xref: /dflybsd-src/sys/net/if.c (revision a9656fbcd49c376aba5e04370d8b0f1fa96e063c)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  * $DragonFly: src/sys/net/if.c,v 1.84 2008/11/15 11:58:16 sephe Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_inet.h"
41 #include "opt_polling.h"
42 #include "opt_ifpoll.h"
43 
44 #include <sys/param.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/socketops.h>
54 #include <sys/protosw.h>
55 #include <sys/kernel.h>
56 #include <sys/ktr.h>
57 #include <sys/sockio.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 #include <sys/domain.h>
61 #include <sys/thread.h>
62 #include <sys/thread2.h>
63 #include <sys/serialize.h>
64 #include <sys/msgport2.h>
65 #include <sys/bus.h>
66 
67 #include <net/if.h>
68 #include <net/if_arp.h>
69 #include <net/if_dl.h>
70 #include <net/if_types.h>
71 #include <net/if_var.h>
72 #include <net/ifq_var.h>
73 #include <net/radix.h>
74 #include <net/route.h>
75 #include <net/if_clone.h>
76 #include <net/netisr.h>
77 #include <net/netmsg2.h>
78 
79 #include <machine/atomic.h>
80 #include <machine/stdarg.h>
81 #include <machine/smp.h>
82 
83 #if defined(INET) || defined(INET6)
84 /*XXX*/
85 #include <netinet/in.h>
86 #include <netinet/in_var.h>
87 #include <netinet/if_ether.h>
88 #ifdef INET6
89 #include <netinet6/in6_var.h>
90 #include <netinet6/in6_ifattach.h>
91 #endif
92 #endif
93 
94 #if defined(COMPAT_43)
95 #include <emulation/43bsd/43bsd_socket.h>
96 #endif /* COMPAT_43 */
97 
98 struct netmsg_ifaddr {
99 	struct netmsg	netmsg;
100 	struct ifaddr	*ifa;
101 	struct ifnet	*ifp;
102 	int		tail;
103 };
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
115 static int	if_rtdel(struct radix_node *, void *);
116 
117 #ifdef INET6
118 /*
119  * XXX: declare here to avoid to include many inet6 related files..
120  * should be more generalized?
121  */
122 extern void	nd6_setmtu(struct ifnet *);
123 #endif
124 
125 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
126 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
127 
128 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
129 /* Must be after netisr_init */
130 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
131 
132 static  if_com_alloc_t *if_com_alloc[256];
133 static  if_com_free_t *if_com_free[256];
134 
135 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
136 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
137 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
138 
139 int			ifqmaxlen = IFQ_MAXLEN;
140 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
141 
142 /* In ifq_dispatch(), try to do direct ifnet.if_start first */
143 static int		ifq_dispatch_schedonly = 0;
144 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schedonly, CTLFLAG_RW,
145            &ifq_dispatch_schedonly, 0, "");
146 
147 /* In ifq_dispatch(), schedule ifnet.if_start without checking ifnet.if_snd */
148 static int		ifq_dispatch_schednochk = 0;
149 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schednochk, CTLFLAG_RW,
150            &ifq_dispatch_schednochk, 0, "");
151 
152 /* In if_devstart(), try to do direct ifnet.if_start first */
153 static int		if_devstart_schedonly = 0;
154 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schedonly, CTLFLAG_RW,
155            &if_devstart_schedonly, 0, "");
156 
157 /* In if_devstart(), schedule ifnet.if_start without checking ifnet.if_snd */
158 static int		if_devstart_schednochk = 0;
159 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schednochk, CTLFLAG_RW,
160            &if_devstart_schednochk, 0, "");
161 
162 #ifdef SMP
163 /* Schedule ifnet.if_start on the current CPU */
164 static int		if_start_oncpu_sched = 0;
165 SYSCTL_INT(_net_link_generic, OID_AUTO, if_start_oncpu_sched, CTLFLAG_RW,
166            &if_start_oncpu_sched, 0, "");
167 #endif
168 
169 struct callout		if_slowtimo_timer;
170 
171 int			if_index = 0;
172 struct ifnet		**ifindex2ifnet = NULL;
173 static struct thread	ifnet_threads[MAXCPU];
174 static int		ifnet_mpsafe_thread = NETMSG_SERVICE_MPSAFE;
175 
176 #define IFQ_KTR_STRING		"ifq=%p"
177 #define IFQ_KTR_ARG_SIZE	(sizeof(void *))
178 #ifndef KTR_IFQ
179 #define KTR_IFQ			KTR_ALL
180 #endif
181 KTR_INFO_MASTER(ifq);
182 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
183 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
184 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
185 
186 #define IF_START_KTR_STRING	"ifp=%p"
187 #define IF_START_KTR_ARG_SIZE	(sizeof(void *))
188 #ifndef KTR_IF_START
189 #define KTR_IF_START		KTR_ALL
190 #endif
191 KTR_INFO_MASTER(if_start);
192 KTR_INFO(KTR_IF_START, if_start, run, 0,
193 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
194 KTR_INFO(KTR_IF_START, if_start, sched, 1,
195 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
196 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
197 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
198 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
199 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
200 #ifdef SMP
201 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
202 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
203 #endif
204 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
205 
206 /*
207  * Network interface utility routines.
208  *
209  * Routines with ifa_ifwith* names take sockaddr *'s as
210  * parameters.
211  */
212 /* ARGSUSED*/
213 void
214 ifinit(void *dummy)
215 {
216 	struct ifnet *ifp;
217 
218 	callout_init(&if_slowtimo_timer);
219 
220 	crit_enter();
221 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
222 		if (ifp->if_snd.ifq_maxlen == 0) {
223 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
224 			ifp->if_snd.ifq_maxlen = ifqmaxlen;
225 		}
226 	}
227 	crit_exit();
228 
229 	if_slowtimo(0);
230 }
231 
232 static int
233 if_start_cpuid(struct ifnet *ifp)
234 {
235 	return ifp->if_cpuid;
236 }
237 
238 #ifdef DEVICE_POLLING
239 static int
240 if_start_cpuid_poll(struct ifnet *ifp)
241 {
242 	int poll_cpuid = ifp->if_poll_cpuid;
243 
244 	if (poll_cpuid >= 0)
245 		return poll_cpuid;
246 	else
247 		return ifp->if_cpuid;
248 }
249 #endif
250 
251 static void
252 if_start_ipifunc(void *arg)
253 {
254 	struct ifnet *ifp = arg;
255 	struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].nm_lmsg;
256 
257 	crit_enter();
258 	if (lmsg->ms_flags & MSGF_DONE)
259 		lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
260 	crit_exit();
261 }
262 
263 /*
264  * Schedule ifnet.if_start on ifnet's CPU
265  */
266 static void
267 if_start_schedule(struct ifnet *ifp)
268 {
269 #ifdef SMP
270 	int cpu;
271 
272 	if (if_start_oncpu_sched)
273 		cpu = mycpuid;
274 	else
275 		cpu = ifp->if_start_cpuid(ifp);
276 
277 	if (cpu != mycpuid)
278 		lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp);
279 	else
280 #endif
281 	if_start_ipifunc(ifp);
282 }
283 
284 /*
285  * NOTE:
286  * This function will release ifnet.if_start interlock,
287  * if ifnet.if_start does not need to be scheduled
288  */
289 static __inline int
290 if_start_need_schedule(struct ifaltq *ifq, int running)
291 {
292 	if (!running || ifq_is_empty(ifq)
293 #ifdef ALTQ
294 	    || ifq->altq_tbr != NULL
295 #endif
296 	) {
297 		ALTQ_LOCK(ifq);
298 		/*
299 		 * ifnet.if_start interlock is released, if:
300 		 * 1) Hardware can not take any packets, due to
301 		 *    o  interface is marked down
302 		 *    o  hardware queue is full (IFF_OACTIVE)
303 		 *    Under the second situation, hardware interrupt
304 		 *    or polling(4) will call/schedule ifnet.if_start
305 		 *    when hardware queue is ready
306 		 * 2) There is not packet in the ifnet.if_snd.
307 		 *    Further ifq_dispatch or ifq_handoff will call/
308 		 *    schedule ifnet.if_start
309 		 * 3) TBR is used and it does not allow further
310 		 *    dequeueing.
311 		 *    TBR callout will call ifnet.if_start
312 		 */
313 		if (!running || !ifq_data_ready(ifq)) {
314 			ifq->altq_started = 0;
315 			ALTQ_UNLOCK(ifq);
316 			return 0;
317 		}
318 		ALTQ_UNLOCK(ifq);
319 	}
320 	return 1;
321 }
322 
323 static void
324 if_start_dispatch(struct netmsg *nmsg)
325 {
326 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
327 	struct ifnet *ifp = lmsg->u.ms_resultp;
328 	struct ifaltq *ifq = &ifp->if_snd;
329 	int running = 0;
330 
331 	crit_enter();
332 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
333 	crit_exit();
334 
335 #ifdef SMP
336 	if (!if_start_oncpu_sched && mycpuid != ifp->if_start_cpuid(ifp)) {
337 		/*
338 		 * If the ifnet is still up, we need to
339 		 * chase its CPU change.
