1 /* 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)if.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $ 35 */ 36 37 #include "opt_compat.h" 38 #include "opt_inet6.h" 39 #include "opt_inet.h" 40 #include "opt_polling.h" 41 #include "opt_ifpoll.h" 42 43 #include <sys/param.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/systm.h> 47 #include <sys/proc.h> 48 #include <sys/priv.h> 49 #include <sys/protosw.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/socketops.h> 53 #include <sys/protosw.h> 54 #include <sys/kernel.h> 55 #include <sys/ktr.h> 56 #include <sys/mutex.h> 57 #include <sys/sockio.h> 58 #include <sys/syslog.h> 59 #include <sys/sysctl.h> 60 #include <sys/domain.h> 61 #include <sys/thread.h> 62 #include <sys/serialize.h> 63 #include <sys/bus.h> 64 65 #include <sys/thread2.h> 66 #include <sys/msgport2.h> 67 #include <sys/mutex2.h> 68 69 #include <net/if.h> 70 #include <net/if_arp.h> 71 #include <net/if_dl.h> 72 #include <net/if_types.h> 73 #include <net/if_var.h> 74 #include <net/ifq_var.h> 75 #include <net/radix.h> 76 #include <net/route.h> 77 #include <net/if_clone.h> 78 #include <net/netisr.h> 79 #include <net/netmsg2.h> 80 81 #include <machine/atomic.h> 82 #include <machine/stdarg.h> 83 #include <machine/smp.h> 84 85 #if defined(INET) || defined(INET6) 86 /*XXX*/ 87 #include <netinet/in.h> 88 #include <netinet/in_var.h> 89 #include <netinet/if_ether.h> 90 #ifdef INET6 91 #include <netinet6/in6_var.h> 92 #include <netinet6/in6_ifattach.h> 93 #endif 94 #endif 95 96 #if defined(COMPAT_43) 97 #include <emulation/43bsd/43bsd_socket.h> 98 #endif /* COMPAT_43 */ 99 100 struct netmsg_ifaddr { 101 struct netmsg_base base; 102 struct ifaddr *ifa; 103 struct ifnet *ifp; 104 int tail; 105 }; 106 107 /* 108 * System initialization 109 */ 110 static void if_attachdomain(void *); 111 static void if_attachdomain1(struct ifnet *); 112 static int ifconf(u_long, caddr_t, struct ucred *); 113 static void ifinit(void *); 114 static void ifnetinit(void *); 115 static void if_slowtimo(void *); 116 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 117 static int if_rtdel(struct radix_node *, void *); 118 119 #ifdef INET6 120 /* 121 * XXX: declare here to avoid to include many inet6 related files.. 122 * should be more generalized? 123 */ 124 extern void nd6_setmtu(struct ifnet *); 125 #endif 126 127 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 128 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 129 130 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL) 131 /* Must be after netisr_init */ 132 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL) 133 134 static if_com_alloc_t *if_com_alloc[256]; 135 static if_com_free_t *if_com_free[256]; 136 137 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 138 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 139 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure"); 140 141 int ifqmaxlen = IFQ_MAXLEN; 142 struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet); 143 144 struct callout if_slowtimo_timer; 145 146 int if_index = 0; 147 struct ifnet **ifindex2ifnet = NULL; 148 static struct thread ifnet_threads[MAXCPU]; 149 150 #define IFQ_KTR_STRING "ifq=%p" 151 #define IFQ_KTR_ARGS struct ifaltq *ifq 152 #ifndef KTR_IFQ 153 #define KTR_IFQ KTR_ALL 154 #endif 155 KTR_INFO_MASTER(ifq); 156 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS); 157 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS); 158 #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg) 159 160 #define IF_START_KTR_STRING "ifp=%p" 161 #define IF_START_KTR_ARGS struct ifnet *ifp 162 #ifndef KTR_IF_START 163 #define KTR_IF_START KTR_ALL 164 #endif 165 KTR_INFO_MASTER(if_start); 166 KTR_INFO(KTR_IF_START, if_start, run, 0, 167 IF_START_KTR_STRING, IF_START_KTR_ARGS); 168 KTR_INFO(KTR_IF_START, if_start, sched, 1, 169 IF_START_KTR_STRING, IF_START_KTR_ARGS); 170 KTR_INFO(KTR_IF_START, if_start, avoid, 2, 171 IF_START_KTR_STRING, IF_START_KTR_ARGS); 172 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3, 173 IF_START_KTR_STRING, IF_START_KTR_ARGS); 174 #ifdef SMP 175 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4, 176 IF_START_KTR_STRING, IF_START_KTR_ARGS); 177 #endif 178 #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg) 179 180 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head); 181 182 /* 183 * Network interface utility routines. 184 * 185 * Routines with ifa_ifwith* names take sockaddr *'s as 186 * parameters. 187 */ 188 /* ARGSUSED*/ 189 void 190 ifinit(void *dummy) 191 { 192 struct ifnet *ifp; 193 194 callout_init(&if_slowtimo_timer); 195 196 crit_enter(); 197 TAILQ_FOREACH(ifp, &ifnet, if_link) { 198 if (ifp->if_snd.ifq_maxlen == 0) { 199 if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n"); 200 ifp->if_snd.ifq_maxlen = ifqmaxlen; 201 } 202 } 203 crit_exit(); 204 205 if_slowtimo(0); 206 } 207 208 static int 209 if_start_cpuid(struct ifnet *ifp) 210 { 211 return ifp->if_cpuid; 212 } 213 214 #ifdef DEVICE_POLLING 215 static int 216 if_start_cpuid_poll(struct ifnet *ifp) 217 { 218 int poll_cpuid = ifp->if_poll_cpuid; 219 220 if (poll_cpuid >= 0) 221 return poll_cpuid; 222 else 223 return ifp->if_cpuid; 224 } 225 #endif 226 227 #ifdef IFPOLL_ENABLE 228 static int 229 if_start_cpuid_npoll(struct ifnet *ifp) 230 { 231 int poll_cpuid = ifp->if_npoll_cpuid; 232 233 if (poll_cpuid >= 0) 234 return poll_cpuid; 235 else 236 return ifp->if_cpuid; 237 } 238 #endif 239 240 static void 241 if_start_ipifunc(void *arg) 242 { 243 struct ifnet *ifp = arg; 244 struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].lmsg; 245 246 crit_enter(); 247 if (lmsg->ms_flags & MSGF_DONE) 248 lwkt_sendmsg(netisr_portfn(mycpuid), lmsg); 249 crit_exit(); 250 } 251 252 /* 253 * Schedule ifnet.if_start on ifnet's CPU 254 */ 255 static void 256 if_start_schedule(struct ifnet *ifp) 257 { 258 #ifdef SMP 259 int cpu; 260 261 cpu = ifp->if_start_cpuid(ifp); 262 if (cpu != mycpuid) 263 lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp); 264 else 265 #endif 266 if_start_ipifunc(ifp); 267 } 268 269 /* 270 * NOTE: 271 * This function will release ifnet.if_start interlock, 272 * if ifnet.if_start does not need to be scheduled 273 */ 274 static __inline int 275 if_start_need_schedule(struct ifaltq *ifq, int running) 276 { 277 if (!running || ifq_is_empty(ifq) 278 #ifdef ALTQ 279 || ifq->altq_tbr != NULL 280 #endif 281 ) { 282 ALTQ_LOCK(ifq); 283 /* 284 * ifnet.if_start interlock is released, if: 285 * 1) Hardware can not take any packets, due to 286 * o interface is marked down 287 * o hardware queue is full (IFF_OACTIVE) 288 * Under the second situation, hardware interrupt 289 * or polling(4) will call/schedule ifnet.if_start 290 * when hardware queue is ready 291 * 2) There is not packet in the ifnet.if_snd. 292 * Further ifq_dispatch or ifq_handoff will call/ 293 * schedule ifnet.if_start 294 * 3) TBR is used and it does not allow further 295 * dequeueing. 296 * TBR callout will call ifnet.if_start 297 */ 298 if (!running || !ifq_data_ready(ifq)) { 299 ifq->altq_started = 0; 300 ALTQ_UNLOCK(ifq); 301 return 0; 302 } 303 ALTQ_UNLOCK(ifq); 304 } 305 return 1; 306 } 307 308 static void 309 if_start_dispatch(netmsg_t msg) 310 { 311 struct lwkt_msg *lmsg = &msg->base.lmsg; 312 struct ifnet *ifp = lmsg->u.ms_resultp; 313 struct ifaltq *ifq = &ifp->if_snd; 314 int running = 0; 315 316 crit_enter(); 317 lwkt_replymsg(lmsg, 0); /* reply ASAP */ 318 crit_exit(); 319 320 #ifdef SMP 321 if (mycpuid != ifp->if_start_cpuid(ifp)) { 322 /* 323 * If the ifnet is still up, we need to 324 * chase its CPU change. 325 */ 326 if (ifp->if_flags & IFF_UP) { 327 logifstart(chase_sched, ifp); 328 if_start_schedule(ifp); 329 return; 330 } else { 331 goto check; 332 } 333 } 334 #endif 335 336 if (ifp->if_flags & IFF_UP) { 337 ifnet_serialize_tx(ifp); /* XXX try? */ 338 if ((ifp->if_flags & IFF_OACTIVE) == 0) { 339 logifstart(run, ifp); 340 ifp->if_start(ifp); 341 if ((ifp->if_flags & 342 (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING) 343 running = 1; 344 } 345 ifnet_deserialize_tx(ifp); 346 } 347 #ifdef SMP 348 check: 349 #endif 350 if (if_start_need_schedule(ifq, running)) { 351 crit_enter(); 352 if (lmsg->ms_flags & MSGF_DONE) { /* XXX necessary? */ 353 logifstart(sched, ifp); 354 lwkt_sendmsg(netisr_portfn(mycpuid), lmsg); 355 } 356 crit_exit(); 357 } 358 } 359 360 /* Device driver ifnet.if_start helper function */ 361 void 362 if_devstart(struct ifnet *ifp) 363 { 364 struct ifaltq *ifq = &ifp->if_snd; 365 int running = 0; 366 367 ASSERT_IFNET_SERIALIZED_TX(ifp); 368 369 ALTQ_LOCK(ifq); 370 if (ifq->altq_started || !ifq_data_ready(ifq)) { 371 logifstart(avoid, ifp); 372 ALTQ_UNLOCK(ifq); 373 return; 374 } 375 ifq->altq_started = 1; 376 ALTQ_UNLOCK(ifq); 377 378 logifstart(run, ifp); 379 ifp->if_start(ifp); 380 381 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING) 382 running = 1; 383 384 if (if_start_need_schedule(ifq, running)) { 385 /* 386 * More data need to be transmitted, ifnet.if_start is 387 * scheduled on ifnet's CPU, and we keep going. 