1 /* 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)if.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $ 35 * $DragonFly: src/sys/net/if.c,v 1.84 2008/11/15 11:58:16 sephe Exp $ 36 */ 37 38 #include "opt_compat.h" 39 #include "opt_inet6.h" 40 #include "opt_inet.h" 41 #include "opt_polling.h" 42 #include "opt_ifpoll.h" 43 44 #include <sys/param.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/systm.h> 48 #include <sys/proc.h> 49 #include <sys/priv.h> 50 #include <sys/protosw.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/socketops.h> 54 #include <sys/protosw.h> 55 #include <sys/kernel.h> 56 #include <sys/ktr.h> 57 #include <sys/sockio.h> 58 #include <sys/syslog.h> 59 #include <sys/sysctl.h> 60 #include <sys/domain.h> 61 #include <sys/thread.h> 62 #include <sys/thread2.h> 63 #include <sys/serialize.h> 64 #include <sys/msgport2.h> 65 #include <sys/bus.h> 66 67 #include <net/if.h> 68 #include <net/if_arp.h> 69 #include <net/if_dl.h> 70 #include <net/if_types.h> 71 #include <net/if_var.h> 72 #include <net/ifq_var.h> 73 #include <net/radix.h> 74 #include <net/route.h> 75 #include <net/if_clone.h> 76 #include <net/netisr.h> 77 #include <net/netmsg2.h> 78 79 #include <machine/atomic.h> 80 #include <machine/stdarg.h> 81 #include <machine/smp.h> 82 83 #if defined(INET) || defined(INET6) 84 /*XXX*/ 85 #include <netinet/in.h> 86 #include <netinet/in_var.h> 87 #include <netinet/if_ether.h> 88 #ifdef INET6 89 #include <netinet6/in6_var.h> 90 #include <netinet6/in6_ifattach.h> 91 #endif 92 #endif 93 94 #if defined(COMPAT_43) 95 #include <emulation/43bsd/43bsd_socket.h> 96 #endif /* COMPAT_43 */ 97 98 struct netmsg_ifaddr { 99 struct netmsg netmsg; 100 struct ifaddr *ifa; 101 struct ifnet *ifp; 102 int tail; 103 }; 104 105 /* 106 * System initialization 107 */ 108 static void if_attachdomain(void *); 109 static void if_attachdomain1(struct ifnet *); 110 static int ifconf(u_long, caddr_t, struct ucred *); 111 static void ifinit(void *); 112 static void ifnetinit(void *); 113 static void if_slowtimo(void *); 114 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 115 static int if_rtdel(struct radix_node *, void *); 116 117 #ifdef INET6 118 /* 119 * XXX: declare here to avoid to include many inet6 related files.. 120 * should be more generalized? 121 */ 122 extern void nd6_setmtu(struct ifnet *); 123 #endif 124 125 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 126 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 127 128 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL) 129 /* Must be after netisr_init */ 130 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL) 131 132 static if_com_alloc_t *if_com_alloc[256]; 133 static if_com_free_t *if_com_free[256]; 134 135 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 136 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 137 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure"); 138 139 int ifqmaxlen = IFQ_MAXLEN; 140 struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet); 141 142 /* In ifq_dispatch(), try to do direct ifnet.if_start first */ 143 static int ifq_dispatch_schedonly = 0; 144 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schedonly, CTLFLAG_RW, 145 &ifq_dispatch_schedonly, 0, ""); 146 147 /* In ifq_dispatch(), schedule ifnet.if_start without checking ifnet.if_snd */ 148 static int ifq_dispatch_schednochk = 0; 149 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schednochk, CTLFLAG_RW, 150 &ifq_dispatch_schednochk, 0, ""); 151 152 /* In if_devstart(), try to do direct ifnet.if_start first */ 153 static int if_devstart_schedonly = 0; 154 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schedonly, CTLFLAG_RW, 155 &if_devstart_schedonly, 0, ""); 156 157 /* In if_devstart(), schedule ifnet.if_start without checking ifnet.if_snd */ 158 static int if_devstart_schednochk = 0; 159 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schednochk, CTLFLAG_RW, 160 &if_devstart_schednochk, 0, ""); 161 162 #ifdef SMP 163 /* Schedule ifnet.if_start on the current CPU */ 164 static int if_start_oncpu_sched = 0; 165 SYSCTL_INT(_net_link_generic, OID_AUTO, if_start_oncpu_sched, CTLFLAG_RW, 166 &if_start_oncpu_sched, 0, ""); 167 #endif 168 169 struct callout if_slowtimo_timer; 170 171 int if_index = 0; 172 struct ifnet **ifindex2ifnet = NULL; 173 static struct thread ifnet_threads[MAXCPU]; 174 static int ifnet_mpsafe_thread = NETMSG_SERVICE_MPSAFE; 175 176 #define IFQ_KTR_STRING "ifq=%p" 177 #define IFQ_KTR_ARG_SIZE (sizeof(void *)) 178 #ifndef KTR_IFQ 179 #define KTR_IFQ KTR_ALL 180 #endif 181 KTR_INFO_MASTER(ifq); 182 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE); 183 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE); 184 #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg) 185 186 #define IF_START_KTR_STRING "ifp=%p" 187 #define IF_START_KTR_ARG_SIZE (sizeof(void *)) 188 #ifndef KTR_IF_START 189 #define KTR_IF_START KTR_ALL 190 #endif 191 KTR_INFO_MASTER(if_start); 192 KTR_INFO(KTR_IF_START, if_start, run, 0, 193 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE); 194 KTR_INFO(KTR_IF_START, if_start, sched, 1, 195 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE); 196 KTR_INFO(KTR_IF_START, if_start, avoid, 2, 197 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE); 198 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3, 199 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE); 200 #ifdef SMP 201 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4, 202 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE); 203 #endif 204 #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg) 205 206 /* 207 * Network interface utility routines. 208 * 209 * Routines with ifa_ifwith* names take sockaddr *'s as 210 * parameters. 211 */ 212 /* ARGSUSED*/ 213 void 214 ifinit(void *dummy) 215 { 216 struct ifnet *ifp; 217 218 callout_init(&if_slowtimo_timer); 219 220 crit_enter(); 221 TAILQ_FOREACH(ifp, &ifnet, if_link) { 222 if (ifp->if_snd.ifq_maxlen == 0) { 223 if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n"); 224 ifp->if_snd.ifq_maxlen = ifqmaxlen; 225 } 226 } 227 crit_exit(); 228 229 if_slowtimo(0); 230 } 231 232 static int 233 if_start_cpuid(struct ifnet *ifp) 234 { 235 return ifp->if_cpuid; 236 } 237 238 #ifdef DEVICE_POLLING 239 static int 240 if_start_cpuid_poll(struct ifnet *ifp) 241 { 242 int poll_cpuid = ifp->if_poll_cpuid; 243 244 if (poll_cpuid >= 0) 245 return poll_cpuid; 246 else 247 return ifp->if_cpuid; 248 } 249 #endif 250 251 static void 252 if_start_ipifunc(void *arg) 253 { 254 struct ifnet *ifp = arg; 255 struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].nm_lmsg; 256 257 crit_enter(); 258 if (lmsg->ms_flags & MSGF_DONE) 259 lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg); 260 crit_exit(); 261 } 262 263 /* 264 * Schedule ifnet.if_start on ifnet's CPU 265 */ 266 static void 267 if_start_schedule(struct ifnet *ifp) 268 { 269 #ifdef SMP 270 int cpu; 271 272 if (if_start_oncpu_sched) 273 cpu = mycpuid; 274 else 275 cpu = ifp->if_start_cpuid(ifp); 276 277 if (cpu != mycpuid) 278 lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp); 279 else 280 #endif 281 if_start_ipifunc(ifp); 282 } 283 284 /* 285 * NOTE: 286 * This function will release ifnet.if_start interlock, 287 * if ifnet.if_start does not need to be scheduled 288 */ 289 static __inline int 290 if_start_need_schedule(struct ifaltq *ifq, int running) 291 { 292 if (!running || ifq_is_empty(ifq) 293 #ifdef ALTQ 294 || ifq->altq_tbr != NULL 295 #endif 296 ) { 297 ALTQ_LOCK(ifq); 298 /* 299 * ifnet.if_start interlock is released, if: 300 * 1) Hardware can not take any packets, due to 301 * o interface is marked down 302 * o hardware queue is full (IFF_OACTIVE) 303 * Under the second situation, hardware interrupt 304 * or polling(4) will call/schedule ifnet.if_start 305 * when hardware queue is ready 306 * 2) There is not packet in the ifnet.if_snd. 307 * Further ifq_dispatch or ifq_handoff will call/ 308 * schedule ifnet.if_start 309 * 3) TBR is used and it does not allow further 310 * dequeueing. 