340 		 */
341 		if (ifp->if_flags & IFF_UP) {
342 			logifstart(chase_sched, ifp);
343 			if_start_schedule(ifp);
344 			return;
345 		} else {
346 			goto check;
347 		}
348 	}
349 #endif
350 
351 	if (ifp->if_flags & IFF_UP) {
352 		ifnet_serialize_tx(ifp); /* XXX try? */
353 		if ((ifp->if_flags & IFF_OACTIVE) == 0) {
354 			logifstart(run, ifp);
355 			ifp->if_start(ifp);
356 			if ((ifp->if_flags &
357 			(IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
358 				running = 1;
359 		}
360 		ifnet_deserialize_tx(ifp);
361 	}
362 #ifdef SMP
363 check:
364 #endif
365 	if (if_start_need_schedule(ifq, running)) {
366 		crit_enter();
367 		if (lmsg->ms_flags & MSGF_DONE)	{ /* XXX necessary? */
368 			logifstart(sched, ifp);
369 			lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
370 		}
371 		crit_exit();
372 	}
373 }
374 
375 /* Device driver ifnet.if_start helper function */
376 void
377 if_devstart(struct ifnet *ifp)
378 {
379 	struct ifaltq *ifq = &ifp->if_snd;
380 	int running = 0;
381 
382 	ASSERT_IFNET_SERIALIZED_TX(ifp);
383 
384 	ALTQ_LOCK(ifq);
385 	if (ifq->altq_started || !ifq_data_ready(ifq)) {
386 		logifstart(avoid, ifp);
387 		ALTQ_UNLOCK(ifq);
388 		return;
389 	}
390 	ifq->altq_started = 1;
391 	ALTQ_UNLOCK(ifq);
392 
393 	if (if_devstart_schedonly) {
394 		/*
395 		 * Always schedule ifnet.if_start on ifnet's CPU,
396 		 * short circuit the rest of this function.
397 		 */
398 		logifstart(sched, ifp);
399 		if_start_schedule(ifp);
400 		return;
401 	}
402 
403 	logifstart(run, ifp);
404 	ifp->if_start(ifp);
405 
406 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
407 		running = 1;
408 
409 	if (if_devstart_schednochk || if_start_need_schedule(ifq, running)) {
410 		/*
411 		 * More data need to be transmitted, ifnet.if_start is
412 		 * scheduled on ifnet's CPU, and we keep going.
413 		 * NOTE: ifnet.if_start interlock is not released.
414 		 */
415 		logifstart(sched, ifp);
416 		if_start_schedule(ifp);
417 	}
418 }
419 
420 static void
421 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
422 {
423 	lwkt_serialize_enter(ifp->if_serializer);
424 }
425 
426 static void
427 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
428 {
429 	lwkt_serialize_exit(ifp->if_serializer);
430 }
431 
432 static int
433 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
434 {
435 	return lwkt_serialize_try(ifp->if_serializer);
436 }
437 
438 #ifdef INVARIANTS
439 static void
440 if_default_serialize_assert(struct ifnet *ifp,
441 			    enum ifnet_serialize slz __unused,
442 			    boolean_t serialized)
443 {
444 	if (serialized)
445 		ASSERT_SERIALIZED(ifp->if_serializer);
446 	else
447 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
448 }
449 #endif
450 
451 /*
452  * Attach an interface to the list of "active" interfaces.
453  *
454  * The serializer is optional.  If non-NULL access to the interface
455  * may be MPSAFE.
456  */
457 void
458 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
459 {
460 	unsigned socksize, ifasize;
461 	int namelen, masklen;
462 	struct sockaddr_dl *sdl;
463 	struct ifaddr *ifa;
464 	struct ifaltq *ifq;
465 	int i;
466 
467 	static int if_indexlim = 8;
468 
469 	if (ifp->if_serialize != NULL) {
470 		KASSERT(ifp->if_deserialize != NULL &&
471 			ifp->if_tryserialize != NULL &&
472 			ifp->if_serialize_assert != NULL,
473 			("serialize functions are partially setup\n"));
474 
475 		/*
476 		 * If the device supplies serialize functions,
477 		 * then clear if_serializer to catch any invalid
478 		 * usage of this field.
479 		 */
480 		KASSERT(serializer == NULL,
481 			("both serialize functions and default serializer "
482 			 "are supplied\n"));
483 		ifp->if_serializer = NULL;
484 	} else {
485 		KASSERT(ifp->if_deserialize == NULL &&
486 			ifp->if_tryserialize == NULL &&
487 			ifp->if_serialize_assert == NULL,
488 			("serialize functions are partially setup\n"));
489 		ifp->if_serialize = if_default_serialize;
490 		ifp->if_deserialize = if_default_deserialize;
491 		ifp->if_tryserialize = if_default_tryserialize;
492 #ifdef INVARIANTS
493 		ifp->if_serialize_assert = if_default_serialize_assert;
494 #endif
495 
496 		/*
497 		 * The serializer can be passed in from the device,
498 		 * allowing the same serializer to be used for both
499 		 * the interrupt interlock and the device queue.
500 		 * If not specified, the netif structure will use an
501 		 * embedded serializer.
502 		 */
503 		if (serializer == NULL) {
504 			serializer = &ifp->if_default_serializer;
505 			lwkt_serialize_init(serializer);
506 		}
507 		ifp->if_serializer = serializer;
508 	}
509 
510 	ifp->if_start_cpuid = if_start_cpuid;
511 	ifp->if_cpuid = 0;
512 
513 #ifdef DEVICE_POLLING
514 	/* Device is not in polling mode by default */
515 	ifp->if_poll_cpuid = -1;
516 	if (ifp->if_poll != NULL)
517 		ifp->if_start_cpuid = if_start_cpuid_poll;
518 #endif
519 
520 	ifp->if_start_nmsg = kmalloc(ncpus * sizeof(struct netmsg),
521 				     M_LWKTMSG, M_WAITOK);
522 	for (i = 0; i < ncpus; ++i) {
523 		netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport,
524 			    0, if_start_dispatch);
525 		ifp->if_start_nmsg[i].nm_lmsg.u.ms_resultp = ifp;
526 	}
527 
528 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
529 	ifp->if_index = ++if_index;
530 
531 	/*
532 	 * XXX -
533 	 * The old code would work if the interface passed a pre-existing
534 	 * chain of ifaddrs to this code.  We don't trust our callers to
535 	 * properly initialize the tailq, however, so we no longer allow
536 	 * this unlikely case.
537 	 */
538 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
539 				    M_IFADDR, M_WAITOK | M_ZERO);
540 	for (i = 0; i < ncpus; ++i)
541 		TAILQ_INIT(&ifp->if_addrheads[i]);
542 
543 	TAILQ_INIT(&ifp->if_prefixhead);
544 	TAILQ_INIT(&ifp->if_multiaddrs);
545 	getmicrotime(&ifp->if_lastchange);
546 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
547 		unsigned int n;
548 		struct ifnet **q;
549 
550 		if_indexlim <<= 1;
551 
552 		/* grow ifindex2ifnet */
553 		n = if_indexlim * sizeof(*q);
554 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
555 		if (ifindex2ifnet) {
556 			bcopy(ifindex2ifnet, q, n/2);
557 			kfree(ifindex2ifnet, M_IFADDR);
558 		}
559 		ifindex2ifnet = q;
560 	}
561 
562 	ifindex2ifnet[if_index] = ifp;
563 
564 	/*
565 	 * create a Link Level name for this device
566 	 */
567 	namelen = strlen(ifp->if_xname);
568 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
569 	masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
570 	socksize = masklen + ifp->if_addrlen;
571 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
572 	if (socksize < sizeof(*sdl))
573 		socksize = sizeof(*sdl);
574 	socksize = ROUNDUP(socksize);
575 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
576 	ifa = ifa_create(ifasize, M_WAITOK);
577 	sdl = (struct sockaddr_dl *)(ifa + 1);
578 	sdl->sdl_len = socksize;
579 	sdl->sdl_family = AF_LINK;
580 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
581 	sdl->sdl_nlen = namelen;
582 	sdl->sdl_index = ifp->if_index;
583 	sdl->sdl_type = ifp->if_type;
584 	ifp->if_lladdr = ifa;
585 	ifa->ifa_ifp = ifp;
586 	ifa->ifa_rtrequest = link_rtrequest;
587 	ifa->ifa_addr = (struct sockaddr *)sdl;
588 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
589 	ifa->ifa_netmask = (struct sockaddr *)sdl;
590 	sdl->sdl_len = masklen;
591 	while (namelen != 0)
592 		sdl->sdl_data[--namelen] = 0xff;
593 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
594 
595 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
596 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
597 
598 	ifq = &ifp->if_snd;
599 	ifq->altq_type = 0;
600 	ifq->altq_disc = NULL;
601 	ifq->altq_flags &= ALTQF_CANTCHANGE;
602 	ifq->altq_tbr = NULL;
603 	ifq->altq_ifp = ifp;
604 	ifq->altq_started = 0;
605 	ifq->altq_prepended = NULL;
606 	ALTQ_LOCK_INIT(ifq);
607 	ifq_set_classic(ifq);
608 
609 	if (!SLIST_EMPTY(&domains))
610 		if_attachdomain1(ifp);
611 
612 	/* Announce the interface. */
613 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
614 }
615 
616 static void
617 if_attachdomain(void *dummy)
618 {
619 	struct ifnet *ifp;
620 
621 	crit_enter();
622 	TAILQ_FOREACH(ifp, &ifnet, if_list)
623 		if_attachdomain1(ifp);
624 	crit_exit();
625 }
626 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
627 	if_attachdomain, NULL);
628 
629 static void
630 if_attachdomain1(struct ifnet *ifp)
631 {
632 	struct domain *dp;
633 
634 	crit_enter();
635 
636 	/* address family dependent data region */
637 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
638 	SLIST_FOREACH(dp, &domains, dom_next)
639 		if (dp->dom_ifattach)
640 			ifp->if_afdata[dp->dom_family] =
641 				(*dp->dom_ifattach)(ifp);
642 	crit_exit();
643 }
644 
645 /*
646  * Purge all addresses whose type is _not_ AF_LINK
647  */
648 void
649 if_purgeaddrs_nolink(struct ifnet *ifp)
650 {
651 	struct ifaddr_container *ifac, *next;
652 
653 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
654 			      ifa_link, next) {
655 		struct ifaddr *ifa = ifac->ifa;
656 
657 		/* Leave link ifaddr as it is */
658 		if (ifa->ifa_addr->sa_family == AF_LINK)
659 			continue;
660 #ifdef INET
661 		/* XXX: Ugly!! ad hoc just for INET */
662 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
663 			struct ifaliasreq ifr;
664 #ifdef IFADDR_DEBUG_VERBOSE
665 			int i;
666 
667 			kprintf("purge in4 addr %p: ", ifa);
668 			for (i = 0; i < ncpus; ++i)
669 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
670 			kprintf("\n");
671 #endif
672 
673 			bzero(&ifr, sizeof ifr);
674 			ifr.ifra_addr = *ifa->ifa_addr;
675 			if (ifa->ifa_dstaddr)
676 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
677 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
678 				       NULL) == 0)
679 				continue;
680 		}
681 #endif /* INET */
682 #ifdef INET6
683 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
684 #ifdef IFADDR_DEBUG_VERBOSE
685 			int i;
686 
687 			kprintf("purge in6 addr %p: ", ifa);
688 			for (i = 0; i < ncpus; ++i)
689 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
690 			kprintf("\n");
691 #endif
692 
693 			in6_purgeaddr(ifa);
694 			/* ifp_addrhead is already updated */
695 			continue;
696 		}
697 #endif /* INET6 */
698 		ifa_ifunlink(ifa, ifp);
699 		ifa_destroy(ifa);
700 	}
701 }
702 
703 /*
704  * Detach an interface, removing it from the
705  * list of "active" interfaces.
