xref: /dflybsd-src/sys/net/if.c (revision 93bffecadc0caefc46f12b736eab0e62c2b6f42e)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  * $DragonFly: src/sys/net/if.c,v 1.84 2008/11/15 11:58:16 sephe Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_inet6.h"
40 #include "opt_inet.h"
41 #include "opt_polling.h"
42 #include "opt_ifpoll.h"
43 
44 #include <sys/param.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/socketops.h>
54 #include <sys/protosw.h>
55 #include <sys/kernel.h>
56 #include <sys/ktr.h>
57 #include <sys/sockio.h>
58 #include <sys/syslog.h>
59 #include <sys/sysctl.h>
60 #include <sys/domain.h>
61 #include <sys/thread.h>
62 #include <sys/thread2.h>
63 #include <sys/serialize.h>
64 #include <sys/msgport2.h>
65 #include <sys/bus.h>
66 
67 #include <net/if.h>
68 #include <net/if_arp.h>
69 #include <net/if_dl.h>
70 #include <net/if_types.h>
71 #include <net/if_var.h>
72 #include <net/ifq_var.h>
73 #include <net/radix.h>
74 #include <net/route.h>
75 #include <net/if_clone.h>
76 #include <net/netisr.h>
77 #include <net/netmsg2.h>
78 
79 #include <machine/atomic.h>
80 #include <machine/stdarg.h>
81 #include <machine/smp.h>
82 
83 #if defined(INET) || defined(INET6)
84 /*XXX*/
85 #include <netinet/in.h>
86 #include <netinet/in_var.h>
87 #include <netinet/if_ether.h>
88 #ifdef INET6
89 #include <netinet6/in6_var.h>
90 #include <netinet6/in6_ifattach.h>
91 #endif
92 #endif
93 
94 #if defined(COMPAT_43)
95 #include <emulation/43bsd/43bsd_socket.h>
96 #endif /* COMPAT_43 */
97 
98 struct netmsg_ifaddr {
99 	struct netmsg	netmsg;
100 	struct ifaddr	*ifa;
101 	struct ifnet	*ifp;
102 	int		tail;
103 };
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
115 static int	if_rtdel(struct radix_node *, void *);
116 
117 #ifdef INET6
118 /*
119  * XXX: declare here to avoid to include many inet6 related files..
120  * should be more generalized?
121  */
122 extern void	nd6_setmtu(struct ifnet *);
123 #endif
124 
125 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
126 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
127 
128 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
129 /* Must be after netisr_init */
130 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
131 
132 static  if_com_alloc_t *if_com_alloc[256];
133 static  if_com_free_t *if_com_free[256];
134 
135 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
136 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
137 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
138 
139 int			ifqmaxlen = IFQ_MAXLEN;
140 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
141 
142 /* In ifq_dispatch(), try to do direct ifnet.if_start first */
143 static int		ifq_dispatch_schedonly = 0;
144 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schedonly, CTLFLAG_RW,
145            &ifq_dispatch_schedonly, 0, "");
146 
147 /* In ifq_dispatch(), schedule ifnet.if_start without checking ifnet.if_snd */
148 static int		ifq_dispatch_schednochk = 0;
149 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schednochk, CTLFLAG_RW,
150            &ifq_dispatch_schednochk, 0, "");
151 
152 /* In if_devstart(), try to do direct ifnet.if_start first */
153 static int		if_devstart_schedonly = 0;
154 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schedonly, CTLFLAG_RW,
155            &if_devstart_schedonly, 0, "");
156 
157 /* In if_devstart(), schedule ifnet.if_start without checking ifnet.if_snd */
158 static int		if_devstart_schednochk = 0;
159 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schednochk, CTLFLAG_RW,
160            &if_devstart_schednochk, 0, "");
161 
162 #ifdef SMP
163 /* Schedule ifnet.if_start on the current CPU */
164 static int		if_start_oncpu_sched = 0;
165 SYSCTL_INT(_net_link_generic, OID_AUTO, if_start_oncpu_sched, CTLFLAG_RW,
166            &if_start_oncpu_sched, 0, "");
167 #endif
168 
169 struct callout		if_slowtimo_timer;
170 
171 int			if_index = 0;
172 struct ifnet		**ifindex2ifnet = NULL;
173 static struct thread	ifnet_threads[MAXCPU];
174 
175 #define IFQ_KTR_STRING		"ifq=%p"
176 #define IFQ_KTR_ARG_SIZE	(sizeof(void *))
177 #ifndef KTR_IFQ
178 #define KTR_IFQ			KTR_ALL
179 #endif
180 KTR_INFO_MASTER(ifq);
181 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
182 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE);
183 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
184 
185 #define IF_START_KTR_STRING	"ifp=%p"
186 #define IF_START_KTR_ARG_SIZE	(sizeof(void *))
187 #ifndef KTR_IF_START
188 #define KTR_IF_START		KTR_ALL
189 #endif
190 KTR_INFO_MASTER(if_start);
191 KTR_INFO(KTR_IF_START, if_start, run, 0,
192 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
193 KTR_INFO(KTR_IF_START, if_start, sched, 1,
194 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
195 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
196 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
197 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
198 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
199 #ifdef SMP
200 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
201 	 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE);
202 #endif
203 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
204 
205 TAILQ_HEAD(, ifg_group) ifg_head;
206 
207 /*
208  * Network interface utility routines.