311 * TBR callout will call ifnet.if_start 312 */ 313 if (!running || !ifq_data_ready(ifq)) { 314 ifq->altq_started = 0; 315 ALTQ_UNLOCK(ifq); 316 return 0; 317 } 318 ALTQ_UNLOCK(ifq); 319 } 320 return 1; 321 } 322 323 static void 324 if_start_dispatch(struct netmsg *nmsg) 325 { 326 struct lwkt_msg *lmsg = &nmsg->nm_lmsg; 327 struct ifnet *ifp = lmsg->u.ms_resultp; 328 struct ifaltq *ifq = &ifp->if_snd; 329 int running = 0; 330 331 crit_enter(); 332 lwkt_replymsg(lmsg, 0); /* reply ASAP */ 333 crit_exit(); 334 335 #ifdef SMP 336 if (!if_start_oncpu_sched && mycpuid != ifp->if_start_cpuid(ifp)) { 337 /* 338 * If the ifnet is still up, we need to 339 * chase its CPU change. 340 */ 341 if (ifp->if_flags & IFF_UP) { 342 logifstart(chase_sched, ifp); 343 if_start_schedule(ifp); 344 return; 345 } else { 346 goto check; 347 } 348 } 349 #endif 350 351 if (ifp->if_flags & IFF_UP) { 352 ifnet_serialize_tx(ifp); /* XXX try? */ 353 if ((ifp->if_flags & IFF_OACTIVE) == 0) { 354 logifstart(run, ifp); 355 ifp->if_start(ifp); 356 if ((ifp->if_flags & 357 (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING) 358 running = 1; 359 } 360 ifnet_deserialize_tx(ifp); 361 } 362 #ifdef SMP 363 check: 364 #endif 365 if (if_start_need_schedule(ifq, running)) { 366 crit_enter(); 367 if (lmsg->ms_flags & MSGF_DONE) { /* XXX necessary? */ 368 logifstart(sched, ifp); 369 lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg); 370 } 371 crit_exit(); 372 } 373 } 374 375 /* Device driver ifnet.if_start helper function */ 376 void 377 if_devstart(struct ifnet *ifp) 378 { 379 struct ifaltq *ifq = &ifp->if_snd; 380 int running = 0; 381 382 ASSERT_IFNET_SERIALIZED_TX(ifp); 383 384 ALTQ_LOCK(ifq); 385 if (ifq->altq_started || !ifq_data_ready(ifq)) { 386 logifstart(avoid, ifp); 387 ALTQ_UNLOCK(ifq); 388 return; 389 } 390 ifq->altq_started = 1; 391 ALTQ_UNLOCK(ifq); 392 393 if (if_devstart_schedonly) { 394 /* 395 * Always schedule ifnet.if_start on ifnet's CPU, 396 * short circuit the rest of this function. 397 */ 398 logifstart(sched, ifp); 399 if_start_schedule(ifp); 400 return; 401 } 402 403 logifstart(run, ifp); 404 ifp->if_start(ifp); 405 406 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING) 407 running = 1; 408 409 if (if_devstart_schednochk || if_start_need_schedule(ifq, running)) { 410 /* 411 * More data need to be transmitted, ifnet.if_start is 412 * scheduled on ifnet's CPU, and we keep going. 413 * NOTE: ifnet.if_start interlock is not released. 414 */ 415 logifstart(sched, ifp); 416 if_start_schedule(ifp); 417 } 418 } 419 420 static void 421 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 422 { 423 lwkt_serialize_enter(ifp->if_serializer); 424 } 425 426 static void 427 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 428 { 429 lwkt_serialize_exit(ifp->if_serializer); 430 } 431 432 static int 433 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 434 { 435 return lwkt_serialize_try(ifp->if_serializer); 436 } 437 438 #ifdef INVARIANTS 439 static void 440 if_default_serialize_assert(struct ifnet *ifp, 441 enum ifnet_serialize slz __unused, 442 boolean_t serialized) 443 { 444 if (serialized) 445 ASSERT_SERIALIZED(ifp->if_serializer); 446 else 447 ASSERT_NOT_SERIALIZED(ifp->if_serializer); 448 } 449 #endif 450 451 /* 452 * Attach an interface to the list of "active" interfaces. 453 * 454 * The serializer is optional. If non-NULL access to the interface 455 * may be MPSAFE. 456 */ 457 void 458 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer) 459 { 460 unsigned socksize, ifasize; 461 int namelen, masklen; 462 struct sockaddr_dl *sdl; 463 struct ifaddr *ifa; 464 struct ifaltq *ifq; 465 int i; 466 467 static int if_indexlim = 8; 468 469 if (ifp->if_serialize != NULL) { 470 KASSERT(ifp->if_deserialize != NULL && 471 ifp->if_tryserialize != NULL && 472 ifp->if_serialize_assert != NULL, 473 ("serialize functions are partially setup\n")); 474 475 /* 476 * If the device supplies serialize functions, 477 * then clear if_serializer to catch any invalid 478 * usage of this field. 479 */ 480 KASSERT(serializer == NULL, 481 ("both serialize functions and default serializer " 482 "are supplied\n")); 483 ifp->if_serializer = NULL; 484 } else { 485 KASSERT(ifp->if_deserialize == NULL && 486 ifp->if_tryserialize == NULL && 487 ifp->if_serialize_assert == NULL, 488 ("serialize functions are partially setup\n")); 489 ifp->if_serialize = if_default_serialize; 490 ifp->if_deserialize = if_default_deserialize; 491 ifp->if_tryserialize = if_default_tryserialize; 492 #ifdef INVARIANTS 493 ifp->if_serialize_assert = if_default_serialize_assert; 494 #endif 495 496 /* 497 * The serializer can be passed in from the device, 498 * allowing the same serializer to be used for both 499 * the interrupt interlock and the device queue. 500 * If not specified, the netif structure will use an 501 * embedded serializer. 502 */ 503 if (serializer == NULL) { 504 serializer = &ifp->if_default_serializer; 505 lwkt_serialize_init(serializer); 506 } 507 ifp->if_serializer = serializer; 508 } 509 510 ifp->if_start_cpuid = if_start_cpuid; 511 ifp->if_cpuid = 0; 512 513 #ifdef DEVICE_POLLING 514 /* Device is not in polling mode by default */ 515 ifp->if_poll_cpuid = -1; 516 if (ifp->if_poll != NULL) 517 ifp->if_start_cpuid = if_start_cpuid_poll; 518 #endif 519 520 ifp->if_start_nmsg = kmalloc(ncpus * sizeof(struct netmsg), 521 M_LWKTMSG, M_WAITOK); 522 for (i = 0; i < ncpus; ++i) { 523 netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport, 524 0, if_start_dispatch); 525 ifp->if_start_nmsg[i].nm_lmsg.u.ms_resultp = ifp; 526 } 527 528 TAILQ_INSERT_TAIL(&ifnet, ifp, if_link); 529 ifp->if_index = ++if_index; 530 531 /* 532 * XXX - 533 * The old code would work if the interface passed a pre-existing 534 * chain of ifaddrs to this code. We don't trust our callers to 535 * properly initialize the tailq, however, so we no longer allow 536 * this unlikely case. 537 */ 538 ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead), 539 M_IFADDR, M_WAITOK | M_ZERO); 540 for (i = 0; i < ncpus; ++i) 541 TAILQ_INIT(&ifp->if_addrheads[i]); 542 543 TAILQ_INIT(&ifp->if_prefixhead); 544 TAILQ_INIT(&ifp->if_multiaddrs); 545 getmicrotime(&ifp->if_lastchange); 546 if (ifindex2ifnet == NULL || if_index >= if_indexlim) { 547 unsigned int n; 548 struct ifnet **q; 549 550 if_indexlim <<= 1; 551 552 /* grow ifindex2ifnet */ 553 n = if_indexlim * sizeof(*q); 554 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO); 555 if (ifindex2ifnet) { 556 bcopy(ifindex2ifnet, q, n/2); 557 kfree(ifindex2ifnet, M_IFADDR); 558 } 559 ifindex2ifnet = q; 560 } 561 562 ifindex2ifnet[if_index] = ifp; 563 564 /* 565 * create a Link Level name for this device 566 */ 567 namelen = strlen(ifp->if_xname); 568 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m)) 569 masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; 570 socksize = masklen + ifp->if_addrlen; 571 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1))) 572 if (socksize < sizeof(*sdl)) 573 socksize = sizeof(*sdl); 574 socksize = ROUNDUP(socksize); 575 ifasize = sizeof(struct ifaddr) + 2 * socksize; 576 ifa = ifa_create(ifasize, M_WAITOK); 577 sdl = (struct sockaddr_dl *)(ifa + 1); 578 sdl->sdl_len = socksize; 579 sdl->sdl_family = AF_LINK; 580 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 581 sdl->sdl_nlen = namelen; 582 sdl->sdl_index = ifp->if_index; 583 sdl->sdl_type = ifp->if_type; 584 ifp->if_lladdr = ifa; 585 ifa->ifa_ifp = ifp; 586 ifa->ifa_rtrequest = link_rtrequest; 587 ifa->ifa_addr = (struct sockaddr *)sdl; 588 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 589 ifa->ifa_netmask = (struct sockaddr *)sdl; 590 sdl->sdl_len = masklen; 591 while (namelen != 0) 592 sdl->sdl_data[--namelen] = 0xff; 593 ifa_iflink(ifa, ifp, 0 /* Insert head */); 594 595 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 596 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 597 598 ifq = &ifp->if_snd; 599 ifq->altq_type = 0; 600 ifq->altq_disc = NULL; 601 ifq->altq_flags &= ALTQF_CANTCHANGE; 602 ifq->altq_tbr = NULL; 603 ifq->altq_ifp = ifp; 604 ifq->altq_started = 0; 605 ifq->altq_prepended = NULL; 606 ALTQ_LOCK_INIT(ifq); 607 ifq_set_classic(ifq); 608 609 if (!SLIST_EMPTY(&domains)) 610 if_attachdomain1(ifp); 611 612 /* Announce the interface. */ 613 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 614 } 615 616 static void 617 if_attachdomain(void *dummy) 618 { 619 struct ifnet *ifp; 620 621 crit_enter(); 622 TAILQ_FOREACH(ifp, &ifnet, if_list) 623 if_attachdomain1(ifp); 624 crit_exit(); 625 } 626 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, 627 if_attachdomain, NULL); 628 