706  */
707 void
708 if_detach(struct ifnet *ifp)
709 {
710 	struct radix_node_head	*rnh;
711 	int i;
712 	int cpu, origcpu;
713 	struct domain *dp;
714 
715 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
716 
717 	/*
718 	 * Remove routes and flush queues.
719 	 */
720 	crit_enter();
721 #ifdef DEVICE_POLLING
722 	if (ifp->if_flags & IFF_POLLING)
723 		ether_poll_deregister(ifp);
724 #endif
725 #ifdef IFPOLL_ENABLE
726 	if (ifp->if_flags & IFF_NPOLLING)
727 		ifpoll_deregister(ifp);
728 #endif
729 	if_down(ifp);
730 
731 #ifdef ALTQ
732 	if (ifq_is_enabled(&ifp->if_snd))
733 		altq_disable(&ifp->if_snd);
734 	if (ifq_is_attached(&ifp->if_snd))
735 		altq_detach(&ifp->if_snd);
736 #endif
737 
738 	/*
739 	 * Clean up all addresses.
740 	 */
741 	ifp->if_lladdr = NULL;
742 
743 	if_purgeaddrs_nolink(ifp);
744 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
745 		struct ifaddr *ifa;
746 
747 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
748 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
749 			("non-link ifaddr is left on if_addrheads"));
750 
751 		ifa_ifunlink(ifa, ifp);
752 		ifa_destroy(ifa);
753 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
754 			("there are still ifaddrs left on if_addrheads"));
755 	}
756 
757 #ifdef INET
758 	/*
759 	 * Remove all IPv4 kernel structures related to ifp.
760 	 */
761 	in_ifdetach(ifp);
762 #endif
763 
764 #ifdef INET6
765 	/*
766 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
767 	 * before removing routing entries below, since IPv6 interface direct
768 	 * routes are expected to be removed by the IPv6-specific kernel API.
769 	 * Otherwise, the kernel will detect some inconsistency and bark it.
770 	 */
771 	in6_ifdetach(ifp);
772 #endif
773 
774 	/*
775 	 * Delete all remaining routes using this interface
776 	 * Unfortuneatly the only way to do this is to slog through
777 	 * the entire routing table looking for routes which point
778 	 * to this interface...oh well...
779 	 */
780 	origcpu = mycpuid;
781 	for (cpu = 0; cpu < ncpus2; cpu++) {
782 		lwkt_migratecpu(cpu);
783 		for (i = 1; i <= AF_MAX; i++) {
784 			if ((rnh = rt_tables[cpu][i]) == NULL)
785 				continue;
786 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
787 		}
788 	}
789 	lwkt_migratecpu(origcpu);
790 
791 	/* Announce that the interface is gone. */
792 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
793 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
794 
795 	SLIST_FOREACH(dp, &domains, dom_next)
796 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
797 			(*dp->dom_ifdetach)(ifp,
798 				ifp->if_afdata[dp->dom_family]);
799 
800 	/*
801 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
802 	 */
803 	ifindex2ifnet[ifp->if_index] = NULL;
804 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
805 		if_index--;
806 
807 	TAILQ_REMOVE(&ifnet, ifp, if_link);
808 	kfree(ifp->if_addrheads, M_IFADDR);
809 	kfree(ifp->if_start_nmsg, M_LWKTMSG);
810 	crit_exit();
811 }
812 
813 /*
814  * Delete Routes for a Network Interface
815  *
816  * Called for each routing entry via the rnh->rnh_walktree() call above
817  * to delete all route entries referencing a detaching network interface.
818  *
819  * Arguments:
820  *	rn	pointer to node in the routing table
821  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
822  *
823  * Returns:
824  *	0	successful
825  *	errno	failed - reason indicated
826  *
827  */
828 static int
829 if_rtdel(struct radix_node *rn, void *arg)
830 {
831 	struct rtentry	*rt = (struct rtentry *)rn;
832 	struct ifnet	*ifp = arg;
833 	int		err;
834 
835 	if (rt->rt_ifp == ifp) {
836 
837 		/*
838 		 * Protect (sorta) against walktree recursion problems
839 		 * with cloned routes
840 		 */
841 		if (!(rt->rt_flags & RTF_UP))
842 			return (0);
843 
844 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
845 				rt_mask(rt), rt->rt_flags,
846 				NULL);
847 		if (err) {
848 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
849 		}
850 	}
851 
852 	return (0);
853 }
854 
855 /*
856  * Locate an interface based on a complete address.
857  */
858 struct ifaddr *
859 ifa_ifwithaddr(struct sockaddr *addr)
860 {
861 	struct ifnet *ifp;
862 
863 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
864 		struct ifaddr_container *ifac;
865 
866 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
867 			struct ifaddr *ifa = ifac->ifa;
868 
869 			if (ifa->ifa_addr->sa_family != addr->sa_family)
870 				continue;
871 			if (sa_equal(addr, ifa->ifa_addr))
872 				return (ifa);
873 			if ((ifp->if_flags & IFF_BROADCAST) &&
874 			    ifa->ifa_broadaddr &&
875 			    /* IPv6 doesn't have broadcast */
876 			    ifa->ifa_broadaddr->sa_len != 0 &&
877 			    sa_equal(ifa->ifa_broadaddr, addr))
878 				return (ifa);
879 		}
880 	}
881 	return (NULL);
882 }
883 /*
884  * Locate the point to point interface with a given destination address.
885  */
886 struct ifaddr *
887 ifa_ifwithdstaddr(struct sockaddr *addr)
888 {
889 	struct ifnet *ifp;
890 
891 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
892 		struct ifaddr_container *ifac;
893 
894 		if (!(ifp->if_flags & IFF_POINTOPOINT))
895 			continue;
896 
897 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
898 			struct ifaddr *ifa = ifac->ifa;
899 
900 			if (ifa->ifa_addr->sa_family != addr->sa_family)
901 				continue;
902 			if (ifa->ifa_dstaddr &&
903 			    sa_equal(addr, ifa->ifa_dstaddr))
904 				return (ifa);
905 		}
906 	}
907 	return (NULL);
908 }
909 
910 /*
911  * Find an interface on a specific network.  If many, choice
912  * is most specific found.
913  */
914 struct ifaddr *
915 ifa_ifwithnet(struct sockaddr *addr)
916 {
917 	struct ifnet *ifp;
918 	struct ifaddr *ifa_maybe = NULL;
919 	u_int af = addr->sa_family;
920 	char *addr_data = addr->sa_data, *cplim;
921 
922 	/*
923 	 * AF_LINK addresses can be looked up directly by their index number,
924 	 * so do that if we can.
925 	 */
926 	if (af == AF_LINK) {
927 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
928 
929 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
930 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
931 	}
932 
933 	/*
934 	 * Scan though each interface, looking for ones that have
935 	 * addresses in this address family.
936 	 */
937 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
938 		struct ifaddr_container *ifac;
939 
940 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
941 			struct ifaddr *ifa = ifac->ifa;
942 			char *cp, *cp2, *cp3;
943 
944 			if (ifa->ifa_addr->sa_family != af)
945 next:				continue;
946 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
947 				/*
948 				 * This is a bit broken as it doesn't
949 				 * take into account that the remote end may
950 				 * be a single node in the network we are
951 				 * looking for.
952 				 * The trouble is that we don't know the
953 				 * netmask for the remote end.
954 				 */
955 				if (ifa->ifa_dstaddr != NULL &&
956 				    sa_equal(addr, ifa->ifa_dstaddr))
957 					return (ifa);
958 			} else {
959 				/*
960 				 * if we have a special address handler,
961 				 * then use it instead of the generic one.
962 				 */
963 				if (ifa->ifa_claim_addr) {
964 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
965 						return (ifa);
966 					} else {
967 						continue;
968 					}
969 				}
970 
971 				/*
972 				 * Scan all the bits in the ifa's address.
973 				 * If a bit dissagrees with what we are
974 				 * looking for, mask it with the netmask
975 				 * to see if it really matters.
976 				 * (A byte at a time)
977 				 */
978 				if (ifa->ifa_netmask == 0)
979 					continue;
980 				cp = addr_data;
981 				cp2 = ifa->ifa_addr->sa_data;
982 				cp3 = ifa->ifa_netmask->sa_data;
983 				cplim = ifa->ifa_netmask->sa_len +
984 					(char *)ifa->ifa_netmask;
985 				while (cp3 < cplim)
986 					if ((*cp++ ^ *cp2++) & *cp3++)
987 						goto next; /* next address! */
988 				/*
989 				 * If the netmask of what we just found
990 				 * is more specific than what we had before
991 				 * (if we had one) then remember the new one
992 				 * before continuing to search
993 				 * for an even better one.