388 * NOTE: ifnet.if_start interlock is not released. 389 */ 390 logifstart(sched, ifp); 391 if_start_schedule(ifp); 392 } 393 } 394 395 static void 396 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 397 { 398 lwkt_serialize_enter(ifp->if_serializer); 399 } 400 401 static void 402 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 403 { 404 lwkt_serialize_exit(ifp->if_serializer); 405 } 406 407 static int 408 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 409 { 410 return lwkt_serialize_try(ifp->if_serializer); 411 } 412 413 #ifdef INVARIANTS 414 static void 415 if_default_serialize_assert(struct ifnet *ifp, 416 enum ifnet_serialize slz __unused, 417 boolean_t serialized) 418 { 419 if (serialized) 420 ASSERT_SERIALIZED(ifp->if_serializer); 421 else 422 ASSERT_NOT_SERIALIZED(ifp->if_serializer); 423 } 424 #endif 425 426 /* 427 * Attach an interface to the list of "active" interfaces. 428 * 429 * The serializer is optional. If non-NULL access to the interface 430 * may be MPSAFE. 431 */ 432 void 433 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer) 434 { 435 unsigned socksize, ifasize; 436 int namelen, masklen; 437 struct sockaddr_dl *sdl; 438 struct ifaddr *ifa; 439 struct ifaltq *ifq; 440 int i; 441 442 static int if_indexlim = 8; 443 444 if (ifp->if_serialize != NULL) { 445 KASSERT(ifp->if_deserialize != NULL && 446 ifp->if_tryserialize != NULL && 447 ifp->if_serialize_assert != NULL, 448 ("serialize functions are partially setup")); 449 450 /* 451 * If the device supplies serialize functions, 452 * then clear if_serializer to catch any invalid 453 * usage of this field. 454 */ 455 KASSERT(serializer == NULL, 456 ("both serialize functions and default serializer " 457 "are supplied")); 458 ifp->if_serializer = NULL; 459 } else { 460 KASSERT(ifp->if_deserialize == NULL && 461 ifp->if_tryserialize == NULL && 462 ifp->if_serialize_assert == NULL, 463 ("serialize functions are partially setup")); 464 ifp->if_serialize = if_default_serialize; 465 ifp->if_deserialize = if_default_deserialize; 466 ifp->if_tryserialize = if_default_tryserialize; 467 #ifdef INVARIANTS 468 ifp->if_serialize_assert = if_default_serialize_assert; 469 #endif 470 471 /* 472 * The serializer can be passed in from the device, 473 * allowing the same serializer to be used for both 474 * the interrupt interlock and the device queue. 475 * If not specified, the netif structure will use an 476 * embedded serializer. 477 */ 478 if (serializer == NULL) { 479 serializer = &ifp->if_default_serializer; 480 lwkt_serialize_init(serializer); 481 } 482 ifp->if_serializer = serializer; 483 } 484 485 ifp->if_start_cpuid = if_start_cpuid; 486 ifp->if_cpuid = 0; 487 488 #ifdef DEVICE_POLLING 489 /* Device is not in polling mode by default */ 490 ifp->if_poll_cpuid = -1; 491 if (ifp->if_poll != NULL) 492 ifp->if_start_cpuid = if_start_cpuid_poll; 493 #endif 494 #ifdef IFPOLL_ENABLE 495 /* Device is not in polling mode by default */ 496 ifp->if_npoll_cpuid = -1; 497 if (ifp->if_npoll != NULL) 498 ifp->if_start_cpuid = if_start_cpuid_npoll; 499 #endif 500 501 ifp->if_start_nmsg = kmalloc(ncpus * sizeof(*ifp->if_start_nmsg), 502 M_LWKTMSG, M_WAITOK); 503 for (i = 0; i < ncpus; ++i) { 504 netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport, 505 0, if_start_dispatch); 506 ifp->if_start_nmsg[i].lmsg.u.ms_resultp = ifp; 507 } 508 509 mtx_init(&ifp->if_ioctl_mtx); 510 mtx_lock(&ifp->if_ioctl_mtx); 511 512 TAILQ_INSERT_TAIL(&ifnet, ifp, if_link); 513 ifp->if_index = ++if_index; 514 515 /* 516 * XXX - 517 * The old code would work if the interface passed a pre-existing 518 * chain of ifaddrs to this code. We don't trust our callers to 519 * properly initialize the tailq, however, so we no longer allow 520 * this unlikely case. 521 */ 522 ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead), 523 M_IFADDR, M_WAITOK | M_ZERO); 524 for (i = 0; i < ncpus; ++i) 525 TAILQ_INIT(&ifp->if_addrheads[i]); 526 527 TAILQ_INIT(&ifp->if_prefixhead); 528 TAILQ_INIT(&ifp->if_multiaddrs); 529 TAILQ_INIT(&ifp->if_groups); 530 getmicrotime(&ifp->if_lastchange); 531 if (ifindex2ifnet == NULL || if_index >= if_indexlim) { 532 unsigned int n; 533 struct ifnet **q; 534 535 if_indexlim <<= 1; 536 537 /* grow ifindex2ifnet */ 538 n = if_indexlim * sizeof(*q); 539 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO); 540 if (ifindex2ifnet) { 541 bcopy(ifindex2ifnet, q, n/2); 542 kfree(ifindex2ifnet, M_IFADDR); 543 } 544 ifindex2ifnet = q; 545 } 546 547 ifindex2ifnet[if_index] = ifp; 548 549 /* 550 * create a Link Level name for this device 551 */ 552 namelen = strlen(ifp->if_xname); 553 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; 554 socksize = masklen + ifp->if_addrlen; 555 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1))) 556 if (socksize < sizeof(*sdl)) 557 socksize = sizeof(*sdl); 558 socksize = ROUNDUP(socksize); 559 #undef ROUNDUP 560 ifasize = sizeof(struct ifaddr) + 2 * socksize; 561 ifa = ifa_create(ifasize, M_WAITOK); 562 sdl = (struct sockaddr_dl *)(ifa + 1); 563 sdl->sdl_len = socksize; 564 sdl->sdl_family = AF_LINK; 565 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 566 sdl->sdl_nlen = namelen; 567 sdl->sdl_index = ifp->if_index; 568 sdl->sdl_type = ifp->if_type; 569 ifp->if_lladdr = ifa; 570 ifa->ifa_ifp = ifp; 571 ifa->ifa_rtrequest = link_rtrequest; 572 ifa->ifa_addr = (struct sockaddr *)sdl; 573 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 574 ifa->ifa_netmask = (struct sockaddr *)sdl; 575 sdl->sdl_len = masklen; 576 while (namelen != 0) 577 sdl->sdl_data[--namelen] = 0xff; 578 ifa_iflink(ifa, ifp, 0 /* Insert head */); 579 580 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 581 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 582 583 ifq = &ifp->if_snd; 584 ifq->altq_type = 0; 585 ifq->altq_disc = NULL; 586 ifq->altq_flags &= ALTQF_CANTCHANGE; 587 ifq->altq_tbr = NULL; 588 ifq->altq_ifp = ifp; 589 ifq->altq_started = 0; 590 ifq->altq_prepended = NULL; 591 ALTQ_LOCK_INIT(ifq); 592 ifq_set_classic(ifq); 593 594 if (!SLIST_EMPTY(&domains)) 595 if_attachdomain1(ifp); 596 597 /* Announce the interface. */ 598 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 599 600 mtx_unlock(&ifp->if_ioctl_mtx); 601 } 602 603 static void 604 if_attachdomain(void *dummy) 605 { 606 struct ifnet *ifp; 607 608 crit_enter(); 609 TAILQ_FOREACH(ifp, &ifnet, if_list) 610 if_attachdomain1(ifp); 611 crit_exit(); 612 } 613 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, 614 if_attachdomain, NULL); 615 616 static void 617 if_attachdomain1(struct ifnet *ifp) 618 { 619 struct domain *dp; 620 621 crit_enter(); 622 623 /* address family dependent data region */ 624 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 625 SLIST_FOREACH(dp, &domains, dom_next) 626 if (dp->dom_ifattach) 627 ifp->if_afdata[dp->dom_family] = 628 (*dp->dom_ifattach)(ifp); 629 crit_exit(); 630 } 631 632 /* 633 * Purge all addresses whose type is _not_ AF_LINK 634 */ 635 void 636 if_purgeaddrs_nolink(struct ifnet *ifp) 637 { 638 struct ifaddr_container *ifac, *next; 639 640 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid], 641 ifa_link, next) { 642 struct ifaddr *ifa = ifac->ifa; 643 644 /* Leave link ifaddr as it is */ 645 if (ifa->ifa_addr->sa_family == AF_LINK) 646 continue; 647 #ifdef INET 648 /* XXX: Ugly!! ad hoc just for INET */ 649 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) { 650 struct ifaliasreq ifr; 651 #ifdef IFADDR_DEBUG_VERBOSE 652 int i; 653 654 kprintf("purge in4 addr %p: ", ifa); 655 for (i = 0; i < ncpus; ++i) 656 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 657 kprintf("\n"); 658 #endif 659 660 bzero(&ifr, sizeof ifr); 661 ifr.ifra_addr = *ifa->ifa_addr; 662 if (ifa->ifa_dstaddr) 663 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 664 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 665 NULL) == 0) 666 continue; 667 } 668 #endif /* INET */ 669 #ifdef INET6 670 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) { 671 #ifdef IFADDR_DEBUG_VERBOSE 672 int i; 673 674 kprintf("purge in6 addr %p: ", ifa); 675 for (i = 0; i < ncpus; ++i) 676 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 677 kprintf("\n"); 678 #endif 679 680 in6_purgeaddr(ifa); 681 /* ifp_addrhead is already updated */ 682 continue; 683 } 684 #endif /* INET6 */ 685 ifa_ifunlink(ifa, ifp); 686 ifa_destroy(ifa); 687 } 688 } 689 690 /* 691 * Detach an interface, removing it from the 692 * list of "active" interfaces. 693 */ 694 void 695 if_detach(struct ifnet *ifp) 696 { 697 struct radix_node_head *rnh; 698 int i; 699 int cpu, origcpu; 700 struct domain *dp; 701 702 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 703 704 /* 705 * Remove routes and flush queues. 