xref: /dflybsd-src/sys/net/if.c (revision c3c96e4421a1087a390825eac6c01c9ed9182387)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  * $DragonFly: src/sys/net/if.c,v 1.84 2008/11/15 11:58:16 sephe Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_inet.h"
41 #include "opt_polling.h"
42 #include "opt_ifpoll.h"
43 
44 #include <sys/param.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/socketops.h>
54 #include <sys/protosw.h>
55 #include <sys/kernel.h>
56 #include <sys/ktr.h>
57 #include <sys/sockio.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 #include <sys/domain.h>
61 #include <sys/thread.h>
62 #include <sys/thread2.h>
63 #include <sys/serialize.h>
64 #include <sys/msgport2.h>
65 #include <sys/bus.h>
66 
67 #include <net/if.h>
68 #include <net/if_arp.h>
69 #include <net/if_dl.h>
70 #include <net/if_types.h>
71 #include <net/if_var.h>
72 #include <net/ifq_var.h>
73 #include <net/radix.h>
74 #include <net/route.h>
75 #include <net/if_clone.h>
76 #include <net/netisr.h>
77 #include <net/netmsg2.h>
78 
79 #include <machine/atomic.h>
80 #include <machine/stdarg.h>
81 #include <machine/smp.h>
82 
83 #if defined(INET) || defined(INET6)
84 /*XXX*/
85 #include <netinet/in.h>
86 #include <netinet/in_var.h>
87 #include <netinet/if_ether.h>
88 #ifdef INET6
89 #include <netinet6/in6_var.h>
90 #include <netinet6/in6_ifattach.h>
91 #endif
92 #endif
93 
94 #if defined(COMPAT_43)
95 #include <emulation/43bsd/43bsd_socket.h>
96 #endif /* COMPAT_43 */
97 
98 struct netmsg_ifaddr {
99 	struct netmsg	netmsg;
100 	struct ifaddr	*ifa;
101 	struct ifnet	*ifp;
102 	int		tail;
103 };
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
115 static int	if_rtdel(struct radix_node *, void *);
116 
117 #ifdef INET6
118 /*
119  * XXX: declare here to avoid to include many inet6 related files..
120  * should be more generalized?
121  */
122 extern void	nd6_setmtu(struct ifnet *);
123 #endif
124 
125 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
126 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
127 
128 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
129 /* Must be after netisr_init */
130 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
131 
132 static  if_com_alloc_t *if_com_alloc[256];
133 static  if_com_free_t *if_com_free[256];
134 
135 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
136 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
137 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
138 
139 int			ifqmaxlen = IFQ_MAXLEN;
140 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
141 
142 /* In ifq_dispatch(), try to do direct ifnet.if_start first */
143 static int		ifq_dispatch_schedonly = 0;
144 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schedonly, CTLFLAG_RW,
145            &ifq_dispatch_schedonly, 0, "");
146 
147 /* In ifq_dispatch(), schedule ifnet.if_start without checking ifnet.if_snd */
148 static int		ifq_dispatch_schednochk = 0;
149 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schednochk, CTLFLAG_RW,
150            &ifq_dispatch_schednochk, 0, "");
151 
152 /* In if_devstart(), try to do direct ifnet.if_start first */
153 static int		if_devstart_schedonly = 0;
154 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schedonly, CTLFLAG_RW,
155            &if_devstart_schedonly, 0, "");
156 
157 /* In if_devstart(), schedule ifnet.if_start without checking ifnet.if_snd */
158 static int		if_devstart_schednochk = 0;
159 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schednochk, CTLFLAG_RW,
160            &if_devstart_schednochk, 0, "");
161 
162 #ifdef SMP
163 /* Schedule ifnet.if_start on the current CPU */
164 static int		if_start_oncpu_sched = 0;
165 SYSCTL_INT(_net_link_generic, OID_AUTO, if_start_oncpu_sched, CTLFLAG_RW,
166            &if_start_oncpu_sched, 0, "");
167 #endif
168 
169 struct callout		if_slowtimo_timer;
170 
171 int			if_index = 0;
172 struct ifnet		**ifindex2ifnet = NULL;
173 static struct thread	ifnet_threads[MAXCPU];
174 
175 #define IFQ_KTR_STRING		"ifq=%p"
176 #define IFQ_KTR_ARG_SIZE	(sizeof(void *))
177 #ifndef KTR_IFQ
178 #define KTR_IFQ			KTR_ALL
179 #endif
180 KTR_INFO_MASTER(ifq);
181 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
182 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
183 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
184 
185 #define IF_START_KTR_STRING	"ifp=%p"
186 #define IF_START_KTR_ARG_SIZE	(sizeof(void *))
187 #ifndef KTR_IF_START
188 #define KTR_IF_START		KTR_ALL
189 #endif
190 KTR_INFO_MASTER(if_start);
191 KTR_INFO(KTR_IF_START, if_start, run, 0,
192 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
193 KTR_INFO(KTR_IF_START, if_start, sched, 1,
194 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
195 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
196 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
197 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
198 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
199 #ifdef SMP
200 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
201 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
202 #endif
203 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
204 
205 /*
206  * Network interface utility routines.
207  *
208  * Routines with ifa_ifwith* names take sockaddr *'s as
209  * parameters.
210  */
211 /* ARGSUSED*/
212 void
213 ifinit(void *dummy)
214 {
215 	struct ifnet *ifp;
216 
217 	callout_init(&if_slowtimo_timer);
218 
219 	crit_enter();
220 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
221 		if (ifp->if_snd.ifq_maxlen == 0) {
222 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
223 			ifp->if_snd.ifq_maxlen = ifqmaxlen;
224 		}
225 	}
226 	crit_exit();
227 
228 	if_slowtimo(0);
229 }
230 
231 static int
232 if_start_cpuid(struct ifnet *ifp)
233 {
234 	return ifp->if_cpuid;
235 }
236 
237 #ifdef DEVICE_POLLING
238 static int
239 if_start_cpuid_poll(struct ifnet *ifp)
240 {
241 	int poll_cpuid = ifp->if_poll_cpuid;
242 
243 	if (poll_cpuid >= 0)
244 		return poll_cpuid;
245 	else
246 		return ifp->if_cpuid;
247 }
248 #endif
249 
250 static void
251 if_start_ipifunc(void *arg)
252 {
253 	struct ifnet *ifp = arg;
254 	struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].nm_lmsg;
255 
256 	crit_enter();
257 	if (lmsg->ms_flags & MSGF_DONE)
258 		lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
259 	crit_exit();
260 }
261 
262 /*
263  * Schedule ifnet.if_start on ifnet's CPU
264  */
265 static void
266 if_start_schedule(struct ifnet *ifp)
267 {
268 #ifdef SMP
269 	int cpu;
270 
271 	if (if_start_oncpu_sched)
272 		cpu = mycpuid;
273 	else
274 		cpu = ifp->if_start_cpuid(ifp);
275 
276 	if (cpu != mycpuid)
277 		lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp);
278 	else
279 #endif
280 	if_start_ipifunc(ifp);
281 }
282 
283 /*
284  * NOTE:
285  * This function will release ifnet.if_start interlock,
286  * if ifnet.if_start does not need to be scheduled
287  */
288 static __inline int
289 if_start_need_schedule(struct ifaltq *ifq, int running)
290 {
291 	if (!running || ifq_is_empty(ifq)
292 #ifdef ALTQ
293 	    || ifq->altq_tbr != NULL
294 #endif
295 	) {
296 		ALTQ_LOCK(ifq);
297 		/*
298 		 * ifnet.if_start interlock is released, if:
299 		 * 1) Hardware can not take any packets, due to
300 		 *    o  interface is marked down
301 		 *    o  hardware queue is full (IFF_OACTIVE)
302 		 *    Under the second situation, hardware interrupt
303 		 *    or polling(4) will call/schedule ifnet.if_start
304 		 *    when hardware queue is ready
305 		 * 2) There is not packet in the ifnet.if_snd.
306 		 *    Further ifq_dispatch or ifq_handoff will call/
307 		 *    schedule ifnet.if_start
308 		 * 3) TBR is used and it does not allow further
309 		 *    dequeueing.
310 		 *    TBR callout will call ifnet.if_start
311 		 */
312 		if (!running || !ifq_data_ready(ifq)) {
313 			ifq->altq_started = 0;
314 			ALTQ_UNLOCK(ifq);
315 			return 0;
316 		}
317 		ALTQ_UNLOCK(ifq);
318 	}
319 	return 1;
320 }
321 
322 static void
323 if_start_dispatch(struct netmsg *nmsg)
324 {
325 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
326 	struct ifnet *ifp = lmsg->u.ms_resultp;
327 	struct ifaltq *ifq = &ifp->if_snd;
328 	int running = 0;
329 
330 	crit_enter();
331 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
332 	crit_exit();
333 
334 #ifdef SMP
335 	if (!if_start_oncpu_sched && mycpuid != ifp->if_start_cpuid(ifp)) {
336 		/*
337 		 * If the ifnet is still up, we need to
338 		 * chase its CPU change.