994 				 */
995 				if (ifa_maybe == 0 ||
996 				    rn_refines((char *)ifa->ifa_netmask,
997 					       (char *)ifa_maybe->ifa_netmask))
998 					ifa_maybe = ifa;
999 			}
1000 		}
1001 	}
1002 	return (ifa_maybe);
1003 }
1004 
1005 /*
1006  * Find an interface address specific to an interface best matching
1007  * a given address.
1008  */
1009 struct ifaddr *
1010 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1011 {
1012 	struct ifaddr_container *ifac;
1013 	char *cp, *cp2, *cp3;
1014 	char *cplim;
1015 	struct ifaddr *ifa_maybe = 0;
1016 	u_int af = addr->sa_family;
1017 
1018 	if (af >= AF_MAX)
1019 		return (0);
1020 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1021 		struct ifaddr *ifa = ifac->ifa;
1022 
1023 		if (ifa->ifa_addr->sa_family != af)
1024 			continue;
1025 		if (ifa_maybe == 0)
1026 			ifa_maybe = ifa;
1027 		if (ifa->ifa_netmask == NULL) {
1028 			if (sa_equal(addr, ifa->ifa_addr) ||
1029 			    (ifa->ifa_dstaddr != NULL &&
1030 			     sa_equal(addr, ifa->ifa_dstaddr)))
1031 				return (ifa);
1032 			continue;
1033 		}
1034 		if (ifp->if_flags & IFF_POINTOPOINT) {
1035 			if (sa_equal(addr, ifa->ifa_dstaddr))
1036 				return (ifa);
1037 		} else {
1038 			cp = addr->sa_data;
1039 			cp2 = ifa->ifa_addr->sa_data;
1040 			cp3 = ifa->ifa_netmask->sa_data;
1041 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1042 			for (; cp3 < cplim; cp3++)
1043 				if ((*cp++ ^ *cp2++) & *cp3)
1044 					break;
1045 			if (cp3 == cplim)
1046 				return (ifa);
1047 		}
1048 	}
1049 	return (ifa_maybe);
1050 }
1051 
1052 /*
1053  * Default action when installing a route with a Link Level gateway.
1054  * Lookup an appropriate real ifa to point to.
1055  * This should be moved to /sys/net/link.c eventually.
1056  */
1057 static void
1058 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1059 {
1060 	struct ifaddr *ifa;
1061 	struct sockaddr *dst;
1062 	struct ifnet *ifp;
1063 
1064 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1065 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1066 		return;
1067 	ifa = ifaof_ifpforaddr(dst, ifp);
1068 	if (ifa != NULL) {
1069 		IFAFREE(rt->rt_ifa);
1070 		IFAREF(ifa);
1071 		rt->rt_ifa = ifa;
1072 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1073 			ifa->ifa_rtrequest(cmd, rt, info);
1074 	}
1075 }
1076 
1077 /*
1078  * Mark an interface down and notify protocols of
1079  * the transition.
1080  * NOTE: must be called at splnet or eqivalent.
1081  */
1082 void
1083 if_unroute(struct ifnet *ifp, int flag, int fam)
1084 {
1085 	struct ifaddr_container *ifac;
1086 
1087 	ifp->if_flags &= ~flag;
1088 	getmicrotime(&ifp->if_lastchange);
1089 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1090 		struct ifaddr *ifa = ifac->ifa;
1091 
1092 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1093 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1094 	}
1095 	ifq_purge(&ifp->if_snd);
1096 	rt_ifmsg(ifp);
1097 }
1098 
1099 /*
1100  * Mark an interface up and notify protocols of
1101  * the transition.
1102  * NOTE: must be called at splnet or eqivalent.
1103  */
1104 void
1105 if_route(struct ifnet *ifp, int flag, int fam)
1106 {
1107 	struct ifaddr_container *ifac;
1108 
1109 	ifq_purge(&ifp->if_snd);
1110 	ifp->if_flags |= flag;
1111 	getmicrotime(&ifp->if_lastchange);
1112 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1113 		struct ifaddr *ifa = ifac->ifa;
1114 
1115 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1116 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1117 	}
1118 	rt_ifmsg(ifp);
1119 #ifdef INET6
1120 	in6_if_up(ifp);
1121 #endif
1122 }
1123 
1124 /*
1125  * Mark an interface down and notify protocols of the transition.  An
1126  * interface going down is also considered to be a synchronizing event.
1127  * We must ensure that all packet processing related to the interface
1128  * has completed before we return so e.g. the caller can free the ifnet
1129  * structure that the mbufs may be referencing.
1130  *
1131  * NOTE: must be called at splnet or eqivalent.
1132  */
1133 void
1134 if_down(struct ifnet *ifp)
1135 {
1136 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1137 	netmsg_service_sync();
1138 }
1139 
1140 /*
1141  * Mark an interface up and notify protocols of
1142  * the transition.
1143  * NOTE: must be called at splnet or eqivalent.
1144  */
1145 void
1146 if_up(struct ifnet *ifp)
1147 {
1148 	if_route(ifp, IFF_UP, AF_UNSPEC);
1149 }
1150 
1151 /*
1152  * Process a link state change.
1153  * NOTE: must be called at splsoftnet or equivalent.
1154  */
1155 void
1156 if_link_state_change(struct ifnet *ifp)
1157 {
1158 	int link_state = ifp->if_link_state;
1159 
1160 	rt_ifmsg(ifp);
1161 	devctl_notify("IFNET", ifp->if_xname,
1162 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1163 }
1164 
1165 /*
1166  * Handle interface watchdog timer routines.  Called
1167  * from softclock, we decrement timers (if set) and
1168  * call the appropriate interface routine on expiration.
1169  */
1170 static void
1171 if_slowtimo(void *arg)
1172 {
1173 	struct ifnet *ifp;
1174 
1175 	crit_enter();
1176 
1177 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1178 		if (ifp->if_timer == 0 || --ifp->if_timer)
1179 			continue;
1180 		if (ifp->if_watchdog) {
1181 			if (ifnet_tryserialize_all(ifp)) {
1182 				(*ifp->if_watchdog)(ifp);
1183 				ifnet_deserialize_all(ifp);
1184 			} else {
1185 				/* try again next timeout */
1186 				++ifp->if_timer;
1187 			}
1188 		}
1189 	}
1190 
1191 	crit_exit();
1192 
1193 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1194 }
1195 
1196 /*
1197  * Map interface name to
1198  * interface structure pointer.
1199  */
1200 struct ifnet *
1201 ifunit(const char *name)
1202 {
1203 	struct ifnet *ifp;
1204 
1205 	/*
1206 	 * Search all the interfaces for this name/number
1207 	 */
1208 
1209 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1210 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1211 			break;
1212 	}
1213 	return (ifp);
1214 }
1215 
1216 
1217 /*
1218  * Map interface name in a sockaddr_dl to
1219  * interface structure pointer.
1220  */
1221 struct ifnet *
1222 if_withname(struct sockaddr *sa)
1223 {
1224 	char ifname[IFNAMSIZ+1];
1225 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1226 
1227 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1228 	     (sdl->sdl_nlen > IFNAMSIZ) )
1229 		return NULL;
1230 
1231 	/*
1232 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1233 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1234 	 * and there might not be room to put the trailing null anyway, so we
1235 	 * make a local copy that we know we can null terminate safely.
1236 	 */
1237 
1238 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1239 	ifname[sdl->sdl_nlen] = '\0';
1240 	return ifunit(ifname);
1241 }
1242 
1243 
1244 /*
1245  * Interface ioctls.