706 */ 707 crit_enter(); 708 #ifdef DEVICE_POLLING 709 if (ifp->if_flags & IFF_POLLING) 710 ether_poll_deregister(ifp); 711 #endif 712 #ifdef IFPOLL_ENABLE 713 if (ifp->if_flags & IFF_NPOLLING) 714 ifpoll_deregister(ifp); 715 #endif 716 if_down(ifp); 717 718 #ifdef ALTQ 719 if (ifq_is_enabled(&ifp->if_snd)) 720 altq_disable(&ifp->if_snd); 721 if (ifq_is_attached(&ifp->if_snd)) 722 altq_detach(&ifp->if_snd); 723 #endif 724 725 /* 726 * Clean up all addresses. 727 */ 728 ifp->if_lladdr = NULL; 729 730 if_purgeaddrs_nolink(ifp); 731 if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) { 732 struct ifaddr *ifa; 733 734 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 735 KASSERT(ifa->ifa_addr->sa_family == AF_LINK, 736 ("non-link ifaddr is left on if_addrheads")); 737 738 ifa_ifunlink(ifa, ifp); 739 ifa_destroy(ifa); 740 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]), 741 ("there are still ifaddrs left on if_addrheads")); 742 } 743 744 #ifdef INET 745 /* 746 * Remove all IPv4 kernel structures related to ifp. 747 */ 748 in_ifdetach(ifp); 749 #endif 750 751 #ifdef INET6 752 /* 753 * Remove all IPv6 kernel structs related to ifp. This should be done 754 * before removing routing entries below, since IPv6 interface direct 755 * routes are expected to be removed by the IPv6-specific kernel API. 756 * Otherwise, the kernel will detect some inconsistency and bark it. 757 */ 758 in6_ifdetach(ifp); 759 #endif 760 761 /* 762 * Delete all remaining routes using this interface 763 * Unfortuneatly the only way to do this is to slog through 764 * the entire routing table looking for routes which point 765 * to this interface...oh well... 766 */ 767 origcpu = mycpuid; 768 for (cpu = 0; cpu < ncpus; cpu++) { 769 lwkt_migratecpu(cpu); 770 for (i = 1; i <= AF_MAX; i++) { 771 if ((rnh = rt_tables[cpu][i]) == NULL) 772 continue; 773 rnh->rnh_walktree(rnh, if_rtdel, ifp); 774 } 775 } 776 lwkt_migratecpu(origcpu); 777 778 /* Announce that the interface is gone. */ 779 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 780 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 781 782 SLIST_FOREACH(dp, &domains, dom_next) 783 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 784 (*dp->dom_ifdetach)(ifp, 785 ifp->if_afdata[dp->dom_family]); 786 787 /* 788 * Remove interface from ifindex2ifp[] and maybe decrement if_index. 789 */ 790 ifindex2ifnet[ifp->if_index] = NULL; 791 while (if_index > 0 && ifindex2ifnet[if_index] == NULL) 792 if_index--; 793 794 TAILQ_REMOVE(&ifnet, ifp, if_link); 795 kfree(ifp->if_addrheads, M_IFADDR); 796 kfree(ifp->if_start_nmsg, M_LWKTMSG); 797 crit_exit(); 798 } 799 800 /* 801 * Create interface group without members 802 */ 803 struct ifg_group * 804 if_creategroup(const char *groupname) 805 { 806 struct ifg_group *ifg = NULL; 807 808 if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group), 809 M_TEMP, M_NOWAIT)) == NULL) 810 return (NULL); 811 812 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 813 ifg->ifg_refcnt = 0; 814 ifg->ifg_carp_demoted = 0; 815 TAILQ_INIT(&ifg->ifg_members); 816 #if NPF > 0 817 pfi_attach_ifgroup(ifg); 818 #endif 819 TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next); 820 821 return (ifg); 822 } 823 824 /* 825 * Add a group to an interface 826 */ 827 int 828 if_addgroup(struct ifnet *ifp, const char *groupname) 829 { 830 struct ifg_list *ifgl; 831 struct ifg_group *ifg = NULL; 832 struct ifg_member *ifgm; 833 834 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 835 groupname[strlen(groupname) - 1] <= '9') 836 return (EINVAL); 837 838 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 839 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 840 return (EEXIST); 841 842 if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) 843 return (ENOMEM); 844 845 if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 846 kfree(ifgl, M_TEMP); 847 return (ENOMEM); 848 } 849 850 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 851 if (!strcmp(ifg->ifg_group, groupname)) 852 break; 853 854 if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) { 855 kfree(ifgl, M_TEMP); 856 kfree(ifgm, M_TEMP); 857 return (ENOMEM); 858 } 859 860 ifg->ifg_refcnt++; 861 ifgl->ifgl_group = ifg; 862 ifgm->ifgm_ifp = ifp; 863 864 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 865 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 866 867 #if NPF > 0 868 pfi_group_change(groupname); 869 #endif 870 871 return (0); 872 } 873 874 /* 875 * Remove a group from an interface 876 */ 877 int 878 if_delgroup(struct ifnet *ifp, const char *groupname) 879 { 880 struct ifg_list *ifgl; 881 struct ifg_member *ifgm; 882 883 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 884 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 885 break; 886 if (ifgl == NULL) 887 return (ENOENT); 888 889 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 890 891 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 892 if (ifgm->ifgm_ifp == ifp) 893 break; 894 895 if (ifgm != NULL) { 896 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 897 kfree(ifgm, M_TEMP); 898 } 899 900 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 901 TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next); 902 #if NPF > 0 903 pfi_detach_ifgroup(ifgl->ifgl_group); 904 #endif 905 kfree(ifgl->ifgl_group, M_TEMP); 906 } 907 908 kfree(ifgl, M_TEMP); 909 910 #if NPF > 0 911 pfi_group_change(groupname); 912 #endif 913 914 return (0); 915 } 916 917 /* 918 * Stores all groups from an interface in memory pointed 919 * to by data 920 */ 921 int 922 if_getgroup(caddr_t data, struct ifnet *ifp) 923 { 924 int len, error; 925 struct ifg_list *ifgl; 926 struct ifg_req ifgrq, *ifgp; 927 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 928 929 if (ifgr->ifgr_len == 0) { 930 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 931 ifgr->ifgr_len += sizeof(struct ifg_req); 932 return (0); 933 } 934 935 len = ifgr->ifgr_len; 936 ifgp = ifgr->ifgr_groups; 937 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 938 if (len < sizeof(ifgrq)) 939 return (EINVAL); 940 bzero(&ifgrq, sizeof ifgrq); 941 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 942 sizeof(ifgrq.ifgrq_group)); 943 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 944 sizeof(struct ifg_req)))) 945 return (error); 946 len -= sizeof(ifgrq); 947 ifgp++; 948 } 949 950 return (0); 951 } 952 953 /* 954 * Stores all members of a group in memory pointed to by data 955 */ 956 int 957 if_getgroupmembers(caddr_t data) 958 { 959 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 960 struct ifg_group *ifg; 961 struct ifg_member *ifgm; 962 struct ifg_req ifgrq, *ifgp; 963 int len, error; 964 965 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 966 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 967 break; 968 if (ifg == NULL) 969 return (ENOENT); 970 971 if (ifgr->ifgr_len == 0) { 972 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 973 ifgr->ifgr_len += sizeof(ifgrq); 974 return (0); 975 } 976 977 len = ifgr->ifgr_len; 978 ifgp = ifgr->ifgr_groups; 979 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 980 if (len < sizeof(ifgrq)) 981 return (EINVAL); 982 bzero(&ifgrq, sizeof ifgrq); 983 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 984 sizeof(ifgrq.ifgrq_member)); 985 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 986 sizeof(struct ifg_req)))) 987 return (error); 988 len -= sizeof(ifgrq); 989 ifgp++; 990 } 991 992 return (0); 993 } 994 995 /* 996 * Delete Routes for a Network Interface 997 * 998 * Called for each routing entry via the rnh->rnh_walktree() call above 999 * to delete all route entries referencing a detaching network interface. 1000 * 1001 * Arguments: 1002 * rn pointer to node in the routing table 1003 * arg argument passed to rnh->rnh_walktree() - detaching interface 1004 * 1005 * Returns: 1006 * 0 successful 1007 * errno failed - reason indicated 1008 * 1009 */ 1010 static int 1011 if_rtdel(struct radix_node *rn, void *arg) 1012 { 1013 struct rtentry *rt = (struct rtentry *)rn; 1014 struct ifnet *ifp = arg; 1015 int err; 1016 1017 if (rt->rt_ifp == ifp) { 1018 1019 /* 1020 * Protect (sorta) against walktree recursion problems 1021 * with cloned routes 1022 */ 1023 if (!(rt->rt_flags & RTF_UP)) 1024 return (0); 1025 1026 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, 1027 rt_mask(rt), rt->rt_flags, 1028 NULL); 1029 if (err) { 1030 log(LOG_WARNING, "if_rtdel: error %d\n", err); 1031 } 1032 } 1033 1034 return (0); 1035 } 1036 1037 /* 1038 * Locate an interface based on a complete address. 1039 */ 1040 struct ifaddr * 1041 ifa_ifwithaddr(struct sockaddr *addr) 1042 { 1043 struct ifnet *ifp; 1044 1045 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1046 struct ifaddr_container *ifac; 1047 1048 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1049 struct ifaddr *ifa = ifac->ifa; 1050 1051 if (ifa->ifa_addr->sa_family != addr->sa_family) 1052 continue; 1053 if (sa_equal(addr, ifa->ifa_addr)) 1054 return (ifa); 1055 if ((ifp->if_flags & IFF_BROADCAST) && 1056 ifa->ifa_broadaddr && 1057 /* IPv6 doesn't have broadcast */ 1058 ifa->ifa_broadaddr->sa_len != 0 && 1059 sa_equal(ifa->ifa_broadaddr, addr)) 1060 return (ifa); 1061 } 1062 } 1063 return (NULL); 1064 } 1065 /* 1066 * Locate the point to point interface with a given destination address. 