629 static void 630 if_attachdomain1(struct ifnet *ifp) 631 { 632 struct domain *dp; 633 634 crit_enter(); 635 636 /* address family dependent data region */ 637 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 638 SLIST_FOREACH(dp, &domains, dom_next) 639 if (dp->dom_ifattach) 640 ifp->if_afdata[dp->dom_family] = 641 (*dp->dom_ifattach)(ifp); 642 crit_exit(); 643 } 644 645 /* 646 * Purge all addresses whose type is _not_ AF_LINK 647 */ 648 void 649 if_purgeaddrs_nolink(struct ifnet *ifp) 650 { 651 struct ifaddr_container *ifac, *next; 652 653 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid], 654 ifa_link, next) { 655 struct ifaddr *ifa = ifac->ifa; 656 657 /* Leave link ifaddr as it is */ 658 if (ifa->ifa_addr->sa_family == AF_LINK) 659 continue; 660 #ifdef INET 661 /* XXX: Ugly!! ad hoc just for INET */ 662 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) { 663 struct ifaliasreq ifr; 664 #ifdef IFADDR_DEBUG_VERBOSE 665 int i; 666 667 kprintf("purge in4 addr %p: ", ifa); 668 for (i = 0; i < ncpus; ++i) 669 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 670 kprintf("\n"); 671 #endif 672 673 bzero(&ifr, sizeof ifr); 674 ifr.ifra_addr = *ifa->ifa_addr; 675 if (ifa->ifa_dstaddr) 676 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 677 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 678 NULL) == 0) 679 continue; 680 } 681 #endif /* INET */ 682 #ifdef INET6 683 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) { 684 #ifdef IFADDR_DEBUG_VERBOSE 685 int i; 686 687 kprintf("purge in6 addr %p: ", ifa); 688 for (i = 0; i < ncpus; ++i) 689 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 690 kprintf("\n"); 691 #endif 692 693 in6_purgeaddr(ifa); 694 /* ifp_addrhead is already updated */ 695 continue; 696 } 697 #endif /* INET6 */ 698 ifa_ifunlink(ifa, ifp); 699 ifa_destroy(ifa); 700 } 701 } 702 703 /* 704 * Detach an interface, removing it from the 705 * list of "active" interfaces. 706 */ 707 void 708 if_detach(struct ifnet *ifp) 709 { 710 struct radix_node_head *rnh; 711 int i; 712 int cpu, origcpu; 713 struct domain *dp; 714 715 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 716 717 /* 718 * Remove routes and flush queues. 719 */ 720 crit_enter(); 721 #ifdef DEVICE_POLLING 722 if (ifp->if_flags & IFF_POLLING) 723 ether_poll_deregister(ifp); 724 #endif 725 #ifdef IFPOLL_ENABLE 726 if (ifp->if_flags & IFF_NPOLLING) 727 ifpoll_deregister(ifp); 728 #endif 729 if_down(ifp); 730 731 #ifdef ALTQ 732 if (ifq_is_enabled(&ifp->if_snd)) 733 altq_disable(&ifp->if_snd); 734 if (ifq_is_attached(&ifp->if_snd)) 735 altq_detach(&ifp->if_snd); 736 #endif 737 738 /* 739 * Clean up all addresses. 740 */ 741 ifp->if_lladdr = NULL; 742 743 if_purgeaddrs_nolink(ifp); 744 if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) { 745 struct ifaddr *ifa; 746 747 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 748 KASSERT(ifa->ifa_addr->sa_family == AF_LINK, 749 ("non-link ifaddr is left on if_addrheads")); 750 751 ifa_ifunlink(ifa, ifp); 752 ifa_destroy(ifa); 753 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]), 754 ("there are still ifaddrs left on if_addrheads")); 755 } 756 757 #ifdef INET 758 /* 759 * Remove all IPv4 kernel structures related to ifp. 760 */ 761 in_ifdetach(ifp); 762 #endif 763 764 #ifdef INET6 765 /* 766 * Remove all IPv6 kernel structs related to ifp. This should be done 767 * before removing routing entries below, since IPv6 interface direct 768 * routes are expected to be removed by the IPv6-specific kernel API. 769 * Otherwise, the kernel will detect some inconsistency and bark it. 770 */ 771 in6_ifdetach(ifp); 772 #endif 773 774 /* 775 * Delete all remaining routes using this interface 776 * Unfortuneatly the only way to do this is to slog through 777 * the entire routing table looking for routes which point 778 * to this interface...oh well... 779 */ 780 origcpu = mycpuid; 781 for (cpu = 0; cpu < ncpus2; cpu++) { 782 lwkt_migratecpu(cpu); 783 for (i = 1; i <= AF_MAX; i++) { 784 if ((rnh = rt_tables[cpu][i]) == NULL) 785 continue; 786 rnh->rnh_walktree(rnh, if_rtdel, ifp); 787 } 788 } 789 lwkt_migratecpu(origcpu); 790 791 /* Announce that the interface is gone. */ 792 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 793 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 794 795 SLIST_FOREACH(dp, &domains, dom_next) 796 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 797 (*dp->dom_ifdetach)(ifp, 798 ifp->if_afdata[dp->dom_family]); 799 800 /* 801 * Remove interface from ifindex2ifp[] and maybe decrement if_index. 802 */ 803 ifindex2ifnet[ifp->if_index] = NULL; 804 while (if_index > 0 && ifindex2ifnet[if_index] == NULL) 805 if_index--; 806 807 TAILQ_REMOVE(&ifnet, ifp, if_link); 808 kfree(ifp->if_addrheads, M_IFADDR); 809 kfree(ifp->if_start_nmsg, M_LWKTMSG); 810 crit_exit(); 811 } 812 813 /* 814 * Delete Routes for a Network Interface 815 * 816 * Called for each routing entry via the rnh->rnh_walktree() call above 817 * to delete all route entries referencing a detaching network interface. 818 * 819 * Arguments: 820 * rn pointer to node in the routing table 821 * arg argument passed to rnh->rnh_walktree() - detaching interface 822 * 823 * Returns: 824 * 0 successful 825 * errno failed - reason indicated 826 * 827 */ 828 static int 829 if_rtdel(struct radix_node *rn, void *arg) 830 { 831 struct rtentry *rt = (struct rtentry *)rn; 832 struct ifnet *ifp = arg; 833 int err; 834 835 if (rt->rt_ifp == ifp) { 836 837 /* 838 * Protect (sorta) against walktree recursion problems 839 * with cloned routes 840 */ 841 if (!(rt->rt_flags & RTF_UP)) 842 return (0); 843 844 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, 845 rt_mask(rt), rt->rt_flags, 846 NULL); 847 if (err) { 848 log(LOG_WARNING, "if_rtdel: error %d\n", err); 849 } 850 } 851 852 return (0); 853 } 854 855 /* 856 * Locate an interface based on a complete address. 857 */ 858 struct ifaddr * 859 ifa_ifwithaddr(struct sockaddr *addr) 860 { 861 struct ifnet *ifp; 862 863 TAILQ_FOREACH(ifp, &ifnet, if_link) { 864 struct ifaddr_container *ifac; 865 866 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 867 struct ifaddr *ifa = ifac->ifa; 868 869 if (ifa->ifa_addr->sa_family != addr->sa_family) 870 continue; 871 if (sa_equal(addr, ifa->ifa_addr)) 872 return (ifa); 873 if ((ifp->if_flags & IFF_BROADCAST) && 874 ifa->ifa_broadaddr && 875 /* IPv6 doesn't have broadcast */ 876 ifa->ifa_broadaddr->sa_len != 0 && 877 sa_equal(ifa->ifa_broadaddr, addr)) 878 return (ifa); 879 } 880 } 881 return (NULL); 882 } 883 /* 884 * Locate the point to point interface with a given destination address. 885 */ 886 struct ifaddr * 887 ifa_ifwithdstaddr(struct sockaddr *addr) 888 { 889 struct ifnet *ifp; 890 891 TAILQ_FOREACH(ifp, &ifnet, if_link) { 892 struct ifaddr_container *ifac; 893 894 if (!(ifp->if_flags & IFF_POINTOPOINT)) 895 continue; 896 897 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 898 struct ifaddr *ifa = ifac->ifa; 899 900 if (ifa->ifa_addr->sa_family != addr->sa_family) 901 continue; 902 if (ifa->ifa_dstaddr && 903 sa_equal(addr, ifa->ifa_dstaddr)) 904 return (ifa); 905 } 906 } 907 return (NULL); 908 } 909 910 /* 911 * Find an interface on a specific network. If many, choice 912 * is most specific found. 913 */ 914 struct ifaddr * 915 ifa_ifwithnet(struct sockaddr *addr) 916 { 917 struct ifnet *ifp; 918 struct ifaddr *ifa_maybe = NULL; 919 u_int af = addr->sa_family; 920 char *addr_data = addr->sa_data, *cplim; 921 922 /* 923 * AF_LINK addresses can be looked up directly by their index number, 924 * so do that if we can. 925 */ 926 if (af == AF_LINK) { 927 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 928 929 if (sdl->sdl_index && sdl->sdl_index <= if_index) 930 return (ifindex2ifnet[sdl->sdl_index]->if_lladdr); 931 } 932 933 /* 934 * Scan though each interface, looking for ones that have 935 * addresses in this address family. 