xref: /dflybsd-src/sys/net/if.c (revision c666f28aa7c82e205ee3709528b79a41e8cc5308)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_inet.h"
40 #include "opt_polling.h"
41 #include "opt_ifpoll.h"
42 
43 #include <sys/param.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/priv.h>
49 #include <sys/protosw.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/socketops.h>
53 #include <sys/protosw.h>
54 #include <sys/kernel.h>
55 #include <sys/ktr.h>
56 #include <sys/mutex.h>
57 #include <sys/sockio.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 #include <sys/domain.h>
61 #include <sys/thread.h>
62 #include <sys/serialize.h>
63 #include <sys/bus.h>
64 
65 #include <sys/thread2.h>
66 #include <sys/msgport2.h>
67 #include <sys/mutex2.h>
68 
69 #include <net/if.h>
70 #include <net/if_arp.h>
71 #include <net/if_dl.h>
72 #include <net/if_types.h>
73 #include <net/if_var.h>
74 #include <net/ifq_var.h>
75 #include <net/radix.h>
76 #include <net/route.h>
77 #include <net/if_clone.h>
78 #include <net/netisr.h>
79 #include <net/netmsg2.h>
80 
81 #include <machine/atomic.h>
82 #include <machine/stdarg.h>
83 #include <machine/smp.h>
84 
85 #if defined(INET) || defined(INET6)
86 /*XXX*/
87 #include <netinet/in.h>
88 #include <netinet/in_var.h>
89 #include <netinet/if_ether.h>
90 #ifdef INET6
91 #include <netinet6/in6_var.h>
92 #include <netinet6/in6_ifattach.h>
93 #endif
94 #endif
95 
96 #if defined(COMPAT_43)
97 #include <emulation/43bsd/43bsd_socket.h>
98 #endif /* COMPAT_43 */
99 
100 struct netmsg_ifaddr {
101 	struct netmsg_base base;
102 	struct ifaddr	*ifa;
103 	struct ifnet	*ifp;
104 	int		tail;
105 };
106 
107 /*
108  * System initialization
109  */
110 static void	if_attachdomain(void *);
111 static void	if_attachdomain1(struct ifnet *);
112 static int	ifconf(u_long, caddr_t, struct ucred *);
113 static void	ifinit(void *);
114 static void	ifnetinit(void *);
115 static void	if_slowtimo(void *);
116 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
117 static int	if_rtdel(struct radix_node *, void *);
118 
119 #ifdef INET6
120 /*
121  * XXX: declare here to avoid to include many inet6 related files..
122  * should be more generalized?
123  */
124 extern void	nd6_setmtu(struct ifnet *);
125 #endif
126 
127 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
128 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
129 
130 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
131 /* Must be after netisr_init */
132 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
133 
134 static  if_com_alloc_t *if_com_alloc[256];
135 static  if_com_free_t *if_com_free[256];
136 
137 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
138 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
139 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
140 
141 int			ifqmaxlen = IFQ_MAXLEN;
142 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
143 
144 struct callout		if_slowtimo_timer;
145 
146 int			if_index = 0;
147 struct ifnet		**ifindex2ifnet = NULL;
148 static struct thread	ifnet_threads[MAXCPU];
149 
150 #define IFQ_KTR_STRING		"ifq=%p"
151 #define IFQ_KTR_ARGS	struct ifaltq *ifq
152 #ifndef KTR_IFQ
153 #define KTR_IFQ			KTR_ALL
154 #endif
155 KTR_INFO_MASTER(ifq);
156 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
157 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
158 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
159 
160 #define IF_START_KTR_STRING	"ifp=%p"
161 #define IF_START_KTR_ARGS	struct ifnet *ifp
162 #ifndef KTR_IF_START
163 #define KTR_IF_START		KTR_ALL
164 #endif
165 KTR_INFO_MASTER(if_start);
166 KTR_INFO(KTR_IF_START, if_start, run, 0,
167 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
168 KTR_INFO(KTR_IF_START, if_start, sched, 1,
169 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
170 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
171 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
172 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
173 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
174 #ifdef SMP
175 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
176 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
177 #endif
178 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
179 
180 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
181 
182 /*
183  * Network interface utility routines.
184  *
185  * Routines with ifa_ifwith* names take sockaddr *'s as
186  * parameters.
187  */
188 /* ARGSUSED*/
189 void
190 ifinit(void *dummy)
191 {
192 	struct ifnet *ifp;
193 
194 	callout_init(&if_slowtimo_timer);
195 
196 	crit_enter();
197 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
198 		if (ifp->if_snd.ifq_maxlen == 0) {
199 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
200 			ifp->if_snd.ifq_maxlen = ifqmaxlen;
201 		}
202 	}
203 	crit_exit();
204 
205 	if_slowtimo(0);
206 }
207 
208 static int
209 if_start_cpuid(struct ifnet *ifp)
210 {
211 	return ifp->if_cpuid;
212 }
213 
214 #ifdef DEVICE_POLLING
215 static int
216 if_start_cpuid_poll(struct ifnet *ifp)
217 {
218 	int poll_cpuid = ifp->if_poll_cpuid;
219 
220 	if (poll_cpuid >= 0)
221 		return poll_cpuid;
222 	else
223 		return ifp->if_cpuid;
224 }
225 #endif
226 
227 #ifdef IFPOLL_ENABLE
228 static int
229 if_start_cpuid_npoll(struct ifnet *ifp)
230 {
231 	int poll_cpuid = ifp->if_npoll_cpuid;
232 
233 	if (poll_cpuid >= 0)
234 		return poll_cpuid;
235 	else
236 		return ifp->if_cpuid;
237 }
238 #endif
239 
240 static void
241 if_start_ipifunc(void *arg)
242 {
243 	struct ifnet *ifp = arg;
244 	struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].lmsg;
245 
246 	crit_enter();
247 	if (lmsg->ms_flags & MSGF_DONE)
248 		lwkt_sendmsg(netisr_portfn(mycpuid), lmsg);
249 	crit_exit();
250 }
251 
252 /*
253  * Schedule ifnet.if_start on ifnet's CPU
254  */
255 static void
256 if_start_schedule(struct ifnet *ifp)
257 {
258 #ifdef SMP
259 	int cpu;
260 
261 	cpu = ifp->if_start_cpuid(ifp);
262 	if (cpu != mycpuid)
263 		lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp);
264 	else
265 #endif
266 	if_start_ipifunc(ifp);
267 }
268 
269 /*
270  * NOTE:
271  * This function will release ifnet.if_start interlock,
272  * if ifnet.if_start does not need to be scheduled
273  */
274 static __inline int
275 if_start_need_schedule(struct ifaltq *ifq, int running)
276 {
277 	if (!running || ifq_is_empty(ifq)
278 #ifdef ALTQ
279 	    || ifq->altq_tbr != NULL
280 #endif
281 	) {
282 		ALTQ_LOCK(ifq);
283 		/*
284 		 * ifnet.if_start interlock is released, if:
285 		 * 1) Hardware can not take any packets, due to
286 		 *    o  interface is marked down
287 		 *    o  hardware queue is full (IFF_OACTIVE)
288 		 *    Under the second situation, hardware interrupt
289 		 *    or polling(4) will call/schedule ifnet.if_start
290 		 *    when hardware queue is ready
291 		 * 2) There is not packet in the ifnet.if_snd.
292 		 *    Further ifq_dispatch or ifq_handoff will call/
293 		 *    schedule ifnet.if_start
294 		 * 3) TBR is used and it does not allow further
295 		 *    dequeueing.
296 		 *    TBR callout will call ifnet.if_start
297 		 */
298 		if (!running || !ifq_data_ready(ifq)) {
299 			ifq->altq_started = 0;
300 			ALTQ_UNLOCK(ifq);
301 			return 0;
302 		}
303 		ALTQ_UNLOCK(ifq);
304 	}
305 	return 1;
306 }
307 
308 static void
309 if_start_dispatch(netmsg_t msg)
310 {
311 	struct lwkt_msg *lmsg = &msg->base.lmsg;
312 	struct ifnet *ifp = lmsg->u.ms_resultp;
313 	struct ifaltq *ifq = &ifp->if_snd;
314 	int running = 0;
315 
316 	crit_enter();
317 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
318 	crit_exit();
319 
320 #ifdef SMP
321 	if (mycpuid != ifp->if_start_cpuid(ifp)) {
322 		/*
323 		 * If the ifnet is still up, we need to
324 		 * chase its CPU change.
325 		 */
326 		if (ifp->if_flags & IFF_UP) {
327 			logifstart(chase_sched, ifp);
328 			if_start_schedule(ifp);
329 			return;
330 		} else {
331 			goto check;
332 		}
333 	}
334 #endif
335 
336 	if (ifp->if_flags & IFF_UP) {
337 		ifnet_serialize_tx(ifp); /* XXX try? */
338 		if ((ifp->if_flags & IFF_OACTIVE) == 0) {
339 			logifstart(run, ifp);
340 			ifp->if_start(ifp);
341 			if ((ifp->if_flags &
342 			(IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
343 				running = 1;
344 		}
345 		ifnet_deserialize_tx(ifp);
346 	}
347 #ifdef SMP
348 check:
349 #endif
350 	if (if_start_need_schedule(ifq, running)) {
351 		crit_enter();
352 		if (lmsg->ms_flags & MSGF_DONE)	{ /* XXX necessary? */
353 			logifstart(sched, ifp);
354 			lwkt_sendmsg(netisr_portfn(mycpuid), lmsg);
355 		}
356 		crit_exit();
357 	}
358 }
359 
360 /* Device driver ifnet.if_start helper function */
361 void
362 if_devstart(struct ifnet *ifp)
363 {
364 	struct ifaltq *ifq = &ifp->if_snd;
365 	int running = 0;
366 
367 	ASSERT_IFNET_SERIALIZED_TX(ifp);
368 
369 	ALTQ_LOCK(ifq);
370 	if (ifq->altq_started || !ifq_data_ready(ifq)) {
371 		logifstart(avoid, ifp);
372 		ALTQ_UNLOCK(ifq);
373 		return;
374 	}
375 	ifq->altq_started = 1;
376 	ALTQ_UNLOCK(ifq);
377 
378 	logifstart(run, ifp);
379 	ifp->if_start(ifp);
380 
381 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
382 		running = 1;
383 
384 	if (if_start_need_schedule(ifq, running)) {
385 		/*
386 		 * More data need to be transmitted, ifnet.if_start is
387 		 * scheduled on ifnet's CPU, and we keep going.
388 		 * NOTE: ifnet.if_start interlock is not released.