1246  */
1247 int
1248 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1249 {
1250 	struct ifnet *ifp;
1251 	struct ifreq *ifr;
1252 	struct ifstat *ifs;
1253 	int error;
1254 	short oif_flags;
1255 	int new_flags;
1256 	size_t namelen, onamelen;
1257 	char new_name[IFNAMSIZ];
1258 	struct ifaddr *ifa;
1259 	struct sockaddr_dl *sdl;
1260 
1261 	switch (cmd) {
1262 
1263 	case SIOCGIFCONF:
1264 	case OSIOCGIFCONF:
1265 		return (ifconf(cmd, data, cred));
1266 	}
1267 	ifr = (struct ifreq *)data;
1268 
1269 	switch (cmd) {
1270 	case SIOCIFCREATE:
1271 	case SIOCIFCREATE2:
1272 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1273 			return (error);
1274 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1275 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1276 	case SIOCIFDESTROY:
1277 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1278 			return (error);
1279 		return (if_clone_destroy(ifr->ifr_name));
1280 
1281 	case SIOCIFGCLONERS:
1282 		return (if_clone_list((struct if_clonereq *)data));
1283 	}
1284 
1285 	ifp = ifunit(ifr->ifr_name);
1286 	if (ifp == 0)
1287 		return (ENXIO);
1288 	switch (cmd) {
1289 
1290 	case SIOCGIFINDEX:
1291 		ifr->ifr_index = ifp->if_index;
1292 		break;
1293 
1294 	case SIOCGIFFLAGS:
1295 		ifr->ifr_flags = ifp->if_flags;
1296 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1297 		break;
1298 
1299 	case SIOCGIFCAP:
1300 		ifr->ifr_reqcap = ifp->if_capabilities;
1301 		ifr->ifr_curcap = ifp->if_capenable;
1302 		break;
1303 
1304 	case SIOCGIFMETRIC:
1305 		ifr->ifr_metric = ifp->if_metric;
1306 		break;
1307 
1308 	case SIOCGIFMTU:
1309 		ifr->ifr_mtu = ifp->if_mtu;
1310 		break;
1311 
1312 	case SIOCGIFPHYS:
1313 		ifr->ifr_phys = ifp->if_physical;
1314 		break;
1315 
1316 	case SIOCGIFPOLLCPU:
1317 #ifdef DEVICE_POLLING
1318 		ifr->ifr_pollcpu = ifp->if_poll_cpuid;
1319 #else
1320 		ifr->ifr_pollcpu = -1;
1321 #endif
1322 		break;
1323 
1324 	case SIOCSIFPOLLCPU:
1325 #ifdef DEVICE_POLLING
1326 		if ((ifp->if_flags & IFF_POLLING) == 0)
1327 			ether_pollcpu_register(ifp, ifr->ifr_pollcpu);
1328 #endif
1329 		break;
1330 
1331 	case SIOCSIFFLAGS:
1332 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1333 		if (error)
1334 			return (error);
1335 		new_flags = (ifr->ifr_flags & 0xffff) |
1336 		    (ifr->ifr_flagshigh << 16);
1337 		if (ifp->if_flags & IFF_SMART) {
1338 			/* Smart drivers twiddle their own routes */
1339 		} else if (ifp->if_flags & IFF_UP &&
1340 		    (new_flags & IFF_UP) == 0) {
1341 			crit_enter();
1342 			if_down(ifp);
1343 			crit_exit();
1344 		} else if (new_flags & IFF_UP &&
1345 		    (ifp->if_flags & IFF_UP) == 0) {
1346 			crit_enter();
1347 			if_up(ifp);
1348 			crit_exit();
1349 		}
1350 
1351 #ifdef DEVICE_POLLING
1352 		if ((new_flags ^ ifp->if_flags) & IFF_POLLING) {
1353 			if (new_flags & IFF_POLLING) {
1354 				ether_poll_register(ifp);
1355 			} else {
1356 				ether_poll_deregister(ifp);
1357 			}
1358 		}
1359 #endif
1360 #ifdef IFPOLL_ENABLE
1361 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1362 			if (new_flags & IFF_NPOLLING)
1363 				ifpoll_register(ifp);
1364 			else
1365 				ifpoll_deregister(ifp);
1366 		}
1367 #endif
1368 
1369 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1370 			(new_flags &~ IFF_CANTCHANGE);
1371 		if (new_flags & IFF_PPROMISC) {
1372 			/* Permanently promiscuous mode requested */
1373 			ifp->if_flags |= IFF_PROMISC;
1374 		} else if (ifp->if_pcount == 0) {
1375 			ifp->if_flags &= ~IFF_PROMISC;
1376 		}
1377 		if (ifp->if_ioctl) {
1378 			ifnet_serialize_all(ifp);
1379 			ifp->if_ioctl(ifp, cmd, data, cred);
1380 			ifnet_deserialize_all(ifp);
1381 		}
1382 		getmicrotime(&ifp->if_lastchange);
1383 		break;
1384 
1385 	case SIOCSIFCAP:
1386 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1387 		if (error)
1388 			return (error);
1389 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
1390 			return (EINVAL);
1391 		ifnet_serialize_all(ifp);
1392 		ifp->if_ioctl(ifp, cmd, data, cred);
1393 		ifnet_deserialize_all(ifp);
1394 		break;
1395 
1396 	case SIOCSIFNAME:
1397 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1398 		if (error != 0)
1399 			return (error);
1400 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1401 		if (error != 0)
1402 			return (error);
1403 		if (new_name[0] == '\0')
1404 			return (EINVAL);
1405 		if (ifunit(new_name) != NULL)
1406 			return (EEXIST);
1407 
1408 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1409 
1410 		/* Announce the departure of the interface. */
1411 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1412 
1413 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1414 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1415 		/* XXX IFA_LOCK(ifa); */
1416 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1417 		namelen = strlen(new_name);
1418 		onamelen = sdl->sdl_nlen;
1419 		/*
1420 		 * Move the address if needed.  This is safe because we
1421 		 * allocate space for a name of length IFNAMSIZ when we
1422 		 * create this in if_attach().
1423 		 */
1424 		if (namelen != onamelen) {
1425 			bcopy(sdl->sdl_data + onamelen,
1426 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1427 		}
1428 		bcopy(new_name, sdl->sdl_data, namelen);
1429 		sdl->sdl_nlen = namelen;
1430 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1431 		bzero(sdl->sdl_data, onamelen);
1432 		while (namelen != 0)
1433 			sdl->sdl_data[--namelen] = 0xff;
1434 		/* XXX IFA_UNLOCK(ifa) */
1435 
1436 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1437 
1438 		/* Announce the return of the interface. */
1439 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1440 		break;
1441 
1442 	case SIOCSIFMETRIC:
1443 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1444 		if (error)
1445 			return (error);
1446 		ifp->if_metric = ifr->ifr_metric;
1447 		getmicrotime(&ifp->if_lastchange);
1448 		break;
1449 
1450 	case SIOCSIFPHYS:
1451 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1452 		if (error)
1453 			return error;
1454 		if (!ifp->if_ioctl)
1455 		        return EOPNOTSUPP;
1456 		ifnet_serialize_all(ifp);
1457 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1458 		ifnet_deserialize_all(ifp);
1459 		if (error == 0)
1460 			getmicrotime(&ifp->if_lastchange);
1461 		return (error);
1462 
1463 	case SIOCSIFMTU:
1464 	{
1465 		u_long oldmtu = ifp->if_mtu;
1466 
1467 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1468 		if (error)
1469 			return (error);
1470 		if (ifp->if_ioctl == NULL)
1471 			return (EOPNOTSUPP);
1472 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
1473 			return (EINVAL);
1474 		ifnet_serialize_all(ifp);
1475 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1476 		ifnet_deserialize_all(ifp);
1477 		if (error == 0) {
1478 			getmicrotime(&ifp->if_lastchange);
1479 			rt_ifmsg(ifp);
1480 		}
1481 		/*
1482 		 * If the link MTU changed, do network layer specific procedure.
1483 		 */
1484 		if (ifp->if_mtu != oldmtu) {
1485 #ifdef INET6
1486 			nd6_setmtu(ifp);
1487 #endif
1488 		}
1489 		return (error);
1490 	}
1491 
1492 	case SIOCADDMULTI:
1493 	case SIOCDELMULTI:
1494 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1495 		if (error)
1496 			return (error);
1497 
1498 		/* Don't allow group membership on non-multicast interfaces. */
1499 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
1500 			return EOPNOTSUPP;
1501 
1502 		/* Don't let users screw up protocols' entries. */
1503 		if (ifr->ifr_addr.sa_family != AF_LINK)
1504 			return EINVAL;
1505 
1506 		if (cmd == SIOCADDMULTI) {
1507 			struct ifmultiaddr *ifma;
1508 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1509 		} else {
1510 			error = if_delmulti(ifp, &ifr->ifr_addr);
1511 		}
1512 		if (error == 0)
1513 			getmicrotime(&ifp->if_lastchange);
1514 		return error;
1515 
1516 	case SIOCSIFPHYADDR:
1517 	case SIOCDIFPHYADDR:
1518 #ifdef INET6
1519 	case SIOCSIFPHYADDR_IN6:
1520 #endif
1521 	case SIOCSLIFPHYADDR:
1522         case SIOCSIFMEDIA:
1523 	case SIOCSIFGENERIC:
1524 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1525 		if (error)
1526 			return (error);
1527 		if (ifp->if_ioctl == 0)
1528 			return (EOPNOTSUPP);
1529 		ifnet_serialize_all(ifp);
1530 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1531 		ifnet_deserialize_all(ifp);
1532 		if (error == 0)
1533 			getmicrotime(&ifp->if_lastchange);
1534 		return error;
1535 
1536 	case SIOCGIFSTATUS:
1537 		ifs = (struct ifstat *)data;
1538 		ifs->ascii[0] = '\0';
1539 
1540 	case SIOCGIFPSRCADDR:
1541 	case SIOCGIFPDSTADDR:
1542 	case SIOCGLIFPHYADDR:
1543 	case SIOCGIFMEDIA:
1544 	case SIOCGIFGENERIC:
1545 		if (ifp->if_ioctl == NULL)
1546 			return (EOPNOTSUPP);
1547 		ifnet_serialize_all(ifp);
1548 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1549 		ifnet_deserialize_all(ifp);
1550 		return (error);
1551 
1552 	case SIOCSIFLLADDR:
1553 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1554 		if (error)
1555 			return (error);
1556 		error = if_setlladdr(ifp,
1557 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
1558 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1559 		return (error);
1560 
1561 	default:
1562 		oif_flags = ifp->if_flags;
1563 		if (so->so_proto == 0)
1564 			return (EOPNOTSUPP);
1565 #ifndef COMPAT_43
1566 		error = so_pru_control(so, cmd, data, ifp);
1567 #else
1568 	    {
1569 		int ocmd = cmd;
1570 
1571 		switch (cmd) {
1572 
1573 		case SIOCSIFDSTADDR:
1574 		case SIOCSIFADDR:
1575 		case SIOCSIFBRDADDR:
1576 		case SIOCSIFNETMASK:
1577 #if BYTE_ORDER != BIG_ENDIAN
1578 			if (ifr->ifr_addr.sa_family == 0 &&
1579 			    ifr->ifr_addr.sa_len < 16) {
1580 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1581 				ifr->ifr_addr.sa_len = 16;
1582 			}
1583 #else
1584 			if (ifr->ifr_addr.sa_len == 0)
1585 				ifr->ifr_addr.sa_len = 16;
1586 #endif
1587 			break;
1588 
1589 		case OSIOCGIFADDR:
1590 			cmd = SIOCGIFADDR;
1591 			break;
1592 
1593 		case OSIOCGIFDSTADDR:
1594 			cmd = SIOCGIFDSTADDR;
1595 			break;
1596 
1597 		case OSIOCGIFBRDADDR:
1598 			cmd = SIOCGIFBRDADDR;
1599 			break;
1600 
1601 		case OSIOCGIFNETMASK:
1602 			cmd = SIOCGIFNETMASK;
1603 		}
1604 		error =  so_pru_control(so, cmd, data, ifp);
1605 		switch (ocmd) {
1606 
1607 		case OSIOCGIFADDR:
1608 		case OSIOCGIFDSTADDR:
1609 		case OSIOCGIFBRDADDR:
1610 		case OSIOCGIFNETMASK:
1611 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1612 
1613 		}
1614 	    }
1615 #endif /* COMPAT_43 */
1616 
1617 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1618 #ifdef INET6
1619 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1620 			if (ifp->if_flags & IFF_UP) {
1621 				crit_enter();
1622 				in6_if_up(ifp);
1623 				crit_exit();
1624 			}
1625 #endif
1626 		}
1627 		return (error);
1628 
1629 	}
1630 	return (0);
1631 }
1632 
1633 /*
1634  * Set/clear promiscuous mode on interface ifp based on the truth value
1635  * of pswitch.  The calls are reference counted so that only the first
1636  * "on" request actually has an effect, as does the final "off" request.