936 */ 937 TAILQ_FOREACH(ifp, &ifnet, if_link) { 938 struct ifaddr_container *ifac; 939 940 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 941 struct ifaddr *ifa = ifac->ifa; 942 char *cp, *cp2, *cp3; 943 944 if (ifa->ifa_addr->sa_family != af) 945 next: continue; 946 if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) { 947 /* 948 * This is a bit broken as it doesn't 949 * take into account that the remote end may 950 * be a single node in the network we are 951 * looking for. 952 * The trouble is that we don't know the 953 * netmask for the remote end. 954 */ 955 if (ifa->ifa_dstaddr != NULL && 956 sa_equal(addr, ifa->ifa_dstaddr)) 957 return (ifa); 958 } else { 959 /* 960 * if we have a special address handler, 961 * then use it instead of the generic one. 962 */ 963 if (ifa->ifa_claim_addr) { 964 if ((*ifa->ifa_claim_addr)(ifa, addr)) { 965 return (ifa); 966 } else { 967 continue; 968 } 969 } 970 971 /* 972 * Scan all the bits in the ifa's address. 973 * If a bit dissagrees with what we are 974 * looking for, mask it with the netmask 975 * to see if it really matters. 976 * (A byte at a time) 977 */ 978 if (ifa->ifa_netmask == 0) 979 continue; 980 cp = addr_data; 981 cp2 = ifa->ifa_addr->sa_data; 982 cp3 = ifa->ifa_netmask->sa_data; 983 cplim = ifa->ifa_netmask->sa_len + 984 (char *)ifa->ifa_netmask; 985 while (cp3 < cplim) 986 if ((*cp++ ^ *cp2++) & *cp3++) 987 goto next; /* next address! */ 988 /* 989 * If the netmask of what we just found 990 * is more specific than what we had before 991 * (if we had one) then remember the new one 992 * before continuing to search 993 * for an even better one. 994 */ 995 if (ifa_maybe == 0 || 996 rn_refines((char *)ifa->ifa_netmask, 997 (char *)ifa_maybe->ifa_netmask)) 998 ifa_maybe = ifa; 999 } 1000 } 1001 } 1002 return (ifa_maybe); 1003 } 1004 1005 /* 1006 * Find an interface address specific to an interface best matching 1007 * a given address. 1008 */ 1009 struct ifaddr * 1010 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1011 { 1012 struct ifaddr_container *ifac; 1013 char *cp, *cp2, *cp3; 1014 char *cplim; 1015 struct ifaddr *ifa_maybe = 0; 1016 u_int af = addr->sa_family; 1017 1018 if (af >= AF_MAX) 1019 return (0); 1020 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1021 struct ifaddr *ifa = ifac->ifa; 1022 1023 if (ifa->ifa_addr->sa_family != af) 1024 continue; 1025 if (ifa_maybe == 0) 1026 ifa_maybe = ifa; 1027 if (ifa->ifa_netmask == NULL) { 1028 if (sa_equal(addr, ifa->ifa_addr) || 1029 (ifa->ifa_dstaddr != NULL && 1030 sa_equal(addr, ifa->ifa_dstaddr))) 1031 return (ifa); 1032 continue; 1033 } 1034 if (ifp->if_flags & IFF_POINTOPOINT) { 1035 if (sa_equal(addr, ifa->ifa_dstaddr)) 1036 return (ifa); 1037 } else { 1038 cp = addr->sa_data; 1039 cp2 = ifa->ifa_addr->sa_data; 1040 cp3 = ifa->ifa_netmask->sa_data; 1041 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1042 for (; cp3 < cplim; cp3++) 1043 if ((*cp++ ^ *cp2++) & *cp3) 1044 break; 1045 if (cp3 == cplim) 1046 return (ifa); 1047 } 1048 } 1049 return (ifa_maybe); 1050 } 1051 1052 /* 1053 * Default action when installing a route with a Link Level gateway. 1054 * Lookup an appropriate real ifa to point to. 1055 * This should be moved to /sys/net/link.c eventually. 1056 */ 1057 static void 1058 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 1059 { 1060 struct ifaddr *ifa; 1061 struct sockaddr *dst; 1062 struct ifnet *ifp; 1063 1064 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1065 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL) 1066 return; 1067 ifa = ifaof_ifpforaddr(dst, ifp); 1068 if (ifa != NULL) { 1069 IFAFREE(rt->rt_ifa); 1070 IFAREF(ifa); 1071 rt->rt_ifa = ifa; 1072 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1073 ifa->ifa_rtrequest(cmd, rt, info); 1074 } 1075 } 1076 1077 /* 1078 * Mark an interface down and notify protocols of 1079 * the transition. 1080 * NOTE: must be called at splnet or eqivalent. 1081 */ 1082 void 1083 if_unroute(struct ifnet *ifp, int flag, int fam) 1084 { 1085 struct ifaddr_container *ifac; 1086 1087 ifp->if_flags &= ~flag; 1088 getmicrotime(&ifp->if_lastchange); 1089 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1090 struct ifaddr *ifa = ifac->ifa; 1091 1092 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1093 kpfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1094 } 1095 ifq_purge(&ifp->if_snd); 1096 rt_ifmsg(ifp); 1097 } 1098 1099 /* 1100 * Mark an interface up and notify protocols of 1101 * the transition. 1102 * NOTE: must be called at splnet or eqivalent. 1103 */ 1104 void 1105 if_route(struct ifnet *ifp, int flag, int fam) 1106 { 1107 struct ifaddr_container *ifac; 1108 1109 ifq_purge(&ifp->if_snd); 1110 ifp->if_flags |= flag; 1111 getmicrotime(&ifp->if_lastchange); 1112 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1113 struct ifaddr *ifa = ifac->ifa; 1114 1115 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1116 kpfctlinput(PRC_IFUP, ifa->ifa_addr); 1117 } 1118 rt_ifmsg(ifp); 1119 #ifdef INET6 1120 in6_if_up(ifp); 1121 #endif 1122 } 1123 1124 /* 1125 * Mark an interface down and notify protocols of the transition. An 1126 * interface going down is also considered to be a synchronizing event. 1127 * We must ensure that all packet processing related to the interface 1128 * has completed before we return so e.g. the caller can free the ifnet 1129 * structure that the mbufs may be referencing. 1130 * 1131 * NOTE: must be called at splnet or eqivalent. 1132 */ 1133 void 1134 if_down(struct ifnet *ifp) 1135 { 1136 if_unroute(ifp, IFF_UP, AF_UNSPEC); 1137 netmsg_service_sync(); 1138 } 1139 1140 /* 1141 * Mark an interface up and notify protocols of 1142 * the transition. 1143 * NOTE: must be called at splnet or eqivalent. 1144 */ 1145 void 1146 if_up(struct ifnet *ifp) 1147 { 1148 if_route(ifp, IFF_UP, AF_UNSPEC); 1149 } 1150 1151 /* 1152 * Process a link state change. 1153 * NOTE: must be called at splsoftnet or equivalent. 1154 */ 1155 void 1156 if_link_state_change(struct ifnet *ifp) 1157 { 1158 int link_state = ifp->if_link_state; 1159 1160 rt_ifmsg(ifp); 1161 devctl_notify("IFNET", ifp->if_xname, 1162 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); 1163 } 1164 1165 /* 1166 * Handle interface watchdog timer routines. Called 1167 * from softclock, we decrement timers (if set) and 1168 * call the appropriate interface routine on expiration. 1169 */ 1170 static void 1171 if_slowtimo(void *arg) 1172 { 1173 struct ifnet *ifp; 1174 1175 crit_enter(); 1176 1177 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1178 if (ifp->if_timer == 0 || --ifp->if_timer) 1179 continue; 1180 if (ifp->if_watchdog) { 1181 if (ifnet_tryserialize_all(ifp)) { 1182 (*ifp->if_watchdog)(ifp); 1183 ifnet_deserialize_all(ifp); 1184 } else { 1185 /* try again next timeout */ 1186 ++ifp->if_timer; 1187 } 1188 } 1189 } 1190 1191 crit_exit(); 1192 1193 callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL); 1194 } 1195 1196 /* 1197 * Map interface name to 1198 * interface structure pointer. 1199 */ 1200 struct ifnet * 1201 ifunit(const char *name) 1202 { 1203 struct ifnet *ifp; 1204 1205 /* 1206 * Search all the interfaces for this name/number 1207 */ 1208 1209 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1210 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) 1211 break; 1212 } 1213 return (ifp); 1214 } 1215 1216 1217 /* 1218 * Map interface name in a sockaddr_dl to 1219 * interface structure pointer. 1220 */ 1221 struct ifnet * 1222 if_withname(struct sockaddr *sa) 1223 { 1224 char ifname[IFNAMSIZ+1]; 1225 struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa; 1226 1227 if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) || 1228 (sdl->sdl_nlen > IFNAMSIZ) ) 1229 return NULL; 1230 1231 /* 1232 * ifunit wants a null-terminated name. It may not be null-terminated 1233 * in the sockaddr. We don't want to change the caller's sockaddr, 1234 * and there might not be room to put the trailing null anyway, so we 1235 * make a local copy that we know we can null terminate safely. 1236 */ 1237 1238 bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen); 1239 ifname[sdl->sdl_nlen] = '\0'; 1240 return ifunit(ifname); 1241 } 1242 1243 1244 /* 1245 * Interface ioctls. 