389 		 */
390 		logifstart(sched, ifp);
391 		if_start_schedule(ifp);
392 	}
393 }
394 
395 static void
396 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
397 {
398 	lwkt_serialize_enter(ifp->if_serializer);
399 }
400 
401 static void
402 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
403 {
404 	lwkt_serialize_exit(ifp->if_serializer);
405 }
406 
407 static int
408 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
409 {
410 	return lwkt_serialize_try(ifp->if_serializer);
411 }
412 
413 #ifdef INVARIANTS
414 static void
415 if_default_serialize_assert(struct ifnet *ifp,
416 			    enum ifnet_serialize slz __unused,
417 			    boolean_t serialized)
418 {
419 	if (serialized)
420 		ASSERT_SERIALIZED(ifp->if_serializer);
421 	else
422 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
423 }
424 #endif
425 
426 /*
427  * Attach an interface to the list of "active" interfaces.
428  *
429  * The serializer is optional.  If non-NULL access to the interface
430  * may be MPSAFE.
431  */
432 void
433 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
434 {
435 	unsigned socksize, ifasize;
436 	int namelen, masklen;
437 	struct sockaddr_dl *sdl;
438 	struct ifaddr *ifa;
439 	struct ifaltq *ifq;
440 	int i;
441 
442 	static int if_indexlim = 8;
443 
444 	if (ifp->if_serialize != NULL) {
445 		KASSERT(ifp->if_deserialize != NULL &&
446 			ifp->if_tryserialize != NULL &&
447 			ifp->if_serialize_assert != NULL,
448 			("serialize functions are partially setup"));
449 
450 		/*
451 		 * If the device supplies serialize functions,
452 		 * then clear if_serializer to catch any invalid
453 		 * usage of this field.
454 		 */
455 		KASSERT(serializer == NULL,
456 			("both serialize functions and default serializer "
457 			 "are supplied"));
458 		ifp->if_serializer = NULL;
459 	} else {
460 		KASSERT(ifp->if_deserialize == NULL &&
461 			ifp->if_tryserialize == NULL &&
462 			ifp->if_serialize_assert == NULL,
463 			("serialize functions are partially setup"));
464 		ifp->if_serialize = if_default_serialize;
465 		ifp->if_deserialize = if_default_deserialize;
466 		ifp->if_tryserialize = if_default_tryserialize;
467 #ifdef INVARIANTS
468 		ifp->if_serialize_assert = if_default_serialize_assert;
469 #endif
470 
471 		/*
472 		 * The serializer can be passed in from the device,
473 		 * allowing the same serializer to be used for both
474 		 * the interrupt interlock and the device queue.
475 		 * If not specified, the netif structure will use an
476 		 * embedded serializer.
477 		 */
478 		if (serializer == NULL) {
479 			serializer = &ifp->if_default_serializer;
480 			lwkt_serialize_init(serializer);
481 		}
482 		ifp->if_serializer = serializer;
483 	}
484 
485 	ifp->if_start_cpuid = if_start_cpuid;
486 	ifp->if_cpuid = 0;
487 
488 #ifdef DEVICE_POLLING
489 	/* Device is not in polling mode by default */
490 	ifp->if_poll_cpuid = -1;
491 	if (ifp->if_poll != NULL)
492 		ifp->if_start_cpuid = if_start_cpuid_poll;
493 #endif
494 #ifdef IFPOLL_ENABLE
495 	/* Device is not in polling mode by default */
496 	ifp->if_npoll_cpuid = -1;
497 	if (ifp->if_npoll != NULL)
498 		ifp->if_start_cpuid = if_start_cpuid_npoll;
499 #endif
500 
501 	ifp->if_start_nmsg = kmalloc(ncpus * sizeof(*ifp->if_start_nmsg),
502 				     M_LWKTMSG, M_WAITOK);
503 	for (i = 0; i < ncpus; ++i) {
504 		netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport,
505 			    0, if_start_dispatch);
506 		ifp->if_start_nmsg[i].lmsg.u.ms_resultp = ifp;
507 	}
508 
509 	mtx_init(&ifp->if_ioctl_mtx);
510 	mtx_lock(&ifp->if_ioctl_mtx);
511 
512 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
513 	ifp->if_index = ++if_index;
514 
515 	/*
516 	 * XXX -
517 	 * The old code would work if the interface passed a pre-existing
518 	 * chain of ifaddrs to this code.  We don't trust our callers to
519 	 * properly initialize the tailq, however, so we no longer allow
520 	 * this unlikely case.
521 	 */
522 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
523 				    M_IFADDR, M_WAITOK | M_ZERO);
524 	for (i = 0; i < ncpus; ++i)
525 		TAILQ_INIT(&ifp->if_addrheads[i]);
526 
527 	TAILQ_INIT(&ifp->if_prefixhead);
528 	TAILQ_INIT(&ifp->if_multiaddrs);
529 	TAILQ_INIT(&ifp->if_groups);
530 	getmicrotime(&ifp->if_lastchange);
531 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
532 		unsigned int n;
533 		struct ifnet **q;
534 
535 		if_indexlim <<= 1;
536 
537 		/* grow ifindex2ifnet */
538 		n = if_indexlim * sizeof(*q);
539 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
540 		if (ifindex2ifnet) {
541 			bcopy(ifindex2ifnet, q, n/2);
542 			kfree(ifindex2ifnet, M_IFADDR);
543 		}
544 		ifindex2ifnet = q;
545 	}
546 
547 	ifindex2ifnet[if_index] = ifp;
548 
549 	/*
550 	 * create a Link Level name for this device
551 	 */
552 	namelen = strlen(ifp->if_xname);
553 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
554 	socksize = masklen + ifp->if_addrlen;
555 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
556 	if (socksize < sizeof(*sdl))
557 		socksize = sizeof(*sdl);
558 	socksize = ROUNDUP(socksize);
559 #undef ROUNDUP
560 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
561 	ifa = ifa_create(ifasize, M_WAITOK);
562 	sdl = (struct sockaddr_dl *)(ifa + 1);
563 	sdl->sdl_len = socksize;
564 	sdl->sdl_family = AF_LINK;
565 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
566 	sdl->sdl_nlen = namelen;
567 	sdl->sdl_index = ifp->if_index;
568 	sdl->sdl_type = ifp->if_type;
569 	ifp->if_lladdr = ifa;
570 	ifa->ifa_ifp = ifp;
571 	ifa->ifa_rtrequest = link_rtrequest;
572 	ifa->ifa_addr = (struct sockaddr *)sdl;
573 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
574 	ifa->ifa_netmask = (struct sockaddr *)sdl;
575 	sdl->sdl_len = masklen;
576 	while (namelen != 0)
577 		sdl->sdl_data[--namelen] = 0xff;
578 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
579 
580 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
581 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
582 
583 	ifq = &ifp->if_snd;
584 	ifq->altq_type = 0;
585 	ifq->altq_disc = NULL;
586 	ifq->altq_flags &= ALTQF_CANTCHANGE;
587 	ifq->altq_tbr = NULL;
588 	ifq->altq_ifp = ifp;
589 	ifq->altq_started = 0;
590 	ifq->altq_prepended = NULL;
591 	ALTQ_LOCK_INIT(ifq);
592 	ifq_set_classic(ifq);
593 
594 	if (!SLIST_EMPTY(&domains))
595 		if_attachdomain1(ifp);
596 
597 	/* Announce the interface. */
598 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
599 
600 	mtx_unlock(&ifp->if_ioctl_mtx);
601 }
602 
603 static void
604 if_attachdomain(void *dummy)
605 {
606 	struct ifnet *ifp;
607 
608 	crit_enter();
609 	TAILQ_FOREACH(ifp, &ifnet, if_list)
610 		if_attachdomain1(ifp);
611 	crit_exit();
612 }
613 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
614 	if_attachdomain, NULL);
615 
616 static void
617 if_attachdomain1(struct ifnet *ifp)
618 {
619 	struct domain *dp;
620 
621 	crit_enter();
622 
623 	/* address family dependent data region */
624 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
625 	SLIST_FOREACH(dp, &domains, dom_next)
626 		if (dp->dom_ifattach)
627 			ifp->if_afdata[dp->dom_family] =
628 				(*dp->dom_ifattach)(ifp);
629 	crit_exit();
630 }
631 
632 /*
633  * Purge all addresses whose type is _not_ AF_LINK
634  */
635 void
636 if_purgeaddrs_nolink(struct ifnet *ifp)
637 {
638 	struct ifaddr_container *ifac, *next;
639 
640 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
641 			      ifa_link, next) {
642 		struct ifaddr *ifa = ifac->ifa;
643 
644 		/* Leave link ifaddr as it is */
645 		if (ifa->ifa_addr->sa_family == AF_LINK)
646 			continue;
647 #ifdef INET
648 		/* XXX: Ugly!! ad hoc just for INET */
649 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
650 			struct ifaliasreq ifr;
651 #ifdef IFADDR_DEBUG_VERBOSE
652 			int i;
653 
654 			kprintf("purge in4 addr %p: ", ifa);
655 			for (i = 0; i < ncpus; ++i)
656 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
657 			kprintf("\n");
658 #endif
659 
660 			bzero(&ifr, sizeof ifr);
661 			ifr.ifra_addr = *ifa->ifa_addr;
662 			if (ifa->ifa_dstaddr)
663 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
664 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
665 				       NULL) == 0)
666 				continue;
667 		}
668 #endif /* INET */
669 #ifdef INET6
670 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
671 #ifdef IFADDR_DEBUG_VERBOSE
672 			int i;
673 
674 			kprintf("purge in6 addr %p: ", ifa);
675 			for (i = 0; i < ncpus; ++i)
676 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
677 			kprintf("\n");
678 #endif
679 
680 			in6_purgeaddr(ifa);
681 			/* ifp_addrhead is already updated */
682 			continue;
683 		}
684 #endif /* INET6 */
685 		ifa_ifunlink(ifa, ifp);
686 		ifa_destroy(ifa);
687 	}
688 }
689 
690 /*
691  * Detach an interface, removing it from the
692  * list of "active" interfaces.
693  */
694 void
695 if_detach(struct ifnet *ifp)
696 {
697 	struct radix_node_head	*rnh;
698 	int i;
699 	int cpu, origcpu;
700 	struct domain *dp;
701 
702 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
703 
704 	/*
705 	 * Remove routes and flush queues.