1637  * Results are undefined if the "off" and "on" requests are not matched.
1638  */
1639 int
1640 ifpromisc(struct ifnet *ifp, int pswitch)
1641 {
1642 	struct ifreq ifr;
1643 	int error;
1644 	int oldflags;
1645 
1646 	oldflags = ifp->if_flags;
1647 	if (ifp->if_flags & IFF_PPROMISC) {
1648 		/* Do nothing if device is in permanently promiscuous mode */
1649 		ifp->if_pcount += pswitch ? 1 : -1;
1650 		return (0);
1651 	}
1652 	if (pswitch) {
1653 		/*
1654 		 * If the device is not configured up, we cannot put it in
1655 		 * promiscuous mode.
1656 		 */
1657 		if ((ifp->if_flags & IFF_UP) == 0)
1658 			return (ENETDOWN);
1659 		if (ifp->if_pcount++ != 0)
1660 			return (0);
1661 		ifp->if_flags |= IFF_PROMISC;
1662 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1663 		    ifp->if_xname);
1664 	} else {
1665 		if (--ifp->if_pcount > 0)
1666 			return (0);
1667 		ifp->if_flags &= ~IFF_PROMISC;
1668 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1669 		    ifp->if_xname);
1670 	}
1671 	ifr.ifr_flags = ifp->if_flags;
1672 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1673 	ifnet_serialize_all(ifp);
1674 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1675 	ifnet_deserialize_all(ifp);
1676 	if (error == 0)
1677 		rt_ifmsg(ifp);
1678 	else
1679 		ifp->if_flags = oldflags;
1680 	return error;
1681 }
1682 
1683 /*
1684  * Return interface configuration
1685  * of system.  List may be used
1686  * in later ioctl's (above) to get
1687  * other information.
1688  */
1689 static int
1690 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1691 {
1692 	struct ifconf *ifc = (struct ifconf *)data;
1693 	struct ifnet *ifp;
1694 	struct sockaddr *sa;
1695 	struct ifreq ifr, *ifrp;
1696 	int space = ifc->ifc_len, error = 0;
1697 
1698 	ifrp = ifc->ifc_req;
1699 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1700 		struct ifaddr_container *ifac;
1701 		int addrs;
1702 
1703 		if (space <= sizeof ifr)
1704 			break;
1705 
1706 		/*
1707 		 * Zero the stack declared structure first to prevent
1708 		 * memory disclosure.
1709 		 */
1710 		bzero(&ifr, sizeof(ifr));
1711 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
1712 		    >= sizeof(ifr.ifr_name)) {
1713 			error = ENAMETOOLONG;
1714 			break;
1715 		}
1716 
1717 		addrs = 0;
1718 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1719 			struct ifaddr *ifa = ifac->ifa;
1720 
1721 			if (space <= sizeof ifr)
1722 				break;
1723 			sa = ifa->ifa_addr;
1724 			if (cred->cr_prison &&
1725 			    prison_if(cred, sa))
1726 				continue;
1727 			addrs++;
1728 #ifdef COMPAT_43
1729 			if (cmd == OSIOCGIFCONF) {
1730 				struct osockaddr *osa =
1731 					 (struct osockaddr *)&ifr.ifr_addr;
1732 				ifr.ifr_addr = *sa;
1733 				osa->sa_family = sa->sa_family;
1734 				error = copyout(&ifr, ifrp, sizeof ifr);
1735 				ifrp++;
1736 			} else
1737 #endif
1738 			if (sa->sa_len <= sizeof(*sa)) {
1739 				ifr.ifr_addr = *sa;
1740 				error = copyout(&ifr, ifrp, sizeof ifr);
1741 				ifrp++;
1742 			} else {
1743 				if (space < (sizeof ifr) + sa->sa_len -
1744 					    sizeof(*sa))
1745 					break;
1746 				space -= sa->sa_len - sizeof(*sa);
1747 				error = copyout(&ifr, ifrp,
1748 						sizeof ifr.ifr_name);
1749 				if (error == 0)
1750 					error = copyout(sa, &ifrp->ifr_addr,
1751 							sa->sa_len);
1752 				ifrp = (struct ifreq *)
1753 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
1754 			}
1755 			if (error)
1756 				break;
1757 			space -= sizeof ifr;
1758 		}
1759 		if (error)
1760 			break;
1761 		if (!addrs) {
1762 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
1763 			error = copyout(&ifr, ifrp, sizeof ifr);
1764 			if (error)
1765 				break;
1766 			space -= sizeof ifr;
1767 			ifrp++;
1768 		}
1769 	}
1770 	ifc->ifc_len -= space;
1771 	return (error);
1772 }
1773 
1774 /*
1775  * Just like if_promisc(), but for all-multicast-reception mode.
1776  */
1777 int
1778 if_allmulti(struct ifnet *ifp, int onswitch)
1779 {
1780 	int error = 0;
1781 	struct ifreq ifr;
1782 
1783 	crit_enter();
1784 
1785 	if (onswitch) {
1786 		if (ifp->if_amcount++ == 0) {
1787 			ifp->if_flags |= IFF_ALLMULTI;
1788 			ifr.ifr_flags = ifp->if_flags;
1789 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1790 			ifnet_serialize_all(ifp);
1791 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1792 					      NULL);
1793 			ifnet_deserialize_all(ifp);
1794 		}
1795 	} else {
1796 		if (ifp->if_amcount > 1) {
1797 			ifp->if_amcount--;
1798 		} else {
1799 			ifp->if_amcount = 0;
1800 			ifp->if_flags &= ~IFF_ALLMULTI;
1801 			ifr.ifr_flags = ifp->if_flags;
1802 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1803 			ifnet_serialize_all(ifp);
1804 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1805 					      NULL);
1806 			ifnet_deserialize_all(ifp);
1807 		}
1808 	}
1809 
1810 	crit_exit();
1811 
1812 	if (error == 0)
1813 		rt_ifmsg(ifp);
1814 	return error;
1815 }
1816 
1817 /*
1818  * Add a multicast listenership to the interface in question.
1819  * The link layer provides a routine which converts
1820  */
1821 int
1822 if_addmulti(
1823 	struct ifnet *ifp,	/* interface to manipulate */
1824 	struct sockaddr *sa,	/* address to add */
1825 	struct ifmultiaddr **retifma)
1826 {
1827 	struct sockaddr *llsa, *dupsa;
1828 	int error;
1829 	struct ifmultiaddr *ifma;
1830 
1831 	/*
1832 	 * If the matching multicast address already exists
1833 	 * then don't add a new one, just add a reference
1834 	 */
1835 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1836 		if (sa_equal(sa, ifma->ifma_addr)) {
1837 			ifma->ifma_refcount++;
1838 			if (retifma)
1839 				*retifma = ifma;
1840 			return 0;
1841 		}
1842 	}
1843 
1844 	/*
1845 	 * Give the link layer a chance to accept/reject it, and also
1846 	 * find out which AF_LINK address this maps to, if it isn't one
1847 	 * already.
1848 	 */
1849 	if (ifp->if_resolvemulti) {
1850 		ifnet_serialize_all(ifp);
1851 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
1852 		ifnet_deserialize_all(ifp);
1853 		if (error)
1854 			return error;
1855 	} else {
1856 		llsa = 0;
1857 	}
1858 
1859 	MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK);
1860 	MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK);
1861 	bcopy(sa, dupsa, sa->sa_len);
1862 
1863 	ifma->ifma_addr = dupsa;
1864 	ifma->ifma_lladdr = llsa;
1865 	ifma->ifma_ifp = ifp;
1866 	ifma->ifma_refcount = 1;
1867 	ifma->ifma_protospec = 0;
1868 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
1869 
1870 	/*
1871 	 * Some network interfaces can scan the address list at
1872 	 * interrupt time; lock them out.
1873 	 */
1874 	crit_enter();
1875 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1876 	crit_exit();
1877 	if (retifma)
1878 		*retifma = ifma;
1879 
1880 	if (llsa != 0) {
1881 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1882 			if (sa_equal(ifma->ifma_addr, llsa))
1883 				break;
1884 		}
1885 		if (ifma) {
1886 			ifma->ifma_refcount++;
1887 		} else {
1888 			MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma,
1889 			       M_IFMADDR, M_WAITOK);
1890 			MALLOC(dupsa, struct sockaddr *, llsa->sa_len,
1891 			       M_IFMADDR, M_WAITOK);
1892 			bcopy(llsa, dupsa, llsa->sa_len);
1893 			ifma->ifma_addr = dupsa;
1894 			ifma->ifma_ifp = ifp;
1895 			ifma->ifma_refcount = 1;
1896 			crit_enter();
1897 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
1898 			crit_exit();
1899 		}
1900 	}
1901 	/*
1902 	 * We are certain we have added something, so call down to the
1903 	 * interface to let them know about it.