209  *
210  * Routines with ifa_ifwith* names take sockaddr *'s as
211  * parameters.
212  */
213 /* ARGSUSED*/
214 void
215 ifinit(void *dummy)
216 {
217 	struct ifnet *ifp;
218 
219 	callout_init(&if_slowtimo_timer);
220 
221 	crit_enter();
222 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
223 		if (ifp->if_snd.ifq_maxlen == 0) {
224 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
225 			ifp->if_snd.ifq_maxlen = ifqmaxlen;
226 		}
227 	}
228 	crit_exit();
229 
230 	if_slowtimo(0);
231 }
232 
233 static int
234 if_start_cpuid(struct ifnet *ifp)
235 {
236 	return ifp->if_cpuid;
237 }
238 
239 #ifdef DEVICE_POLLING
240 static int
241 if_start_cpuid_poll(struct ifnet *ifp)
242 {
243 	int poll_cpuid = ifp->if_poll_cpuid;
244 
245 	if (poll_cpuid >= 0)
246 		return poll_cpuid;
247 	else
248 		return ifp->if_cpuid;
249 }
250 #endif
251 
252 static void
253 if_start_ipifunc(void *arg)
254 {
255 	struct ifnet *ifp = arg;
256 	struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].nm_lmsg;
257 
258 	crit_enter();
259 	if (lmsg->ms_flags & MSGF_DONE)
260 		lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
261 	crit_exit();
262 }
263 
264 /*
265  * Schedule ifnet.if_start on ifnet's CPU
266  */
267 static void
268 if_start_schedule(struct ifnet *ifp)
269 {
270 #ifdef SMP
271 	int cpu;
272 
273 	if (if_start_oncpu_sched)
274 		cpu = mycpuid;
275 	else
276 		cpu = ifp->if_start_cpuid(ifp);
277 
278 	if (cpu != mycpuid)
279 		lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp);
280 	else
281 #endif
282 	if_start_ipifunc(ifp);
283 }
284 
285 /*
286  * NOTE:
287  * This function will release ifnet.if_start interlock,
288  * if ifnet.if_start does not need to be scheduled
289  */
290 static __inline int
291 if_start_need_schedule(struct ifaltq *ifq, int running)
292 {
293 	if (!running || ifq_is_empty(ifq)
294 #ifdef ALTQ
295 	    || ifq->altq_tbr != NULL
296 #endif
297 	) {
298 		ALTQ_LOCK(ifq);
299 		/*
300 		 * ifnet.if_start interlock is released, if:
301 		 * 1) Hardware can not take any packets, due to
302 		 *    o  interface is marked down
303 		 *    o  hardware queue is full (IFF_OACTIVE)
304 		 *    Under the second situation, hardware interrupt
305 		 *    or polling(4) will call/schedule ifnet.if_start
306 		 *    when hardware queue is ready
307 		 * 2) There is not packet in the ifnet.if_snd.
308 		 *    Further ifq_dispatch or ifq_handoff will call/
309 		 *    schedule ifnet.if_start
310 		 * 3) TBR is used and it does not allow further
311 		 *    dequeueing.