339 		 */
340 		if (ifp->if_flags & IFF_UP) {
341 			logifstart(chase_sched, ifp);
342 			if_start_schedule(ifp);
343 			return;
344 		} else {
345 			goto check;
346 		}
347 	}
348 #endif
349 
350 	if (ifp->if_flags & IFF_UP) {
351 		ifnet_serialize_tx(ifp); /* XXX try? */
352 		if ((ifp->if_flags & IFF_OACTIVE) == 0) {
353 			logifstart(run, ifp);
354 			ifp->if_start(ifp);
355 			if ((ifp->if_flags &
356 			(IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
357 				running = 1;
358 		}
359 		ifnet_deserialize_tx(ifp);
360 	}
361 #ifdef SMP
362 check:
363 #endif
364 	if (if_start_need_schedule(ifq, running)) {
365 		crit_enter();
366 		if (lmsg->ms_flags & MSGF_DONE)	{ /* XXX necessary? */
367 			logifstart(sched, ifp);
368 			lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
369 		}
370 		crit_exit();
371 	}
372 }
373 
374 /* Device driver ifnet.if_start helper function */
375 void
376 if_devstart(struct ifnet *ifp)
377 {
378 	struct ifaltq *ifq = &ifp->if_snd;
379 	int running = 0;
380 
381 	ASSERT_IFNET_SERIALIZED_TX(ifp);
382 
383 	ALTQ_LOCK(ifq);
384 	if (ifq->altq_started || !ifq_data_ready(ifq)) {
385 		logifstart(avoid, ifp);
386 		ALTQ_UNLOCK(ifq);
387 		return;
388 	}
389 	ifq->altq_started = 1;
390 	ALTQ_UNLOCK(ifq);
391 
392 	if (if_devstart_schedonly) {
393 		/*
394 		 * Always schedule ifnet.if_start on ifnet's CPU,
395 		 * short circuit the rest of this function.
396 		 */
397 		logifstart(sched, ifp);
398 		if_start_schedule(ifp);
399 		return;
400 	}
401 
402 	logifstart(run, ifp);
403 	ifp->if_start(ifp);
404 
405 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
406 		running = 1;
407 
408 	if (if_devstart_schednochk || if_start_need_schedule(ifq, running)) {
409 		/*
410 		 * More data need to be transmitted, ifnet.if_start is
411 		 * scheduled on ifnet's CPU, and we keep going.
412 		 * NOTE: ifnet.if_start interlock is not released.
413 		 */
414 		logifstart(sched, ifp);
415 		if_start_schedule(ifp);
416 	}
417 }
418 
419 static void
420 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
421 {
422 	lwkt_serialize_enter(ifp->if_serializer);
423 }
424 
425 static void
426 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
427 {
428 	lwkt_serialize_exit(ifp->if_serializer);
429 }
430 
431 static int
432 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
433 {
434 	return lwkt_serialize_try(ifp->if_serializer);
435 }
436 
437 #ifdef INVARIANTS
438 static void
439 if_default_serialize_assert(struct ifnet *ifp,
440 			    enum ifnet_serialize slz __unused,
441 			    boolean_t serialized)
442 {
443 	if (serialized)
444 		ASSERT_SERIALIZED(ifp->if_serializer);
445 	else
446 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
447 }
448 #endif
449 
450 /*
451  * Attach an interface to the list of "active" interfaces.
452  *
453  * The serializer is optional.  If non-NULL access to the interface
454  * may be MPSAFE.
455  */
456 void
457 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
458 {
459 	unsigned socksize, ifasize;
460 	int namelen, masklen;
461 	struct sockaddr_dl *sdl;
462 	struct ifaddr *ifa;
463 	struct ifaltq *ifq;
464 	int i;
465 
466 	static int if_indexlim = 8;
467 
468 	if (ifp->if_serialize != NULL) {
469 		KASSERT(ifp->if_deserialize != NULL &&
470 			ifp->if_tryserialize != NULL &&
471 			ifp->if_serialize_assert != NULL,
472 			("serialize functions are partially setup\n"));
473 
474 		/*
475 		 * If the device supplies serialize functions,
476 		 * then clear if_serializer to catch any invalid
477 		 * usage of this field.
478 		 */
479 		KASSERT(serializer == NULL,
480 			("both serialize functions and default serializer "
481 			 "are supplied\n"));
482 		ifp->if_serializer = NULL;
483 	} else {
484 		KASSERT(ifp->if_deserialize == NULL &&
485 			ifp->if_tryserialize == NULL &&
486 			ifp->if_serialize_assert == NULL,
487 			("serialize functions are partially setup\n"));
488 		ifp->if_serialize = if_default_serialize;
489 		ifp->if_deserialize = if_default_deserialize;
490 		ifp->if_tryserialize = if_default_tryserialize;
491 #ifdef INVARIANTS
492 		ifp->if_serialize_assert = if_default_serialize_assert;
493 #endif
494 
495 		/*
496 		 * The serializer can be passed in from the device,
497 		 * allowing the same serializer to be used for both
498 		 * the interrupt interlock and the device queue.
499 		 * If not specified, the netif structure will use an
500 		 * embedded serializer.
501 		 */
502 		if (serializer == NULL) {
503 			serializer = &ifp->if_default_serializer;
504 			lwkt_serialize_init(serializer);
505 		}
506 		ifp->if_serializer = serializer;
507 	}
508 
509 	ifp->if_start_cpuid = if_start_cpuid;
510 	ifp->if_cpuid = 0;
511 
512 #ifdef DEVICE_POLLING
513 	/* Device is not in polling mode by default */
514 	ifp->if_poll_cpuid = -1;
515 	if (ifp->if_poll != NULL)
516 		ifp->if_start_cpuid = if_start_cpuid_poll;
517 #endif
518 
519 	ifp->if_start_nmsg = kmalloc(ncpus * sizeof(struct netmsg),
520 				     M_LWKTMSG, M_WAITOK);
521 	for (i = 0; i < ncpus; ++i) {
522 		netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport,
523 			    0, if_start_dispatch);
524 		ifp->if_start_nmsg[i].nm_lmsg.u.ms_resultp = ifp;
525 	}
526 
527 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
528 	ifp->if_index = ++if_index;
529 
530 	/*
531 	 * XXX -
532 	 * The old code would work if the interface passed a pre-existing
533 	 * chain of ifaddrs to this code.  We don't trust our callers to
534 	 * properly initialize the tailq, however, so we no longer allow
535 	 * this unlikely case.
536 	 */
537 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
538 				    M_IFADDR, M_WAITOK | M_ZERO);
539 	for (i = 0; i < ncpus; ++i)
540 		TAILQ_INIT(&ifp->if_addrheads[i]);
541 
542 	TAILQ_INIT(&ifp->if_prefixhead);
543 	TAILQ_INIT(&ifp->if_multiaddrs);
544 	getmicrotime(&ifp->if_lastchange);
545 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
546 		unsigned int n;
547 		struct ifnet **q;
548 
549 		if_indexlim <<= 1;
550 
551 		/* grow ifindex2ifnet */
552 		n = if_indexlim * sizeof(*q);
553 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
554 		if (ifindex2ifnet) {
555 			bcopy(ifindex2ifnet, q, n/2);
556 			kfree(ifindex2ifnet, M_IFADDR);
557 		}
558 		ifindex2ifnet = q;
559 	}
560 
561 	ifindex2ifnet[if_index] = ifp;
562 
563 	/*
564 	 * create a Link Level name for this device
565 	 */
566 	namelen = strlen(ifp->if_xname);
567 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
568 	masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
569 	socksize = masklen + ifp->if_addrlen;
570 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
571 	if (socksize < sizeof(*sdl))
572 		socksize = sizeof(*sdl);
573 	socksize = ROUNDUP(socksize);
574 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
575 	ifa = ifa_create(ifasize, M_WAITOK);
576 	sdl = (struct sockaddr_dl *)(ifa + 1);
577 	sdl->sdl_len = socksize;
578 	sdl->sdl_family = AF_LINK;
579 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
580 	sdl->sdl_nlen = namelen;
581 	sdl->sdl_index = ifp->if_index;
582 	sdl->sdl_type = ifp->if_type;
583 	ifp->if_lladdr = ifa;
584 	ifa->ifa_ifp = ifp;
585 	ifa->ifa_rtrequest = link_rtrequest;
586 	ifa->ifa_addr = (struct sockaddr *)sdl;
587 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
588 	ifa->ifa_netmask = (struct sockaddr *)sdl;
589 	sdl->sdl_len = masklen;
590 	while (namelen != 0)
591 		sdl->sdl_data[--namelen] = 0xff;
592 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
593 
594 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
595 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
596 
597 	ifq = &ifp->if_snd;
598 	ifq->altq_type = 0;
599 	ifq->altq_disc = NULL;
600 	ifq->altq_flags &= ALTQF_CANTCHANGE;
601 	ifq->altq_tbr = NULL;
602 	ifq->altq_ifp = ifp;
603 	ifq->altq_started = 0;
604 	ifq->altq_prepended = NULL;
605 	ALTQ_LOCK_INIT(ifq);
606 	ifq_set_classic(ifq);
607 
608 	if (!SLIST_EMPTY(&domains))
609 		if_attachdomain1(ifp);
610 
611 	/* Announce the interface. */
612 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
613 }
614 
615 static void
616 if_attachdomain(void *dummy)
617 {
618 	struct ifnet *ifp;
619 
620 	crit_enter();
621 	TAILQ_FOREACH(ifp, &ifnet, if_list)
622 		if_attachdomain1(ifp);
623 	crit_exit();
624 }
625 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
626 	if_attachdomain, NULL);
627 
628 static void
629 if_attachdomain1(struct ifnet *ifp)
630 {
631 	struct domain *dp;
632 
633 	crit_enter();
634 
635 	/* address family dependent data region */
636 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
637 	SLIST_FOREACH(dp, &domains, dom_next)
638 		if (dp->dom_ifattach)
639 			ifp->if_afdata[dp->dom_family] =
640 				(*dp->dom_ifattach)(ifp);
641 	crit_exit();
642 }
643 
644 /*
645  * Purge all addresses whose type is _not_ AF_LINK
646  */
647 void
648 if_purgeaddrs_nolink(struct ifnet *ifp)
649 {
650 	struct ifaddr_container *ifac, *next;
651 
652 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
653 			      ifa_link, next) {
654 		struct ifaddr *ifa = ifac->ifa;
655 
656 		/* Leave link ifaddr as it is */
657 		if (ifa->ifa_addr->sa_family == AF_LINK)
658 			continue;
659 #ifdef INET
660 		/* XXX: Ugly!! ad hoc just for INET */
661 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
662 			struct ifaliasreq ifr;
663 #ifdef IFADDR_DEBUG_VERBOSE
664 			int i;
665 
666 			kprintf("purge in4 addr %p: ", ifa);
667 			for (i = 0; i < ncpus; ++i)
668 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
669 			kprintf("\n");
670 #endif
671 
672 			bzero(&ifr, sizeof ifr);
673 			ifr.ifra_addr = *ifa->ifa_addr;
674 			if (ifa->ifa_dstaddr)
675 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
676 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
677 				       NULL) == 0)
678 				continue;
679 		}
680 #endif /* INET */
681 #ifdef INET6
682 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
683 #ifdef IFADDR_DEBUG_VERBOSE
684 			int i;
685 
686 			kprintf("purge in6 addr %p: ", ifa);
687 			for (i = 0; i < ncpus; ++i)
688 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
689 			kprintf("\n");
690 #endif
691 
692 			in6_purgeaddr(ifa);
693 			/* ifp_addrhead is already updated */
694 			continue;
695 		}
696 #endif /* INET6 */
697 		ifa_ifunlink(ifa, ifp);
698 		ifa_destroy(ifa);
699 	}
700 }
701 
702 /*
703  * Detach an interface, removing it from the
704  * list of "active" interfaces.
