
2226 	}
2227 	if (!ifq->altq_started) {
2228 		/*
2229 		 * Hold the interlock of ifnet.if_start
2230 		 */
2231 		ifq->altq_started = 1;
2232 		start = 1;
2233 	}
2234 	ALTQ_UNLOCK(ifq);
2235 
2236 	ifp->if_obytes += m->m_pkthdr.len;
2237 	if (m->m_flags & M_MCAST)
2238 		ifp->if_omcasts++;
2239 
2240 	if (!start) {
2241 		logifstart(avoid, ifp);
2242 		return 0;
2243 	}
2244 
2245 	if (ifq_dispatch_schedonly) {
2246 		/*
2247 		 * Always schedule ifnet.if_start on ifnet's CPU,
2248 		 * short circuit the rest of this function.
2249 		 */
2250 		logifstart(sched, ifp);
2251 		if_start_schedule(ifp);
2252 		return 0;
2253 	}
2254 
2255 	/*
2256 	 * Try to do direct ifnet.if_start first, if there is
2257 	 * contention on ifnet's serializer, ifnet.if_start will
2258 	 * be scheduled on ifnet's CPU.
2259 	 */
2260 	if (!ifnet_tryserialize_tx(ifp)) {
2261 		/*
2262 		 * ifnet serializer contention happened,
2263 		 * ifnet.if_start is scheduled on ifnet's
2264 		 * CPU, and we keep going.
2265 		 */
2266 		logifstart(contend_sched, ifp);
2267 		if_start_schedule(ifp);
2268 		return 0;
2269 	}
2270 
2271 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2272 		logifstart(run, ifp);
2273 		ifp->if_start(ifp);
2274 		if ((ifp->if_flags &
2275 		     (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
2276 			running = 1;
2277 	}
2278 
2279 	ifnet_deserialize_tx(ifp);
2280 
2281 	if (ifq_dispatch_schednochk || if_start_need_schedule(ifq, running)) {
2282 		/*
2283 		 * More data need to be transmitted, ifnet.if_start is
2284 		 * scheduled on ifnet's CPU, and we keep going.
2285 		 * NOTE: ifnet.if_start interlock is not released.
2286 		 */
2287 		logifstart(sched, ifp);
2288 		if_start_schedule(ifp);
2289 	}
2290 	return 0;
2291 }
2292 
2293 void *
2294 ifa_create(int size, int flags)
2295 {
2296 	struct ifaddr *ifa;
2297 	int i;
2298 
2299 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small\n"));
2300 
2301 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2302 	if (ifa == NULL)
2303 		return NULL;
2304 
2305 	ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container),
2306 				      M_IFADDR, M_WAITOK | M_ZERO);
2307 	ifa->ifa_ncnt = ncpus;
2308 	for (i = 0; i < ncpus; ++i) {
2309 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2310 
2311 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2312 		ifac->ifa = ifa;
2313 		ifac->ifa_refcnt = 1;
2314 	}
2315 #ifdef IFADDR_DEBUG
2316 	kprintf("alloc ifa %p %d\n", ifa, size);
2317 #endif
2318 	return ifa;
2319 }
2320 
2321 void
2322 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2323 {
2324 	struct ifaddr *ifa = ifac->ifa;
2325 
2326 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2327 	KKASSERT(ifac->ifa_refcnt == 0);
2328 	KASSERT(ifac->ifa_listmask == 0,
2329 		("ifa is still on %#x lists\n", ifac->ifa_listmask));
2330 
2331 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2332 
2333 #ifdef IFADDR_DEBUG_VERBOSE
2334 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2335 #endif
2336 
2337 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2338 		("invalid # of ifac, %d\n", ifa->ifa_ncnt));
2339 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2340 #ifdef IFADDR_DEBUG
2341 		kprintf("free ifa %p\n", ifa);
2342 #endif
2343 		kfree(ifa->ifa_containers, M_IFADDR);
2344 		kfree(ifa, M_IFADDR);
2345 	}
2346 }
2347 
2348 static void
2349 ifa_iflink_dispatch(struct netmsg *nmsg)
2350 {
2351 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2352 	struct ifaddr *ifa = msg->ifa;
2353 	struct ifnet *ifp = msg->ifp;
2354 	int cpu = mycpuid;
2355 	struct ifaddr_container *ifac;
2356 
2357 	crit_enter();
2358 
2359 	ifac = &ifa->ifa_containers[cpu];
2360 	ASSERT_IFAC_VALID(ifac);
2361 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2362 		("ifaddr is on if_addrheads\n"));
2363 
2364 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2365 	if (msg->tail)
2366 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2367 	else
2368 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2369 
2370 	crit_exit();
2371 
2372 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2373 }
2374 
2375 void
2376 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2377 {