1067 */ 1068 struct ifaddr * 1069 ifa_ifwithdstaddr(struct sockaddr *addr) 1070 { 1071 struct ifnet *ifp; 1072 1073 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1074 struct ifaddr_container *ifac; 1075 1076 if (!(ifp->if_flags & IFF_POINTOPOINT)) 1077 continue; 1078 1079 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1080 struct ifaddr *ifa = ifac->ifa; 1081 1082 if (ifa->ifa_addr->sa_family != addr->sa_family) 1083 continue; 1084 if (ifa->ifa_dstaddr && 1085 sa_equal(addr, ifa->ifa_dstaddr)) 1086 return (ifa); 1087 } 1088 } 1089 return (NULL); 1090 } 1091 1092 /* 1093 * Find an interface on a specific network. If many, choice 1094 * is most specific found. 1095 */ 1096 struct ifaddr * 1097 ifa_ifwithnet(struct sockaddr *addr) 1098 { 1099 struct ifnet *ifp; 1100 struct ifaddr *ifa_maybe = NULL; 1101 u_int af = addr->sa_family; 1102 char *addr_data = addr->sa_data, *cplim; 1103 1104 /* 1105 * AF_LINK addresses can be looked up directly by their index number, 1106 * so do that if we can. 1107 */ 1108 if (af == AF_LINK) { 1109 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 1110 1111 if (sdl->sdl_index && sdl->sdl_index <= if_index) 1112 return (ifindex2ifnet[sdl->sdl_index]->if_lladdr); 1113 } 1114 1115 /* 1116 * Scan though each interface, looking for ones that have 1117 * addresses in this address family. 1118 */ 1119 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1120 struct ifaddr_container *ifac; 1121 1122 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1123 struct ifaddr *ifa = ifac->ifa; 1124 char *cp, *cp2, *cp3; 1125 1126 if (ifa->ifa_addr->sa_family != af) 1127 next: continue; 1128 if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) { 1129 /* 1130 * This is a bit broken as it doesn't 1131 * take into account that the remote end may 1132 * be a single node in the network we are 1133 * looking for. 1134 * The trouble is that we don't know the 1135 * netmask for the remote end. 1136 */ 1137 if (ifa->ifa_dstaddr != NULL && 1138 sa_equal(addr, ifa->ifa_dstaddr)) 1139 return (ifa); 1140 } else { 1141 /* 1142 * if we have a special address handler, 1143 * then use it instead of the generic one. 1144 */ 1145 if (ifa->ifa_claim_addr) { 1146 if ((*ifa->ifa_claim_addr)(ifa, addr)) { 1147 return (ifa); 1148 } else { 1149 continue; 1150 } 1151 } 1152 1153 /* 1154 * Scan all the bits in the ifa's address. 1155 * If a bit dissagrees with what we are 1156 * looking for, mask it with the netmask 1157 * to see if it really matters. 1158 * (A byte at a time) 1159 */ 1160 if (ifa->ifa_netmask == 0) 1161 continue; 1162 cp = addr_data; 1163 cp2 = ifa->ifa_addr->sa_data; 1164 cp3 = ifa->ifa_netmask->sa_data; 1165 cplim = ifa->ifa_netmask->sa_len + 1166 (char *)ifa->ifa_netmask; 1167 while (cp3 < cplim) 1168 if ((*cp++ ^ *cp2++) & *cp3++) 1169 goto next; /* next address! */ 1170 /* 1171 * If the netmask of what we just found 1172 * is more specific than what we had before 1173 * (if we had one) then remember the new one 1174 * before continuing to search 1175 * for an even better one. 1176 */ 1177 if (ifa_maybe == NULL || 1178 rn_refines((char *)ifa->ifa_netmask, 1179 (char *)ifa_maybe->ifa_netmask)) 1180 ifa_maybe = ifa; 1181 } 1182 } 1183 } 1184 return (ifa_maybe); 1185 } 1186 1187 /* 1188 * Find an interface address specific to an interface best matching 1189 * a given address. 1190 */ 1191 struct ifaddr * 1192 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1193 { 1194 struct ifaddr_container *ifac; 1195 char *cp, *cp2, *cp3; 1196 char *cplim; 1197 struct ifaddr *ifa_maybe = NULL; 1198 u_int af = addr->sa_family; 1199 1200 if (af >= AF_MAX) 1201 return (0); 1202 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1203 struct ifaddr *ifa = ifac->ifa; 1204 1205 if (ifa->ifa_addr->sa_family != af) 1206 continue; 1207 if (ifa_maybe == NULL) 1208 ifa_maybe = ifa; 1209 if (ifa->ifa_netmask == NULL) { 1210 if (sa_equal(addr, ifa->ifa_addr) || 1211 (ifa->ifa_dstaddr != NULL && 1212 sa_equal(addr, ifa->ifa_dstaddr))) 1213 return (ifa); 1214 continue; 1215 } 1216 if (ifp->if_flags & IFF_POINTOPOINT) { 1217 if (sa_equal(addr, ifa->ifa_dstaddr)) 1218 return (ifa); 1219 } else { 1220 cp = addr->sa_data; 1221 cp2 = ifa->ifa_addr->sa_data; 1222 cp3 = ifa->ifa_netmask->sa_data; 1223 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1224 for (; cp3 < cplim; cp3++) 1225 if ((*cp++ ^ *cp2++) & *cp3) 1226 break; 1227 if (cp3 == cplim) 1228 return (ifa); 1229 } 1230 } 1231 return (ifa_maybe); 1232 } 1233 1234 /* 1235 * Default action when installing a route with a Link Level gateway. 1236 * Lookup an appropriate real ifa to point to. 1237 * This should be moved to /sys/net/link.c eventually. 1238 */ 1239 static void 1240 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 1241 { 1242 struct ifaddr *ifa; 1243 struct sockaddr *dst; 1244 struct ifnet *ifp; 1245 1246 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1247 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL) 1248 return; 1249 ifa = ifaof_ifpforaddr(dst, ifp); 1250 if (ifa != NULL) { 1251 IFAFREE(rt->rt_ifa); 1252 IFAREF(ifa); 1253 rt->rt_ifa = ifa; 1254 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1255 ifa->ifa_rtrequest(cmd, rt, info); 1256 } 1257 } 1258 1259 /* 1260 * Mark an interface down and notify protocols of 1261 * the transition. 1262 * NOTE: must be called at splnet or eqivalent. 1263 */ 1264 void 1265 if_unroute(struct ifnet *ifp, int flag, int fam) 1266 { 1267 struct ifaddr_container *ifac; 1268 1269 ifp->if_flags &= ~flag; 1270 getmicrotime(&ifp->if_lastchange); 1271 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1272 struct ifaddr *ifa = ifac->ifa; 1273 1274 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1275 kpfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1276 } 1277 ifq_purge(&ifp->if_snd); 1278 rt_ifmsg(ifp); 1279 } 1280 1281 /* 1282 * Mark an interface up and notify protocols of 1283 * the transition. 1284 * NOTE: must be called at splnet or eqivalent. 1285 */ 1286 void 1287 if_route(struct ifnet *ifp, int flag, int fam) 1288 { 1289 struct ifaddr_container *ifac; 1290 1291 ifq_purge(&ifp->if_snd); 1292 ifp->if_flags |= flag; 1293 getmicrotime(&ifp->if_lastchange); 1294 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1295 struct ifaddr *ifa = ifac->ifa; 1296 1297 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1298 kpfctlinput(PRC_IFUP, ifa->ifa_addr); 1299 } 1300 rt_ifmsg(ifp); 1301 #ifdef INET6 1302 in6_if_up(ifp); 1303 #endif 1304 } 1305 1306 /* 1307 * Mark an interface down and notify protocols of the transition. An 1308 * interface going down is also considered to be a synchronizing event. 1309 * We must ensure that all packet processing related to the interface 1310 * has completed before we return so e.g. the caller can free the ifnet 1311 * structure that the mbufs may be referencing. 1312 * 1313 * NOTE: must be called at splnet or eqivalent. 1314 */ 1315 void 1316 if_down(struct ifnet *ifp) 1317 { 1318 if_unroute(ifp, IFF_UP, AF_UNSPEC); 1319 netmsg_service_sync(); 1320 } 1321 1322 /* 1323 * Mark an interface up and notify protocols of 1324 * the transition. 1325 * NOTE: must be called at splnet or eqivalent. 1326 */ 1327 void 1328 if_up(struct ifnet *ifp) 1329 { 1330 if_route(ifp, IFF_UP, AF_UNSPEC); 1331 } 1332 1333 /* 1334 * Process a link state change. 1335 * NOTE: must be called at splsoftnet or equivalent. 1336 */ 1337 void 1338 if_link_state_change(struct ifnet *ifp) 1339 { 1340 int link_state = ifp->if_link_state; 1341 1342 rt_ifmsg(ifp); 1343 devctl_notify("IFNET", ifp->if_xname, 1344 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); 1345 } 1346 1347 /* 1348 * Handle interface watchdog timer routines. Called 1349 * from softclock, we decrement timers (if set) and 1350 * call the appropriate interface routine on expiration. 1351 */ 1352 static void 1353 if_slowtimo(void *arg) 1354 { 1355 struct ifnet *ifp; 1356 1357 crit_enter(); 1358 1359 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1360 if (ifp->if_timer == 0 || --ifp->if_timer) 1361 continue; 1362 if (ifp->if_watchdog) { 1363 if (ifnet_tryserialize_all(ifp)) { 1364 (*ifp->if_watchdog)(ifp); 1365 ifnet_deserialize_all(ifp); 1366 } else { 1367 /* try again next timeout */ 1368 ++ifp->if_timer; 1369 } 1370 } 1371 } 1372 1373 crit_exit(); 1374 1375 callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL); 1376 } 1377 1378 /* 1379 * Map interface name to 1380 * interface structure pointer. 1381 */ 1382 struct ifnet * 1383 ifunit(const char *name) 1384 { 1385 struct ifnet *ifp; 1386 1387 /* 1388 * Search all the interfaces for this name/number 1389 */ 1390 1391 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1392 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) 1393 break; 1394 } 1395 return (ifp); 1396 } 1397 1398 1399 /* 1400 * Map interface name in a sockaddr_dl to 1401 * interface structure pointer. 