706 	 */
707 	crit_enter();
708 #ifdef DEVICE_POLLING
709 	if (ifp->if_flags & IFF_POLLING)
710 		ether_poll_deregister(ifp);
711 #endif
712 #ifdef IFPOLL_ENABLE
713 	if (ifp->if_flags & IFF_NPOLLING)
714 		ifpoll_deregister(ifp);
715 #endif
716 	if_down(ifp);
717 
718 #ifdef ALTQ
719 	if (ifq_is_enabled(&ifp->if_snd))
720 		altq_disable(&ifp->if_snd);
721 	if (ifq_is_attached(&ifp->if_snd))
722 		altq_detach(&ifp->if_snd);
723 #endif
724 
725 	/*
726 	 * Clean up all addresses.
727 	 */
728 	ifp->if_lladdr = NULL;
729 
730 	if_purgeaddrs_nolink(ifp);
731 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
732 		struct ifaddr *ifa;
733 
734 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
735 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
736 			("non-link ifaddr is left on if_addrheads"));
737 
738 		ifa_ifunlink(ifa, ifp);
739 		ifa_destroy(ifa);
740 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
741 			("there are still ifaddrs left on if_addrheads"));
742 	}
743 
744 #ifdef INET
745 	/*
746 	 * Remove all IPv4 kernel structures related to ifp.
747 	 */
748 	in_ifdetach(ifp);
749 #endif
750 
751 #ifdef INET6
752 	/*
753 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
754 	 * before removing routing entries below, since IPv6 interface direct
755 	 * routes are expected to be removed by the IPv6-specific kernel API.
756 	 * Otherwise, the kernel will detect some inconsistency and bark it.
757 	 */
758 	in6_ifdetach(ifp);
759 #endif
760 
761 	/*
762 	 * Delete all remaining routes using this interface
763 	 * Unfortuneatly the only way to do this is to slog through
764 	 * the entire routing table looking for routes which point
765 	 * to this interface...oh well...
766 	 */
767 	origcpu = mycpuid;
768 	for (cpu = 0; cpu < ncpus; cpu++) {
769 		lwkt_migratecpu(cpu);
770 		for (i = 1; i <= AF_MAX; i++) {
771 			if ((rnh = rt_tables[cpu][i]) == NULL)
772 				continue;
773 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
774 		}
775 	}
776 	lwkt_migratecpu(origcpu);
777 
778 	/* Announce that the interface is gone. */
779 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
780 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
781 
782 	SLIST_FOREACH(dp, &domains, dom_next)
783 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
784 			(*dp->dom_ifdetach)(ifp,
785 				ifp->if_afdata[dp->dom_family]);
786 
787 	/*
788 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
789 	 */
790 	ifindex2ifnet[ifp->if_index] = NULL;
791 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
792 		if_index--;
793 
794 	TAILQ_REMOVE(&ifnet, ifp, if_link);
795 	kfree(ifp->if_addrheads, M_IFADDR);
796 	kfree(ifp->if_start_nmsg, M_LWKTMSG);
797 	crit_exit();
798 }
799 
800 /*
801  * Create interface group without members
802  */
803 struct ifg_group *
804 if_creategroup(const char *groupname)
805 {
806         struct ifg_group        *ifg = NULL;
807 
808         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
809             M_TEMP, M_NOWAIT)) == NULL)
810                 return (NULL);
811 
812         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
813         ifg->ifg_refcnt = 0;
814         ifg->ifg_carp_demoted = 0;
815         TAILQ_INIT(&ifg->ifg_members);
816 #if NPF > 0
817         pfi_attach_ifgroup(ifg);
818 #endif
819         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
820 
821         return (ifg);
822 }
823 
824 /*
825  * Add a group to an interface
826  */
827 int
828 if_addgroup(struct ifnet *ifp, const char *groupname)
829 {
830 	struct ifg_list		*ifgl;
831 	struct ifg_group	*ifg = NULL;
832 	struct ifg_member	*ifgm;
833 
834 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
835 	    groupname[strlen(groupname) - 1] <= '9')
836 		return (EINVAL);
837 
838 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
839 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
840 			return (EEXIST);
841 
842 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
843 		return (ENOMEM);
844 
845 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
846 		kfree(ifgl, M_TEMP);
847 		return (ENOMEM);
848 	}
849 
850 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
851 		if (!strcmp(ifg->ifg_group, groupname))
852 			break;
853 
854 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
855 		kfree(ifgl, M_TEMP);
856 		kfree(ifgm, M_TEMP);
857 		return (ENOMEM);
858 	}
859 
860 	ifg->ifg_refcnt++;
861 	ifgl->ifgl_group = ifg;
862 	ifgm->ifgm_ifp = ifp;
863 
864 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
865 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
866 
867 #if NPF > 0
868 	pfi_group_change(groupname);
869 #endif
870 
871 	return (0);
872 }
873 
874 /*
875  * Remove a group from an interface
876  */
877 int
878 if_delgroup(struct ifnet *ifp, const char *groupname)
879 {
880 	struct ifg_list		*ifgl;
881 	struct ifg_member	*ifgm;
882 
883 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
884 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
885 			break;
886 	if (ifgl == NULL)
887 		return (ENOENT);
888 
889 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
890 
891 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
892 		if (ifgm->ifgm_ifp == ifp)
893 			break;
894 
895 	if (ifgm != NULL) {
896 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
897 		kfree(ifgm, M_TEMP);
898 	}
899 
900 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
901 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
902 #if NPF > 0
903 		pfi_detach_ifgroup(ifgl->ifgl_group);
904 #endif
905 		kfree(ifgl->ifgl_group, M_TEMP);
906 	}
907 
908 	kfree(ifgl, M_TEMP);
909 
910 #if NPF > 0
911 	pfi_group_change(groupname);
912 #endif
913 
914 	return (0);
915 }
916 
917 /*
918  * Stores all groups from an interface in memory pointed
919  * to by data
920  */
921 int
922 if_getgroup(caddr_t data, struct ifnet *ifp)
923 {
924 	int			 len, error;
925 	struct ifg_list		*ifgl;
926 	struct ifg_req		 ifgrq, *ifgp;
927 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
928 
929 	if (ifgr->ifgr_len == 0) {
930 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
931 			ifgr->ifgr_len += sizeof(struct ifg_req);
932 		return (0);
933 	}
934 
935 	len = ifgr->ifgr_len;
936 	ifgp = ifgr->ifgr_groups;
937 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
938 		if (len < sizeof(ifgrq))
939 			return (EINVAL);
940 		bzero(&ifgrq, sizeof ifgrq);
941 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
942 		    sizeof(ifgrq.ifgrq_group));
943 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
944 		    sizeof(struct ifg_req))))
945 			return (error);
946 		len -= sizeof(ifgrq);
947 		ifgp++;
948 	}
949 
950 	return (0);
951 }
952 
953 /*
954  * Stores all members of a group in memory pointed to by data
955  */
956 int
957 if_getgroupmembers(caddr_t data)
958 {
959 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
960 	struct ifg_group	*ifg;
961 	struct ifg_member	*ifgm;
962 	struct ifg_req		 ifgrq, *ifgp;
963 	int			 len, error;
964 
965 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
966 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
967 			break;
968 	if (ifg == NULL)
969 		return (ENOENT);
970 
971 	if (ifgr->ifgr_len == 0) {
972 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
973 			ifgr->ifgr_len += sizeof(ifgrq);
974 		return (0);
975 	}
976 
977 	len = ifgr->ifgr_len;
978 	ifgp = ifgr->ifgr_groups;
979 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
980 		if (len < sizeof(ifgrq))
981 			return (EINVAL);
982 		bzero(&ifgrq, sizeof ifgrq);
983 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
984 		    sizeof(ifgrq.ifgrq_member));
985 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
986 		    sizeof(struct ifg_req))))
987 			return (error);
988 		len -= sizeof(ifgrq);
989 		ifgp++;
990 	}
991 
992 	return (0);
993 }
994 
995 /*
996  * Delete Routes for a Network Interface
997  *
998  * Called for each routing entry via the rnh->rnh_walktree() call above
999  * to delete all route entries referencing a detaching network interface.
1000  *
1001  * Arguments:
1002  *	rn	pointer to node in the routing table
1003  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1004  *
1005  * Returns:
1006  *	0	successful
1007  *	errno	failed - reason indicated
1008  *
1009  */
1010 static int
1011 if_rtdel(struct radix_node *rn, void *arg)
1012 {
1013 	struct rtentry	*rt = (struct rtentry *)rn;
1014 	struct ifnet	*ifp = arg;
1015 	int		err;
1016 
1017 	if (rt->rt_ifp == ifp) {
1018 
1019 		/*
1020 		 * Protect (sorta) against walktree recursion problems
1021 		 * with cloned routes
1022 		 */
1023 		if (!(rt->rt_flags & RTF_UP))
1024 			return (0);
1025 
1026 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1027 				rt_mask(rt), rt->rt_flags,
1028 				NULL);
1029 		if (err) {
1030 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1031 		}
1032 	}
1033 
1034 	return (0);
1035 }
1036 
1037 /*
1038  * Locate an interface based on a complete address.
1039  */
1040 struct ifaddr *
1041 ifa_ifwithaddr(struct sockaddr *addr)
1042 {
1043 	struct ifnet *ifp;
1044 
1045 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1046 		struct ifaddr_container *ifac;
1047 
1048 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1049 			struct ifaddr *ifa = ifac->ifa;
1050 
1051 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1052 				continue;
1053 			if (sa_equal(addr, ifa->ifa_addr))
1054 				return (ifa);
1055 			if ((ifp->if_flags & IFF_BROADCAST) &&
1056 			    ifa->ifa_broadaddr &&
1057 			    /* IPv6 doesn't have broadcast */
1058 			    ifa->ifa_broadaddr->sa_len != 0 &&
1059 			    sa_equal(ifa->ifa_broadaddr, addr))
1060 				return (ifa);
1061 		}
1062 	}
1063 	return (NULL);
1064 }
1065 /*
1066  * Locate the point to point interface with a given destination address.
1067  */
1068 struct ifaddr *
1069 ifa_ifwithdstaddr(struct sockaddr *addr)
1070 {
1071 	struct ifnet *ifp;
1072 
1073 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1074 		struct ifaddr_container *ifac;
1075 
1076 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1077 			continue;
1078 
1079 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1080 			struct ifaddr *ifa = ifac->ifa;
1081 
1082 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1083 				continue;
1084 			if (ifa->ifa_dstaddr &&
1085 			    sa_equal(addr, ifa->ifa_dstaddr))
1086 				return (ifa);
1087 		}
1088 	}
1089 	return (NULL);
1090 }
1091 
1092 /*
1093  * Find an interface on a specific network.  If many, choice
1094  * is most specific found.