1904 	 */
1905 	crit_enter();
1906 	ifnet_serialize_all(ifp);
1907 	if (ifp->if_ioctl)
1908 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
1909 	ifnet_deserialize_all(ifp);
1910 	crit_exit();
1911 
1912 	return 0;
1913 }
1914 
1915 /*
1916  * Remove a reference to a multicast address on this interface.  Yell
1917  * if the request does not match an existing membership.
1918  */
1919 int
1920 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
1921 {
1922 	struct ifmultiaddr *ifma;
1923 
1924 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1925 		if (sa_equal(sa, ifma->ifma_addr))
1926 			break;
1927 	if (ifma == 0)
1928 		return ENOENT;
1929 
1930 	if (ifma->ifma_refcount > 1) {
1931 		ifma->ifma_refcount--;
1932 		return 0;
1933 	}
1934 
1935 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
1936 	sa = ifma->ifma_lladdr;
1937 	crit_enter();
1938 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
1939 	/*
1940 	 * Make sure the interface driver is notified
1941 	 * in the case of a link layer mcast group being left.
1942 	 */
1943 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0) {
1944 		ifnet_serialize_all(ifp);
1945 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
1946 		ifnet_deserialize_all(ifp);
1947 	}
1948 	crit_exit();
1949 	kfree(ifma->ifma_addr, M_IFMADDR);
1950 	kfree(ifma, M_IFMADDR);
1951 	if (sa == 0)
1952 		return 0;
1953 
1954 	/*
1955 	 * Now look for the link-layer address which corresponds to
1956 	 * this network address.  It had been squirreled away in
1957 	 * ifma->ifma_lladdr for this purpose (so we don't have
1958 	 * to call ifp->if_resolvemulti() again), and we saved that
1959 	 * value in sa above.  If some nasty deleted the
1960 	 * link-layer address out from underneath us, we can deal because
1961 	 * the address we stored was is not the same as the one which was
1962 	 * in the record for the link-layer address.  (So we don't complain
1963 	 * in that case.)
1964 	 */
1965 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
1966 		if (sa_equal(sa, ifma->ifma_addr))
1967 			break;
1968 	if (ifma == 0)
1969 		return 0;
1970 
1971 	if (ifma->ifma_refcount > 1) {
1972 		ifma->ifma_refcount--;
1973 		return 0;
1974 	}
1975 
1976 	crit_enter();
1977 	ifnet_serialize_all(ifp);
1978 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
1979 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
1980 	ifnet_deserialize_all(ifp);
1981 	crit_exit();
1982 	kfree(ifma->ifma_addr, M_IFMADDR);
1983 	kfree(sa, M_IFMADDR);
1984 	kfree(ifma, M_IFMADDR);
1985 
1986 	return 0;
1987 }
1988 
1989 /*
1990  * Delete all multicast group membership for an interface.
1991  * Should be used to quickly flush all multicast filters.
1992  */
1993 void
1994 if_delallmulti(struct ifnet *ifp)
1995 {
1996 	struct ifmultiaddr *ifma;
1997 	struct ifmultiaddr *next;
1998 
1999 	TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
2000 		if_delmulti(ifp, ifma->ifma_addr);
2001 }
2002 
2003 
2004 /*
2005  * Set the link layer address on an interface.
2006  *
2007  * At this time we only support certain types of interfaces,
2008  * and we don't allow the length of the address to change.
2009  */
2010 int
2011 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2012 {
2013 	struct sockaddr_dl *sdl;
2014 	struct ifreq ifr;
2015 
2016 	sdl = IF_LLSOCKADDR(ifp);
2017 	if (sdl == NULL)
2018 		return (EINVAL);
2019 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2020 		return (EINVAL);
2021 	switch (ifp->if_type) {
2022 	case IFT_ETHER:			/* these types use struct arpcom */
2023 	case IFT_XETHER:
2024 	case IFT_L2VLAN:
2025 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2026 		bcopy(lladdr, LLADDR(sdl), len);
2027 		break;
2028 	default:
2029 		return (ENODEV);
2030 	}
2031 	/*
2032 	 * If the interface is already up, we need
2033 	 * to re-init it in order to reprogram its
2034 	 * address filter.
2035 	 */
2036 	ifnet_serialize_all(ifp);
2037 	if ((ifp->if_flags & IFF_UP) != 0) {
2038 		struct ifaddr_container *ifac;
2039 
2040 		ifp->if_flags &= ~IFF_UP;
2041 		ifr.ifr_flags = ifp->if_flags;
2042 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2043 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2044 			      NULL);
2045 		ifp->if_flags |= IFF_UP;
2046 		ifr.ifr_flags = ifp->if_flags;
2047 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2048 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2049 				 NULL);
2050 #ifdef INET
2051 		/*
2052 		 * Also send gratuitous ARPs to notify other nodes about
2053 		 * the address change.
2054 		 */
2055 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2056 			struct ifaddr *ifa = ifac->ifa;
2057 
2058 			if (ifa->ifa_addr != NULL &&
2059 			    ifa->ifa_addr->sa_family == AF_INET)
2060 				arp_ifinit(ifp, ifa);
2061 		}
2062 #endif
2063 	}
2064 	ifnet_deserialize_all(ifp);
2065 	return (0);
2066 }
2067 
2068 struct ifmultiaddr *
2069 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2070 {
2071 	struct ifmultiaddr *ifma;
2072 
2073 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2074 		if (sa_equal(ifma->ifma_addr, sa))
2075 			break;
2076 
2077 	return ifma;
2078 }
2079 
2080 /*
2081  * This function locates the first real ethernet MAC from a network
2082  * card and loads it into node, returning 0 on success or ENOENT if
2083  * no suitable interfaces were found.  It is used by the uuid code to
2084  * generate a unique 6-byte number.
2085  */
2086 int
2087 if_getanyethermac(uint16_t *node, int minlen)
2088 {
2089 	struct ifnet *ifp;
2090 	struct sockaddr_dl *sdl;
2091 
2092 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2093 		if (ifp->if_type != IFT_ETHER)
2094 			continue;
2095 		sdl = IF_LLSOCKADDR(ifp);
2096 		if (sdl->sdl_alen < minlen)
2097 			continue;
2098 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2099 		      minlen);
2100 		return(0);
2101 	}
2102 	return (ENOENT);
2103 }
2104 
2105 /*
2106  * The name argument must be a pointer to storage which will last as
2107  * long as the interface does.  For physical devices, the result of
2108  * device_get_name(dev) is a good choice and for pseudo-devices a
2109  * static string works well.
2110  */
2111 void
2112 if_initname(struct ifnet *ifp, const char *name, int unit)
2113 {
2114 	ifp->if_dname = name;
2115 	ifp->if_dunit = unit;
2116 	if (unit != IF_DUNIT_NONE)
2117 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2118 	else
2119 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2120 }
2121 
2122 int
2123 if_printf(struct ifnet *ifp, const char *fmt, ...)
2124 {
2125 	__va_list ap;
2126 	int retval;
2127 
2128 	retval = kprintf("%s: ", ifp->if_xname);
2129 	__va_start(ap, fmt);
2130 	retval += kvprintf(fmt, ap);
2131 	__va_end(ap);
2132 	return (retval);
2133 }
2134 
2135 struct ifnet *
2136 if_alloc(uint8_t type)
2137 {
2138         struct ifnet *ifp;
2139 	size_t size;
2140 
2141 	/*
2142 	 * XXX temporary hack until arpcom is setup in if_l2com
2143 	 */
2144 	if (type == IFT_ETHER)
2145 		size = sizeof(struct arpcom);
2146 	else
2147 		size = sizeof(struct ifnet);
2148 
2149 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2150 
2151 	ifp->if_type = type;
2152 
2153 	if (if_com_alloc[type] != NULL) {
2154 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2155 		if (ifp->if_l2com == NULL) {
2156 			kfree(ifp, M_IFNET);
2157 			return (NULL);
2158 		}
2159 	}
2160 	return (ifp);
2161 }
2162 
2163 void
2164 if_free(struct ifnet *ifp)
2165 {
2166 	kfree(ifp, M_IFNET);
2167 }
2168 
2169 void
2170 ifq_set_classic(struct ifaltq *ifq)
2171 {
2172 	ifq->altq_enqueue = ifq_classic_enqueue;
2173 	ifq->altq_dequeue = ifq_classic_dequeue;
2174 	ifq->altq_request = ifq_classic_request;
2175 }
2176 
2177 int
2178 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m,
2179 		    struct altq_pktattr *pa __unused)
2180 {
2181 	logifq(enqueue, ifq);
2182 	if (IF_QFULL(ifq)) {
2183 		m_freem(m);
2184 		return(ENOBUFS);
2185 	} else {
2186 		IF_ENQUEUE(ifq, m);
2187 		return(0);
2188 	}
2189 }
2190 
2191 struct mbuf *
2192 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
2193 {
2194 	struct mbuf *m;
2195 
2196 	switch (op) {
2197 	case ALTDQ_POLL:
2198 		IF_POLL(ifq, m);
2199 		break;
2200 	case ALTDQ_REMOVE:
2201 		logifq(dequeue, ifq);
2202 		IF_DEQUEUE(ifq, m);
2203 		break;
2204 	default:
2205 		panic("unsupported ALTQ dequeue op: %d", op);
2206 	}
2207 	KKASSERT(mpolled == NULL || mpolled == m);
2208 	return(m);
2209 }
2210 
2211 int
2212 ifq_classic_request(struct ifaltq *ifq, int req, void *arg)
2213 {
2214 	switch (req) {
2215 	case ALTRQ_PURGE:
2216 		IF_DRAIN(ifq);
2217 		break;
2218 	default:
2219 		panic("unsupported ALTQ request: %d", req);
2220 	}
2221 	return(0);
2222 }
2223 
2224 int
2225 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2226 {
2227 	struct ifaltq *ifq = &ifp->if_snd;
2228 	int running = 0, error, start = 0;
2229 
2230 	ASSERT_IFNET_NOT_SERIALIZED_TX(ifp);
2231 
2232 	ALTQ_LOCK(ifq);
2233 	error = ifq_enqueue_locked(ifq, m, pa);
2234 	if (error) {
2235 		ALTQ_UNLOCK(ifq);
2236 		return error;
2237 	}
2238 	if (!ifq->altq_started) {
2239 		/*
2240 		 * Hold the interlock of ifnet.if_start
2241 		 */
2242 		ifq->altq_started = 1;
2243 		start = 1;
2244 	}
2245 	ALTQ_UNLOCK(ifq);
2246 
2247 	ifp->if_obytes += m->m_pkthdr.len;
2248 	if (m->m_flags & M_MCAST)
2249 		ifp->if_omcasts++;
2250 
2251 	if (!start) {
2252 		logifstart(avoid, ifp);
2253 		return 0;
2254 	}
2255 
2256 	if (ifq_dispatch_schedonly) {
2257 		/*
2258 		 * Always schedule ifnet.if_start on ifnet's CPU,
2259 		 * short circuit the rest of this function.