1402 */ 1403 struct ifnet * 1404 if_withname(struct sockaddr *sa) 1405 { 1406 char ifname[IFNAMSIZ+1]; 1407 struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa; 1408 1409 if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) || 1410 (sdl->sdl_nlen > IFNAMSIZ) ) 1411 return NULL; 1412 1413 /* 1414 * ifunit wants a null-terminated name. It may not be null-terminated 1415 * in the sockaddr. We don't want to change the caller's sockaddr, 1416 * and there might not be room to put the trailing null anyway, so we 1417 * make a local copy that we know we can null terminate safely. 1418 */ 1419 1420 bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen); 1421 ifname[sdl->sdl_nlen] = '\0'; 1422 return ifunit(ifname); 1423 } 1424 1425 1426 /* 1427 * Interface ioctls. 1428 */ 1429 int 1430 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred) 1431 { 1432 struct ifnet *ifp; 1433 struct ifreq *ifr; 1434 struct ifstat *ifs; 1435 int error; 1436 short oif_flags; 1437 int new_flags; 1438 #ifdef COMPAT_43 1439 int ocmd; 1440 #endif 1441 size_t namelen, onamelen; 1442 char new_name[IFNAMSIZ]; 1443 struct ifaddr *ifa; 1444 struct sockaddr_dl *sdl; 1445 1446 switch (cmd) { 1447 case SIOCGIFCONF: 1448 case OSIOCGIFCONF: 1449 return (ifconf(cmd, data, cred)); 1450 default: 1451 break; 1452 } 1453 1454 ifr = (struct ifreq *)data; 1455 1456 switch (cmd) { 1457 case SIOCIFCREATE: 1458 case SIOCIFCREATE2: 1459 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1460 return (error); 1461 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), 1462 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL)); 1463 case SIOCIFDESTROY: 1464 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1465 return (error); 1466 return (if_clone_destroy(ifr->ifr_name)); 1467 case SIOCIFGCLONERS: 1468 return (if_clone_list((struct if_clonereq *)data)); 1469 default: 1470 break; 1471 } 1472 1473 /* 1474 * Nominal ioctl through interface, lookup the ifp and obtain a 1475 * lock to serialize the ifconfig ioctl operation. 1476 */ 1477 ifp = ifunit(ifr->ifr_name); 1478 if (ifp == NULL) 1479 return (ENXIO); 1480 error = 0; 1481 mtx_lock(&ifp->if_ioctl_mtx); 1482 1483 switch (cmd) { 1484 case SIOCGIFINDEX: 1485 ifr->ifr_index = ifp->if_index; 1486 break; 1487 1488 case SIOCGIFFLAGS: 1489 ifr->ifr_flags = ifp->if_flags; 1490 ifr->ifr_flagshigh = ifp->if_flags >> 16; 1491 break; 1492 1493 case SIOCGIFCAP: 1494 ifr->ifr_reqcap = ifp->if_capabilities; 1495 ifr->ifr_curcap = ifp->if_capenable; 1496 break; 1497 1498 case SIOCGIFMETRIC: 1499 ifr->ifr_metric = ifp->if_metric; 1500 break; 1501 1502 case SIOCGIFMTU: 1503 ifr->ifr_mtu = ifp->if_mtu; 1504 break; 1505 1506 case SIOCGIFDATA: 1507 error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data, 1508 sizeof(ifp->if_data)); 1509 break; 1510 1511 case SIOCGIFPHYS: 1512 ifr->ifr_phys = ifp->if_physical; 1513 break; 1514 1515 case SIOCGIFPOLLCPU: 1516 #ifdef DEVICE_POLLING 1517 ifr->ifr_pollcpu = ifp->if_poll_cpuid; 1518 #else 1519 ifr->ifr_pollcpu = -1; 1520 #endif 1521 break; 1522 1523 case SIOCSIFPOLLCPU: 1524 #ifdef DEVICE_POLLING 1525 if ((ifp->if_flags & IFF_POLLING) == 0) 1526 ether_pollcpu_register(ifp, ifr->ifr_pollcpu); 1527 #endif 1528 break; 1529 1530 case SIOCSIFFLAGS: 1531 error = priv_check_cred(cred, PRIV_ROOT, 0); 1532 if (error) 1533 break; 1534 new_flags = (ifr->ifr_flags & 0xffff) | 1535 (ifr->ifr_flagshigh << 16); 1536 if (ifp->if_flags & IFF_SMART) { 1537 /* Smart drivers twiddle their own routes */ 1538 } else if (ifp->if_flags & IFF_UP && 1539 (new_flags & IFF_UP) == 0) { 1540 crit_enter(); 1541 if_down(ifp); 1542 crit_exit(); 1543 } else if (new_flags & IFF_UP && 1544 (ifp->if_flags & IFF_UP) == 0) { 1545 crit_enter(); 1546 if_up(ifp); 1547 crit_exit(); 1548 } 1549 1550 #ifdef DEVICE_POLLING 1551 if ((new_flags ^ ifp->if_flags) & IFF_POLLING) { 1552 if (new_flags & IFF_POLLING) { 1553 ether_poll_register(ifp); 1554 } else { 1555 ether_poll_deregister(ifp); 1556 } 1557 } 1558 #endif 1559 #ifdef IFPOLL_ENABLE 1560 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) { 1561 if (new_flags & IFF_NPOLLING) 1562 ifpoll_register(ifp); 1563 else 1564 ifpoll_deregister(ifp); 1565 } 1566 #endif 1567 1568 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 1569 (new_flags &~ IFF_CANTCHANGE); 1570 if (new_flags & IFF_PPROMISC) { 1571 /* Permanently promiscuous mode requested */ 1572 ifp->if_flags |= IFF_PROMISC; 1573 } else if (ifp->if_pcount == 0) { 1574 ifp->if_flags &= ~IFF_PROMISC; 1575 } 1576 if (ifp->if_ioctl) { 1577 ifnet_serialize_all(ifp); 1578 ifp->if_ioctl(ifp, cmd, data, cred); 1579 ifnet_deserialize_all(ifp); 1580 } 1581 getmicrotime(&ifp->if_lastchange); 1582 break; 1583 1584 case SIOCSIFCAP: 1585 error = priv_check_cred(cred, PRIV_ROOT, 0); 1586 if (error) 1587 break; 1588 if (ifr->ifr_reqcap & ~ifp->if_capabilities) { 1589 error = EINVAL; 1590 break; 1591 } 1592 ifnet_serialize_all(ifp); 1593 ifp->if_ioctl(ifp, cmd, data, cred); 1594 ifnet_deserialize_all(ifp); 1595 break; 1596 1597 case SIOCSIFNAME: 1598 error = priv_check_cred(cred, PRIV_ROOT, 0); 1599 if (error) 1600 break; 1601 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 1602 if (error) 1603 break; 1604 if (new_name[0] == '\0') { 1605 error = EINVAL; 1606 break; 1607 } 1608 if (ifunit(new_name) != NULL) { 1609 error = EEXIST; 1610 break; 1611 } 1612 1613 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 1614 1615 /* Announce the departure of the interface. */ 1616 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1617 1618 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 1619 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 1620 /* XXX IFA_LOCK(ifa); */ 1621 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1622 namelen = strlen(new_name); 1623 onamelen = sdl->sdl_nlen; 1624 /* 1625 * Move the address if needed. This is safe because we 1626 * allocate space for a name of length IFNAMSIZ when we 1627 * create this in if_attach(). 1628 */ 1629 if (namelen != onamelen) { 1630 bcopy(sdl->sdl_data + onamelen, 1631 sdl->sdl_data + namelen, sdl->sdl_alen); 1632 } 1633 bcopy(new_name, sdl->sdl_data, namelen); 1634 sdl->sdl_nlen = namelen; 1635 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 1636 bzero(sdl->sdl_data, onamelen); 1637 while (namelen != 0) 1638 sdl->sdl_data[--namelen] = 0xff; 1639 /* XXX IFA_UNLOCK(ifa) */ 1640 1641 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 1642 1643 /* Announce the return of the interface. */ 1644 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 1645 break; 1646 1647 case SIOCSIFMETRIC: 1648 error = priv_check_cred(cred, PRIV_ROOT, 0); 1649 if (error) 1650 break; 1651 ifp->if_metric = ifr->ifr_metric; 1652 getmicrotime(&ifp->if_lastchange); 1653 break; 1654 1655 case SIOCSIFPHYS: 1656 error = priv_check_cred(cred, PRIV_ROOT, 0); 1657 if (error) 1658 break; 1659 if (ifp->if_ioctl == NULL) { 1660 error = EOPNOTSUPP; 1661 break; 1662 } 1663 ifnet_serialize_all(ifp); 1664 error = ifp->if_ioctl(ifp, cmd, data, cred); 1665 ifnet_deserialize_all(ifp); 1666 if (error == 0) 1667 getmicrotime(&ifp->if_lastchange); 1668 break; 1669 1670 case SIOCSIFMTU: 1671 { 1672 u_long oldmtu = ifp->if_mtu; 1673 1674 error = priv_check_cred(cred, PRIV_ROOT, 0); 1675 if (error) 1676 break; 1677 if (ifp->if_ioctl == NULL) { 1678 error = EOPNOTSUPP; 1679 break; 1680 } 1681 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) { 1682 error = EINVAL; 1683 break; 1684 } 1685 ifnet_serialize_all(ifp); 1686 error = ifp->if_ioctl(ifp, cmd, data, cred); 1687 ifnet_deserialize_all(ifp); 1688 if (error == 0) { 1689 getmicrotime(&ifp->if_lastchange); 1690 rt_ifmsg(ifp); 1691 } 1692 /* 1693 * If the link MTU changed, do network layer specific procedure. 