1246 */ 1247 int 1248 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred) 1249 { 1250 struct ifnet *ifp; 1251 struct ifreq *ifr; 1252 struct ifstat *ifs; 1253 int error; 1254 short oif_flags; 1255 int new_flags; 1256 size_t namelen, onamelen; 1257 char new_name[IFNAMSIZ]; 1258 struct ifaddr *ifa; 1259 struct sockaddr_dl *sdl; 1260 1261 switch (cmd) { 1262 1263 case SIOCGIFCONF: 1264 case OSIOCGIFCONF: 1265 return (ifconf(cmd, data, cred)); 1266 } 1267 ifr = (struct ifreq *)data; 1268 1269 switch (cmd) { 1270 case SIOCIFCREATE: 1271 case SIOCIFCREATE2: 1272 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1273 return (error); 1274 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), 1275 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL)); 1276 case SIOCIFDESTROY: 1277 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1278 return (error); 1279 return (if_clone_destroy(ifr->ifr_name)); 1280 1281 case SIOCIFGCLONERS: 1282 return (if_clone_list((struct if_clonereq *)data)); 1283 } 1284 1285 ifp = ifunit(ifr->ifr_name); 1286 if (ifp == 0) 1287 return (ENXIO); 1288 switch (cmd) { 1289 1290 case SIOCGIFINDEX: 1291 ifr->ifr_index = ifp->if_index; 1292 break; 1293 1294 case SIOCGIFFLAGS: 1295 ifr->ifr_flags = ifp->if_flags; 1296 ifr->ifr_flagshigh = ifp->if_flags >> 16; 1297 break; 1298 1299 case SIOCGIFCAP: 1300 ifr->ifr_reqcap = ifp->if_capabilities; 1301 ifr->ifr_curcap = ifp->if_capenable; 1302 break; 1303 1304 case SIOCGIFMETRIC: 1305 ifr->ifr_metric = ifp->if_metric; 1306 break; 1307 1308 case SIOCGIFMTU: 1309 ifr->ifr_mtu = ifp->if_mtu; 1310 break; 1311 1312 case SIOCGIFPHYS: 1313 ifr->ifr_phys = ifp->if_physical; 1314 break; 1315 1316 case SIOCGIFPOLLCPU: 1317 #ifdef DEVICE_POLLING 1318 ifr->ifr_pollcpu = ifp->if_poll_cpuid; 1319 #else 1320 ifr->ifr_pollcpu = -1; 1321 #endif 1322 break; 1323 1324 case SIOCSIFPOLLCPU: 1325 #ifdef DEVICE_POLLING 1326 if ((ifp->if_flags & IFF_POLLING) == 0) 1327 ether_pollcpu_register(ifp, ifr->ifr_pollcpu); 1328 #endif 1329 break; 1330 1331 case SIOCSIFFLAGS: 1332 error = priv_check_cred(cred, PRIV_ROOT, 0); 1333 if (error) 1334 return (error); 1335 new_flags = (ifr->ifr_flags & 0xffff) | 1336 (ifr->ifr_flagshigh << 16); 1337 if (ifp->if_flags & IFF_SMART) { 1338 /* Smart drivers twiddle their own routes */ 1339 } else if (ifp->if_flags & IFF_UP && 1340 (new_flags & IFF_UP) == 0) { 1341 crit_enter(); 1342 if_down(ifp); 1343 crit_exit(); 1344 } else if (new_flags & IFF_UP && 1345 (ifp->if_flags & IFF_UP) == 0) { 1346 crit_enter(); 1347 if_up(ifp); 1348 crit_exit(); 1349 } 1350 1351 #ifdef DEVICE_POLLING 1352 if ((new_flags ^ ifp->if_flags) & IFF_POLLING) { 1353 if (new_flags & IFF_POLLING) { 1354 ether_poll_register(ifp); 1355 } else { 1356 ether_poll_deregister(ifp); 1357 } 1358 } 1359 #endif 1360 #ifdef IFPOLL_ENABLE 1361 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) { 1362 if (new_flags & IFF_NPOLLING) 1363 ifpoll_register(ifp); 1364 else 1365 ifpoll_deregister(ifp); 1366 } 1367 #endif 1368 1369 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 1370 (new_flags &~ IFF_CANTCHANGE); 1371 if (new_flags & IFF_PPROMISC) { 1372 /* Permanently promiscuous mode requested */ 1373 ifp->if_flags |= IFF_PROMISC; 1374 } else if (ifp->if_pcount == 0) { 1375 ifp->if_flags &= ~IFF_PROMISC; 1376 } 1377 if (ifp->if_ioctl) { 1378 ifnet_serialize_all(ifp); 1379 ifp->if_ioctl(ifp, cmd, data, cred); 1380 ifnet_deserialize_all(ifp); 1381 } 1382 getmicrotime(&ifp->if_lastchange); 1383 break; 1384 1385 case SIOCSIFCAP: 1386 error = priv_check_cred(cred, PRIV_ROOT, 0); 1387 if (error) 1388 return (error); 1389 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 1390 return (EINVAL); 1391 ifnet_serialize_all(ifp); 1392 ifp->if_ioctl(ifp, cmd, data, cred); 1393 ifnet_deserialize_all(ifp); 1394 break; 1395 1396 case SIOCSIFNAME: 1397 error = priv_check_cred(cred, PRIV_ROOT, 0); 1398 if (error != 0) 1399 return (error); 1400 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 1401 if (error != 0) 1402 return (error); 1403 if (new_name[0] == '\0') 1404 return (EINVAL); 1405 if (ifunit(new_name) != NULL) 1406 return (EEXIST); 1407 1408 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 1409 1410 /* Announce the departure of the interface. */ 1411 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1412 1413 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 1414 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 1415 /* XXX IFA_LOCK(ifa); */ 1416 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1417 namelen = strlen(new_name); 1418 onamelen = sdl->sdl_nlen; 1419 /* 1420 * Move the address if needed. This is safe because we 1421 * allocate space for a name of length IFNAMSIZ when we 1422 * create this in if_attach(). 1423 */ 1424 if (namelen != onamelen) { 1425 bcopy(sdl->sdl_data + onamelen, 1426 sdl->sdl_data + namelen, sdl->sdl_alen); 1427 } 1428 bcopy(new_name, sdl->sdl_data, namelen); 1429 sdl->sdl_nlen = namelen; 1430 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 1431 bzero(sdl->sdl_data, onamelen); 1432 while (namelen != 0) 1433 sdl->sdl_data[--namelen] = 0xff; 1434 /* XXX IFA_UNLOCK(ifa) */ 1435 1436 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 1437 1438 /* Announce the return of the interface. */ 1439 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 1440 break; 1441 1442 case SIOCSIFMETRIC: 1443 error = priv_check_cred(cred, PRIV_ROOT, 0); 1444 if (error) 1445 return (error); 1446 ifp->if_metric = ifr->ifr_metric; 1447 getmicrotime(&ifp->if_lastchange); 1448 break; 1449 1450 case SIOCSIFPHYS: 1451 error = priv_check_cred(cred, PRIV_ROOT, 0); 1452 if (error) 1453 return error; 1454 if (!ifp->if_ioctl) 1455 return EOPNOTSUPP; 1456 ifnet_serialize_all(ifp); 1457 error = ifp->if_ioctl(ifp, cmd, data, cred); 1458 ifnet_deserialize_all(ifp); 1459 if (error == 0) 1460 getmicrotime(&ifp->if_lastchange); 1461 return (error); 1462 1463 case SIOCSIFMTU: 1464 { 1465 u_long oldmtu = ifp->if_mtu; 1466 1467 error = priv_check_cred(cred, PRIV_ROOT, 0); 1468 if (error) 1469 return (error); 1470 if (ifp->if_ioctl == NULL) 1471 return (EOPNOTSUPP); 1472 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 1473 return (EINVAL); 1474 ifnet_serialize_all(ifp); 1475 error = ifp->if_ioctl(ifp, cmd, data, cred); 1476 ifnet_deserialize_all(ifp); 1477 if (error == 0) { 1478 getmicrotime(&ifp->if_lastchange); 1479 rt_ifmsg(ifp); 1480 } 1481 /* 1482 * If the link MTU changed, do network layer specific procedure. 1483 */ 1484 if (ifp->if_mtu != oldmtu) { 1485 #ifdef INET6 1486 nd6_setmtu(ifp); 1487 #endif 1488 } 1489 return (error); 1490 } 1491 1492 case SIOCADDMULTI: 1493 case SIOCDELMULTI: 1494 error = priv_check_cred(cred, PRIV_ROOT, 0); 1495 if (error) 1496 return (error); 1497 1498 /* Don't allow group membership on non-multicast interfaces. */ 1499 if ((ifp->if_flags & IFF_MULTICAST) == 0) 1500 return EOPNOTSUPP; 1501 1502 /* Don't let users screw up protocols' entries. */ 1503 if (ifr->ifr_addr.sa_family != AF_LINK) 1504 return EINVAL; 1505 1506 if (cmd == SIOCADDMULTI) { 1507 struct ifmultiaddr *ifma; 1508 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 1509 } else { 1510 error = if_delmulti(ifp, &ifr->ifr_addr); 1511 } 1512 if (error == 0) 1513 getmicrotime(&ifp->if_lastchange); 1514 return error; 1515 1516 case SIOCSIFPHYADDR: 1517 case SIOCDIFPHYADDR: 1518 #ifdef INET6 1519 case SIOCSIFPHYADDR_IN6: 1520 #endif 1521 case SIOCSLIFPHYADDR: 1522 case SIOCSIFMEDIA: 1523 case SIOCSIFGENERIC: 1524 error = priv_check_cred(cred, PRIV_ROOT, 0); 1525 if (error) 1526 return (error); 1527 if (ifp->if_ioctl == 0) 1528 return (EOPNOTSUPP); 1529 ifnet_serialize_all(ifp); 1530 error = ifp->if_ioctl(ifp, cmd, data, cred); 1531 ifnet_deserialize_all(ifp); 1532 if (error == 0) 1533 getmicrotime(&ifp->if_lastchange); 1534 return error; 1535 1536 case SIOCGIFSTATUS: 1537 ifs = (struct ifstat *)data; 1538 ifs->ascii[0] = '\0'; 1539 1540 case SIOCGIFPSRCADDR: 1541 case SIOCGIFPDSTADDR: 1542 case SIOCGLIFPHYADDR: 1543 case SIOCGIFMEDIA: 1544 case SIOCGIFGENERIC: 1545 if (ifp->if_ioctl == NULL) 1546 return (EOPNOTSUPP); 1547 ifnet_serialize_all(ifp); 1548 error = ifp->if_ioctl(ifp, cmd, data, cred); 1549 ifnet_deserialize_all(ifp); 1550 return (error); 1551 1552 case SIOCSIFLLADDR: 1553 error = priv_check_cred(cred, PRIV_ROOT, 0); 1554 if (error) 1555 return (error); 1556 error = if_setlladdr(ifp, 1557 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 1558 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 1559 return (error); 1560 1561 default: 1562 oif_flags = ifp->if_flags; 1563 if (so->so_proto == 0) 1564 return (EOPNOTSUPP); 1565 #ifndef COMPAT_43 1566 error = so_pru_control(so, cmd, data, ifp); 1567 #else 1568 { 1569 int ocmd = cmd; 1570 1571 switch (cmd) { 1572 1573 case SIOCSIFDSTADDR: 1574 case SIOCSIFADDR: 1575 case SIOCSIFBRDADDR: 1576 case SIOCSIFNETMASK: 1577 #if BYTE_ORDER != BIG_ENDIAN 1578 if (ifr->ifr_addr.sa_family == 0 && 1579 ifr->ifr_addr.sa_len < 16) { 1580 ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len; 1581 ifr->ifr_addr.sa_len = 16; 1582 } 1583 #else 1584 if (ifr->ifr_addr.sa_len == 0) 1585 ifr->ifr_addr.sa_len = 16; 1586 #endif 1587 break; 1588 1589 case OSIOCGIFADDR: 1590 cmd = SIOCGIFADDR; 1591 break; 1592 1593 case OSIOCGIFDSTADDR: 1594 cmd = SIOCGIFDSTADDR; 1595 break; 1596 1597 case OSIOCGIFBRDADDR: 1598 cmd = SIOCGIFBRDADDR; 1599 break; 1600 1601 case OSIOCGIFNETMASK: 1602 cmd = SIOCGIFNETMASK; 1603 } 1604 error = so_pru_control(so, cmd, data, ifp); 1605 switch (ocmd) { 1606 1607 case OSIOCGIFADDR: 1608 case OSIOCGIFDSTADDR: 1609 case OSIOCGIFBRDADDR: 1610 case OSIOCGIFNETMASK: 1611 *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family; 1612 1613 } 1614 } 1615 #endif /* COMPAT_43 */ 1616 1617 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 1618 #ifdef INET6 1619 DELAY(100);/* XXX: temporary workaround for fxp issue*/ 1620 if (ifp->if_flags & IFF_UP) { 1621 crit_enter(); 1622 in6_if_up(ifp); 1623 crit_exit(); 1624 } 1625 #endif 1626 } 1627 return (error); 1628 1629 } 1630 return (0); 1631 } 1632 1633 /* 1634 * Set/clear promiscuous mode on interface ifp based on the truth value 1635 * of pswitch. The calls are reference counted so that only the first 1636 * "on" request actually has an effect, as does the final "off" request. 1637 * Results are undefined if the "off" and "on" requests are not matched. 1638 */ 1639 int 1640 ifpromisc(struct ifnet *ifp, int pswitch) 1641 { 1642 struct ifreq ifr; 1643 int error; 1644 int oldflags; 1645 1646 oldflags = ifp->if_flags; 1647 if (ifp->if_flags & IFF_PPROMISC) { 1648 /* Do nothing if device is in permanently promiscuous mode */ 1649 ifp->if_pcount += pswitch ? 1 : -1; 1650 return (0); 1651 } 1652 if (pswitch) { 1653 /* 1654 * If the device is not configured up, we cannot put it in 1655 * promiscuous mode. 1656 */ 1657 if ((ifp->if_flags & IFF_UP) == 0) 1658 return (ENETDOWN); 1659 if (ifp->if_pcount++ != 0) 1660 return (0); 1661 ifp->if_flags |= IFF_PROMISC; 1662 log(LOG_INFO, "%s: promiscuous mode enabled\n", 1663 ifp->if_xname); 1664 } else { 1665 if (--ifp->if_pcount > 0) 1666 return (0); 1667 ifp->if_flags &= ~IFF_PROMISC; 1668 log(LOG_INFO, "%s: promiscuous mode disabled\n", 1669 ifp->if_xname); 1670 } 1671 ifr.ifr_flags = ifp->if_flags; 1672 ifr.ifr_flagshigh = ifp->if_flags >> 16; 1673 ifnet_serialize_all(ifp); 1674 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); 1675 ifnet_deserialize_all(ifp); 1676 if (error == 0) 1677 rt_ifmsg(ifp); 1678 else 1679 ifp->if_flags = oldflags; 1680 return error; 1681 } 1682 1683 /* 1684 * Return interface configuration 1685 * of system. List may be used 1686 * in later ioctl's (above) to get 1687 * other information. 1688 */ 1689 static int 1690 ifconf(u_long cmd, caddr_t data, struct ucred *cred) 1691 { 1692 struct ifconf *ifc = (struct ifconf *)data; 1693 struct ifnet *ifp; 1694 struct sockaddr *sa; 1695 struct ifreq ifr, *ifrp; 1696 int space = ifc->ifc_len, error = 0; 1697 1698 ifrp = ifc->ifc_req; 1699 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1700 struct ifaddr_container *ifac; 1701 int addrs; 1702 1703 if (space <= sizeof ifr) 1704 break; 1705 1706 /* 1707 * Zero the stack declared structure first to prevent 1708 * memory disclosure. 1709 */ 1710 bzero(&ifr, sizeof(ifr)); 1711 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 1712 >= sizeof(ifr.ifr_name)) { 1713 error = ENAMETOOLONG; 1714 break; 1715 } 1716 1717 addrs = 0; 1718 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1719 struct ifaddr *ifa = ifac->ifa; 1720 1721 if (space <= sizeof ifr) 1722 break; 1723 sa = ifa->ifa_addr; 1724 if (cred->cr_prison && 1725 prison_if(cred, sa)) 1726 continue; 1727 addrs++; 1728 #ifdef COMPAT_43 1729 if (cmd == OSIOCGIFCONF) { 1730 struct osockaddr *osa = 1731 (struct osockaddr *)&ifr.ifr_addr; 1732 ifr.ifr_addr = *sa; 1733 osa->sa_family = sa->sa_family; 1734 error = copyout(&ifr, ifrp, sizeof ifr); 1735 ifrp++; 1736 } else 1737 #endif 1738 if (sa->sa_len <= sizeof(*sa)) { 1739 ifr.ifr_addr = *sa; 1740 error = copyout(&ifr, ifrp, sizeof ifr); 1741 ifrp++; 1742 } else { 1743 if (space < (sizeof ifr) + sa->sa_len - 1744 sizeof(*sa)) 1745 break; 1746 space -= sa->sa_len - sizeof(*sa); 1747 error = copyout(&ifr, ifrp, 1748 sizeof ifr.ifr_name); 1749 if (error == 0) 1750 error = copyout(sa, &ifrp->ifr_addr, 1751 sa->sa_len); 1752 ifrp = (struct ifreq *) 1753 (sa->sa_len + (caddr_t)&ifrp->ifr_addr); 1754 } 1755 if (error) 1756 break; 1757 space -= sizeof ifr; 1758 } 1759 if (error) 1760 break; 1761 if (!addrs) { 1762 bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr); 1763 error = copyout(&ifr, ifrp, sizeof ifr); 1764 if (error) 1765 break; 1766 space -= sizeof ifr; 1767 ifrp++; 1768 } 1769 } 1770 ifc->ifc_len -= space; 1771 return (error); 1772 } 1773 1774 /* 1775 * Just like if_promisc(), but for all-multicast-reception mode. 1776 */ 1777 int 1778 if_allmulti(struct ifnet *ifp, int onswitch) 1779 { 1780 int error = 0; 1781 struct ifreq ifr; 1782 1783 crit_enter(); 1784 1785 if (onswitch) { 1786 if (ifp->if_amcount++ == 0) { 1787 ifp->if_flags |= IFF_ALLMULTI; 1788 ifr.ifr_flags = ifp->if_flags; 1789 ifr.ifr_flagshigh = ifp->if_flags >> 16; 1790 ifnet_serialize_all(ifp); 1791 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 1792 NULL); 1793 ifnet_deserialize_all(ifp); 1794 } 1795 } else { 1796 if (ifp->if_amcount > 1) { 1797 ifp->if_amcount--; 1798 } else { 1799 ifp->if_amcount = 0; 1800 ifp->if_flags &= ~IFF_ALLMULTI; 1801 ifr.ifr_flags = ifp->if_flags; 1802 ifr.ifr_flagshigh = ifp->if_flags >> 16; 1803 ifnet_serialize_all(ifp); 1804 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 1805 NULL); 1806 ifnet_deserialize_all(ifp); 1807 } 1808 } 1809 1810 crit_exit(); 1811 1812 if (error == 0) 1813 rt_ifmsg(ifp); 1814 return error; 1815 } 1816 1817 /* 1818 * Add a multicast listenership to the interface in question. 1819 * The link layer provides a routine which converts 1820 */ 1821 int 1822 if_addmulti( 1823 struct ifnet *ifp, /* interface to manipulate */ 1824 struct sockaddr *sa, /* address to add */ 1825 struct ifmultiaddr **retifma) 1826 { 1827 struct sockaddr *llsa, *dupsa; 1828 int error; 1829 struct ifmultiaddr *ifma; 1830 1831 /* 1832 * If the matching multicast address already exists 1833 * then don't add a new one, just add a reference 1834 */ 1835 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1836 if (sa_equal(sa, ifma->ifma_addr)) { 1837 ifma->ifma_refcount++; 1838 if (retifma) 1839 *retifma = ifma; 1840 return 0; 1841 } 1842 } 1843 1844 /* 1845 * Give the link layer a chance to accept/reject it, and also 1846 * find out which AF_LINK address this maps to, if it isn't one 1847 * already. 1848 */ 1849 if (ifp->if_resolvemulti) { 1850 ifnet_serialize_all(ifp); 1851 error = ifp->if_resolvemulti(ifp, &llsa, sa); 1852 ifnet_deserialize_all(ifp); 1853 if (error) 1854 return error; 1855 } else { 1856 llsa = 0; 1857 } 1858 1859 MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK); 1860 MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK); 1861 bcopy(sa, dupsa, sa->sa_len); 1862 1863 ifma->ifma_addr = dupsa; 1864 ifma->ifma_lladdr = llsa; 1865 ifma->ifma_ifp = ifp; 1866 ifma->ifma_refcount = 1; 1867 ifma->ifma_protospec = 0; 1868 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 1869 1870 /* 1871 * Some network interfaces can scan the address list at 1872 * interrupt time; lock them out. 1873 */ 1874 crit_enter(); 1875 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 1876 crit_exit(); 1877 if (retifma) 1878 *retifma = ifma; 1879 1880 if (llsa != 0) { 1881 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1882 if (sa_equal(ifma->ifma_addr, llsa)) 1883 break; 1884 } 1885 if (ifma) { 1886 ifma->ifma_refcount++; 1887 } else { 1888 MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, 1889 M_IFMADDR, M_WAITOK); 1890 MALLOC(dupsa, struct sockaddr *, llsa->sa_len, 1891 M_IFMADDR, M_WAITOK); 1892 bcopy(llsa, dupsa, llsa->sa_len); 1893 ifma->ifma_addr = dupsa; 1894 ifma->ifma_ifp = ifp; 1895 ifma->ifma_refcount = 1; 1896 crit_enter(); 1897 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 1898 crit_exit(); 1899 } 1900 } 1901 /* 1902 * We are certain we have added something, so call down to the 1903 * interface to let them know about it. 1904 */ 1905 crit_enter(); 1906 ifnet_serialize_all(ifp); 1907 if (ifp->if_ioctl) 1908 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL); 1909 ifnet_deserialize_all(ifp); 1910 crit_exit(); 1911 1912 return 0; 1913 } 1914 1915 /* 1916 * Remove a reference to a multicast address on this interface. Yell 1917 * if the request does not match an existing membership. 