705  */
706 void
707 if_detach(struct ifnet *ifp)
708 {
709 	struct radix_node_head	*rnh;
710 	int i;
711 	int cpu, origcpu;
712 	struct domain *dp;
713 
714 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
715 
716 	/*
717 	 * Remove routes and flush queues.
718 	 */
719 	crit_enter();
720 #ifdef DEVICE_POLLING
721 	if (ifp->if_flags & IFF_POLLING)
722 		ether_poll_deregister(ifp);
723 #endif
724 #ifdef IFPOLL_ENABLE
725 	if (ifp->if_flags & IFF_NPOLLING)
726 		ifpoll_deregister(ifp);
727 #endif
728 	if_down(ifp);
729 
730 #ifdef ALTQ
731 	if (ifq_is_enabled(&ifp->if_snd))
732 		altq_disable(&ifp->if_snd);
733 	if (ifq_is_attached(&ifp->if_snd))
734 		altq_detach(&ifp->if_snd);
735 #endif
736 
737 	/*
738 	 * Clean up all addresses.
739 	 */
740 	ifp->if_lladdr = NULL;
741 
742 	if_purgeaddrs_nolink(ifp);
743 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
744 		struct ifaddr *ifa;
745 
746 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
747 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
748 			("non-link ifaddr is left on if_addrheads"));
749 
750 		ifa_ifunlink(ifa, ifp);
751 		ifa_destroy(ifa);
752 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
753 			("there are still ifaddrs left on if_addrheads"));
754 	}
755 
756 #ifdef INET
757 	/*
758 	 * Remove all IPv4 kernel structures related to ifp.
759 	 */
760 	in_ifdetach(ifp);
761 #endif
762 
763 #ifdef INET6
764 	/*
765 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
766 	 * before removing routing entries below, since IPv6 interface direct
767 	 * routes are expected to be removed by the IPv6-specific kernel API.
768 	 * Otherwise, the kernel will detect some inconsistency and bark it.
769 	 */
770 	in6_ifdetach(ifp);
771 #endif
772 
773 	/*
774 	 * Delete all remaining routes using this interface
775 	 * Unfortuneatly the only way to do this is to slog through
776 	 * the entire routing table looking for routes which point
777 	 * to this interface...oh well...
778 	 */
779 	origcpu = mycpuid;
780 	for (cpu = 0; cpu < ncpus2; cpu++) {
781 		lwkt_migratecpu(cpu);
782 		for (i = 1; i <= AF_MAX; i++) {
783 			if ((rnh = rt_tables[cpu][i]) == NULL)
784 				continue;
785 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
786 		}
787 	}
788 	lwkt_migratecpu(origcpu);
789 
790 	/* Announce that the interface is gone. */
791 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
792 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
793 
794 	SLIST_FOREACH(dp, &domains, dom_next)
795 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
796 			(*dp->dom_ifdetach)(ifp,
797 				ifp->if_afdata[dp->dom_family]);
798 
799 	/*
800 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
801 	 */
802 	ifindex2ifnet[ifp->if_index] = NULL;
803 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
804 		if_index--;
805 
806 	TAILQ_REMOVE(&ifnet, ifp, if_link);
807 	kfree(ifp->if_addrheads, M_IFADDR);
808 	kfree(ifp->if_start_nmsg, M_LWKTMSG);
809 	crit_exit();
810 }
811 
812 /*
813  * Delete Routes for a Network Interface
814  *
815  * Called for each routing entry via the rnh->rnh_walktree() call above
816  * to delete all route entries referencing a detaching network interface.
817  *
818  * Arguments:
819  *	rn	pointer to node in the routing table
820  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
821  *
822  * Returns:
823  *	0	successful
824  *	errno	failed - reason indicated
825  *
826  */
827 static int
828 if_rtdel(struct radix_node *rn, void *arg)
829 {
830 	struct rtentry	*rt = (struct rtentry *)rn;
831 	struct ifnet	*ifp = arg;
832 	int		err;
833 
834 	if (rt->rt_ifp == ifp) {
835 
836 		/*
837 		 * Protect (sorta) against walktree recursion problems
838 		 * with cloned routes
839 		 */
840 		if (!(rt->rt_flags & RTF_UP))
841 			return (0);
842 
843 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
844 				rt_mask(rt), rt->rt_flags,
845 				NULL);
846 		if (err) {
847 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
848 		}
849 	}
850 
851 	return (0);
852 }
853 
854 /*
855  * Locate an interface based on a complete address.
856  */
857 struct ifaddr *
858 ifa_ifwithaddr(struct sockaddr *addr)
859 {
860 	struct ifnet *ifp;
861 
862 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
863 		struct ifaddr_container *ifac;
864 
865 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
866 			struct ifaddr *ifa = ifac->ifa;
867 
868 			if (ifa->ifa_addr->sa_family != addr->sa_family)
869 				continue;
870 			if (sa_equal(addr, ifa->ifa_addr))
871 				return (ifa);
872 			if ((ifp->if_flags & IFF_BROADCAST) &&
873 			    ifa->ifa_broadaddr &&
874 			    /* IPv6 doesn't have broadcast */
875 			    ifa->ifa_broadaddr->sa_len != 0 &&
876 			    sa_equal(ifa->ifa_broadaddr, addr))
877 				return (ifa);
878 		}
879 	}
880 	return (NULL);
881 }
882 /*
883  * Locate the point to point interface with a given destination address.
884  */
885 struct ifaddr *
886 ifa_ifwithdstaddr(struct sockaddr *addr)
887 {
888 	struct ifnet *ifp;
889 
890 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
891 		struct ifaddr_container *ifac;
892 
893 		if (!(ifp->if_flags & IFF_POINTOPOINT))
894 			continue;
895 
896 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
897 			struct ifaddr *ifa = ifac->ifa;
898 
899 			if (ifa->ifa_addr->sa_family != addr->sa_family)
900 				continue;
901 			if (ifa->ifa_dstaddr &&
902 			    sa_equal(addr, ifa->ifa_dstaddr))
903 				return (ifa);
904 		}
905 	}
906 	return (NULL);
907 }
908 
909 /*
910  * Find an interface on a specific network.  If many, choice
911  * is most specific found.
912  */
913 struct ifaddr *
914 ifa_ifwithnet(struct sockaddr *addr)
915 {
916 	struct ifnet *ifp;
917 	struct ifaddr *ifa_maybe = NULL;
918 	u_int af = addr->sa_family;
919 	char *addr_data = addr->sa_data, *cplim;
920 
921 	/*
922 	 * AF_LINK addresses can be looked up directly by their index number,
923 	 * so do that if we can.
924 	 */
925 	if (af == AF_LINK) {
926 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
927 
928 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
929 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
930 	}
931 
932 	/*
933 	 * Scan though each interface, looking for ones that have
934 	 * addresses in this address family.
935 	 */
936 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
937 		struct ifaddr_container *ifac;
938 
939 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
940 			struct ifaddr *ifa = ifac->ifa;
941 			char *cp, *cp2, *cp3;
942 
943 			if (ifa->ifa_addr->sa_family != af)
944 next:				continue;
945 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
946 				/*
947 				 * This is a bit broken as it doesn't
948 				 * take into account that the remote end may
949 				 * be a single node in the network we are
950 				 * looking for.
951 				 * The trouble is that we don't know the
952 				 * netmask for the remote end.
953 				 */
954 				if (ifa->ifa_dstaddr != NULL &&
955 				    sa_equal(addr, ifa->ifa_dstaddr))
956 					return (ifa);
957 			} else {
958 				/*
959 				 * if we have a special address handler,
960 				 * then use it instead of the generic one.
961 				 */
962 				if (ifa->ifa_claim_addr) {
963 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
964 						return (ifa);
965 					} else {
966 						continue;
967 					}
968 				}
969 
970 				/*
971 				 * Scan all the bits in the ifa's address.
972 				 * If a bit dissagrees with what we are
973 				 * looking for, mask it with the netmask
974 				 * to see if it really matters.
975 				 * (A byte at a time)
976 				 */
977 				if (ifa->ifa_netmask == 0)
978 					continue;
979 				cp = addr_data;
980 				cp2 = ifa->ifa_addr->sa_data;
981 				cp3 = ifa->ifa_netmask->sa_data;
982 				cplim = ifa->ifa_netmask->sa_len +
983 					(char *)ifa->ifa_netmask;
984 				while (cp3 < cplim)
985 					if ((*cp++ ^ *cp2++) & *cp3++)
986 						goto next; /* next address! */
987 				/*
988 				 * If the netmask of what we just found
989 				 * is more specific than what we had before
990 				 * (if we had one) then remember the new one
991 				 * before continuing to search
992 				 * for an even better one.