1095  */
1096 struct ifaddr *
1097 ifa_ifwithnet(struct sockaddr *addr)
1098 {
1099 	struct ifnet *ifp;
1100 	struct ifaddr *ifa_maybe = NULL;
1101 	u_int af = addr->sa_family;
1102 	char *addr_data = addr->sa_data, *cplim;
1103 
1104 	/*
1105 	 * AF_LINK addresses can be looked up directly by their index number,
1106 	 * so do that if we can.
1107 	 */
1108 	if (af == AF_LINK) {
1109 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1110 
1111 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1112 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1113 	}
1114 
1115 	/*
1116 	 * Scan though each interface, looking for ones that have
1117 	 * addresses in this address family.
1118 	 */
1119 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1120 		struct ifaddr_container *ifac;
1121 
1122 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1123 			struct ifaddr *ifa = ifac->ifa;
1124 			char *cp, *cp2, *cp3;
1125 
1126 			if (ifa->ifa_addr->sa_family != af)
1127 next:				continue;
1128 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1129 				/*
1130 				 * This is a bit broken as it doesn't
1131 				 * take into account that the remote end may
1132 				 * be a single node in the network we are
1133 				 * looking for.
1134 				 * The trouble is that we don't know the
1135 				 * netmask for the remote end.
1136 				 */
1137 				if (ifa->ifa_dstaddr != NULL &&
1138 				    sa_equal(addr, ifa->ifa_dstaddr))
1139 					return (ifa);
1140 			} else {
1141 				/*
1142 				 * if we have a special address handler,
1143 				 * then use it instead of the generic one.
1144 				 */
1145 				if (ifa->ifa_claim_addr) {
1146 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1147 						return (ifa);
1148 					} else {
1149 						continue;
1150 					}
1151 				}
1152 
1153 				/*
1154 				 * Scan all the bits in the ifa's address.
1155 				 * If a bit dissagrees with what we are
1156 				 * looking for, mask it with the netmask
1157 				 * to see if it really matters.
1158 				 * (A byte at a time)
1159 				 */
1160 				if (ifa->ifa_netmask == 0)
1161 					continue;
1162 				cp = addr_data;
1163 				cp2 = ifa->ifa_addr->sa_data;
1164 				cp3 = ifa->ifa_netmask->sa_data;
1165 				cplim = ifa->ifa_netmask->sa_len +
1166 					(char *)ifa->ifa_netmask;
1167 				while (cp3 < cplim)
1168 					if ((*cp++ ^ *cp2++) & *cp3++)
1169 						goto next; /* next address! */
1170 				/*
1171 				 * If the netmask of what we just found
1172 				 * is more specific than what we had before
1173 				 * (if we had one) then remember the new one
1174 				 * before continuing to search
1175 				 * for an even better one.
1176 				 */
1177 				if (ifa_maybe == NULL ||
1178 				    rn_refines((char *)ifa->ifa_netmask,
1179 					       (char *)ifa_maybe->ifa_netmask))
1180 					ifa_maybe = ifa;
1181 			}
1182 		}
1183 	}
1184 	return (ifa_maybe);
1185 }
1186 
1187 /*
1188  * Find an interface address specific to an interface best matching
1189  * a given address.
1190  */
1191 struct ifaddr *
1192 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1193 {
1194 	struct ifaddr_container *ifac;
1195 	char *cp, *cp2, *cp3;
1196 	char *cplim;
1197 	struct ifaddr *ifa_maybe = NULL;
1198 	u_int af = addr->sa_family;
1199 
1200 	if (af >= AF_MAX)
1201 		return (0);
1202 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1203 		struct ifaddr *ifa = ifac->ifa;
1204 
1205 		if (ifa->ifa_addr->sa_family != af)
1206 			continue;
1207 		if (ifa_maybe == NULL)
1208 			ifa_maybe = ifa;
1209 		if (ifa->ifa_netmask == NULL) {
1210 			if (sa_equal(addr, ifa->ifa_addr) ||
1211 			    (ifa->ifa_dstaddr != NULL &&
1212 			     sa_equal(addr, ifa->ifa_dstaddr)))
1213 				return (ifa);
1214 			continue;
1215 		}
1216 		if (ifp->if_flags & IFF_POINTOPOINT) {
1217 			if (sa_equal(addr, ifa->ifa_dstaddr))
1218 				return (ifa);
1219 		} else {
1220 			cp = addr->sa_data;
1221 			cp2 = ifa->ifa_addr->sa_data;
1222 			cp3 = ifa->ifa_netmask->sa_data;
1223 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1224 			for (; cp3 < cplim; cp3++)
1225 				if ((*cp++ ^ *cp2++) & *cp3)
1226 					break;
1227 			if (cp3 == cplim)
1228 				return (ifa);
1229 		}
1230 	}
1231 	return (ifa_maybe);
1232 }
1233 
1234 /*
1235  * Default action when installing a route with a Link Level gateway.
1236  * Lookup an appropriate real ifa to point to.
1237  * This should be moved to /sys/net/link.c eventually.
1238  */
1239 static void
1240 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1241 {
1242 	struct ifaddr *ifa;
1243 	struct sockaddr *dst;
1244 	struct ifnet *ifp;
1245 
1246 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1247 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1248 		return;
1249 	ifa = ifaof_ifpforaddr(dst, ifp);
1250 	if (ifa != NULL) {
1251 		IFAFREE(rt->rt_ifa);
1252 		IFAREF(ifa);
1253 		rt->rt_ifa = ifa;
1254 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1255 			ifa->ifa_rtrequest(cmd, rt, info);
1256 	}
1257 }
1258 
1259 /*
1260  * Mark an interface down and notify protocols of
1261  * the transition.
1262  * NOTE: must be called at splnet or eqivalent.
1263  */
1264 void
1265 if_unroute(struct ifnet *ifp, int flag, int fam)
1266 {
1267 	struct ifaddr_container *ifac;
1268 
1269 	ifp->if_flags &= ~flag;
1270 	getmicrotime(&ifp->if_lastchange);
1271 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1272 		struct ifaddr *ifa = ifac->ifa;
1273 
1274 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1275 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1276 	}
1277 	ifq_purge(&ifp->if_snd);
1278 	rt_ifmsg(ifp);
1279 }
1280 
1281 /*
1282  * Mark an interface up and notify protocols of
1283  * the transition.
1284  * NOTE: must be called at splnet or eqivalent.
1285  */
1286 void
1287 if_route(struct ifnet *ifp, int flag, int fam)
1288 {
1289 	struct ifaddr_container *ifac;
1290 
1291 	ifq_purge(&ifp->if_snd);
1292 	ifp->if_flags |= flag;
1293 	getmicrotime(&ifp->if_lastchange);
1294 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1295 		struct ifaddr *ifa = ifac->ifa;
1296 
1297 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1298 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1299 	}
1300 	rt_ifmsg(ifp);
1301 #ifdef INET6
1302 	in6_if_up(ifp);
1303 #endif
1304 }
1305 
1306 /*
1307  * Mark an interface down and notify protocols of the transition.  An
1308  * interface going down is also considered to be a synchronizing event.
1309  * We must ensure that all packet processing related to the interface
1310  * has completed before we return so e.g. the caller can free the ifnet
1311  * structure that the mbufs may be referencing.
1312  *
1313  * NOTE: must be called at splnet or eqivalent.
1314  */
1315 void
1316 if_down(struct ifnet *ifp)
1317 {
1318 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1319 	netmsg_service_sync();
1320 }
1321 
1322 /*
1323  * Mark an interface up and notify protocols of
1324  * the transition.
1325  * NOTE: must be called at splnet or eqivalent.
1326  */
1327 void
1328 if_up(struct ifnet *ifp)
1329 {
1330 	if_route(ifp, IFF_UP, AF_UNSPEC);
1331 }
1332 
1333 /*
1334  * Process a link state change.
1335  * NOTE: must be called at splsoftnet or equivalent.
1336  */
1337 void
1338 if_link_state_change(struct ifnet *ifp)
1339 {
1340 	int link_state = ifp->if_link_state;
1341 
1342 	rt_ifmsg(ifp);
1343 	devctl_notify("IFNET", ifp->if_xname,
1344 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1345 }
1346 
1347 /*
1348  * Handle interface watchdog timer routines.  Called
1349  * from softclock, we decrement timers (if set) and
1350  * call the appropriate interface routine on expiration.
1351  */
1352 static void
1353 if_slowtimo(void *arg)
1354 {
1355 	struct ifnet *ifp;
1356 
1357 	crit_enter();
1358 
1359 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1360 		if (ifp->if_timer == 0 || --ifp->if_timer)
1361 			continue;
1362 		if (ifp->if_watchdog) {
1363 			if (ifnet_tryserialize_all(ifp)) {
1364 				(*ifp->if_watchdog)(ifp);
1365 				ifnet_deserialize_all(ifp);
1366 			} else {
1367 				/* try again next timeout */
1368 				++ifp->if_timer;
1369 			}
1370 		}
1371 	}
1372 
1373 	crit_exit();
1374 
1375 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1376 }
1377 
1378 /*
1379  * Map interface name to
1380  * interface structure pointer.
1381  */
1382 struct ifnet *
1383 ifunit(const char *name)
1384 {
1385 	struct ifnet *ifp;
1386 
1387 	/*
1388 	 * Search all the interfaces for this name/number
1389 	 */
1390 
1391 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1392 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1393 			break;
1394 	}
1395 	return (ifp);
1396 }
1397 
1398 
1399 /*
1400  * Map interface name in a sockaddr_dl to
1401  * interface structure pointer.
1402  */
1403 struct ifnet *
1404 if_withname(struct sockaddr *sa)
1405 {
1406 	char ifname[IFNAMSIZ+1];
1407 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1408 
1409 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1410 	     (sdl->sdl_nlen > IFNAMSIZ) )
1411 		return NULL;
1412 
1413 	/*
1414 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1415 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1416 	 * and there might not be room to put the trailing null anyway, so we
1417 	 * make a local copy that we know we can null terminate safely.
1418 	 */
1419 
1420 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1421 	ifname[sdl->sdl_nlen] = '\0';
1422 	return ifunit(ifname);
1423 }
1424 
1425 
1426 /*
1427  * Interface ioctls.