2378 	struct netmsg_ifaddr msg;
2379 
2380 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2381 		    0, ifa_iflink_dispatch);
2382 	msg.ifa = ifa;
2383 	msg.ifp = ifp;
2384 	msg.tail = tail;
2385 
2386 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2387 }
2388 
2389 static void
2390 ifa_ifunlink_dispatch(struct netmsg *nmsg)
2391 {
2392 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2393 	struct ifaddr *ifa = msg->ifa;
2394 	struct ifnet *ifp = msg->ifp;
2395 	int cpu = mycpuid;
2396 	struct ifaddr_container *ifac;
2397 
2398 	crit_enter();
2399 
2400 	ifac = &ifa->ifa_containers[cpu];
2401 	ASSERT_IFAC_VALID(ifac);
2402 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2403 		("ifaddr is not on if_addrhead\n"));
2404 
2405 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2406 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2407 
2408 	crit_exit();
2409 
2410 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2411 }
2412 
2413 void
2414 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2415 {
2416 	struct netmsg_ifaddr msg;
2417 
2418 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2419 		    0, ifa_ifunlink_dispatch);
2420 	msg.ifa = ifa;
2421 	msg.ifp = ifp;
2422 
2423 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2424 }
2425 
2426 static void
2427 ifa_destroy_dispatch(struct netmsg *nmsg)
2428 {
2429 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2430 
2431 	IFAFREE(msg->ifa);
2432 	ifa_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2433 }
2434 
2435 void
2436 ifa_destroy(struct ifaddr *ifa)
2437 {
2438 	struct netmsg_ifaddr msg;
2439 
2440 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2441 		    0, ifa_destroy_dispatch);
2442 	msg.ifa = ifa;
2443 
2444 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2445 }
2446 
2447 struct lwkt_port *
2448 ifnet_portfn(int cpu)
2449 {
2450 	return &ifnet_threads[cpu].td_msgport;
2451 }
2452 
2453 void
2454 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2455 {
2456 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2457 
2458 	if (next_cpu < ncpus)
2459 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2460 	else
2461 		lwkt_replymsg(lmsg, 0);
2462 }
2463 
2464 int
2465 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2466 {
2467 	KKASSERT(cpu < ncpus);
2468 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2469 }
2470 
2471 void
2472 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2473 {
2474 	KKASSERT(cpu < ncpus);
2475 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2476 }
2477 
2478 static void
2479 ifnetinit(void *dummy __unused)
2480 {
2481 	int i;
2482 
2483 	for (i = 0; i < ncpus; ++i) {
2484 		struct thread *thr = &ifnet_threads[i];
2485 
2486 		lwkt_create(netmsg_service_loop, &ifnet_mpsafe_thread, NULL,
2487 			    thr, TDF_NETWORK | TDF_MPSAFE, i, "ifnet %d", i);
2488 		netmsg_service_port_init(&thr->td_msgport);
2489 	}
2490 }
2491 
2492 struct ifnet *
2493 ifnet_byindex(unsigned short idx)
2494 {
2495 	if (idx > if_index)
2496 		return NULL;
2497 	return ifindex2ifnet[idx];
2498 }
2499 
2500 struct ifaddr *
2501 ifaddr_byindex(unsigned short idx)
2502 {
2503 	struct ifnet *ifp;
2504 
2505 	ifp = ifnet_byindex(idx);
2506 	if (!ifp)
2507 		return NULL;
2508 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2509 }
2510 
2511 void
2512 if_register_com_alloc(u_char type,
2513     if_com_alloc_t *a, if_com_free_t *f)
2514 {
2515 
2516         KASSERT(if_com_alloc[type] == NULL,
2517             ("if_register_com_alloc: %d already registered", type));
2518         KASSERT(if_com_free[type] == NULL,
2519             ("if_register_com_alloc: %d free already registered", type));
2520 
2521         if_com_alloc[type] = a;
2522         if_com_free[type] = f;
2523 }
2524 
2525 void
2526 if_deregister_com_alloc(u_char type)
2527 {
2528 
2529         KASSERT(if_com_alloc[type] != NULL,
2530             ("if_deregister_com_alloc: %d not registered", type));
2531         KASSERT(if_com_free[type] != NULL,
2532             ("if_deregister_com_alloc: %d free not registered", type));
2533         if_com_alloc[type] = NULL;
2534         if_com_free[type] = NULL;
2535 }
2536