993 				 */
994 				if (ifa_maybe == 0 ||
995 				    rn_refines((char *)ifa->ifa_netmask,
996 					       (char *)ifa_maybe->ifa_netmask))
997 					ifa_maybe = ifa;
998 			}
999 		}
1000 	}
1001 	return (ifa_maybe);
1002 }
1003 
1004 /*
1005  * Find an interface address specific to an interface best matching
1006  * a given address.
1007  */
1008 struct ifaddr *
1009 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1010 {
1011 	struct ifaddr_container *ifac;
1012 	char *cp, *cp2, *cp3;
1013 	char *cplim;
1014 	struct ifaddr *ifa_maybe = 0;
1015 	u_int af = addr->sa_family;
1016 
1017 	if (af >= AF_MAX)
1018 		return (0);
1019 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1020 		struct ifaddr *ifa = ifac->ifa;
1021 
1022 		if (ifa->ifa_addr->sa_family != af)
1023 			continue;
1024 		if (ifa_maybe == 0)
1025 			ifa_maybe = ifa;
1026 		if (ifa->ifa_netmask == NULL) {
1027 			if (sa_equal(addr, ifa->ifa_addr) ||
1028 			    (ifa->ifa_dstaddr != NULL &&
1029 			     sa_equal(addr, ifa->ifa_dstaddr)))
1030 				return (ifa);
1031 			continue;
1032 		}
1033 		if (ifp->if_flags & IFF_POINTOPOINT) {
1034 			if (sa_equal(addr, ifa->ifa_dstaddr))
1035 				return (ifa);
1036 		} else {
1037 			cp = addr->sa_data;
1038 			cp2 = ifa->ifa_addr->sa_data;
1039 			cp3 = ifa->ifa_netmask->sa_data;
1040 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1041 			for (; cp3 < cplim; cp3++)
1042 				if ((*cp++ ^ *cp2++) & *cp3)
1043 					break;
1044 			if (cp3 == cplim)
1045 				return (ifa);
1046 		}
1047 	}
1048 	return (ifa_maybe);
1049 }
1050 
1051 /*
1052  * Default action when installing a route with a Link Level gateway.
1053  * Lookup an appropriate real ifa to point to.
1054  * This should be moved to /sys/net/link.c eventually.
1055  */
1056 static void
1057 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1058 {
1059 	struct ifaddr *ifa;
1060 	struct sockaddr *dst;
1061 	struct ifnet *ifp;
1062 
1063 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1064 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1065 		return;
1066 	ifa = ifaof_ifpforaddr(dst, ifp);
1067 	if (ifa != NULL) {
1068 		IFAFREE(rt->rt_ifa);
1069 		IFAREF(ifa);
1070 		rt->rt_ifa = ifa;
1071 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1072 			ifa->ifa_rtrequest(cmd, rt, info);
1073 	}
1074 }
1075 
1076 /*
1077  * Mark an interface down and notify protocols of
1078  * the transition.
1079  * NOTE: must be called at splnet or eqivalent.
1080  */
1081 void
1082 if_unroute(struct ifnet *ifp, int flag, int fam)
1083 {
1084 	struct ifaddr_container *ifac;
1085 
1086 	ifp->if_flags &= ~flag;
1087 	getmicrotime(&ifp->if_lastchange);
1088 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1089 		struct ifaddr *ifa = ifac->ifa;
1090 
1091 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1092 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1093 	}
1094 	ifq_purge(&ifp->if_snd);
1095 	rt_ifmsg(ifp);
1096 }
1097 
1098 /*
1099  * Mark an interface up and notify protocols of
1100  * the transition.
1101  * NOTE: must be called at splnet or eqivalent.
1102  */
1103 void
1104 if_route(struct ifnet *ifp, int flag, int fam)
1105 {
1106 	struct ifaddr_container *ifac;
1107 
1108 	ifq_purge(&ifp->if_snd);
1109 	ifp->if_flags |= flag;
1110 	getmicrotime(&ifp->if_lastchange);
1111 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1112 		struct ifaddr *ifa = ifac->ifa;
1113 
1114 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1115 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1116 	}
1117 	rt_ifmsg(ifp);
1118 #ifdef INET6
1119 	in6_if_up(ifp);
1120 #endif
1121 }
1122 
1123 /*
1124  * Mark an interface down and notify protocols of the transition.  An
1125  * interface going down is also considered to be a synchronizing event.
1126  * We must ensure that all packet processing related to the interface
1127  * has completed before we return so e.g. the caller can free the ifnet
1128  * structure that the mbufs may be referencing.
1129  *
1130  * NOTE: must be called at splnet or eqivalent.
1131  */
1132 void
1133 if_down(struct ifnet *ifp)
1134 {
1135 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1136 	netmsg_service_sync();
1137 }
1138 
1139 /*
1140  * Mark an interface up and notify protocols of
1141  * the transition.
1142  * NOTE: must be called at splnet or eqivalent.
1143  */
1144 void
1145 if_up(struct ifnet *ifp)
1146 {
1147 	if_route(ifp, IFF_UP, AF_UNSPEC);
1148 }
1149 
1150 /*
1151  * Process a link state change.
1152  * NOTE: must be called at splsoftnet or equivalent.
1153  */
1154 void
1155 if_link_state_change(struct ifnet *ifp)
1156 {
1157 	int link_state = ifp->if_link_state;
1158 
1159 	rt_ifmsg(ifp);
1160 	devctl_notify("IFNET", ifp->if_xname,
1161 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1162 }
1163 
1164 /*
1165  * Handle interface watchdog timer routines.  Called
1166  * from softclock, we decrement timers (if set) and
1167  * call the appropriate interface routine on expiration.
1168  */
1169 static void
1170 if_slowtimo(void *arg)
1171 {
1172 	struct ifnet *ifp;
1173 
1174 	crit_enter();
1175 
1176 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1177 		if (ifp->if_timer == 0 || --ifp->if_timer)
1178 			continue;
1179 		if (ifp->if_watchdog) {
1180 			if (ifnet_tryserialize_all(ifp)) {
1181 				(*ifp->if_watchdog)(ifp);
1182 				ifnet_deserialize_all(ifp);
1183 			} else {
1184 				/* try again next timeout */
1185 				++ifp->if_timer;
1186 			}
1187 		}
1188 	}
1189 
1190 	crit_exit();
1191 
1192 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1193 }
1194 
1195 /*
1196  * Map interface name to
1197  * interface structure pointer.
1198  */
1199 struct ifnet *
1200 ifunit(const char *name)
1201 {
1202 	struct ifnet *ifp;
1203 
1204 	/*
1205 	 * Search all the interfaces for this name/number
1206 	 */
1207 
1208 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1209 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1210 			break;
1211 	}
1212 	return (ifp);
1213 }
1214 
1215 
1216 /*
1217  * Map interface name in a sockaddr_dl to
1218  * interface structure pointer.
1219  */
1220 struct ifnet *
1221 if_withname(struct sockaddr *sa)
1222 {
1223 	char ifname[IFNAMSIZ+1];
1224 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1225 
1226 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1227 	     (sdl->sdl_nlen > IFNAMSIZ) )
1228 		return NULL;
1229 
1230 	/*
1231 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1232 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1233 	 * and there might not be room to put the trailing null anyway, so we
1234 	 * make a local copy that we know we can null terminate safely.
1235 	 */
1236 
1237 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1238 	ifname[sdl->sdl_nlen] = '\0';
1239 	return ifunit(ifname);
1240 }
1241 
1242 
1243 /*
1244  * Interface ioctls.