1428  */
1429 int
1430 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1431 {
1432 	struct ifnet *ifp;
1433 	struct ifreq *ifr;
1434 	struct ifstat *ifs;
1435 	int error;
1436 	short oif_flags;
1437 	int new_flags;
1438 #ifdef COMPAT_43
1439 	int ocmd;
1440 #endif
1441 	size_t namelen, onamelen;
1442 	char new_name[IFNAMSIZ];
1443 	struct ifaddr *ifa;
1444 	struct sockaddr_dl *sdl;
1445 
1446 	switch (cmd) {
1447 	case SIOCGIFCONF:
1448 	case OSIOCGIFCONF:
1449 		return (ifconf(cmd, data, cred));
1450 	default:
1451 		break;
1452 	}
1453 
1454 	ifr = (struct ifreq *)data;
1455 
1456 	switch (cmd) {
1457 	case SIOCIFCREATE:
1458 	case SIOCIFCREATE2:
1459 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1460 			return (error);
1461 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1462 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1463 	case SIOCIFDESTROY:
1464 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1465 			return (error);
1466 		return (if_clone_destroy(ifr->ifr_name));
1467 	case SIOCIFGCLONERS:
1468 		return (if_clone_list((struct if_clonereq *)data));
1469 	default:
1470 		break;
1471 	}
1472 
1473 	/*
1474 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1475 	 * lock to serialize the ifconfig ioctl operation.
1476 	 */
1477 	ifp = ifunit(ifr->ifr_name);
1478 	if (ifp == NULL)
1479 		return (ENXIO);
1480 	error = 0;
1481 	mtx_lock(&ifp->if_ioctl_mtx);
1482 
1483 	switch (cmd) {
1484 	case SIOCGIFINDEX:
1485 		ifr->ifr_index = ifp->if_index;
1486 		break;
1487 
1488 	case SIOCGIFFLAGS:
1489 		ifr->ifr_flags = ifp->if_flags;
1490 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1491 		break;
1492 
1493 	case SIOCGIFCAP:
1494 		ifr->ifr_reqcap = ifp->if_capabilities;
1495 		ifr->ifr_curcap = ifp->if_capenable;
1496 		break;
1497 
1498 	case SIOCGIFMETRIC:
1499 		ifr->ifr_metric = ifp->if_metric;
1500 		break;
1501 
1502 	case SIOCGIFMTU:
1503 		ifr->ifr_mtu = ifp->if_mtu;
1504 		break;
1505 
1506 	case SIOCGIFDATA:
1507 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1508 				sizeof(ifp->if_data));
1509 		break;
1510 
1511 	case SIOCGIFPHYS:
1512 		ifr->ifr_phys = ifp->if_physical;
1513 		break;
1514 
1515 	case SIOCGIFPOLLCPU:
1516 #ifdef DEVICE_POLLING
1517 		ifr->ifr_pollcpu = ifp->if_poll_cpuid;
1518 #else
1519 		ifr->ifr_pollcpu = -1;
1520 #endif
1521 		break;
1522 
1523 	case SIOCSIFPOLLCPU:
1524 #ifdef DEVICE_POLLING
1525 		if ((ifp->if_flags & IFF_POLLING) == 0)
1526 			ether_pollcpu_register(ifp, ifr->ifr_pollcpu);
1527 #endif
1528 		break;
1529 
1530 	case SIOCSIFFLAGS:
1531 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1532 		if (error)
1533 			break;
1534 		new_flags = (ifr->ifr_flags & 0xffff) |
1535 		    (ifr->ifr_flagshigh << 16);
1536 		if (ifp->if_flags & IFF_SMART) {
1537 			/* Smart drivers twiddle their own routes */
1538 		} else if (ifp->if_flags & IFF_UP &&
1539 		    (new_flags & IFF_UP) == 0) {
1540 			crit_enter();
1541 			if_down(ifp);
1542 			crit_exit();
1543 		} else if (new_flags & IFF_UP &&
1544 		    (ifp->if_flags & IFF_UP) == 0) {
1545 			crit_enter();
1546 			if_up(ifp);
1547 			crit_exit();
1548 		}
1549 
1550 #ifdef DEVICE_POLLING
1551 		if ((new_flags ^ ifp->if_flags) & IFF_POLLING) {
1552 			if (new_flags & IFF_POLLING) {
1553 				ether_poll_register(ifp);
1554 			} else {
1555 				ether_poll_deregister(ifp);
1556 			}
1557 		}
1558 #endif
1559 #ifdef IFPOLL_ENABLE
1560 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1561 			if (new_flags & IFF_NPOLLING)
1562 				ifpoll_register(ifp);
1563 			else
1564 				ifpoll_deregister(ifp);
1565 		}
1566 #endif
1567 
1568 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1569 			(new_flags &~ IFF_CANTCHANGE);
1570 		if (new_flags & IFF_PPROMISC) {
1571 			/* Permanently promiscuous mode requested */
1572 			ifp->if_flags |= IFF_PROMISC;
1573 		} else if (ifp->if_pcount == 0) {
1574 			ifp->if_flags &= ~IFF_PROMISC;
1575 		}
1576 		if (ifp->if_ioctl) {
1577 			ifnet_serialize_all(ifp);
1578 			ifp->if_ioctl(ifp, cmd, data, cred);
1579 			ifnet_deserialize_all(ifp);
1580 		}
1581 		getmicrotime(&ifp->if_lastchange);
1582 		break;
1583 
1584 	case SIOCSIFCAP:
1585 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1586 		if (error)
1587 			break;
1588 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1589 			error = EINVAL;
1590 			break;
1591 		}
1592 		ifnet_serialize_all(ifp);
1593 		ifp->if_ioctl(ifp, cmd, data, cred);
1594 		ifnet_deserialize_all(ifp);
1595 		break;
1596 
1597 	case SIOCSIFNAME:
1598 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1599 		if (error)
1600 			break;
1601 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1602 		if (error)
1603 			break;
1604 		if (new_name[0] == '\0') {
1605 			error = EINVAL;
1606 			break;
1607 		}
1608 		if (ifunit(new_name) != NULL) {
1609 			error = EEXIST;
1610 			break;
1611 		}
1612 
1613 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1614 
1615 		/* Announce the departure of the interface. */
1616 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1617 
1618 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1619 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1620 		/* XXX IFA_LOCK(ifa); */
1621 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1622 		namelen = strlen(new_name);
1623 		onamelen = sdl->sdl_nlen;
1624 		/*
1625 		 * Move the address if needed.  This is safe because we
1626 		 * allocate space for a name of length IFNAMSIZ when we
1627 		 * create this in if_attach().
1628 		 */
1629 		if (namelen != onamelen) {
1630 			bcopy(sdl->sdl_data + onamelen,
1631 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1632 		}
1633 		bcopy(new_name, sdl->sdl_data, namelen);
1634 		sdl->sdl_nlen = namelen;
1635 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1636 		bzero(sdl->sdl_data, onamelen);
1637 		while (namelen != 0)
1638 			sdl->sdl_data[--namelen] = 0xff;
1639 		/* XXX IFA_UNLOCK(ifa) */
1640 
1641 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1642 
1643 		/* Announce the return of the interface. */
1644 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1645 		break;
1646 
1647 	case SIOCSIFMETRIC:
1648 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1649 		if (error)
1650 			break;
1651 		ifp->if_metric = ifr->ifr_metric;
1652 		getmicrotime(&ifp->if_lastchange);
1653 		break;
1654 
1655 	case SIOCSIFPHYS:
1656 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1657 		if (error)
1658 			break;
1659 		if (ifp->if_ioctl == NULL) {
1660 		        error = EOPNOTSUPP;
1661 			break;
1662 		}
1663 		ifnet_serialize_all(ifp);
1664 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1665 		ifnet_deserialize_all(ifp);
1666 		if (error == 0)
1667 			getmicrotime(&ifp->if_lastchange);
1668 		break;
1669 
1670 	case SIOCSIFMTU:
1671 	{
1672 		u_long oldmtu = ifp->if_mtu;
1673 
1674 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1675 		if (error)
1676 			break;
1677 		if (ifp->if_ioctl == NULL) {
1678 			error = EOPNOTSUPP;
1679 			break;
1680 		}
1681 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1682 			error = EINVAL;
1683 			break;
1684 		}
1685 		ifnet_serialize_all(ifp);
1686 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1687 		ifnet_deserialize_all(ifp);
1688 		if (error == 0) {
1689 			getmicrotime(&ifp->if_lastchange);
1690 			rt_ifmsg(ifp);
1691 		}
1692 		/*
1693 		 * If the link MTU changed, do network layer specific procedure.