312 		 *    TBR callout will call ifnet.if_start
313 		 */
314 		if (!running || !ifq_data_ready(ifq)) {
315 			ifq->altq_started = 0;
316 			ALTQ_UNLOCK(ifq);
317 			return 0;
318 		}
319 		ALTQ_UNLOCK(ifq);
320 	}
321 	return 1;
322 }
323 
324 static void
325 if_start_dispatch(struct netmsg *nmsg)
326 {
327 	struct lwkt_msg *lmsg = &nmsg->nm_lmsg;
328 	struct ifnet *ifp = lmsg->u.ms_resultp;
329 	struct ifaltq *ifq = &ifp->if_snd;
330 	int running = 0;
331 
332 	crit_enter();
333 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
334 	crit_exit();
335 
336 #ifdef SMP
337 	if (!if_start_oncpu_sched && mycpuid != ifp->if_start_cpuid(ifp)) {
338 		/*
339 		 * If the ifnet is still up, we need to
340 		 * chase its CPU change.
341 		 */
342 		if (ifp->if_flags & IFF_UP) {
343 			logifstart(chase_sched, ifp);
344 			if_start_schedule(ifp);
345 			return;
346 		} else {
347 			goto check;
348 		}
349 	}
350 #endif
351 
352 	if (ifp->if_flags & IFF_UP) {
353 		ifnet_serialize_tx(ifp); /* XXX try? */
354 		if ((ifp->if_flags & IFF_OACTIVE) == 0) {
355 			logifstart(run, ifp);
356 			ifp->if_start(ifp);
357 			if ((ifp->if_flags &
358 			(IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
359 				running = 1;
360 		}
361 		ifnet_deserialize_tx(ifp);
362 	}
363 #ifdef SMP
364 check:
365 #endif
366 	if (if_start_need_schedule(ifq, running)) {
367 		crit_enter();
368 		if (lmsg->ms_flags & MSGF_DONE)	{ /* XXX necessary? */
369 			logifstart(sched, ifp);
370 			lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg);
371 		}
372 		crit_exit();
373 	}
374 }
375 
376 /* Device driver ifnet.if_start helper function */
377 void
378 if_devstart(struct ifnet *ifp)
379 {
380 	struct ifaltq *ifq = &ifp->if_snd;
381 	int running = 0;
382 
383 	ASSERT_IFNET_SERIALIZED_TX(ifp);
384 
385 	ALTQ_LOCK(ifq);
386 	if (ifq->altq_started || !ifq_data_ready(ifq)) {
387 		logifstart(avoid, ifp);
388 		ALTQ_UNLOCK(ifq);
389 		return;
390 	}
391 	ifq->altq_started = 1;
392 	ALTQ_UNLOCK(ifq);
393 
394 	if (if_devstart_schedonly) {
395 		/*
396 		 * Always schedule ifnet.if_start on ifnet's CPU,
397 		 * short circuit the rest of this function.
398 		 */
399 		logifstart(sched, ifp);
400 		if_start_schedule(ifp);
401 		return;
402 	}
403 
404 	logifstart(run, ifp);
405 	ifp->if_start(ifp);
406 
407 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
408 		running = 1;
409 
410 	if (if_devstart_schednochk || if_start_need_schedule(ifq, running)) {
411 		/*
412 		 * More data need to be transmitted, ifnet.if_start is
413 		 * scheduled on ifnet's CPU, and we keep going.
414 		 * NOTE: ifnet.if_start interlock is not released.
415 		 */
416 		logifstart(sched, ifp);
417 		if_start_schedule(ifp);
418 	}
419 }
420 
421 static void
422 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
423 {
424 	lwkt_serialize_enter(ifp->if_serializer);
425 }
426 
427 static void
428 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
429 {
430 	lwkt_serialize_exit(ifp->if_serializer);
431 }
432 
433 static int
434 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
435 {
436 	return lwkt_serialize_try(ifp->if_serializer);
437 }
438 
439 #ifdef INVARIANTS
440 static void
441 if_default_serialize_assert(struct ifnet *ifp,
442 			    enum ifnet_serialize slz __unused,
443 			    boolean_t serialized)
444 {
445 	if (serialized)
446 		ASSERT_SERIALIZED(ifp->if_serializer);
447 	else
448 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
449 }
450 #endif
451 
452 /*
453  * Attach an interface to the list of "active" interfaces.
454  *
455  * The serializer is optional.  If non-NULL access to the interface
456  * may be MPSAFE.