1918 */ 1919 int 1920 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 1921 { 1922 struct ifmultiaddr *ifma; 1923 1924 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 1925 if (sa_equal(sa, ifma->ifma_addr)) 1926 break; 1927 if (ifma == 0) 1928 return ENOENT; 1929 1930 if (ifma->ifma_refcount > 1) { 1931 ifma->ifma_refcount--; 1932 return 0; 1933 } 1934 1935 rt_newmaddrmsg(RTM_DELMADDR, ifma); 1936 sa = ifma->ifma_lladdr; 1937 crit_enter(); 1938 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 1939 /* 1940 * Make sure the interface driver is notified 1941 * in the case of a link layer mcast group being left. 1942 */ 1943 if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0) { 1944 ifnet_serialize_all(ifp); 1945 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 1946 ifnet_deserialize_all(ifp); 1947 } 1948 crit_exit(); 1949 kfree(ifma->ifma_addr, M_IFMADDR); 1950 kfree(ifma, M_IFMADDR); 1951 if (sa == 0) 1952 return 0; 1953 1954 /* 1955 * Now look for the link-layer address which corresponds to 1956 * this network address. It had been squirreled away in 1957 * ifma->ifma_lladdr for this purpose (so we don't have 1958 * to call ifp->if_resolvemulti() again), and we saved that 1959 * value in sa above. If some nasty deleted the 1960 * link-layer address out from underneath us, we can deal because 1961 * the address we stored was is not the same as the one which was 1962 * in the record for the link-layer address. (So we don't complain 1963 * in that case.) 1964 */ 1965 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 1966 if (sa_equal(sa, ifma->ifma_addr)) 1967 break; 1968 if (ifma == 0) 1969 return 0; 1970 1971 if (ifma->ifma_refcount > 1) { 1972 ifma->ifma_refcount--; 1973 return 0; 1974 } 1975 1976 crit_enter(); 1977 ifnet_serialize_all(ifp); 1978 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 1979 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 1980 ifnet_deserialize_all(ifp); 1981 crit_exit(); 1982 kfree(ifma->ifma_addr, M_IFMADDR); 1983 kfree(sa, M_IFMADDR); 1984 kfree(ifma, M_IFMADDR); 1985 1986 return 0; 1987 } 1988 1989 /* 1990 * Delete all multicast group membership for an interface. 1991 * Should be used to quickly flush all multicast filters. 1992 */ 1993 void 1994 if_delallmulti(struct ifnet *ifp) 1995 { 1996 struct ifmultiaddr *ifma; 1997 struct ifmultiaddr *next; 1998 1999 TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next) 2000 if_delmulti(ifp, ifma->ifma_addr); 2001 } 2002 2003 2004 /* 2005 * Set the link layer address on an interface. 2006 * 2007 * At this time we only support certain types of interfaces, 2008 * and we don't allow the length of the address to change. 2009 */ 2010 int 2011 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 2012 { 2013 struct sockaddr_dl *sdl; 2014 struct ifreq ifr; 2015 2016 sdl = IF_LLSOCKADDR(ifp); 2017 if (sdl == NULL) 2018 return (EINVAL); 2019 if (len != sdl->sdl_alen) /* don't allow length to change */ 2020 return (EINVAL); 2021 switch (ifp->if_type) { 2022 case IFT_ETHER: /* these types use struct arpcom */ 2023 case IFT_XETHER: 2024 case IFT_L2VLAN: 2025 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len); 2026 bcopy(lladdr, LLADDR(sdl), len); 2027 break; 2028 default: 2029 return (ENODEV); 2030 } 2031 /* 2032 * If the interface is already up, we need 2033 * to re-init it in order to reprogram its 2034 * address filter. 2035 */ 2036 ifnet_serialize_all(ifp); 2037 if ((ifp->if_flags & IFF_UP) != 0) { 2038 struct ifaddr_container *ifac; 2039 2040 ifp->if_flags &= ~IFF_UP; 2041 ifr.ifr_flags = ifp->if_flags; 2042 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2043 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2044 NULL); 2045 ifp->if_flags |= IFF_UP; 2046 ifr.ifr_flags = ifp->if_flags; 2047 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2048 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2049 NULL); 2050 #ifdef INET 2051 /* 2052 * Also send gratuitous ARPs to notify other nodes about 2053 * the address change. 2054 */ 2055 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2056 struct ifaddr *ifa = ifac->ifa; 2057 2058 if (ifa->ifa_addr != NULL && 2059 ifa->ifa_addr->sa_family == AF_INET) 2060 arp_ifinit(ifp, ifa); 2061 } 2062 #endif 2063 } 2064 ifnet_deserialize_all(ifp); 2065 return (0); 2066 } 2067 2068 struct ifmultiaddr * 2069 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp) 2070 { 2071 struct ifmultiaddr *ifma; 2072 2073 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2074 if (sa_equal(ifma->ifma_addr, sa)) 2075 break; 2076 2077 return ifma; 2078 } 2079 2080 /* 2081 * This function locates the first real ethernet MAC from a network 2082 * card and loads it into node, returning 0 on success or ENOENT if 2083 * no suitable interfaces were found. It is used by the uuid code to 2084 * generate a unique 6-byte number. 2085 */ 2086 int 2087 if_getanyethermac(uint16_t *node, int minlen) 2088 { 2089 struct ifnet *ifp; 2090 struct sockaddr_dl *sdl; 2091 2092 TAILQ_FOREACH(ifp, &ifnet, if_link) { 2093 if (ifp->if_type != IFT_ETHER) 2094 continue; 2095 sdl = IF_LLSOCKADDR(ifp); 2096 if (sdl->sdl_alen < minlen) 2097 continue; 2098 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node, 2099 minlen); 2100 return(0); 2101 } 2102 return (ENOENT); 2103 } 2104 2105 /* 2106 * The name argument must be a pointer to storage which will last as 2107 * long as the interface does. For physical devices, the result of 2108 * device_get_name(dev) is a good choice and for pseudo-devices a 2109 * static string works well. 2110 */ 2111 void 2112 if_initname(struct ifnet *ifp, const char *name, int unit) 2113 { 2114 ifp->if_dname = name; 2115 ifp->if_dunit = unit; 2116 if (unit != IF_DUNIT_NONE) 2117 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 2118 else 2119 strlcpy(ifp->if_xname, name, IFNAMSIZ); 2120 } 2121 2122 int 2123 if_printf(struct ifnet *ifp, const char *fmt, ...) 2124 { 2125 __va_list ap; 2126 int retval; 2127 2128 retval = kprintf("%s: ", ifp->if_xname); 2129 __va_start(ap, fmt); 2130 retval += kvprintf(fmt, ap); 2131 __va_end(ap); 2132 return (retval); 2133 } 2134 2135 struct ifnet * 2136 if_alloc(uint8_t type) 2137 { 2138 struct ifnet *ifp; 2139 size_t size; 2140 2141 /* 2142 * XXX temporary hack until arpcom is setup in if_l2com 2143 */ 2144 if (type == IFT_ETHER) 2145 size = sizeof(struct arpcom); 2146 else 2147 size = sizeof(struct ifnet); 2148 2149 ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO); 2150 2151 ifp->if_type = type; 2152 2153 if (if_com_alloc[type] != NULL) { 2154 ifp->if_l2com = if_com_alloc[type](type, ifp); 2155 if (ifp->if_l2com == NULL) { 2156 kfree(ifp, M_IFNET); 2157 return (NULL); 2158 } 2159 } 2160 return (ifp); 2161 } 2162 2163 void 2164 if_free(struct ifnet *ifp) 2165 { 2166 kfree(ifp, M_IFNET); 2167 } 2168 2169 void 2170 ifq_set_classic(struct ifaltq *ifq) 2171 { 2172 ifq->altq_enqueue = ifq_classic_enqueue; 2173 ifq->altq_dequeue = ifq_classic_dequeue; 2174 ifq->altq_request = ifq_classic_request; 2175 } 2176 2177 int 2178 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m, 2179 struct altq_pktattr *pa __unused) 2180 { 2181 logifq(enqueue, ifq); 2182 if (IF_QFULL(ifq)) { 2183 m_freem(m); 2184 return(ENOBUFS); 2185 } else { 2186 IF_ENQUEUE(ifq, m); 2187 return(0); 2188 } 2189 } 2190 2191 struct mbuf * 2192 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op) 2193 { 2194 struct mbuf *m; 2195 2196 switch (op) { 2197 case ALTDQ_POLL: 2198 IF_POLL(ifq, m); 2199 break; 2200 case ALTDQ_REMOVE: 2201 logifq(dequeue, ifq); 2202 IF_DEQUEUE(ifq, m); 2203 break; 2204 default: 2205 panic("unsupported ALTQ dequeue op: %d", op); 2206 } 2207 KKASSERT(mpolled == NULL || mpolled == m); 2208 return(m); 2209 } 2210 2211 int 2212 ifq_classic_request(struct ifaltq *ifq, int req, void *arg) 2213 { 2214 switch (req) { 2215 case ALTRQ_PURGE: 2216 IF_DRAIN(ifq); 2217 break; 2218 default: 2219 panic("unsupported ALTQ request: %d", req); 2220 } 2221 return(0); 2222 } 2223 2224 int 2225 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa) 2226 { 2227 struct ifaltq *ifq = &ifp->if_snd; 2228 int running = 0, error, start = 0; 2229 2230 ASSERT_IFNET_NOT_SERIALIZED_TX(ifp); 2231 2232 ALTQ_LOCK(ifq); 2233 error = ifq_enqueue_locked(ifq, m, pa); 2234 if (error) { 2235 ALTQ_UNLOCK(ifq); 2236 return error; 2237 } 2238 if (!ifq->altq_started) { 2239 /* 2240 * Hold the interlock of ifnet.if_start 2241 */ 2242 ifq->altq_started = 1; 2243 start = 1; 2244 } 2245 ALTQ_UNLOCK(ifq); 2246 2247 ifp->if_obytes += m->m_pkthdr.len; 2248 if (m->m_flags & M_MCAST) 2249 ifp->if_omcasts++; 2250 2251 if (!start) { 2252 logifstart(avoid, ifp); 2253 return 0; 2254 } 2255 2256 if (ifq_dispatch_schedonly) { 2257 /* 2258 * Always schedule ifnet.if_start on ifnet's CPU, 2259 * short circuit the rest of this function. 