1245  */
1246 int
1247 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1248 {
1249 	struct ifnet *ifp;
1250 	struct ifreq *ifr;
1251 	struct ifstat *ifs;
1252 	int error;
1253 	short oif_flags;
1254 	int new_flags;
1255 	size_t namelen, onamelen;
1256 	char new_name[IFNAMSIZ];
1257 	struct ifaddr *ifa;
1258 	struct sockaddr_dl *sdl;
1259 
1260 	switch (cmd) {
1261 
1262 	case SIOCGIFCONF:
1263 	case OSIOCGIFCONF:
1264 		return (ifconf(cmd, data, cred));
1265 	}
1266 	ifr = (struct ifreq *)data;
1267 
1268 	switch (cmd) {
1269 	case SIOCIFCREATE:
1270 	case SIOCIFCREATE2:
1271 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1272 			return (error);
1273 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1274 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1275 	case SIOCIFDESTROY:
1276 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1277 			return (error);
1278 		return (if_clone_destroy(ifr->ifr_name));
1279 
1280 	case SIOCIFGCLONERS:
1281 		return (if_clone_list((struct if_clonereq *)data));
1282 	}
1283 
1284 	ifp = ifunit(ifr->ifr_name);
1285 	if (ifp == 0)
1286 		return (ENXIO);
1287 	switch (cmd) {
1288 
1289 	case SIOCGIFINDEX:
1290 		ifr->ifr_index = ifp->if_index;
1291 		break;
1292 
1293 	case SIOCGIFFLAGS:
1294 		ifr->ifr_flags = ifp->if_flags;
1295 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1296 		break;
1297 
1298 	case SIOCGIFCAP:
1299 		ifr->ifr_reqcap = ifp->if_capabilities;
1300 		ifr->ifr_curcap = ifp->if_capenable;
1301 		break;
1302 
1303 	case SIOCGIFMETRIC:
1304 		ifr->ifr_metric = ifp->if_metric;
1305 		break;
1306 
1307 	case SIOCGIFMTU:
1308 		ifr->ifr_mtu = ifp->if_mtu;
1309 		break;
1310 
1311 	case SIOCGIFPHYS:
1312 		ifr->ifr_phys = ifp->if_physical;
1313 		break;
1314 
1315 	case SIOCGIFPOLLCPU:
1316 #ifdef DEVICE_POLLING
1317 		ifr->ifr_pollcpu = ifp->if_poll_cpuid;
1318 #else
1319 		ifr->ifr_pollcpu = -1;
1320 #endif
1321 		break;
1322 
1323 	case SIOCSIFPOLLCPU:
1324 #ifdef DEVICE_POLLING
1325 		if ((ifp->if_flags & IFF_POLLING) == 0)
1326 			ether_pollcpu_register(ifp, ifr->ifr_pollcpu);
1327 #endif
1328 		break;
1329 
1330 	case SIOCSIFFLAGS:
1331 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1332 		if (error)
1333 			return (error);
1334 		new_flags = (ifr->ifr_flags & 0xffff) |
1335 		    (ifr->ifr_flagshigh << 16);
1336 		if (ifp->if_flags & IFF_SMART) {
1337 			/* Smart drivers twiddle their own routes */
1338 		} else if (ifp->if_flags & IFF_UP &&
1339 		    (new_flags & IFF_UP) == 0) {
1340 			crit_enter();
1341 			if_down(ifp);
1342 			crit_exit();
1343 		} else if (new_flags & IFF_UP &&
1344 		    (ifp->if_flags & IFF_UP) == 0) {
1345 			crit_enter();
1346 			if_up(ifp);
1347 			crit_exit();
1348 		}
1349 
1350 #ifdef DEVICE_POLLING
1351 		if ((new_flags ^ ifp->if_flags) & IFF_POLLING) {
1352 			if (new_flags & IFF_POLLING) {
1353 				ether_poll_register(ifp);
1354 			} else {
1355 				ether_poll_deregister(ifp);
1356 			}
1357 		}
1358 #endif
1359 #ifdef IFPOLL_ENABLE
1360 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1361 			if (new_flags & IFF_NPOLLING)
1362 				ifpoll_register(ifp);
1363 			else
1364 				ifpoll_deregister(ifp);
1365 		}
1366 #endif
1367 
1368 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1369 			(new_flags &~ IFF_CANTCHANGE);
1370 		if (new_flags & IFF_PPROMISC) {
1371 			/* Permanently promiscuous mode requested */
1372 			ifp->if_flags |= IFF_PROMISC;
1373 		} else if (ifp->if_pcount == 0) {
1374 			ifp->if_flags &= ~IFF_PROMISC;
1375 		}
1376 		if (ifp->if_ioctl) {
1377 			ifnet_serialize_all(ifp);
1378 			ifp->if_ioctl(ifp, cmd, data, cred);
1379 			ifnet_deserialize_all(ifp);
1380 		}
1381 		getmicrotime(&ifp->if_lastchange);
1382 		break;
1383 
1384 	case SIOCSIFCAP:
1385 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1386 		if (error)
1387 			return (error);
1388 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
1389 			return (EINVAL);
1390 		ifnet_serialize_all(ifp);
1391 		ifp->if_ioctl(ifp, cmd, data, cred);
1392 		ifnet_deserialize_all(ifp);
1393 		break;
1394 
1395 	case SIOCSIFNAME:
1396 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1397 		if (error != 0)
1398 			return (error);
1399 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1400 		if (error != 0)
1401 			return (error);
1402 		if (new_name[0] == '\0')
1403 			return (EINVAL);
1404 		if (ifunit(new_name) != NULL)
1405 			return (EEXIST);
1406 
1407 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1408 
1409 		/* Announce the departure of the interface. */
1410 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1411 
1412 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1413 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1414 		/* XXX IFA_LOCK(ifa); */
1415 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1416 		namelen = strlen(new_name);
1417 		onamelen = sdl->sdl_nlen;
1418 		/*
1419 		 * Move the address if needed.  This is safe because we
1420 		 * allocate space for a name of length IFNAMSIZ when we
1421 		 * create this in if_attach().
1422 		 */
1423 		if (namelen != onamelen) {
1424 			bcopy(sdl->sdl_data + onamelen,
1425 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1426 		}
1427 		bcopy(new_name, sdl->sdl_data, namelen);
1428 		sdl->sdl_nlen = namelen;
1429 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1430 		bzero(sdl->sdl_data, onamelen);
1431 		while (namelen != 0)
1432 			sdl->sdl_data[--namelen] = 0xff;
1433 		/* XXX IFA_UNLOCK(ifa) */
1434 
1435 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1436 
1437 		/* Announce the return of the interface. */
1438 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1439 		break;
1440 
1441 	case SIOCSIFMETRIC:
1442 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1443 		if (error)
1444 			return (error);
1445 		ifp->if_metric = ifr->ifr_metric;
1446 		getmicrotime(&ifp->if_lastchange);
1447 		break;
1448 
1449 	case SIOCSIFPHYS:
1450 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1451 		if (error)
1452 			return error;
1453 		if (!ifp->if_ioctl)
1454 		        return EOPNOTSUPP;
1455 		ifnet_serialize_all(ifp);
1456 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1457 		ifnet_deserialize_all(ifp);
1458 		if (error == 0)
1459 			getmicrotime(&ifp->if_lastchange);
1460 		return (error);
1461 
1462 	case SIOCSIFMTU:
1463 	{
1464 		u_long oldmtu = ifp->if_mtu;
1465 
1466 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1467 		if (error)
1468 			return (error);
1469 		if (ifp->if_ioctl == NULL)
1470 			return (EOPNOTSUPP);
1471 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
1472 			return (EINVAL);
1473 		ifnet_serialize_all(ifp);
1474 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1475 		ifnet_deserialize_all(ifp);
1476 		if (error == 0) {
1477 			getmicrotime(&ifp->if_lastchange);
1478 			rt_ifmsg(ifp);
1479 		}
1480 		/*
1481 		 * If the link MTU changed, do network layer specific procedure.
1482 		 */
1483 		if (ifp->if_mtu != oldmtu) {
1484 #ifdef INET6
1485 			nd6_setmtu(ifp);
1486 #endif
1487 		}
1488 		return (error);
1489 	}
1490 
1491 	case SIOCADDMULTI:
1492 	case SIOCDELMULTI:
1493 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1494 		if (error)
1495 			return (error);
1496 
1497 		/* Don't allow group membership on non-multicast interfaces. */
1498 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
1499 			return EOPNOTSUPP;
1500 
1501 		/* Don't let users screw up protocols' entries. */
1502 		if (ifr->ifr_addr.sa_family != AF_LINK)
1503 			return EINVAL;
1504 
1505 		if (cmd == SIOCADDMULTI) {
1506 			struct ifmultiaddr *ifma;
1507 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1508 		} else {
1509 			error = if_delmulti(ifp, &ifr->ifr_addr);
1510 		}
1511 		if (error == 0)
1512 			getmicrotime(&ifp->if_lastchange);
1513 		return error;
1514 
1515 	case SIOCSIFPHYADDR:
1516 	case SIOCDIFPHYADDR:
1517 #ifdef INET6
1518 	case SIOCSIFPHYADDR_IN6:
1519 #endif
1520 	case SIOCSLIFPHYADDR:
1521         case SIOCSIFMEDIA:
1522 	case SIOCSIFGENERIC:
1523 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1524 		if (error)
1525 			return (error);
1526 		if (ifp->if_ioctl == 0)
1527 			return (EOPNOTSUPP);
1528 		ifnet_serialize_all(ifp);
1529 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1530 		ifnet_deserialize_all(ifp);
1531 		if (error == 0)
1532 			getmicrotime(&ifp->if_lastchange);
1533 		return error;
1534 
1535 	case SIOCGIFSTATUS:
1536 		ifs = (struct ifstat *)data;
1537 		ifs->ascii[0] = '\0';
1538 
1539 	case SIOCGIFPSRCADDR:
1540 	case SIOCGIFPDSTADDR:
1541 	case SIOCGLIFPHYADDR:
1542 	case SIOCGIFMEDIA:
1543 	case SIOCGIFGENERIC:
1544 		if (ifp->if_ioctl == NULL)
1545 			return (EOPNOTSUPP);
1546 		ifnet_serialize_all(ifp);
1547 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1548 		ifnet_deserialize_all(ifp);
1549 		return (error);
1550 
1551 	case SIOCSIFLLADDR:
1552 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1553 		if (error)
1554 			return (error);
1555 		error = if_setlladdr(ifp,
1556 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
1557 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1558 		return (error);
1559 
1560 	default:
1561 		oif_flags = ifp->if_flags;
1562 		if (so->so_proto == 0)
1563 			return (EOPNOTSUPP);
1564 #ifndef COMPAT_43
1565 		error = so_pru_control(so, cmd, data, ifp);
1566 #else
1567 	    {
1568 		int ocmd = cmd;
1569 
1570 		switch (cmd) {
1571 
1572 		case SIOCSIFDSTADDR:
1573 		case SIOCSIFADDR:
1574 		case SIOCSIFBRDADDR:
1575 		case SIOCSIFNETMASK:
1576 #if BYTE_ORDER != BIG_ENDIAN
1577 			if (ifr->ifr_addr.sa_family == 0 &&
1578 			    ifr->ifr_addr.sa_len < 16) {
1579 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1580 				ifr->ifr_addr.sa_len = 16;
1581 			}
1582 #else
1583 			if (ifr->ifr_addr.sa_len == 0)
1584 				ifr->ifr_addr.sa_len = 16;
1585 #endif
1586 			break;
1587 
1588 		case OSIOCGIFADDR:
1589 			cmd = SIOCGIFADDR;
1590 			break;
1591 
1592 		case OSIOCGIFDSTADDR:
1593 			cmd = SIOCGIFDSTADDR;
1594 			break;
1595 
1596 		case OSIOCGIFBRDADDR:
1597 			cmd = SIOCGIFBRDADDR;
1598 			break;
1599 
1600 		case OSIOCGIFNETMASK:
1601 			cmd = SIOCGIFNETMASK;
1602 		}
1603 		error =  so_pru_control(so, cmd, data, ifp);
1604 		switch (ocmd) {
1605 
1606 		case OSIOCGIFADDR:
1607 		case OSIOCGIFDSTADDR:
1608 		case OSIOCGIFBRDADDR:
1609 		case OSIOCGIFNETMASK:
1610 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1611 
1612 		}
1613 	    }
1614 #endif /* COMPAT_43 */
1615 
1616 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1617 #ifdef INET6
1618 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1619 			if (ifp->if_flags & IFF_UP) {
1620 				crit_enter();
1621 				in6_if_up(ifp);
1622 				crit_exit();
1623 			}
1624 #endif
1625 		}
1626 		return (error);
1627 
1628 	}
1629 	return (0);
1630 }
1631 
1632 /*
1633  * Set/clear promiscuous mode on interface ifp based on the truth value
1634  * of pswitch.  The calls are reference counted so that only the first
1635  * "on" request actually has an effect, as does the final "off" request.