1694 */ 1695 if (ifp->if_mtu != oldmtu) { 1696 #ifdef INET6 1697 nd6_setmtu(ifp); 1698 #endif 1699 } 1700 break; 1701 } 1702 1703 case SIOCADDMULTI: 1704 case SIOCDELMULTI: 1705 error = priv_check_cred(cred, PRIV_ROOT, 0); 1706 if (error) 1707 break; 1708 1709 /* Don't allow group membership on non-multicast interfaces. */ 1710 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 1711 error = EOPNOTSUPP; 1712 break; 1713 } 1714 1715 /* Don't let users screw up protocols' entries. */ 1716 if (ifr->ifr_addr.sa_family != AF_LINK) { 1717 error = EINVAL; 1718 break; 1719 } 1720 1721 if (cmd == SIOCADDMULTI) { 1722 struct ifmultiaddr *ifma; 1723 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 1724 } else { 1725 error = if_delmulti(ifp, &ifr->ifr_addr); 1726 } 1727 if (error == 0) 1728 getmicrotime(&ifp->if_lastchange); 1729 break; 1730 1731 case SIOCSIFPHYADDR: 1732 case SIOCDIFPHYADDR: 1733 #ifdef INET6 1734 case SIOCSIFPHYADDR_IN6: 1735 #endif 1736 case SIOCSLIFPHYADDR: 1737 case SIOCSIFMEDIA: 1738 case SIOCSIFGENERIC: 1739 error = priv_check_cred(cred, PRIV_ROOT, 0); 1740 if (error) 1741 break; 1742 if (ifp->if_ioctl == 0) { 1743 error = EOPNOTSUPP; 1744 break; 1745 } 1746 ifnet_serialize_all(ifp); 1747 error = ifp->if_ioctl(ifp, cmd, data, cred); 1748 ifnet_deserialize_all(ifp); 1749 if (error == 0) 1750 getmicrotime(&ifp->if_lastchange); 1751 break; 1752 1753 case SIOCGIFSTATUS: 1754 ifs = (struct ifstat *)data; 1755 ifs->ascii[0] = '\0'; 1756 /* fall through */ 1757 case SIOCGIFPSRCADDR: 1758 case SIOCGIFPDSTADDR: 1759 case SIOCGLIFPHYADDR: 1760 case SIOCGIFMEDIA: 1761 case SIOCGIFGENERIC: 1762 if (ifp->if_ioctl == NULL) { 1763 error = EOPNOTSUPP; 1764 break; 1765 } 1766 ifnet_serialize_all(ifp); 1767 error = ifp->if_ioctl(ifp, cmd, data, cred); 1768 ifnet_deserialize_all(ifp); 1769 break; 1770 1771 case SIOCSIFLLADDR: 1772 error = priv_check_cred(cred, PRIV_ROOT, 0); 1773 if (error) 1774 break; 1775 error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, 1776 ifr->ifr_addr.sa_len); 1777 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 1778 break; 1779 1780 default: 1781 oif_flags = ifp->if_flags; 1782 if (so->so_proto == 0) { 1783 error = EOPNOTSUPP; 1784 break; 1785 } 1786 #ifndef COMPAT_43 1787 error = so_pru_control_direct(so, cmd, data, ifp); 1788 #else 1789 ocmd = cmd; 1790 1791 switch (cmd) { 1792 case SIOCSIFDSTADDR: 1793 case SIOCSIFADDR: 1794 case SIOCSIFBRDADDR: 1795 case SIOCSIFNETMASK: 1796 #if BYTE_ORDER != BIG_ENDIAN 1797 if (ifr->ifr_addr.sa_family == 0 && 1798 ifr->ifr_addr.sa_len < 16) { 1799 ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len; 1800 ifr->ifr_addr.sa_len = 16; 1801 } 1802 #else 1803 if (ifr->ifr_addr.sa_len == 0) 1804 ifr->ifr_addr.sa_len = 16; 1805 #endif 1806 break; 1807 case OSIOCGIFADDR: 1808 cmd = SIOCGIFADDR; 1809 break; 1810 case OSIOCGIFDSTADDR: 1811 cmd = SIOCGIFDSTADDR; 1812 break; 1813 case OSIOCGIFBRDADDR: 1814 cmd = SIOCGIFBRDADDR; 1815 break; 1816 case OSIOCGIFNETMASK: 1817 cmd = SIOCGIFNETMASK; 1818 break; 1819 default: 1820 break; 1821 } 1822 1823 error = so_pru_control_direct(so, cmd, data, ifp); 1824 1825 switch (ocmd) { 1826 case OSIOCGIFADDR: 1827 case OSIOCGIFDSTADDR: 1828 case OSIOCGIFBRDADDR: 1829 case OSIOCGIFNETMASK: 1830 *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family; 1831 break; 1832 } 1833 #endif /* COMPAT_43 */ 1834 1835 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 1836 #ifdef INET6 1837 DELAY(100);/* XXX: temporary workaround for fxp issue*/ 1838 if (ifp->if_flags & IFF_UP) { 1839 crit_enter(); 1840 in6_if_up(ifp); 1841 crit_exit(); 1842 } 1843 #endif 1844 } 1845 break; 1846 } 1847 1848 mtx_unlock(&ifp->if_ioctl_mtx); 1849 return (error); 1850 } 1851 1852 /* 1853 * Set/clear promiscuous mode on interface ifp based on the truth value 1854 * of pswitch. The calls are reference counted so that only the first 1855 * "on" request actually has an effect, as does the final "off" request. 1856 * Results are undefined if the "off" and "on" requests are not matched. 1857 */ 1858 int 1859 ifpromisc(struct ifnet *ifp, int pswitch) 1860 { 1861 struct ifreq ifr; 1862 int error; 1863 int oldflags; 1864 1865 oldflags = ifp->if_flags; 1866 if (ifp->if_flags & IFF_PPROMISC) { 1867 /* Do nothing if device is in permanently promiscuous mode */ 1868 ifp->if_pcount += pswitch ? 1 : -1; 1869 return (0); 1870 } 1871 if (pswitch) { 1872 /* 1873 * If the device is not configured up, we cannot put it in 1874 * promiscuous mode. 1875 */ 1876 if ((ifp->if_flags & IFF_UP) == 0) 1877 return (ENETDOWN); 1878 if (ifp->if_pcount++ != 0) 1879 return (0); 1880 ifp->if_flags |= IFF_PROMISC; 1881 log(LOG_INFO, "%s: promiscuous mode enabled\n", 1882 ifp->if_xname); 1883 } else { 1884 if (--ifp->if_pcount > 0) 1885 return (0); 1886 ifp->if_flags &= ~IFF_PROMISC; 1887 log(LOG_INFO, "%s: promiscuous mode disabled\n", 1888 ifp->if_xname); 1889 } 1890 ifr.ifr_flags = ifp->if_flags; 1891 ifr.ifr_flagshigh = ifp->if_flags >> 16; 1892 ifnet_serialize_all(ifp); 1893 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); 1894 ifnet_deserialize_all(ifp); 1895 if (error == 0) 1896 rt_ifmsg(ifp); 1897 else 1898 ifp->if_flags = oldflags; 1899 return error; 1900 } 1901 1902 /* 1903 * Return interface configuration 1904 * of system. List may be used 1905 * in later ioctl's (above) to get 1906 * other information. 1907 */ 1908 static int 1909 ifconf(u_long cmd, caddr_t data, struct ucred *cred) 1910 { 1911 struct ifconf *ifc = (struct ifconf *)data; 1912 struct ifnet *ifp; 1913 struct sockaddr *sa; 1914 struct ifreq ifr, *ifrp; 1915 int space = ifc->ifc_len, error = 0; 1916 1917 ifrp = ifc->ifc_req; 1918 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1919 struct ifaddr_container *ifac; 1920 int addrs; 1921 1922 if (space <= sizeof ifr) 1923 break; 1924 1925 /* 1926 * Zero the stack declared structure first to prevent 1927 * memory disclosure. 1928 */ 1929 bzero(&ifr, sizeof(ifr)); 1930 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 1931 >= sizeof(ifr.ifr_name)) { 1932 error = ENAMETOOLONG; 1933 break; 1934 } 1935 1936 addrs = 0; 1937 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1938 struct ifaddr *ifa = ifac->ifa; 1939 1940 if (space <= sizeof ifr) 1941 break; 1942 sa = ifa->ifa_addr; 1943 if (cred->cr_prison && 1944 prison_if(cred, sa)) 1945 continue; 1946 addrs++; 1947 #ifdef COMPAT_43 1948 if (cmd == OSIOCGIFCONF) { 1949 struct osockaddr *osa = 1950 (struct osockaddr *)&ifr.ifr_addr; 1951 ifr.ifr_addr = *sa; 1952 osa->sa_family = sa->sa_family; 1953 error = copyout(&ifr, ifrp, sizeof ifr); 1954 ifrp++; 1955 } else 1956 #endif 1957 if (sa->sa_len <= sizeof(*sa)) { 1958 ifr.ifr_addr = *sa; 1959 error = copyout(&ifr, ifrp, sizeof ifr); 1960 ifrp++; 1961 } else { 1962 if (space < (sizeof ifr) + sa->sa_len - 1963 sizeof(*sa)) 1964 break; 1965 space -= sa->sa_len - sizeof(*sa); 1966 error = copyout(&ifr, ifrp, 1967 sizeof ifr.ifr_name); 1968 if (error == 0) 1969 error = copyout(sa, &ifrp->ifr_addr, 1970 sa->sa_len); 1971 ifrp = (struct ifreq *) 1972 (sa->sa_len + (caddr_t)&ifrp->ifr_addr); 1973 } 1974 if (error) 1975 break; 1976 space -= sizeof ifr; 1977 } 1978 if (error) 1979 break; 1980 if (!addrs) { 1981 bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr); 1982 error = copyout(&ifr, ifrp, sizeof ifr); 1983 if (error) 1984 break; 1985 space -= sizeof ifr; 1986 ifrp++; 1987 } 1988 } 1989 ifc->ifc_len -= space; 1990 return (error); 1991 } 1992 1993 /* 1994 * Just like if_promisc(), but for all-multicast-reception mode. 1995 */ 1996 int 1997 if_allmulti(struct ifnet *ifp, int onswitch) 1998 { 1999 int error = 0; 2000 struct ifreq ifr; 2001 2002 crit_enter(); 2003 2004 if (onswitch) { 2005 if (ifp->if_amcount++ == 0) { 2006 ifp->if_flags |= IFF_ALLMULTI; 2007 ifr.ifr_flags = ifp->if_flags; 2008 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2009 ifnet_serialize_all(ifp); 2010 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2011 NULL); 2012 ifnet_deserialize_all(ifp); 2013 } 2014 } else { 2015 if (ifp->if_amcount > 1) { 2016 ifp->if_amcount--; 2017 } else { 2018 ifp->if_amcount = 0; 2019 ifp->if_flags &= ~IFF_ALLMULTI; 2020 ifr.ifr_flags = ifp->if_flags; 2021 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2022 ifnet_serialize_all(ifp); 2023 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2024 NULL); 2025 ifnet_deserialize_all(ifp); 2026 } 2027 } 2028 2029 crit_exit(); 2030 2031 if (error == 0) 2032 rt_ifmsg(ifp); 2033 return error; 2034 } 2035 2036 /* 2037 * Add a multicast listenership to the interface in question. 2038 * The link layer provides a routine which converts 2039 */ 2040 int 2041 if_addmulti( 2042 struct ifnet *ifp, /* interface to manipulate */ 2043 struct sockaddr *sa, /* address to add */ 2044 struct ifmultiaddr **retifma) 2045 { 2046 struct sockaddr *llsa, *dupsa; 2047 int error; 2048 struct ifmultiaddr *ifma; 2049 2050 /* 2051 * If the matching multicast address already exists 2052 * then don't add a new one, just add a reference 2053 */ 2054 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2055 if (sa_equal(sa, ifma->ifma_addr)) { 2056 ifma->ifma_refcount++; 2057 if (retifma) 2058 *retifma = ifma; 2059 return 0; 2060 } 2061 } 2062 2063 /* 2064 * Give the link layer a chance to accept/reject it, and also 2065 * find out which AF_LINK address this maps to, if it isn't one 2066 * already. 