2260 */ 2261 logifstart(sched, ifp); 2262 if_start_schedule(ifp); 2263 return 0; 2264 } 2265 2266 /* 2267 * Try to do direct ifnet.if_start first, if there is 2268 * contention on ifnet's serializer, ifnet.if_start will 2269 * be scheduled on ifnet's CPU. 2270 */ 2271 if (!ifnet_tryserialize_tx(ifp)) { 2272 /* 2273 * ifnet serializer contention happened, 2274 * ifnet.if_start is scheduled on ifnet's 2275 * CPU, and we keep going. 2276 */ 2277 logifstart(contend_sched, ifp); 2278 if_start_schedule(ifp); 2279 return 0; 2280 } 2281 2282 if ((ifp->if_flags & IFF_OACTIVE) == 0) { 2283 logifstart(run, ifp); 2284 ifp->if_start(ifp); 2285 if ((ifp->if_flags & 2286 (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING) 2287 running = 1; 2288 } 2289 2290 ifnet_deserialize_tx(ifp); 2291 2292 if (ifq_dispatch_schednochk || if_start_need_schedule(ifq, running)) { 2293 /* 2294 * More data need to be transmitted, ifnet.if_start is 2295 * scheduled on ifnet's CPU, and we keep going. 2296 * NOTE: ifnet.if_start interlock is not released. 2297 */ 2298 logifstart(sched, ifp); 2299 if_start_schedule(ifp); 2300 } 2301 return 0; 2302 } 2303 2304 void * 2305 ifa_create(int size, int flags) 2306 { 2307 struct ifaddr *ifa; 2308 int i; 2309 2310 KASSERT(size >= sizeof(*ifa), ("ifaddr size too small\n")); 2311 2312 ifa = kmalloc(size, M_IFADDR, flags | M_ZERO); 2313 if (ifa == NULL) 2314 return NULL; 2315 2316 ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container), 2317 M_IFADDR, M_WAITOK | M_ZERO); 2318 ifa->ifa_ncnt = ncpus; 2319 for (i = 0; i < ncpus; ++i) { 2320 struct ifaddr_container *ifac = &ifa->ifa_containers[i]; 2321 2322 ifac->ifa_magic = IFA_CONTAINER_MAGIC; 2323 ifac->ifa = ifa; 2324 ifac->ifa_refcnt = 1; 2325 } 2326 #ifdef IFADDR_DEBUG 2327 kprintf("alloc ifa %p %d\n", ifa, size); 2328 #endif 2329 return ifa; 2330 } 2331 2332 void 2333 ifac_free(struct ifaddr_container *ifac, int cpu_id) 2334 { 2335 struct ifaddr *ifa = ifac->ifa; 2336 2337 KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC); 2338 KKASSERT(ifac->ifa_refcnt == 0); 2339 KASSERT(ifac->ifa_listmask == 0, 2340 ("ifa is still on %#x lists\n", ifac->ifa_listmask)); 2341 2342 ifac->ifa_magic = IFA_CONTAINER_DEAD; 2343 2344 #ifdef IFADDR_DEBUG_VERBOSE 2345 kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id); 2346 #endif 2347 2348 KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus, 2349 ("invalid # of ifac, %d\n", ifa->ifa_ncnt)); 2350 if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) { 2351 #ifdef IFADDR_DEBUG 2352 kprintf("free ifa %p\n", ifa); 2353 #endif 2354 kfree(ifa->ifa_containers, M_IFADDR); 2355 kfree(ifa, M_IFADDR); 2356 } 2357 } 2358 2359 static void 2360 ifa_iflink_dispatch(struct netmsg *nmsg) 2361 { 2362 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2363 struct ifaddr *ifa = msg->ifa; 2364 struct ifnet *ifp = msg->ifp; 2365 int cpu = mycpuid; 2366 struct ifaddr_container *ifac; 2367 2368 crit_enter(); 2369 2370 ifac = &ifa->ifa_containers[cpu]; 2371 ASSERT_IFAC_VALID(ifac); 2372 KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0, 2373 ("ifaddr is on if_addrheads\n")); 2374 2375 ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD; 2376 if (msg->tail) 2377 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link); 2378 else 2379 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link); 2380 2381 crit_exit(); 2382 2383 ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1); 2384 } 2385 2386 void 2387 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail) 2388 { 2389 struct netmsg_ifaddr msg; 2390 2391 netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport, 2392 0, ifa_iflink_dispatch); 2393 msg.ifa = ifa; 2394 msg.ifp = ifp; 2395 msg.tail = tail; 2396 2397 ifa_domsg(&msg.netmsg.nm_lmsg, 0); 2398 } 2399 2400 static void 2401 ifa_ifunlink_dispatch(struct netmsg *nmsg) 2402 { 2403 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2404 struct ifaddr *ifa = msg->ifa; 2405 struct ifnet *ifp = msg->ifp; 2406 int cpu = mycpuid; 2407 struct ifaddr_container *ifac; 2408 2409 crit_enter(); 2410 2411 ifac = &ifa->ifa_containers[cpu]; 2412 ASSERT_IFAC_VALID(ifac); 2413 KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD, 2414 ("ifaddr is not on if_addrhead\n")); 2415 2416 TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link); 2417 ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD; 2418 2419 crit_exit(); 2420 2421 ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1); 2422 } 2423 2424 void 2425 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp) 2426 { 2427 struct netmsg_ifaddr msg; 2428 2429 netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport, 2430 0, ifa_ifunlink_dispatch); 2431 msg.ifa = ifa; 2432 msg.ifp = ifp; 2433 2434 ifa_domsg(&msg.netmsg.nm_lmsg, 0); 2435 } 2436 2437 static void 2438 ifa_destroy_dispatch(struct netmsg *nmsg) 2439 { 2440 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2441 2442 IFAFREE(msg->ifa); 2443 ifa_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1); 2444 } 2445 2446 void 2447 ifa_destroy(struct ifaddr *ifa) 2448 { 2449 struct netmsg_ifaddr msg; 2450 2451 netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport, 2452 0, ifa_destroy_dispatch); 2453 msg.ifa = ifa; 2454 2455 ifa_domsg(&msg.netmsg.nm_lmsg, 0); 2456 } 2457 2458 struct lwkt_port * 2459 ifnet_portfn(int cpu) 2460 { 2461 return &ifnet_threads[cpu].td_msgport; 2462 } 2463 2464 void 2465 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu) 2466 { 2467 KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus); 2468 2469 if (next_cpu < ncpus) 2470 lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg); 2471 else 2472 lwkt_replymsg(lmsg, 0); 2473 } 2474 2475 int 2476 ifnet_domsg(struct lwkt_msg *lmsg, int cpu) 2477 { 2478 KKASSERT(cpu < ncpus); 2479 return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0); 2480 } 2481 2482 void 2483 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu) 2484 { 2485 KKASSERT(cpu < ncpus); 2486 lwkt_sendmsg(ifnet_portfn(cpu), lmsg); 2487 } 2488 2489 static void 2490 ifnetinit(void *dummy __unused) 2491 { 2492 int i; 2493 2494 for (i = 0; i < ncpus; ++i) { 2495 struct thread *thr = &ifnet_threads[i]; 2496 2497 lwkt_create(netmsg_service_loop, &ifnet_mpsafe_thread, NULL, 2498 thr, TDF_NETWORK | TDF_MPSAFE, i, "ifnet %d", i); 2499 netmsg_service_port_init(&thr->td_msgport); 2500 } 2501 } 2502 2503 struct ifnet * 2504 ifnet_byindex(unsigned short idx) 2505 { 2506 if (idx > if_index) 2507 return NULL; 2508 return ifindex2ifnet[idx]; 2509 } 2510 2511 struct ifaddr * 2512 ifaddr_byindex(unsigned short idx) 2513 { 2514 struct ifnet *ifp; 2515 2516 ifp = ifnet_byindex(idx); 2517 if (!ifp) 2518 return NULL; 2519 return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 2520 } 2521 2522 void 2523 if_register_com_alloc(u_char type, 2524 if_com_alloc_t *a, if_com_free_t *f) 2525 { 2526 2527 KASSERT(if_com_alloc[type] == NULL, 2528 ("if_register_com_alloc: %d already registered", type)); 2529 KASSERT(if_com_free[type] == NULL, 2530 ("if_register_com_alloc: %d free already registered", type)); 2531 2532 if_com_alloc[type] = a; 2533 if_com_free[type] = f; 2534 } 2535 2536 void 2537 if_deregister_com_alloc(u_char type) 2538 { 2539 2540 KASSERT(if_com_alloc[type] != NULL, 2541 ("if_deregister_com_alloc: %d not registered", type)); 2542 KASSERT(if_com_free[type] != NULL, 2543 ("if_deregister_com_alloc: %d free not registered", type)); 2544 if_com_alloc[type] = NULL; 2545 if_com_free[type] = NULL; 2546 } 2547