1694 		 */
1695 		if (ifp->if_mtu != oldmtu) {
1696 #ifdef INET6
1697 			nd6_setmtu(ifp);
1698 #endif
1699 		}
1700 		break;
1701 	}
1702 
1703 	case SIOCADDMULTI:
1704 	case SIOCDELMULTI:
1705 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1706 		if (error)
1707 			break;
1708 
1709 		/* Don't allow group membership on non-multicast interfaces. */
1710 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1711 			error = EOPNOTSUPP;
1712 			break;
1713 		}
1714 
1715 		/* Don't let users screw up protocols' entries. */
1716 		if (ifr->ifr_addr.sa_family != AF_LINK) {
1717 			error = EINVAL;
1718 			break;
1719 		}
1720 
1721 		if (cmd == SIOCADDMULTI) {
1722 			struct ifmultiaddr *ifma;
1723 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1724 		} else {
1725 			error = if_delmulti(ifp, &ifr->ifr_addr);
1726 		}
1727 		if (error == 0)
1728 			getmicrotime(&ifp->if_lastchange);
1729 		break;
1730 
1731 	case SIOCSIFPHYADDR:
1732 	case SIOCDIFPHYADDR:
1733 #ifdef INET6
1734 	case SIOCSIFPHYADDR_IN6:
1735 #endif
1736 	case SIOCSLIFPHYADDR:
1737         case SIOCSIFMEDIA:
1738 	case SIOCSIFGENERIC:
1739 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1740 		if (error)
1741 			break;
1742 		if (ifp->if_ioctl == 0) {
1743 			error = EOPNOTSUPP;
1744 			break;
1745 		}
1746 		ifnet_serialize_all(ifp);
1747 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1748 		ifnet_deserialize_all(ifp);
1749 		if (error == 0)
1750 			getmicrotime(&ifp->if_lastchange);
1751 		break;
1752 
1753 	case SIOCGIFSTATUS:
1754 		ifs = (struct ifstat *)data;
1755 		ifs->ascii[0] = '\0';
1756 		/* fall through */
1757 	case SIOCGIFPSRCADDR:
1758 	case SIOCGIFPDSTADDR:
1759 	case SIOCGLIFPHYADDR:
1760 	case SIOCGIFMEDIA:
1761 	case SIOCGIFGENERIC:
1762 		if (ifp->if_ioctl == NULL) {
1763 			error = EOPNOTSUPP;
1764 			break;
1765 		}
1766 		ifnet_serialize_all(ifp);
1767 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1768 		ifnet_deserialize_all(ifp);
1769 		break;
1770 
1771 	case SIOCSIFLLADDR:
1772 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1773 		if (error)
1774 			break;
1775 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
1776 				     ifr->ifr_addr.sa_len);
1777 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1778 		break;
1779 
1780 	default:
1781 		oif_flags = ifp->if_flags;
1782 		if (so->so_proto == 0) {
1783 			error = EOPNOTSUPP;
1784 			break;
1785 		}
1786 #ifndef COMPAT_43
1787 		error = so_pru_control_direct(so, cmd, data, ifp);
1788 #else
1789 		ocmd = cmd;
1790 
1791 		switch (cmd) {
1792 		case SIOCSIFDSTADDR:
1793 		case SIOCSIFADDR:
1794 		case SIOCSIFBRDADDR:
1795 		case SIOCSIFNETMASK:
1796 #if BYTE_ORDER != BIG_ENDIAN
1797 			if (ifr->ifr_addr.sa_family == 0 &&
1798 			    ifr->ifr_addr.sa_len < 16) {
1799 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1800 				ifr->ifr_addr.sa_len = 16;
1801 			}
1802 #else
1803 			if (ifr->ifr_addr.sa_len == 0)
1804 				ifr->ifr_addr.sa_len = 16;
1805 #endif
1806 			break;
1807 		case OSIOCGIFADDR:
1808 			cmd = SIOCGIFADDR;
1809 			break;
1810 		case OSIOCGIFDSTADDR:
1811 			cmd = SIOCGIFDSTADDR;
1812 			break;
1813 		case OSIOCGIFBRDADDR:
1814 			cmd = SIOCGIFBRDADDR;
1815 			break;
1816 		case OSIOCGIFNETMASK:
1817 			cmd = SIOCGIFNETMASK;
1818 			break;
1819 		default:
1820 			break;
1821 		}
1822 
1823 		error = so_pru_control_direct(so, cmd, data, ifp);
1824 
1825 		switch (ocmd) {
1826 		case OSIOCGIFADDR:
1827 		case OSIOCGIFDSTADDR:
1828 		case OSIOCGIFBRDADDR:
1829 		case OSIOCGIFNETMASK:
1830 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1831 			break;
1832 		}
1833 #endif /* COMPAT_43 */
1834 
1835 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1836 #ifdef INET6
1837 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1838 			if (ifp->if_flags & IFF_UP) {
1839 				crit_enter();
1840 				in6_if_up(ifp);
1841 				crit_exit();
1842 			}
1843 #endif
1844 		}
1845 		break;
1846 	}
1847 
1848 	mtx_unlock(&ifp->if_ioctl_mtx);
1849 	return (error);
1850 }
1851 
1852 /*
1853  * Set/clear promiscuous mode on interface ifp based on the truth value
1854  * of pswitch.  The calls are reference counted so that only the first
1855  * "on" request actually has an effect, as does the final "off" request.
1856  * Results are undefined if the "off" and "on" requests are not matched.
1857  */
1858 int
1859 ifpromisc(struct ifnet *ifp, int pswitch)
1860 {
1861 	struct ifreq ifr;
1862 	int error;
1863 	int oldflags;
1864 
1865 	oldflags = ifp->if_flags;
1866 	if (ifp->if_flags & IFF_PPROMISC) {
1867 		/* Do nothing if device is in permanently promiscuous mode */
1868 		ifp->if_pcount += pswitch ? 1 : -1;
1869 		return (0);
1870 	}
1871 	if (pswitch) {
1872 		/*
1873 		 * If the device is not configured up, we cannot put it in
1874 		 * promiscuous mode.
1875 		 */
1876 		if ((ifp->if_flags & IFF_UP) == 0)
1877 			return (ENETDOWN);
1878 		if (ifp->if_pcount++ != 0)
1879 			return (0);
1880 		ifp->if_flags |= IFF_PROMISC;
1881 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1882 		    ifp->if_xname);
1883 	} else {
1884 		if (--ifp->if_pcount > 0)
1885 			return (0);
1886 		ifp->if_flags &= ~IFF_PROMISC;
1887 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1888 		    ifp->if_xname);
1889 	}
1890 	ifr.ifr_flags = ifp->if_flags;
1891 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1892 	ifnet_serialize_all(ifp);
1893 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1894 	ifnet_deserialize_all(ifp);
1895 	if (error == 0)
1896 		rt_ifmsg(ifp);
1897 	else
1898 		ifp->if_flags = oldflags;
1899 	return error;
1900 }
1901 
1902 /*
1903  * Return interface configuration
1904  * of system.  List may be used
1905  * in later ioctl's (above) to get
1906  * other information.
1907  */
1908 static int
1909 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1910 {
1911 	struct ifconf *ifc = (struct ifconf *)data;
1912 	struct ifnet *ifp;
1913 	struct sockaddr *sa;
1914 	struct ifreq ifr, *ifrp;
1915 	int space = ifc->ifc_len, error = 0;
1916 
1917 	ifrp = ifc->ifc_req;
1918 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1919 		struct ifaddr_container *ifac;
1920 		int addrs;
1921 
1922 		if (space <= sizeof ifr)
1923 			break;
1924 
1925 		/*
1926 		 * Zero the stack declared structure first to prevent
1927 		 * memory disclosure.
1928 		 */
1929 		bzero(&ifr, sizeof(ifr));
1930 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
1931 		    >= sizeof(ifr.ifr_name)) {
1932 			error = ENAMETOOLONG;
1933 			break;
1934 		}
1935 
1936 		addrs = 0;
1937 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1938 			struct ifaddr *ifa = ifac->ifa;
1939 
1940 			if (space <= sizeof ifr)
1941 				break;
1942 			sa = ifa->ifa_addr;
1943 			if (cred->cr_prison &&
1944 			    prison_if(cred, sa))
1945 				continue;
1946 			addrs++;
1947 #ifdef COMPAT_43
1948 			if (cmd == OSIOCGIFCONF) {
1949 				struct osockaddr *osa =
1950 					 (struct osockaddr *)&ifr.ifr_addr;
1951 				ifr.ifr_addr = *sa;
1952 				osa->sa_family = sa->sa_family;
1953 				error = copyout(&ifr, ifrp, sizeof ifr);
1954 				ifrp++;
1955 			} else
1956 #endif
1957 			if (sa->sa_len <= sizeof(*sa)) {
1958 				ifr.ifr_addr = *sa;
1959 				error = copyout(&ifr, ifrp, sizeof ifr);
1960 				ifrp++;
1961 			} else {
1962 				if (space < (sizeof ifr) + sa->sa_len -
1963 					    sizeof(*sa))
1964 					break;
1965 				space -= sa->sa_len - sizeof(*sa);
1966 				error = copyout(&ifr, ifrp,
1967 						sizeof ifr.ifr_name);
1968 				if (error == 0)
1969 					error = copyout(sa, &ifrp->ifr_addr,
1970 							sa->sa_len);
1971 				ifrp = (struct ifreq *)
1972 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
1973 			}
1974 			if (error)
1975 				break;
1976 			space -= sizeof ifr;
1977 		}
1978 		if (error)
1979 			break;
1980 		if (!addrs) {
1981 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
1982 			error = copyout(&ifr, ifrp, sizeof ifr);
1983 			if (error)
1984 				break;
1985 			space -= sizeof ifr;
1986 			ifrp++;
1987 		}
1988 	}
1989 	ifc->ifc_len -= space;
1990 	return (error);
1991 }
1992 
1993 /*
1994  * Just like if_promisc(), but for all-multicast-reception mode.
1995  */
1996 int
1997 if_allmulti(struct ifnet *ifp, int onswitch)
1998 {
1999 	int error = 0;
2000 	struct ifreq ifr;
2001 
2002 	crit_enter();
2003 
2004 	if (onswitch) {
2005 		if (ifp->if_amcount++ == 0) {
2006 			ifp->if_flags |= IFF_ALLMULTI;
2007 			ifr.ifr_flags = ifp->if_flags;
2008 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2009 			ifnet_serialize_all(ifp);
2010 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2011 					      NULL);
2012 			ifnet_deserialize_all(ifp);
2013 		}
2014 	} else {
2015 		if (ifp->if_amcount > 1) {
2016 			ifp->if_amcount--;
2017 		} else {
2018 			ifp->if_amcount = 0;
2019 			ifp->if_flags &= ~IFF_ALLMULTI;
2020 			ifr.ifr_flags = ifp->if_flags;
2021 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2022 			ifnet_serialize_all(ifp);
2023 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2024 					      NULL);
2025 			ifnet_deserialize_all(ifp);
2026 		}
2027 	}
2028 
2029 	crit_exit();
2030 
2031 	if (error == 0)
2032 		rt_ifmsg(ifp);
2033 	return error;
2034 }
2035 
2036 /*
2037  * Add a multicast listenership to the interface in question.
2038  * The link layer provides a routine which converts
2039  */
2040 int
2041 if_addmulti(
2042 	struct ifnet *ifp,	/* interface to manipulate */
2043 	struct sockaddr *sa,	/* address to add */
2044 	struct ifmultiaddr **retifma)
2045 {
2046 	struct sockaddr *llsa, *dupsa;
2047 	int error;
2048 	struct ifmultiaddr *ifma;
2049 
2050 	/*
2051 	 * If the matching multicast address already exists
2052 	 * then don't add a new one, just add a reference
2053 	 */
2054 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2055 		if (sa_equal(sa, ifma->ifma_addr)) {
2056 			ifma->ifma_refcount++;
2057 			if (retifma)
2058 				*retifma = ifma;
2059 			return 0;
2060 		}
2061 	}
2062 
2063 	/*
2064 	 * Give the link layer a chance to accept/reject it, and also
2065 	 * find out which AF_LINK address this maps to, if it isn't one
2066 	 * already.
2067 	 */
2068 	if (ifp->if_resolvemulti) {
2069 		ifnet_serialize_all(ifp);
2070 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2071 		ifnet_deserialize_all(ifp);
2072 		if (error)
2073 			return error;
2074 	} else {
2075 		llsa = NULL;
2076 	}
2077 
2078 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2079 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK);
2080 	bcopy(sa, dupsa, sa->sa_len);
2081 
2082 	ifma->ifma_addr = dupsa;
2083 	ifma->ifma_lladdr = llsa;
2084 	ifma->ifma_ifp = ifp;
2085 	ifma->ifma_refcount = 1;
2086 	ifma->ifma_protospec = 0;
2087 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2088 
2089 	/*
2090 	 * Some network interfaces can scan the address list at
2091 	 * interrupt time; lock them out.