1636  * Results are undefined if the "off" and "on" requests are not matched.
1637  */
1638 int
1639 ifpromisc(struct ifnet *ifp, int pswitch)
1640 {
1641 	struct ifreq ifr;
1642 	int error;
1643 	int oldflags;
1644 
1645 	oldflags = ifp->if_flags;
1646 	if (ifp->if_flags & IFF_PPROMISC) {
1647 		/* Do nothing if device is in permanently promiscuous mode */
1648 		ifp->if_pcount += pswitch ? 1 : -1;
1649 		return (0);
1650 	}
1651 	if (pswitch) {
1652 		/*
1653 		 * If the device is not configured up, we cannot put it in
1654 		 * promiscuous mode.
1655 		 */
1656 		if ((ifp->if_flags & IFF_UP) == 0)
1657 			return (ENETDOWN);
1658 		if (ifp->if_pcount++ != 0)
1659 			return (0);
1660 		ifp->if_flags |= IFF_PROMISC;
1661 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1662 		    ifp->if_xname);
1663 	} else {
1664 		if (--ifp->if_pcount > 0)
1665 			return (0);
1666 		ifp->if_flags &= ~IFF_PROMISC;
1667 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1668 		    ifp->if_xname);
1669 	}
1670 	ifr.ifr_flags = ifp->if_flags;
1671 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1672 	ifnet_serialize_all(ifp);
1673 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1674 	ifnet_deserialize_all(ifp);
1675 	if (error == 0)
1676 		rt_ifmsg(ifp);
1677 	else
1678 		ifp->if_flags = oldflags;
1679 	return error;
1680 }
1681 
1682 /*
1683  * Return interface configuration
1684  * of system.  List may be used
1685  * in later ioctl's (above) to get
1686  * other information.
1687  */
1688 static int
1689 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1690 {
1691 	struct ifconf *ifc = (struct ifconf *)data;
1692 	struct ifnet *ifp;
1693 	struct sockaddr *sa;
1694 	struct ifreq ifr, *ifrp;
1695 	int space = ifc->ifc_len, error = 0;
1696 
1697 	ifrp = ifc->ifc_req;
1698 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1699 		struct ifaddr_container *ifac;
1700 		int addrs;
1701 
1702 		if (space <= sizeof ifr)
1703 			break;
1704 
1705 		/*
1706 		 * Zero the stack declared structure first to prevent
1707 		 * memory disclosure.
1708 		 */
1709 		bzero(&ifr, sizeof(ifr));
1710 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
1711 		    >= sizeof(ifr.ifr_name)) {
1712 			error = ENAMETOOLONG;
1713 			break;
1714 		}
1715 
1716 		addrs = 0;
1717 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1718 			struct ifaddr *ifa = ifac->ifa;
1719 
1720 			if (space <= sizeof ifr)
1721 				break;
1722 			sa = ifa->ifa_addr;
1723 			if (cred->cr_prison &&
1724 			    prison_if(cred, sa))
1725 				continue;
1726 			addrs++;
1727 #ifdef COMPAT_43
1728 			if (cmd == OSIOCGIFCONF) {
1729 				struct osockaddr *osa =
1730 					 (struct osockaddr *)&ifr.ifr_addr;
1731 				ifr.ifr_addr = *sa;
1732 				osa->sa_family = sa->sa_family;
1733 				error = copyout(&ifr, ifrp, sizeof ifr);
1734 				ifrp++;
1735 			} else
1736 #endif
1737 			if (sa->sa_len <= sizeof(*sa)) {
1738 				ifr.ifr_addr = *sa;
1739 				error = copyout(&ifr, ifrp, sizeof ifr);
1740 				ifrp++;
1741 			} else {
1742 				if (space < (sizeof ifr) + sa->sa_len -
1743 					    sizeof(*sa))
1744 					break;
1745 				space -= sa->sa_len - sizeof(*sa);
1746 				error = copyout(&ifr, ifrp,
1747 						sizeof ifr.ifr_name);
1748 				if (error == 0)
1749 					error = copyout(sa, &ifrp->ifr_addr,
1750 							sa->sa_len);
1751 				ifrp = (struct ifreq *)
1752 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
1753 			}
1754 			if (error)
1755 				break;
1756 			space -= sizeof ifr;
1757 		}
1758 		if (error)
1759 			break;
1760 		if (!addrs) {
1761 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
1762 			error = copyout(&ifr, ifrp, sizeof ifr);
1763 			if (error)
1764 				break;
1765 			space -= sizeof ifr;
1766 			ifrp++;
1767 		}
1768 	}
1769 	ifc->ifc_len -= space;
1770 	return (error);
1771 }
1772 
1773 /*
1774  * Just like if_promisc(), but for all-multicast-reception mode.
1775  */
1776 int
1777 if_allmulti(struct ifnet *ifp, int onswitch)
1778 {
1779 	int error = 0;
1780 	struct ifreq ifr;
1781 
1782 	crit_enter();
1783 
1784 	if (onswitch) {
1785 		if (ifp->if_amcount++ == 0) {
1786 			ifp->if_flags |= IFF_ALLMULTI;
1787 			ifr.ifr_flags = ifp->if_flags;
1788 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1789 			ifnet_serialize_all(ifp);
1790 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1791 					      NULL);
1792 			ifnet_deserialize_all(ifp);
1793 		}
1794 	} else {
1795 		if (ifp->if_amcount > 1) {
1796 			ifp->if_amcount--;
1797 		} else {
1798 			ifp->if_amcount = 0;
1799 			ifp->if_flags &= ~IFF_ALLMULTI;
1800 			ifr.ifr_flags = ifp->if_flags;
1801 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1802 			ifnet_serialize_all(ifp);
1803 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1804 					      NULL);
1805 			ifnet_deserialize_all(ifp);
1806 		}
1807 	}
1808 
1809 	crit_exit();
1810 
1811 	if (error == 0)
1812 		rt_ifmsg(ifp);
1813 	return error;
1814 }
1815 
1816 /*
1817  * Add a multicast listenership to the interface in question.
1818  * The link layer provides a routine which converts
1819  */
1820 int
1821 if_addmulti(
1822 	struct ifnet *ifp,	/* interface to manipulate */
1823 	struct sockaddr *sa,	/* address to add */
1824 	struct ifmultiaddr **retifma)
1825 {
1826 	struct sockaddr *llsa, *dupsa;
1827 	int error;
1828 	struct ifmultiaddr *ifma;
1829 
1830 	/*
1831 	 * If the matching multicast address already exists
1832 	 * then don't add a new one, just add a reference
1833 	 */
1834 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1835 		if (sa_equal(sa, ifma->ifma_addr)) {
1836 			ifma->ifma_refcount++;
1837 			if (retifma)
1838 				*retifma = ifma;
1839 			return 0;
1840 		}
1841 	}
1842 
1843 	/*
1844 	 * Give the link layer a chance to accept/reject it, and also
1845 	 * find out which AF_LINK address this maps to, if it isn't one
1846 	 * already.
1847 	 */
1848 	if (ifp->if_resolvemulti) {
1849 		ifnet_serialize_all(ifp);
1850 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
1851 		ifnet_deserialize_all(ifp);
1852 		if (error)
1853 			return error;
1854 	} else {
1855 		llsa = 0;
1856 	}
1857 
1858 	MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK);
1859 	MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK);
1860 	bcopy(sa, dupsa, sa->sa_len);
1861 
1862 	ifma->ifma_addr = dupsa;
1863 	ifma->ifma_lladdr = llsa;
1864 	ifma->ifma_ifp = ifp;
1865 	ifma->ifma_refcount = 1;
1866 	ifma->ifma_protospec = 0;
1867 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
1868 
1869 	/*
1870 	 * Some network interfaces can scan the address list at
1871 	 * interrupt time; lock them out.
1872 	 */
1873 	crit_enter();
1874 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1875 	crit_exit();
1876 	if (retifma)
1877 		*retifma = ifma;
1878 
1879 	if (llsa != 0) {
1880 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1881 			if (sa_equal(ifma->ifma_addr, llsa))
1882 				break;
1883 		}
1884 		if (ifma) {
1885 			ifma->ifma_refcount++;
1886 		} else {
1887 			MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma,
1888 			       M_IFMADDR, M_WAITOK);
1889 			MALLOC(dupsa, struct sockaddr *, llsa->sa_len,
1890 			       M_IFMADDR, M_WAITOK);
1891 			bcopy(llsa, dupsa, llsa->sa_len);
1892 			ifma->ifma_addr = dupsa;
1893 			ifma->ifma_ifp = ifp;
1894 			ifma->ifma_refcount = 1;
1895 			crit_enter();
1896 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1897 			crit_exit();
1898 		}
1899 	}
1900 	/*
1901 	 * We are certain we have added something, so call down to the
1902 	 * interface to let them know about it.