2067 */ 2068 if (ifp->if_resolvemulti) { 2069 ifnet_serialize_all(ifp); 2070 error = ifp->if_resolvemulti(ifp, &llsa, sa); 2071 ifnet_deserialize_all(ifp); 2072 if (error) 2073 return error; 2074 } else { 2075 llsa = NULL; 2076 } 2077 2078 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK); 2079 dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK); 2080 bcopy(sa, dupsa, sa->sa_len); 2081 2082 ifma->ifma_addr = dupsa; 2083 ifma->ifma_lladdr = llsa; 2084 ifma->ifma_ifp = ifp; 2085 ifma->ifma_refcount = 1; 2086 ifma->ifma_protospec = 0; 2087 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 2088 2089 /* 2090 * Some network interfaces can scan the address list at 2091 * interrupt time; lock them out. 2092 */ 2093 crit_enter(); 2094 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2095 crit_exit(); 2096 if (retifma) 2097 *retifma = ifma; 2098 2099 if (llsa != NULL) { 2100 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2101 if (sa_equal(ifma->ifma_addr, llsa)) 2102 break; 2103 } 2104 if (ifma) { 2105 ifma->ifma_refcount++; 2106 } else { 2107 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK); 2108 dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK); 2109 bcopy(llsa, dupsa, llsa->sa_len); 2110 ifma->ifma_addr = dupsa; 2111 ifma->ifma_ifp = ifp; 2112 ifma->ifma_refcount = 1; 2113 crit_enter(); 2114 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2115 crit_exit(); 2116 } 2117 } 2118 /* 2119 * We are certain we have added something, so call down to the 2120 * interface to let them know about it. 2121 */ 2122 crit_enter(); 2123 ifnet_serialize_all(ifp); 2124 if (ifp->if_ioctl) 2125 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL); 2126 ifnet_deserialize_all(ifp); 2127 crit_exit(); 2128 2129 return 0; 2130 } 2131 2132 /* 2133 * Remove a reference to a multicast address on this interface. Yell 2134 * if the request does not match an existing membership. 2135 */ 2136 int 2137 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 2138 { 2139 struct ifmultiaddr *ifma; 2140 2141 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2142 if (sa_equal(sa, ifma->ifma_addr)) 2143 break; 2144 if (ifma == NULL) 2145 return ENOENT; 2146 2147 if (ifma->ifma_refcount > 1) { 2148 ifma->ifma_refcount--; 2149 return 0; 2150 } 2151 2152 rt_newmaddrmsg(RTM_DELMADDR, ifma); 2153 sa = ifma->ifma_lladdr; 2154 crit_enter(); 2155 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2156 /* 2157 * Make sure the interface driver is notified 2158 * in the case of a link layer mcast group being left. 2159 */ 2160 if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) { 2161 ifnet_serialize_all(ifp); 2162 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2163 ifnet_deserialize_all(ifp); 2164 } 2165 crit_exit(); 2166 kfree(ifma->ifma_addr, M_IFMADDR); 2167 kfree(ifma, M_IFMADDR); 2168 if (sa == NULL) 2169 return 0; 2170 2171 /* 2172 * Now look for the link-layer address which corresponds to 2173 * this network address. It had been squirreled away in 2174 * ifma->ifma_lladdr for this purpose (so we don't have 2175 * to call ifp->if_resolvemulti() again), and we saved that 2176 * value in sa above. If some nasty deleted the 2177 * link-layer address out from underneath us, we can deal because 2178 * the address we stored was is not the same as the one which was 2179 * in the record for the link-layer address. (So we don't complain 2180 * in that case.) 2181 */ 2182 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2183 if (sa_equal(sa, ifma->ifma_addr)) 2184 break; 2185 if (ifma == NULL) 2186 return 0; 2187 2188 if (ifma->ifma_refcount > 1) { 2189 ifma->ifma_refcount--; 2190 return 0; 2191 } 2192 2193 crit_enter(); 2194 ifnet_serialize_all(ifp); 2195 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2196 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2197 ifnet_deserialize_all(ifp); 2198 crit_exit(); 2199 kfree(ifma->ifma_addr, M_IFMADDR); 2200 kfree(sa, M_IFMADDR); 2201 kfree(ifma, M_IFMADDR); 2202 2203 return 0; 2204 } 2205 2206 /* 2207 * Delete all multicast group membership for an interface. 2208 * Should be used to quickly flush all multicast filters. 2209 */ 2210 void 2211 if_delallmulti(struct ifnet *ifp) 2212 { 2213 struct ifmultiaddr *ifma; 2214 struct ifmultiaddr *next; 2215 2216 TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next) 2217 if_delmulti(ifp, ifma->ifma_addr); 2218 } 2219 2220 2221 /* 2222 * Set the link layer address on an interface. 2223 * 2224 * At this time we only support certain types of interfaces, 2225 * and we don't allow the length of the address to change. 2226 */ 2227 int 2228 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 2229 { 2230 struct sockaddr_dl *sdl; 2231 struct ifreq ifr; 2232 2233 sdl = IF_LLSOCKADDR(ifp); 2234 if (sdl == NULL) 2235 return (EINVAL); 2236 if (len != sdl->sdl_alen) /* don't allow length to change */ 2237 return (EINVAL); 2238 switch (ifp->if_type) { 2239 case IFT_ETHER: /* these types use struct arpcom */ 2240 case IFT_XETHER: 2241 case IFT_L2VLAN: 2242 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len); 2243 bcopy(lladdr, LLADDR(sdl), len); 2244 break; 2245 default: 2246 return (ENODEV); 2247 } 2248 /* 2249 * If the interface is already up, we need 2250 * to re-init it in order to reprogram its 2251 * address filter. 2252 */ 2253 ifnet_serialize_all(ifp); 2254 if ((ifp->if_flags & IFF_UP) != 0) { 2255 #ifdef INET 2256 struct ifaddr_container *ifac; 2257 #endif 2258 2259 ifp->if_flags &= ~IFF_UP; 2260 ifr.ifr_flags = ifp->if_flags; 2261 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2262 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2263 NULL); 2264 ifp->if_flags |= IFF_UP; 2265 ifr.ifr_flags = ifp->if_flags; 2266 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2267 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2268 NULL); 2269 #ifdef INET 2270 /* 2271 * Also send gratuitous ARPs to notify other nodes about 2272 * the address change. 2273 */ 2274 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2275 struct ifaddr *ifa = ifac->ifa; 2276 2277 if (ifa->ifa_addr != NULL && 2278 ifa->ifa_addr->sa_family == AF_INET) 2279 arp_gratuitous(ifp, ifa); 2280 } 2281 #endif 2282 } 2283 ifnet_deserialize_all(ifp); 2284 return (0); 2285 } 2286 2287 struct ifmultiaddr * 2288 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp) 2289 { 2290 struct ifmultiaddr *ifma; 2291 2292 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2293 if (sa_equal(ifma->ifma_addr, sa)) 2294 break; 2295 2296 return ifma; 2297 } 2298 2299 /* 2300 * This function locates the first real ethernet MAC from a network 2301 * card and loads it into node, returning 0 on success or ENOENT if 2302 * no suitable interfaces were found. It is used by the uuid code to 2303 * generate a unique 6-byte number. 2304 */ 2305 int 2306 if_getanyethermac(uint16_t *node, int minlen) 2307 { 2308 struct ifnet *ifp; 2309 struct sockaddr_dl *sdl; 2310 2311 TAILQ_FOREACH(ifp, &ifnet, if_link) { 2312 if (ifp->if_type != IFT_ETHER) 2313 continue; 2314 sdl = IF_LLSOCKADDR(ifp); 2315 if (sdl->sdl_alen < minlen) 2316 continue; 2317 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node, 2318 minlen); 2319 return(0); 2320 } 2321 return (ENOENT); 2322 } 2323 2324 /* 2325 * The name argument must be a pointer to storage which will last as 2326 * long as the interface does. For physical devices, the result of 2327 * device_get_name(dev) is a good choice and for pseudo-devices a 2328 * static string works well. 2329 */ 2330 void 2331 if_initname(struct ifnet *ifp, const char *name, int unit) 2332 { 2333 ifp->if_dname = name; 2334 ifp->if_dunit = unit; 2335 if (unit != IF_DUNIT_NONE) 2336 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 2337 else 2338 strlcpy(ifp->if_xname, name, IFNAMSIZ); 2339 } 2340 2341 int 2342 if_printf(struct ifnet *ifp, const char *fmt, ...) 2343 { 2344 __va_list ap; 2345 int retval; 2346 2347 retval = kprintf("%s: ", ifp->if_xname); 2348 __va_start(ap, fmt); 2349 retval += kvprintf(fmt, ap); 2350 __va_end(ap); 2351 return (retval); 2352 } 2353 2354 struct ifnet * 2355 if_alloc(uint8_t type) 2356 { 2357 struct ifnet *ifp; 2358 size_t size; 2359 2360 /* 2361 * XXX temporary hack until arpcom is setup in if_l2com 2362 */ 2363 if (type == IFT_ETHER) 2364 size = sizeof(struct arpcom); 2365 else 2366 size = sizeof(struct ifnet); 2367 2368 ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO); 2369 2370 ifp->if_type = type; 2371 2372 if (if_com_alloc[type] != NULL) { 2373 ifp->if_l2com = if_com_alloc[type](type, ifp); 2374 if (ifp->if_l2com == NULL) { 2375 kfree(ifp, M_IFNET); 2376 return (NULL); 2377 } 2378 } 2379 return (ifp); 2380 } 2381 2382 void 2383 if_free(struct ifnet *ifp) 2384 { 2385 kfree(ifp, M_IFNET); 2386 } 2387 2388 void 2389 ifq_set_classic(struct ifaltq *ifq) 2390 { 2391 ifq->altq_enqueue = ifq_classic_enqueue; 2392 ifq->altq_dequeue = ifq_classic_dequeue; 2393 ifq->altq_request = ifq_classic_request; 2394 } 2395 2396 int 2397 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m, 2398 struct altq_pktattr *pa __unused) 2399 { 2400 logifq(enqueue, ifq); 2401 if (IF_QFULL(ifq)) { 2402 m_freem(m); 2403 return(ENOBUFS); 2404 } else { 2405 IF_ENQUEUE(ifq, m); 2406 return(0); 2407 } 2408 } 2409 2410 struct mbuf * 2411 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op) 2412 { 2413 struct mbuf *m; 2414 2415 switch (op) { 2416 case ALTDQ_POLL: 2417 IF_POLL(ifq, m); 2418 break; 2419 case ALTDQ_REMOVE: 2420 logifq(dequeue, ifq); 2421 IF_DEQUEUE(ifq, m); 2422 break; 2423 default: 2424 panic("unsupported ALTQ dequeue op: %d", op); 2425 } 2426 KKASSERT(mpolled == NULL || mpolled == m); 2427 return(m); 2428 } 2429 2430 int 2431 ifq_classic_request(struct ifaltq *ifq, int req, void *arg) 2432 { 2433 switch (req) { 2434 case ALTRQ_PURGE: 2435 IF_DRAIN(ifq); 2436 break; 2437 default: 2438 panic("unsupported ALTQ request: %d", req); 2439 } 2440 return(0); 2441 } 2442 2443 int 2444 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa) 2445 { 2446 struct ifaltq *ifq = &ifp->if_snd; 2447 int running = 0, error, start = 0; 2448 2449 ASSERT_IFNET_NOT_SERIALIZED_TX(ifp); 2450 2451 ALTQ_LOCK(ifq); 2452 error = ifq_enqueue_locked(ifq, m, pa); 2453 if (error) { 2454 ALTQ_UNLOCK(ifq); 2455 return error; 2456 } 2457 if (!ifq->altq_started) { 2458 /* 2459 * Hold the interlock of ifnet.if_start 2460 */ 2461 ifq->altq_started = 1; 2462 start = 1; 2463 } 2464 ALTQ_UNLOCK(ifq); 2465 2466 ifp->if_obytes += m->m_pkthdr.len; 2467 if (m->m_flags & M_MCAST) 2468 ifp->if_omcasts++; 2469 2470 if (!start) { 2471 logifstart(avoid, ifp); 2472 return 0; 2473 } 2474 2475 /* 2476 * Try to do direct ifnet.if_start first, if there is 2477 * contention on ifnet's serializer, ifnet.if_start will 2478 * be scheduled on ifnet's CPU. 2479 */ 2480 if (!ifnet_tryserialize_tx(ifp)) { 2481 /* 2482 * ifnet serializer contention happened, 2483 * ifnet.if_start is scheduled on ifnet's 2484 * CPU, and we keep going. 