2092 	 */
2093 	crit_enter();
2094 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2095 	crit_exit();
2096 	if (retifma)
2097 		*retifma = ifma;
2098 
2099 	if (llsa != NULL) {
2100 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2101 			if (sa_equal(ifma->ifma_addr, llsa))
2102 				break;
2103 		}
2104 		if (ifma) {
2105 			ifma->ifma_refcount++;
2106 		} else {
2107 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2108 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK);
2109 			bcopy(llsa, dupsa, llsa->sa_len);
2110 			ifma->ifma_addr = dupsa;
2111 			ifma->ifma_ifp = ifp;
2112 			ifma->ifma_refcount = 1;
2113 			crit_enter();
2114 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2115 			crit_exit();
2116 		}
2117 	}
2118 	/*
2119 	 * We are certain we have added something, so call down to the
2120 	 * interface to let them know about it.
2121 	 */
2122 	crit_enter();
2123 	ifnet_serialize_all(ifp);
2124 	if (ifp->if_ioctl)
2125 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2126 	ifnet_deserialize_all(ifp);
2127 	crit_exit();
2128 
2129 	return 0;
2130 }
2131 
2132 /*
2133  * Remove a reference to a multicast address on this interface.  Yell
2134  * if the request does not match an existing membership.
2135  */
2136 int
2137 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2138 {
2139 	struct ifmultiaddr *ifma;
2140 
2141 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2142 		if (sa_equal(sa, ifma->ifma_addr))
2143 			break;
2144 	if (ifma == NULL)
2145 		return ENOENT;
2146 
2147 	if (ifma->ifma_refcount > 1) {
2148 		ifma->ifma_refcount--;
2149 		return 0;
2150 	}
2151 
2152 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2153 	sa = ifma->ifma_lladdr;
2154 	crit_enter();
2155 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2156 	/*
2157 	 * Make sure the interface driver is notified
2158 	 * in the case of a link layer mcast group being left.
2159 	 */
2160 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) {
2161 		ifnet_serialize_all(ifp);
2162 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2163 		ifnet_deserialize_all(ifp);
2164 	}
2165 	crit_exit();
2166 	kfree(ifma->ifma_addr, M_IFMADDR);
2167 	kfree(ifma, M_IFMADDR);
2168 	if (sa == NULL)
2169 		return 0;
2170 
2171 	/*
2172 	 * Now look for the link-layer address which corresponds to
2173 	 * this network address.  It had been squirreled away in
2174 	 * ifma->ifma_lladdr for this purpose (so we don't have
2175 	 * to call ifp->if_resolvemulti() again), and we saved that
2176 	 * value in sa above.  If some nasty deleted the
2177 	 * link-layer address out from underneath us, we can deal because
2178 	 * the address we stored was is not the same as the one which was
2179 	 * in the record for the link-layer address.  (So we don't complain
2180 	 * in that case.)
2181 	 */
2182 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2183 		if (sa_equal(sa, ifma->ifma_addr))
2184 			break;
2185 	if (ifma == NULL)
2186 		return 0;
2187 
2188 	if (ifma->ifma_refcount > 1) {
2189 		ifma->ifma_refcount--;
2190 		return 0;
2191 	}
2192 
2193 	crit_enter();
2194 	ifnet_serialize_all(ifp);
2195 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2196 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2197 	ifnet_deserialize_all(ifp);
2198 	crit_exit();
2199 	kfree(ifma->ifma_addr, M_IFMADDR);
2200 	kfree(sa, M_IFMADDR);
2201 	kfree(ifma, M_IFMADDR);
2202 
2203 	return 0;
2204 }
2205 
2206 /*
2207  * Delete all multicast group membership for an interface.
2208  * Should be used to quickly flush all multicast filters.
2209  */
2210 void
2211 if_delallmulti(struct ifnet *ifp)
2212 {
2213 	struct ifmultiaddr *ifma;
2214 	struct ifmultiaddr *next;
2215 
2216 	TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
2217 		if_delmulti(ifp, ifma->ifma_addr);
2218 }
2219 
2220 
2221 /*
2222  * Set the link layer address on an interface.
2223  *
2224  * At this time we only support certain types of interfaces,
2225  * and we don't allow the length of the address to change.
2226  */
2227 int
2228 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2229 {
2230 	struct sockaddr_dl *sdl;
2231 	struct ifreq ifr;
2232 
2233 	sdl = IF_LLSOCKADDR(ifp);
2234 	if (sdl == NULL)
2235 		return (EINVAL);
2236 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2237 		return (EINVAL);
2238 	switch (ifp->if_type) {
2239 	case IFT_ETHER:			/* these types use struct arpcom */
2240 	case IFT_XETHER:
2241 	case IFT_L2VLAN:
2242 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2243 		bcopy(lladdr, LLADDR(sdl), len);
2244 		break;
2245 	default:
2246 		return (ENODEV);
2247 	}
2248 	/*
2249 	 * If the interface is already up, we need
2250 	 * to re-init it in order to reprogram its
2251 	 * address filter.
2252 	 */
2253 	ifnet_serialize_all(ifp);
2254 	if ((ifp->if_flags & IFF_UP) != 0) {
2255 #ifdef INET
2256 		struct ifaddr_container *ifac;
2257 #endif
2258 
2259 		ifp->if_flags &= ~IFF_UP;
2260 		ifr.ifr_flags = ifp->if_flags;
2261 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2262 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2263 			      NULL);
2264 		ifp->if_flags |= IFF_UP;
2265 		ifr.ifr_flags = ifp->if_flags;
2266 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2267 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2268 				 NULL);
2269 #ifdef INET
2270 		/*
2271 		 * Also send gratuitous ARPs to notify other nodes about
2272 		 * the address change.
2273 		 */
2274 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2275 			struct ifaddr *ifa = ifac->ifa;
2276 
2277 			if (ifa->ifa_addr != NULL &&
2278 			    ifa->ifa_addr->sa_family == AF_INET)
2279 				arp_gratuitous(ifp, ifa);
2280 		}
2281 #endif
2282 	}
2283 	ifnet_deserialize_all(ifp);
2284 	return (0);
2285 }
2286 
2287 struct ifmultiaddr *
2288 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2289 {
2290 	struct ifmultiaddr *ifma;
2291 
2292 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2293 		if (sa_equal(ifma->ifma_addr, sa))
2294 			break;
2295 
2296 	return ifma;
2297 }
2298 
2299 /*
2300  * This function locates the first real ethernet MAC from a network
2301  * card and loads it into node, returning 0 on success or ENOENT if
2302  * no suitable interfaces were found.  It is used by the uuid code to
2303  * generate a unique 6-byte number.
2304  */
2305 int
2306 if_getanyethermac(uint16_t *node, int minlen)
2307 {
2308 	struct ifnet *ifp;
2309 	struct sockaddr_dl *sdl;
2310 
2311 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2312 		if (ifp->if_type != IFT_ETHER)
2313 			continue;
2314 		sdl = IF_LLSOCKADDR(ifp);
2315 		if (sdl->sdl_alen < minlen)
2316 			continue;
2317 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2318 		      minlen);
2319 		return(0);
2320 	}
2321 	return (ENOENT);
2322 }
2323 
2324 /*
2325  * The name argument must be a pointer to storage which will last as
2326  * long as the interface does.  For physical devices, the result of
2327  * device_get_name(dev) is a good choice and for pseudo-devices a
2328  * static string works well.
2329  */
2330 void
2331 if_initname(struct ifnet *ifp, const char *name, int unit)
2332 {
2333 	ifp->if_dname = name;
2334 	ifp->if_dunit = unit;
2335 	if (unit != IF_DUNIT_NONE)
2336 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2337 	else
2338 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2339 }
2340 
2341 int
2342 if_printf(struct ifnet *ifp, const char *fmt, ...)
2343 {
2344 	__va_list ap;
2345 	int retval;
2346 
2347 	retval = kprintf("%s: ", ifp->if_xname);
2348 	__va_start(ap, fmt);
2349 	retval += kvprintf(fmt, ap);
2350 	__va_end(ap);
2351 	return (retval);
2352 }
2353 
2354 struct ifnet *
2355 if_alloc(uint8_t type)
2356 {
2357         struct ifnet *ifp;
2358 	size_t size;
2359 
2360 	/*
2361 	 * XXX temporary hack until arpcom is setup in if_l2com
2362 	 */
2363 	if (type == IFT_ETHER)
2364 		size = sizeof(struct arpcom);
2365 	else
2366 		size = sizeof(struct ifnet);
2367 
2368 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2369 
2370 	ifp->if_type = type;
2371 
2372 	if (if_com_alloc[type] != NULL) {
2373 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2374 		if (ifp->if_l2com == NULL) {
2375 			kfree(ifp, M_IFNET);
2376 			return (NULL);
2377 		}
2378 	}
2379 	return (ifp);
2380 }
2381 
2382 void
2383 if_free(struct ifnet *ifp)
2384 {
2385 	kfree(ifp, M_IFNET);
2386 }
2387 
2388 void
2389 ifq_set_classic(struct ifaltq *ifq)
2390 {
2391 	ifq->altq_enqueue = ifq_classic_enqueue;
2392 	ifq->altq_dequeue = ifq_classic_dequeue;
2393 	ifq->altq_request = ifq_classic_request;
2394 }
2395 
2396 int
2397 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m,
2398 		    struct altq_pktattr *pa __unused)
2399 {
2400 	logifq(enqueue, ifq);
2401 	if (IF_QFULL(ifq)) {
2402 		m_freem(m);
2403 		return(ENOBUFS);
2404 	} else {
2405 		IF_ENQUEUE(ifq, m);
2406 		return(0);
2407 	}
2408 }
2409 
2410 struct mbuf *
2411 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
2412 {
2413 	struct mbuf *m;
2414 
2415 	switch (op) {
2416 	case ALTDQ_POLL:
2417 		IF_POLL(ifq, m);
2418 		break;
2419 	case ALTDQ_REMOVE:
2420 		logifq(dequeue, ifq);
2421 		IF_DEQUEUE(ifq, m);
2422 		break;
2423 	default:
2424 		panic("unsupported ALTQ dequeue op: %d", op);
2425 	}
2426 	KKASSERT(mpolled == NULL || mpolled == m);
2427 	return(m);
2428 }
2429 
2430 int
2431 ifq_classic_request(struct ifaltq *ifq, int req, void *arg)
2432 {
2433 	switch (req) {
2434 	case ALTRQ_PURGE:
2435 		IF_DRAIN(ifq);
2436 		break;
2437 	default:
2438 		panic("unsupported ALTQ request: %d", req);
2439 	}
2440 	return(0);
2441 }
2442 
2443 int
2444 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2445 {
2446 	struct ifaltq *ifq = &ifp->if_snd;
2447 	int running = 0, error, start = 0;
2448 
2449 	ASSERT_IFNET_NOT_SERIALIZED_TX(ifp);
2450 
2451 	ALTQ_LOCK(ifq);
2452 	error = ifq_enqueue_locked(ifq, m, pa);
2453 	if (error) {
2454 		ALTQ_UNLOCK(ifq);
2455 		return error;
2456 	}
2457 	if (!ifq->altq_started) {
2458 		/*
2459 		 * Hold the interlock of ifnet.if_start
2460 		 */
2461 		ifq->altq_started = 1;
2462 		start = 1;
2463 	}
2464 	ALTQ_UNLOCK(ifq);
2465 
2466 	ifp->if_obytes += m->m_pkthdr.len;
2467 	if (m->m_flags & M_MCAST)
2468 		ifp->if_omcasts++;
2469 
2470 	if (!start) {
2471 		logifstart(avoid, ifp);
2472 		return 0;
2473 	}
2474 
2475 	/*
2476 	 * Try to do direct ifnet.if_start first, if there is
2477 	 * contention on ifnet's serializer, ifnet.if_start will
2478 	 * be scheduled on ifnet's CPU.