1903 	 */
1904 	crit_enter();
1905 	ifnet_serialize_all(ifp);
1906 	if (ifp->if_ioctl)
1907 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
1908 	ifnet_deserialize_all(ifp);
1909 	crit_exit();
1910 
1911 	return 0;
1912 }
1913 
1914 /*
1915  * Remove a reference to a multicast address on this interface.  Yell
1916  * if the request does not match an existing membership.
1917  */
1918 int
1919 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
1920 {
1921 	struct ifmultiaddr *ifma;
1922 
1923 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1924 		if (sa_equal(sa, ifma->ifma_addr))
1925 			break;
1926 	if (ifma == 0)
1927 		return ENOENT;
1928 
1929 	if (ifma->ifma_refcount > 1) {
1930 		ifma->ifma_refcount--;
1931 		return 0;
1932 	}
1933 
1934 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
1935 	sa = ifma->ifma_lladdr;
1936 	crit_enter();
1937 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
1938 	/*
1939 	 * Make sure the interface driver is notified
1940 	 * in the case of a link layer mcast group being left.
1941 	 */
1942 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0) {
1943 		ifnet_serialize_all(ifp);
1944 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
1945 		ifnet_deserialize_all(ifp);
1946 	}
1947 	crit_exit();
1948 	kfree(ifma->ifma_addr, M_IFMADDR);
1949 	kfree(ifma, M_IFMADDR);
1950 	if (sa == 0)
1951 		return 0;
1952 
1953 	/*
1954 	 * Now look for the link-layer address which corresponds to
1955 	 * this network address.  It had been squirreled away in
1956 	 * ifma->ifma_lladdr for this purpose (so we don't have
1957 	 * to call ifp->if_resolvemulti() again), and we saved that
1958 	 * value in sa above.  If some nasty deleted the
1959 	 * link-layer address out from underneath us, we can deal because
1960 	 * the address we stored was is not the same as the one which was
1961 	 * in the record for the link-layer address.  (So we don't complain
1962 	 * in that case.)
1963 	 */
1964 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1965 		if (sa_equal(sa, ifma->ifma_addr))
1966 			break;
1967 	if (ifma == 0)
1968 		return 0;
1969 
1970 	if (ifma->ifma_refcount > 1) {
1971 		ifma->ifma_refcount--;
1972 		return 0;
1973 	}
1974 
1975 	crit_enter();
1976 	ifnet_serialize_all(ifp);
1977 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
1978 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
1979 	ifnet_deserialize_all(ifp);
1980 	crit_exit();
1981 	kfree(ifma->ifma_addr, M_IFMADDR);
1982 	kfree(sa, M_IFMADDR);
1983 	kfree(ifma, M_IFMADDR);
1984 
1985 	return 0;
1986 }
1987 
1988 /*
1989  * Delete all multicast group membership for an interface.
1990  * Should be used to quickly flush all multicast filters.
1991  */
1992 void
1993 if_delallmulti(struct ifnet *ifp)
1994 {
1995 	struct ifmultiaddr *ifma;
1996 	struct ifmultiaddr *next;
1997 
1998 	TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
1999 		if_delmulti(ifp, ifma->ifma_addr);
2000 }
2001 
2002 
2003 /*
2004  * Set the link layer address on an interface.
2005  *
2006  * At this time we only support certain types of interfaces,
2007  * and we don't allow the length of the address to change.
2008  */
2009 int
2010 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2011 {
2012 	struct sockaddr_dl *sdl;
2013 	struct ifreq ifr;
2014 
2015 	sdl = IF_LLSOCKADDR(ifp);
2016 	if (sdl == NULL)
2017 		return (EINVAL);
2018 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2019 		return (EINVAL);
2020 	switch (ifp->if_type) {
2021 	case IFT_ETHER:			/* these types use struct arpcom */
2022 	case IFT_XETHER:
2023 	case IFT_L2VLAN:
2024 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2025 		bcopy(lladdr, LLADDR(sdl), len);
2026 		break;
2027 	default:
2028 		return (ENODEV);
2029 	}
2030 	/*
2031 	 * If the interface is already up, we need
2032 	 * to re-init it in order to reprogram its
2033 	 * address filter.
2034 	 */
2035 	ifnet_serialize_all(ifp);
2036 	if ((ifp->if_flags & IFF_UP) != 0) {
2037 		struct ifaddr_container *ifac;
2038 
2039 		ifp->if_flags &= ~IFF_UP;
2040 		ifr.ifr_flags = ifp->if_flags;
2041 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2042 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2043 			      NULL);
2044 		ifp->if_flags |= IFF_UP;
2045 		ifr.ifr_flags = ifp->if_flags;
2046 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2047 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2048 				 NULL);
2049 #ifdef INET
2050 		/*
2051 		 * Also send gratuitous ARPs to notify other nodes about
2052 		 * the address change.
2053 		 */
2054 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2055 			struct ifaddr *ifa = ifac->ifa;
2056 
2057 			if (ifa->ifa_addr != NULL &&
2058 			    ifa->ifa_addr->sa_family == AF_INET)
2059 				arp_ifinit(ifp, ifa);
2060 		}
2061 #endif
2062 	}
2063 	ifnet_deserialize_all(ifp);
2064 	return (0);
2065 }
2066 
2067 struct ifmultiaddr *
2068 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2069 {
2070 	struct ifmultiaddr *ifma;
2071 
2072 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2073 		if (sa_equal(ifma->ifma_addr, sa))
2074 			break;
2075 
2076 	return ifma;
2077 }
2078 
2079 /*
2080  * This function locates the first real ethernet MAC from a network
2081  * card and loads it into node, returning 0 on success or ENOENT if
2082  * no suitable interfaces were found.  It is used by the uuid code to
2083  * generate a unique 6-byte number.
2084  */
2085 int
2086 if_getanyethermac(uint16_t *node, int minlen)
2087 {
2088 	struct ifnet *ifp;
2089 	struct sockaddr_dl *sdl;
2090 
2091 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2092 		if (ifp->if_type != IFT_ETHER)
2093 			continue;
2094 		sdl = IF_LLSOCKADDR(ifp);
2095 		if (sdl->sdl_alen < minlen)
2096 			continue;
2097 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2098 		      minlen);
2099 		return(0);
2100 	}
2101 	return (ENOENT);
2102 }
2103 
2104 /*
2105  * The name argument must be a pointer to storage which will last as
2106  * long as the interface does.  For physical devices, the result of
2107  * device_get_name(dev) is a good choice and for pseudo-devices a
2108  * static string works well.
2109  */
2110 void
2111 if_initname(struct ifnet *ifp, const char *name, int unit)
2112 {
2113 	ifp->if_dname = name;
2114 	ifp->if_dunit = unit;
2115 	if (unit != IF_DUNIT_NONE)
2116 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2117 	else
2118 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2119 }
2120 
2121 int
2122 if_printf(struct ifnet *ifp, const char *fmt, ...)
2123 {
2124 	__va_list ap;
2125 	int retval;
2126 
2127 	retval = kprintf("%s: ", ifp->if_xname);
2128 	__va_start(ap, fmt);
2129 	retval += kvprintf(fmt, ap);
2130 	__va_end(ap);
2131 	return (retval);
2132 }
2133 
2134 struct ifnet *
2135 if_alloc(uint8_t type)
2136 {
2137         struct ifnet *ifp;
2138 	size_t size;
2139 
2140 	/*
2141 	 * XXX temporary hack until arpcom is setup in if_l2com
2142 	 */
2143 	if (type == IFT_ETHER)
2144 		size = sizeof(struct arpcom);
2145 	else
2146 		size = sizeof(struct ifnet);
2147 
2148 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2149 
2150 	ifp->if_type = type;
2151 
2152 	if (if_com_alloc[type] != NULL) {
2153 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2154 		if (ifp->if_l2com == NULL) {
2155 			kfree(ifp, M_IFNET);
2156 			return (NULL);
2157 		}
2158 	}
2159 	return (ifp);
2160 }
2161 
2162 void
2163 if_free(struct ifnet *ifp)
2164 {
2165 	kfree(ifp, M_IFNET);
2166 }
2167 
2168 void
2169 ifq_set_classic(struct ifaltq *ifq)
2170 {
2171 	ifq->altq_enqueue = ifq_classic_enqueue;
2172 	ifq->altq_dequeue = ifq_classic_dequeue;
2173 	ifq->altq_request = ifq_classic_request;
2174 }
2175 
2176 int
2177 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m,
2178 		    struct altq_pktattr *pa __unused)
2179 {
2180 	logifq(enqueue, ifq);
2181 	if (IF_QFULL(ifq)) {
2182 		m_freem(m);
2183 		return(ENOBUFS);
2184 	} else {
2185 		IF_ENQUEUE(ifq, m);
2186 		return(0);
2187 	}
2188 }
2189 
2190 struct mbuf *
2191 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
2192 {
2193 	struct mbuf *m;
2194 
2195 	switch (op) {
2196 	case ALTDQ_POLL:
2197 		IF_POLL(ifq, m);
2198 		break;
2199 	case ALTDQ_REMOVE:
2200 		logifq(dequeue, ifq);
2201 		IF_DEQUEUE(ifq, m);
2202 		break;
2203 	default:
2204 		panic("unsupported ALTQ dequeue op: %d", op);
2205 	}
2206 	KKASSERT(mpolled == NULL || mpolled == m);
2207 	return(m);
2208 }
2209 
2210 int
2211 ifq_classic_request(struct ifaltq *ifq, int req, void *arg)
2212 {
2213 	switch (req) {
2214 	case ALTRQ_PURGE:
2215 		IF_DRAIN(ifq);
2216 		break;
2217 	default:
2218 		panic("unsupported ALTQ request: %d", req);
2219 	}
2220 	return(0);
2221 }
2222 
2223 int
2224 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2225 {
2226 	struct ifaltq *ifq = &ifp->if_snd;
2227 	int running = 0, error, start = 0;
2228 
2229 	ASSERT_IFNET_NOT_SERIALIZED_TX(ifp);
2230 
2231 	ALTQ_LOCK(ifq);
2232 	error = ifq_enqueue_locked(ifq, m, pa);
2233 	if (error) {
2234 		ALTQ_UNLOCK(ifq);
2235 		return error;
2236 	}
2237 	if (!ifq->altq_started) {
2238 		/*
2239 		 * Hold the interlock of ifnet.if_start
2240 		 */
2241 		ifq->altq_started = 1;
2242 		start = 1;
2243 	}
2244 	ALTQ_UNLOCK(ifq);
2245 
2246 	ifp->if_obytes += m->m_pkthdr.len;
2247 	if (m->m_flags & M_MCAST)
2248 		ifp->if_omcasts++;
2249 
2250 	if (!start) {
2251 		logifstart(avoid, ifp);
2252 		return 0;
2253 	}
2254 
2255 	if (ifq_dispatch_schedonly) {
2256 		/*
2257 		 * Always schedule ifnet.if_start on ifnet's CPU,
2258 		 * short circuit the rest of this function.