2485 */ 2486 logifstart(contend_sched, ifp); 2487 if_start_schedule(ifp); 2488 return 0; 2489 } 2490 2491 if ((ifp->if_flags & IFF_OACTIVE) == 0) { 2492 logifstart(run, ifp); 2493 ifp->if_start(ifp); 2494 if ((ifp->if_flags & 2495 (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING) 2496 running = 1; 2497 } 2498 2499 ifnet_deserialize_tx(ifp); 2500 2501 if (if_start_need_schedule(ifq, running)) { 2502 /* 2503 * More data need to be transmitted, ifnet.if_start is 2504 * scheduled on ifnet's CPU, and we keep going. 2505 * NOTE: ifnet.if_start interlock is not released. 2506 */ 2507 logifstart(sched, ifp); 2508 if_start_schedule(ifp); 2509 } 2510 return 0; 2511 } 2512 2513 void * 2514 ifa_create(int size, int flags) 2515 { 2516 struct ifaddr *ifa; 2517 int i; 2518 2519 KASSERT(size >= sizeof(*ifa), ("ifaddr size too small")); 2520 2521 ifa = kmalloc(size, M_IFADDR, flags | M_ZERO); 2522 if (ifa == NULL) 2523 return NULL; 2524 2525 ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container), 2526 M_IFADDR, M_WAITOK | M_ZERO); 2527 ifa->ifa_ncnt = ncpus; 2528 for (i = 0; i < ncpus; ++i) { 2529 struct ifaddr_container *ifac = &ifa->ifa_containers[i]; 2530 2531 ifac->ifa_magic = IFA_CONTAINER_MAGIC; 2532 ifac->ifa = ifa; 2533 ifac->ifa_refcnt = 1; 2534 } 2535 #ifdef IFADDR_DEBUG 2536 kprintf("alloc ifa %p %d\n", ifa, size); 2537 #endif 2538 return ifa; 2539 } 2540 2541 void 2542 ifac_free(struct ifaddr_container *ifac, int cpu_id) 2543 { 2544 struct ifaddr *ifa = ifac->ifa; 2545 2546 KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC); 2547 KKASSERT(ifac->ifa_refcnt == 0); 2548 KASSERT(ifac->ifa_listmask == 0, 2549 ("ifa is still on %#x lists", ifac->ifa_listmask)); 2550 2551 ifac->ifa_magic = IFA_CONTAINER_DEAD; 2552 2553 #ifdef IFADDR_DEBUG_VERBOSE 2554 kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id); 2555 #endif 2556 2557 KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus, 2558 ("invalid # of ifac, %d", ifa->ifa_ncnt)); 2559 if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) { 2560 #ifdef IFADDR_DEBUG 2561 kprintf("free ifa %p\n", ifa); 2562 #endif 2563 kfree(ifa->ifa_containers, M_IFADDR); 2564 kfree(ifa, M_IFADDR); 2565 } 2566 } 2567 2568 static void 2569 ifa_iflink_dispatch(netmsg_t nmsg) 2570 { 2571 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2572 struct ifaddr *ifa = msg->ifa; 2573 struct ifnet *ifp = msg->ifp; 2574 int cpu = mycpuid; 2575 struct ifaddr_container *ifac; 2576 2577 crit_enter(); 2578 2579 ifac = &ifa->ifa_containers[cpu]; 2580 ASSERT_IFAC_VALID(ifac); 2581 KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0, 2582 ("ifaddr is on if_addrheads")); 2583 2584 ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD; 2585 if (msg->tail) 2586 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link); 2587 else 2588 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link); 2589 2590 crit_exit(); 2591 2592 ifa_forwardmsg(&nmsg->lmsg, cpu + 1); 2593 } 2594 2595 void 2596 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail) 2597 { 2598 struct netmsg_ifaddr msg; 2599 2600 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2601 0, ifa_iflink_dispatch); 2602 msg.ifa = ifa; 2603 msg.ifp = ifp; 2604 msg.tail = tail; 2605 2606 ifa_domsg(&msg.base.lmsg, 0); 2607 } 2608 2609 static void 2610 ifa_ifunlink_dispatch(netmsg_t nmsg) 2611 { 2612 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2613 struct ifaddr *ifa = msg->ifa; 2614 struct ifnet *ifp = msg->ifp; 2615 int cpu = mycpuid; 2616 struct ifaddr_container *ifac; 2617 2618 crit_enter(); 2619 2620 ifac = &ifa->ifa_containers[cpu]; 2621 ASSERT_IFAC_VALID(ifac); 2622 KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD, 2623 ("ifaddr is not on if_addrhead")); 2624 2625 TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link); 2626 ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD; 2627 2628 crit_exit(); 2629 2630 ifa_forwardmsg(&nmsg->lmsg, cpu + 1); 2631 } 2632 2633 void 2634 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp) 2635 { 2636 struct netmsg_ifaddr msg; 2637 2638 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2639 0, ifa_ifunlink_dispatch); 2640 msg.ifa = ifa; 2641 msg.ifp = ifp; 2642 2643 ifa_domsg(&msg.base.lmsg, 0); 2644 } 2645 2646 static void 2647 ifa_destroy_dispatch(netmsg_t nmsg) 2648 { 2649 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2650 2651 IFAFREE(msg->ifa); 2652 ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1); 2653 } 2654 2655 void 2656 ifa_destroy(struct ifaddr *ifa) 2657 { 2658 struct netmsg_ifaddr msg; 2659 2660 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2661 0, ifa_destroy_dispatch); 2662 msg.ifa = ifa; 2663 2664 ifa_domsg(&msg.base.lmsg, 0); 2665 } 2666 2667 struct lwkt_port * 2668 ifnet_portfn(int cpu) 2669 { 2670 return &ifnet_threads[cpu].td_msgport; 2671 } 2672 2673 void 2674 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu) 2675 { 2676 KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus); 2677 2678 if (next_cpu < ncpus) 2679 lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg); 2680 else 2681 lwkt_replymsg(lmsg, 0); 2682 } 2683 2684 int 2685 ifnet_domsg(struct lwkt_msg *lmsg, int cpu) 2686 { 2687 KKASSERT(cpu < ncpus); 2688 return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0); 2689 } 2690 2691 void 2692 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu) 2693 { 2694 KKASSERT(cpu < ncpus); 2695 lwkt_sendmsg(ifnet_portfn(cpu), lmsg); 2696 } 2697 2698 /* 2699 * Generic netmsg service loop. Some protocols may roll their own but all 2700 * must do the basic command dispatch function call done here. 2701 */ 2702 static void 2703 ifnet_service_loop(void *arg __unused) 2704 { 2705 netmsg_t msg; 2706 2707 while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) { 2708 KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg")); 2709 msg->base.nm_dispatch(msg); 2710 } 2711 } 2712 2713 static void 2714 ifnetinit(void *dummy __unused) 2715 { 2716 int i; 2717 2718 for (i = 0; i < ncpus; ++i) { 2719 struct thread *thr = &ifnet_threads[i]; 2720 2721 lwkt_create(ifnet_service_loop, NULL, NULL, 2722 thr, TDF_NOSTART|TDF_FORCE_SPINPORT, 2723 i, "ifnet %d", i); 2724 netmsg_service_port_init(&thr->td_msgport); 2725 lwkt_schedule(thr); 2726 } 2727 } 2728 2729 struct ifnet * 2730 ifnet_byindex(unsigned short idx) 2731 { 2732 if (idx > if_index) 2733 return NULL; 2734 return ifindex2ifnet[idx]; 2735 } 2736 2737 struct ifaddr * 2738 ifaddr_byindex(unsigned short idx) 2739 { 2740 struct ifnet *ifp; 2741 2742 ifp = ifnet_byindex(idx); 2743 if (!ifp) 2744 return NULL; 2745 return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 2746 } 2747 2748 void 2749 if_register_com_alloc(u_char type, 2750 if_com_alloc_t *a, if_com_free_t *f) 2751 { 2752 2753 KASSERT(if_com_alloc[type] == NULL, 2754 ("if_register_com_alloc: %d already registered", type)); 2755 KASSERT(if_com_free[type] == NULL, 2756 ("if_register_com_alloc: %d free already registered", type)); 2757 2758 if_com_alloc[type] = a; 2759 if_com_free[type] = f; 2760 } 2761 2762 void 2763 if_deregister_com_alloc(u_char type) 2764 { 2765 2766 KASSERT(if_com_alloc[type] != NULL, 2767 ("if_deregister_com_alloc: %d not registered", type)); 2768 KASSERT(if_com_free[type] != NULL, 2769 ("if_deregister_com_alloc: %d free not registered", type)); 2770 if_com_alloc[type] = NULL; 2771 if_com_free[type] = NULL; 2772 } 2773 2774 int 2775 if_ring_count2(int cnt, int cnt_max) 2776 { 2777 int shift = 0; 2778 2779 KASSERT(cnt_max >= 1 && powerof2(cnt_max), 2780 ("invalid ring count max %d", cnt_max)); 2781 2782 if (cnt <= 0) 2783 cnt = cnt_max; 2784 if (cnt > ncpus2) 2785 cnt = ncpus2; 2786 if (cnt > cnt_max) 2787 cnt = cnt_max; 2788 2789 while ((1 << (shift + 1)) <= cnt) 2790 ++shift; 2791 cnt = 1 << shift; 2792 2793 KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max, 2794 ("calculate cnt %d, ncpus2 %d, cnt max %d", 2795 cnt, ncpus2, cnt_max)); 2796 return cnt; 2797 } 2798