2479 	 */
2480 	if (!ifnet_tryserialize_tx(ifp)) {
2481 		/*
2482 		 * ifnet serializer contention happened,
2483 		 * ifnet.if_start is scheduled on ifnet's
2484 		 * CPU, and we keep going.
2485 		 */
2486 		logifstart(contend_sched, ifp);
2487 		if_start_schedule(ifp);
2488 		return 0;
2489 	}
2490 
2491 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2492 		logifstart(run, ifp);
2493 		ifp->if_start(ifp);
2494 		if ((ifp->if_flags &
2495 		     (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
2496 			running = 1;
2497 	}
2498 
2499 	ifnet_deserialize_tx(ifp);
2500 
2501 	if (if_start_need_schedule(ifq, running)) {
2502 		/*
2503 		 * More data need to be transmitted, ifnet.if_start is
2504 		 * scheduled on ifnet's CPU, and we keep going.
2505 		 * NOTE: ifnet.if_start interlock is not released.
2506 		 */
2507 		logifstart(sched, ifp);
2508 		if_start_schedule(ifp);
2509 	}
2510 	return 0;
2511 }
2512 
2513 void *
2514 ifa_create(int size, int flags)
2515 {
2516 	struct ifaddr *ifa;
2517 	int i;
2518 
2519 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
2520 
2521 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2522 	if (ifa == NULL)
2523 		return NULL;
2524 
2525 	ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container),
2526 				      M_IFADDR, M_WAITOK | M_ZERO);
2527 	ifa->ifa_ncnt = ncpus;
2528 	for (i = 0; i < ncpus; ++i) {
2529 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2530 
2531 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2532 		ifac->ifa = ifa;
2533 		ifac->ifa_refcnt = 1;
2534 	}
2535 #ifdef IFADDR_DEBUG
2536 	kprintf("alloc ifa %p %d\n", ifa, size);
2537 #endif
2538 	return ifa;
2539 }
2540 
2541 void
2542 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2543 {
2544 	struct ifaddr *ifa = ifac->ifa;
2545 
2546 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2547 	KKASSERT(ifac->ifa_refcnt == 0);
2548 	KASSERT(ifac->ifa_listmask == 0,
2549 		("ifa is still on %#x lists", ifac->ifa_listmask));
2550 
2551 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2552 
2553 #ifdef IFADDR_DEBUG_VERBOSE
2554 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2555 #endif
2556 
2557 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2558 		("invalid # of ifac, %d", ifa->ifa_ncnt));
2559 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2560 #ifdef IFADDR_DEBUG
2561 		kprintf("free ifa %p\n", ifa);
2562 #endif
2563 		kfree(ifa->ifa_containers, M_IFADDR);
2564 		kfree(ifa, M_IFADDR);
2565 	}
2566 }
2567 
2568 static void
2569 ifa_iflink_dispatch(netmsg_t nmsg)
2570 {
2571 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2572 	struct ifaddr *ifa = msg->ifa;
2573 	struct ifnet *ifp = msg->ifp;
2574 	int cpu = mycpuid;
2575 	struct ifaddr_container *ifac;
2576 
2577 	crit_enter();
2578 
2579 	ifac = &ifa->ifa_containers[cpu];
2580 	ASSERT_IFAC_VALID(ifac);
2581 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2582 		("ifaddr is on if_addrheads"));
2583 
2584 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2585 	if (msg->tail)
2586 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2587 	else
2588 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2589 
2590 	crit_exit();
2591 
2592 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2593 }
2594 
2595 void
2596 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2597 {
2598 	struct netmsg_ifaddr msg;
2599 
2600 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2601 		    0, ifa_iflink_dispatch);
2602 	msg.ifa = ifa;
2603 	msg.ifp = ifp;
2604 	msg.tail = tail;
2605 
2606 	ifa_domsg(&msg.base.lmsg, 0);
2607 }
2608 
2609 static void
2610 ifa_ifunlink_dispatch(netmsg_t nmsg)
2611 {
2612 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2613 	struct ifaddr *ifa = msg->ifa;
2614 	struct ifnet *ifp = msg->ifp;
2615 	int cpu = mycpuid;
2616 	struct ifaddr_container *ifac;
2617 
2618 	crit_enter();
2619 
2620 	ifac = &ifa->ifa_containers[cpu];
2621 	ASSERT_IFAC_VALID(ifac);
2622 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2623 		("ifaddr is not on if_addrhead"));
2624 
2625 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2626 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2627 
2628 	crit_exit();
2629 
2630 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2631 }
2632 
2633 void
2634 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2635 {
2636 	struct netmsg_ifaddr msg;
2637 
2638 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2639 		    0, ifa_ifunlink_dispatch);
2640 	msg.ifa = ifa;
2641 	msg.ifp = ifp;
2642 
2643 	ifa_domsg(&msg.base.lmsg, 0);
2644 }
2645 
2646 static void
2647 ifa_destroy_dispatch(netmsg_t nmsg)
2648 {
2649 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2650 
2651 	IFAFREE(msg->ifa);
2652 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
2653 }
2654 
2655 void
2656 ifa_destroy(struct ifaddr *ifa)
2657 {
2658 	struct netmsg_ifaddr msg;
2659 
2660 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2661 		    0, ifa_destroy_dispatch);
2662 	msg.ifa = ifa;
2663 
2664 	ifa_domsg(&msg.base.lmsg, 0);
2665 }
2666 
2667 struct lwkt_port *
2668 ifnet_portfn(int cpu)
2669 {
2670 	return &ifnet_threads[cpu].td_msgport;
2671 }
2672 
2673 void
2674 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2675 {
2676 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2677 
2678 	if (next_cpu < ncpus)
2679 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2680 	else
2681 		lwkt_replymsg(lmsg, 0);
2682 }
2683 
2684 int
2685 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2686 {
2687 	KKASSERT(cpu < ncpus);
2688 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2689 }
2690 
2691 void
2692 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2693 {
2694 	KKASSERT(cpu < ncpus);
2695 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2696 }
2697 
2698 /*
2699  * Generic netmsg service loop.  Some protocols may roll their own but all
2700  * must do the basic command dispatch function call done here.
2701  */
2702 static void
2703 ifnet_service_loop(void *arg __unused)
2704 {
2705 	netmsg_t msg;
2706 
2707 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
2708 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
2709 		msg->base.nm_dispatch(msg);
2710 	}
2711 }
2712 
2713 static void
2714 ifnetinit(void *dummy __unused)
2715 {
2716 	int i;
2717 
2718 	for (i = 0; i < ncpus; ++i) {
2719 		struct thread *thr = &ifnet_threads[i];
2720 
2721 		lwkt_create(ifnet_service_loop, NULL, NULL,
2722 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT,
2723 			    i, "ifnet %d", i);
2724 		netmsg_service_port_init(&thr->td_msgport);
2725 		lwkt_schedule(thr);
2726 	}
2727 }
2728 
2729 struct ifnet *
2730 ifnet_byindex(unsigned short idx)
2731 {
2732 	if (idx > if_index)
2733 		return NULL;
2734 	return ifindex2ifnet[idx];
2735 }
2736 
2737 struct ifaddr *
2738 ifaddr_byindex(unsigned short idx)
2739 {
2740 	struct ifnet *ifp;
2741 
2742 	ifp = ifnet_byindex(idx);
2743 	if (!ifp)
2744 		return NULL;
2745 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2746 }
2747 
2748 void
2749 if_register_com_alloc(u_char type,
2750     if_com_alloc_t *a, if_com_free_t *f)
2751 {
2752 
2753         KASSERT(if_com_alloc[type] == NULL,
2754             ("if_register_com_alloc: %d already registered", type));
2755         KASSERT(if_com_free[type] == NULL,
2756             ("if_register_com_alloc: %d free already registered", type));
2757 
2758         if_com_alloc[type] = a;
2759         if_com_free[type] = f;
2760 }
2761 
2762 void
2763 if_deregister_com_alloc(u_char type)
2764 {
2765 
2766         KASSERT(if_com_alloc[type] != NULL,
2767             ("if_deregister_com_alloc: %d not registered", type));
2768         KASSERT(if_com_free[type] != NULL,
2769             ("if_deregister_com_alloc: %d free not registered", type));
2770         if_com_alloc[type] = NULL;
2771         if_com_free[type] = NULL;
2772 }
2773 
2774 int
2775 if_ring_count2(int cnt, int cnt_max)
2776 {
2777 	int shift = 0;
2778 
2779 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
2780 	    ("invalid ring count max %d", cnt_max));
2781 
2782 	if (cnt <= 0)
2783 		cnt = cnt_max;
2784 	if (cnt > ncpus2)
2785 		cnt = ncpus2;
2786 	if (cnt > cnt_max)
2787 		cnt = cnt_max;
2788 
2789 	while ((1 << (shift + 1)) <= cnt)
2790 		++shift;
2791 	cnt = 1 << shift;
2792 
2793 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
2794 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
2795 	     cnt, ncpus2, cnt_max));
2796 	return cnt;
2797 }
2798