2259 		 */
2260 		logifstart(sched, ifp);
2261 		if_start_schedule(ifp);
2262 		return 0;
2263 	}
2264 
2265 	/*
2266 	 * Try to do direct ifnet.if_start first, if there is
2267 	 * contention on ifnet's serializer, ifnet.if_start will
2268 	 * be scheduled on ifnet's CPU.
2269 	 */
2270 	if (!ifnet_tryserialize_tx(ifp)) {
2271 		/*
2272 		 * ifnet serializer contention happened,
2273 		 * ifnet.if_start is scheduled on ifnet's
2274 		 * CPU, and we keep going.
2275 		 */
2276 		logifstart(contend_sched, ifp);
2277 		if_start_schedule(ifp);
2278 		return 0;
2279 	}
2280 
2281 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2282 		logifstart(run, ifp);
2283 		ifp->if_start(ifp);
2284 		if ((ifp->if_flags &
2285 		     (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
2286 			running = 1;
2287 	}
2288 
2289 	ifnet_deserialize_tx(ifp);
2290 
2291 	if (ifq_dispatch_schednochk || if_start_need_schedule(ifq, running)) {
2292 		/*
2293 		 * More data need to be transmitted, ifnet.if_start is
2294 		 * scheduled on ifnet's CPU, and we keep going.
2295 		 * NOTE: ifnet.if_start interlock is not released.
2296 		 */
2297 		logifstart(sched, ifp);
2298 		if_start_schedule(ifp);
2299 	}
2300 	return 0;
2301 }
2302 
2303 void *
2304 ifa_create(int size, int flags)
2305 {
2306 	struct ifaddr *ifa;
2307 	int i;
2308 
2309 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small\n"));
2310 
2311 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2312 	if (ifa == NULL)
2313 		return NULL;
2314 
2315 	ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container),
2316 				      M_IFADDR, M_WAITOK | M_ZERO);
2317 	ifa->ifa_ncnt = ncpus;
2318 	for (i = 0; i < ncpus; ++i) {
2319 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2320 
2321 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2322 		ifac->ifa = ifa;
2323 		ifac->ifa_refcnt = 1;
2324 	}
2325 #ifdef IFADDR_DEBUG
2326 	kprintf("alloc ifa %p %d\n", ifa, size);
2327 #endif
2328 	return ifa;
2329 }
2330 
2331 void
2332 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2333 {
2334 	struct ifaddr *ifa = ifac->ifa;
2335 
2336 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2337 	KKASSERT(ifac->ifa_refcnt == 0);
2338 	KASSERT(ifac->ifa_listmask == 0,
2339 		("ifa is still on %#x lists\n", ifac->ifa_listmask));
2340 
2341 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2342 
2343 #ifdef IFADDR_DEBUG_VERBOSE
2344 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2345 #endif
2346 
2347 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2348 		("invalid # of ifac, %d\n", ifa->ifa_ncnt));
2349 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2350 #ifdef IFADDR_DEBUG
2351 		kprintf("free ifa %p\n", ifa);
2352 #endif
2353 		kfree(ifa->ifa_containers, M_IFADDR);
2354 		kfree(ifa, M_IFADDR);
2355 	}
2356 }
2357 
2358 static void
2359 ifa_iflink_dispatch(struct netmsg *nmsg)
2360 {
2361 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2362 	struct ifaddr *ifa = msg->ifa;
2363 	struct ifnet *ifp = msg->ifp;
2364 	int cpu = mycpuid;
2365 	struct ifaddr_container *ifac;
2366 
2367 	crit_enter();
2368 
2369 	ifac = &ifa->ifa_containers[cpu];
2370 	ASSERT_IFAC_VALID(ifac);
2371 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2372 		("ifaddr is on if_addrheads\n"));
2373 
2374 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2375 	if (msg->tail)
2376 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2377 	else
2378 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2379 
2380 	crit_exit();
2381 
2382 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2383 }
2384 
2385 void
2386 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2387 {
2388 	struct netmsg_ifaddr msg;
2389 
2390 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2391 		    0, ifa_iflink_dispatch);
2392 	msg.ifa = ifa;
2393 	msg.ifp = ifp;
2394 	msg.tail = tail;
2395 
2396 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2397 }
2398 
2399 static void
2400 ifa_ifunlink_dispatch(struct netmsg *nmsg)
2401 {
2402 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2403 	struct ifaddr *ifa = msg->ifa;
2404 	struct ifnet *ifp = msg->ifp;
2405 	int cpu = mycpuid;
2406 	struct ifaddr_container *ifac;
2407 
2408 	crit_enter();
2409 
2410 	ifac = &ifa->ifa_containers[cpu];
2411 	ASSERT_IFAC_VALID(ifac);
2412 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2413 		("ifaddr is not on if_addrhead\n"));
2414 
2415 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2416 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2417 
2418 	crit_exit();
2419 
2420 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2421 }
2422 
2423 void
2424 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2425 {
2426 	struct netmsg_ifaddr msg;
2427 
2428 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2429 		    0, ifa_ifunlink_dispatch);
2430 	msg.ifa = ifa;
2431 	msg.ifp = ifp;
2432 
2433 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2434 }
2435 
2436 static void
2437 ifa_destroy_dispatch(struct netmsg *nmsg)
2438 {
2439 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2440 
2441 	IFAFREE(msg->ifa);
2442 	ifa_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2443 }
2444 
2445 void
2446 ifa_destroy(struct ifaddr *ifa)
2447 {
2448 	struct netmsg_ifaddr msg;
2449 
2450 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2451 		    0, ifa_destroy_dispatch);
2452 	msg.ifa = ifa;
2453 
2454 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2455 }
2456 
2457 struct lwkt_port *
2458 ifnet_portfn(int cpu)
2459 {
2460 	return &ifnet_threads[cpu].td_msgport;
2461 }
2462 
2463 void
2464 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2465 {
2466 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2467 
2468 	if (next_cpu < ncpus)
2469 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2470 	else
2471 		lwkt_replymsg(lmsg, 0);
2472 }
2473 
2474 int
2475 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2476 {
2477 	KKASSERT(cpu < ncpus);
2478 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2479 }
2480 
2481 void
2482 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2483 {
2484 	KKASSERT(cpu < ncpus);
2485 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2486 }
2487 
2488 /*
2489  * Generic netmsg service loop.  Some protocols may roll their own but all
2490  * must do the basic command dispatch function call done here.
2491  */
2492 static void
2493 ifnet_service_loop(void *arg __unused)
2494 {
2495 	struct netmsg *msg;
2496 
2497 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
2498 		KASSERT(msg->nm_dispatch, ("ifnet_service: badmsg"));
2499 		msg->nm_dispatch(msg);
2500 	}
2501 }
2502 
2503 static void
2504 ifnetinit(void *dummy __unused)
2505 {
2506 	int i;
2507 
2508 	for (i = 0; i < ncpus; ++i) {
2509 		struct thread *thr = &ifnet_threads[i];
2510 
2511 		lwkt_create(ifnet_service_loop, NULL, NULL,
2512 			    thr, TDF_STOPREQ, i, "ifnet %d", i);
2513 		netmsg_service_port_init(&thr->td_msgport);
2514 		lwkt_schedule(thr);
2515 	}
2516 }
2517 
2518 struct ifnet *
2519 ifnet_byindex(unsigned short idx)
2520 {
2521 	if (idx > if_index)
2522 		return NULL;
2523 	return ifindex2ifnet[idx];
2524 }
2525 
2526 struct ifaddr *
2527 ifaddr_byindex(unsigned short idx)
2528 {
2529 	struct ifnet *ifp;
2530 
2531 	ifp = ifnet_byindex(idx);
2532 	if (!ifp)
2533 		return NULL;
2534 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2535 }
2536 
2537 void
2538 if_register_com_alloc(u_char type,
2539     if_com_alloc_t *a, if_com_free_t *f)
2540 {
2541 
2542         KASSERT(if_com_alloc[type] == NULL,
2543             ("if_register_com_alloc: %d already registered", type));
2544         KASSERT(if_com_free[type] == NULL,
2545             ("if_register_com_alloc: %d free already registered", type));
2546 
2547         if_com_alloc[type] = a;
2548         if_com_free[type] = f;
2549 }
2550 
2551 void
2552 if_deregister_com_alloc(u_char type)
2553 {
2554 
2555         KASSERT(if_com_alloc[type] != NULL,
2556             ("if_deregister_com_alloc: %d not registered", type));
2557         KASSERT(if_com_free[type] != NULL,
2558             ("if_deregister_com_alloc: %d free not registered", type));
2559         if_com_alloc[type] = NULL;
2560         if_com_free[type] = NULL;
2561 }
2562