2260 		 */
2261 		logifstart(sched, ifp);
2262 		if_start_schedule(ifp);
2263 		return 0;
2264 	}
2265 
2266 	/*
2267 	 * Try to do direct ifnet.if_start first, if there is
2268 	 * contention on ifnet's serializer, ifnet.if_start will
2269 	 * be scheduled on ifnet's CPU.
2270 	 */
2271 	if (!ifnet_tryserialize_tx(ifp)) {
2272 		/*
2273 		 * ifnet serializer contention happened,
2274 		 * ifnet.if_start is scheduled on ifnet's
2275 		 * CPU, and we keep going.
2276 		 */
2277 		logifstart(contend_sched, ifp);
2278 		if_start_schedule(ifp);
2279 		return 0;
2280 	}
2281 
2282 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2283 		logifstart(run, ifp);
2284 		ifp->if_start(ifp);
2285 		if ((ifp->if_flags &
2286 		     (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
2287 			running = 1;
2288 	}
2289 
2290 	ifnet_deserialize_tx(ifp);
2291 
2292 	if (ifq_dispatch_schednochk || if_start_need_schedule(ifq, running)) {
2293 		/*
2294 		 * More data need to be transmitted, ifnet.if_start is
2295 		 * scheduled on ifnet's CPU, and we keep going.
2296 		 * NOTE: ifnet.if_start interlock is not released.
2297 		 */
2298 		logifstart(sched, ifp);
2299 		if_start_schedule(ifp);
2300 	}
2301 	return 0;
2302 }
2303 
2304 void *
2305 ifa_create(int size, int flags)
2306 {
2307 	struct ifaddr *ifa;
2308 	int i;
2309 
2310 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small\n"));
2311 
2312 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2313 	if (ifa == NULL)
2314 		return NULL;
2315 
2316 	ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container),
2317 				      M_IFADDR, M_WAITOK | M_ZERO);
2318 	ifa->ifa_ncnt = ncpus;
2319 	for (i = 0; i < ncpus; ++i) {
2320 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2321 
2322 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2323 		ifac->ifa = ifa;
2324 		ifac->ifa_refcnt = 1;
2325 	}
2326 #ifdef IFADDR_DEBUG
2327 	kprintf("alloc ifa %p %d\n", ifa, size);
2328 #endif
2329 	return ifa;
2330 }
2331 
2332 void
2333 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2334 {
2335 	struct ifaddr *ifa = ifac->ifa;
2336 
2337 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2338 	KKASSERT(ifac->ifa_refcnt == 0);
2339 	KASSERT(ifac->ifa_listmask == 0,
2340 		("ifa is still on %#x lists\n", ifac->ifa_listmask));
2341 
2342 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2343 
2344 #ifdef IFADDR_DEBUG_VERBOSE
2345 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2346 #endif
2347 
2348 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2349 		("invalid # of ifac, %d\n", ifa->ifa_ncnt));
2350 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2351 #ifdef IFADDR_DEBUG
2352 		kprintf("free ifa %p\n", ifa);
2353 #endif
2354 		kfree(ifa->ifa_containers, M_IFADDR);
2355 		kfree(ifa, M_IFADDR);
2356 	}
2357 }
2358 
2359 static void
2360 ifa_iflink_dispatch(struct netmsg *nmsg)
2361 {
2362 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2363 	struct ifaddr *ifa = msg->ifa;
2364 	struct ifnet *ifp = msg->ifp;
2365 	int cpu = mycpuid;
2366 	struct ifaddr_container *ifac;
2367 
2368 	crit_enter();
2369 
2370 	ifac = &ifa->ifa_containers[cpu];
2371 	ASSERT_IFAC_VALID(ifac);
2372 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2373 		("ifaddr is on if_addrheads\n"));
2374 
2375 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2376 	if (msg->tail)
2377 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2378 	else
2379 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2380 
2381 	crit_exit();
2382 
2383 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2384 }
2385 
2386 void
2387 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2388 {
2389 	struct netmsg_ifaddr msg;
2390 
2391 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2392 		    0, ifa_iflink_dispatch);
2393 	msg.ifa = ifa;
2394 	msg.ifp = ifp;
2395 	msg.tail = tail;
2396 
2397 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2398 }
2399 
2400 static void
2401 ifa_ifunlink_dispatch(struct netmsg *nmsg)
2402 {
2403 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2404 	struct ifaddr *ifa = msg->ifa;
2405 	struct ifnet *ifp = msg->ifp;
2406 	int cpu = mycpuid;
2407 	struct ifaddr_container *ifac;
2408 
2409 	crit_enter();
2410 
2411 	ifac = &ifa->ifa_containers[cpu];
2412 	ASSERT_IFAC_VALID(ifac);
2413 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2414 		("ifaddr is not on if_addrhead\n"));
2415 
2416 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2417 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2418 
2419 	crit_exit();
2420 
2421 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2422 }
2423 
2424 void
2425 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2426 {
2427 	struct netmsg_ifaddr msg;
2428 
2429 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2430 		    0, ifa_ifunlink_dispatch);
2431 	msg.ifa = ifa;
2432 	msg.ifp = ifp;
2433 
2434 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2435 }
2436 
2437 static void
2438 ifa_destroy_dispatch(struct netmsg *nmsg)
2439 {
2440 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2441 
2442 	IFAFREE(msg->ifa);
2443 	ifa_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2444 }
2445 
2446 void
2447 ifa_destroy(struct ifaddr *ifa)
2448 {
2449 	struct netmsg_ifaddr msg;
2450 
2451 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2452 		    0, ifa_destroy_dispatch);
2453 	msg.ifa = ifa;
2454 
2455 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2456 }
2457 
2458 struct lwkt_port *
2459 ifnet_portfn(int cpu)
2460 {
2461 	return &ifnet_threads[cpu].td_msgport;
2462 }
2463 
2464 void
2465 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2466 {
2467 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2468 
2469 	if (next_cpu < ncpus)
2470 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2471 	else
2472 		lwkt_replymsg(lmsg, 0);
2473 }
2474 
2475 int
2476 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2477 {
2478 	KKASSERT(cpu < ncpus);
2479 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2480 }
2481 
2482 void
2483 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2484 {
2485 	KKASSERT(cpu < ncpus);
2486 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2487 }
2488 
2489 static void
2490 ifnetinit(void *dummy __unused)
2491 {
2492 	int i;
2493 
2494 	for (i = 0; i < ncpus; ++i) {
2495 		struct thread *thr = &ifnet_threads[i];
2496 
2497 		lwkt_create(netmsg_service_loop, &ifnet_mpsafe_thread, NULL,
2498 			    thr, TDF_NETWORK | TDF_MPSAFE, i, "ifnet %d", i);
2499 		netmsg_service_port_init(&thr->td_msgport);
2500 	}
2501 }
2502 
2503 struct ifnet *
2504 ifnet_byindex(unsigned short idx)
2505 {
2506 	if (idx > if_index)
2507 		return NULL;
2508 	return ifindex2ifnet[idx];
2509 }
2510 
2511 struct ifaddr *
2512 ifaddr_byindex(unsigned short idx)
2513 {
2514 	struct ifnet *ifp;
2515 
2516 	ifp = ifnet_byindex(idx);
2517 	if (!ifp)
2518 		return NULL;
2519 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2520 }
2521 
2522 void
2523 if_register_com_alloc(u_char type,
2524     if_com_alloc_t *a, if_com_free_t *f)
2525 {
2526 
2527         KASSERT(if_com_alloc[type] == NULL,
2528             ("if_register_com_alloc: %d already registered", type));
2529         KASSERT(if_com_free[type] == NULL,
2530             ("if_register_com_alloc: %d free already registered", type));
2531 
2532         if_com_alloc[type] = a;
2533         if_com_free[type] = f;
2534 }
2535 
2536 void
2537 if_deregister_com_alloc(u_char type)
2538 {
2539 
2540         KASSERT(if_com_alloc[type] != NULL,
2541             ("if_deregister_com_alloc: %d not registered", type));
2542         KASSERT(if_com_free[type] != NULL,
2543             ("if_deregister_com_alloc: %d free not registered", type));
2544         if_com_alloc[type] = NULL;
2545         if_com_free[type] = NULL;
2546 }
2547