457  */
458 void
459 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
460 {
461 	unsigned socksize, ifasize;
462 	int namelen, masklen;
463 	struct sockaddr_dl *sdl;
464 	struct ifaddr *ifa;
465 	struct ifaltq *ifq;
466 	int i;
467 
468 	static int if_indexlim = 8;
469 
470 	if (ifp->if_serialize != NULL) {
471 		KASSERT(ifp->if_deserialize != NULL &&
472 			ifp->if_tryserialize != NULL &&
473 			ifp->if_serialize_assert != NULL,
474 			("serialize functions are partially setup\n"));
475 
476 		/*
477 		 * If the device supplies serialize functions,
478 		 * then clear if_serializer to catch any invalid
479 		 * usage of this field.
480 		 */
481 		KASSERT(serializer == NULL,
482 			("both serialize functions and default serializer "
483 			 "are supplied\n"));
484 		ifp->if_serializer = NULL;
485 	} else {
486 		KASSERT(ifp->if_deserialize == NULL &&
487 			ifp->if_tryserialize == NULL &&
488 			ifp->if_serialize_assert == NULL,
489 			("serialize functions are partially setup\n"));
490 		ifp->if_serialize = if_default_serialize;
491 		ifp->if_deserialize = if_default_deserialize;
492 		ifp->if_tryserialize = if_default_tryserialize;
493 #ifdef INVARIANTS
494 		ifp->if_serialize_assert = if_default_serialize_assert;
495 #endif
496 
497 		/*
498 		 * The serializer can be passed in from the device,
499 		 * allowing the same serializer to be used for both
500 		 * the interrupt interlock and the device queue.
501 		 * If not specified, the netif structure will use an
502 		 * embedded serializer.
503 		 */
504 		if (serializer == NULL) {
505 			serializer = &ifp->if_default_serializer;
506 			lwkt_serialize_init(serializer);
507 		}
508 		ifp->if_serializer = serializer;
509 	}
510 
511 	ifp->if_start_cpuid = if_start_cpuid;
512 	ifp->if_cpuid = 0;
513 
514 #ifdef DEVICE_POLLING
515 	/* Device is not in polling mode by default */
516 	ifp->if_poll_cpuid = -1;
517 	if (ifp->if_poll != NULL)
518 		ifp->if_start_cpuid = if_start_cpuid_poll;
519 #endif
520 
521 	ifp->if_start_nmsg = kmalloc(ncpus * sizeof(struct netmsg),
522 				     M_LWKTMSG, M_WAITOK);
523 	for (i = 0; i < ncpus; ++i) {
524 		netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport,
525 			    0, if_start_dispatch);
526 		ifp->if_start_nmsg[i].nm_lmsg.u.ms_resultp = ifp;
527 	}
528 
529 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
530 	ifp->if_index = ++if_index;
531 
532 	/*
533 	 * XXX -
534 	 * The old code would work if the interface passed a pre-existing
535 	 * chain of ifaddrs to this code.  We don't trust our callers to
536 	 * properly initialize the tailq, however, so we no longer allow
537 	 * this unlikely case.
538 	 */
539 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
540 				    M_IFADDR, M_WAITOK | M_ZERO);
541 	for (i = 0; i < ncpus; ++i)
542 		TAILQ_INIT(&ifp->if_addrheads[i]);
543 
544 	TAILQ_INIT(&ifp->if_prefixhead);
545 	TAILQ_INIT(&ifp->if_multiaddrs);
546 	getmicrotime(&ifp->if_lastchange);
547 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
548 		unsigned int n;
549 		struct ifnet **q;
550 
551 		if_indexlim <<= 1;
552 
553 		/* grow ifindex2ifnet */
554 		n = if_indexlim * sizeof(*q);
555 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
556 		if (ifindex2ifnet) {
557 			bcopy(ifindex2ifnet, q, n/2);
558 			kfree(ifindex2ifnet, M_IFADDR);
559 		}
560 		ifindex2ifnet = q;
561 	}
562 
563 	ifindex2ifnet[if_index] = ifp;
564 
565 	/*
566 	 * create a Link Level name for this device
567 	 */
568 	namelen = strlen(ifp->if_xname);
569 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
570 	masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
571 	socksize = masklen + ifp->if_addrlen;
572 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
573 	if (socksize < sizeof(*sdl))
574 		socksize = sizeof(*sdl);
575 	socksize = ROUNDUP(socksize);
576 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
577 	ifa = ifa_create(ifasize, M_WAITOK);
578 	sdl = (struct sockaddr_dl *)(ifa + 1);
579 	sdl->sdl_len = socksize;
580 	sdl->sdl_family = AF_LINK;
581 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
582 	sdl->sdl_nlen = namelen;
583 	sdl->sdl_index = ifp->if_index;
584 	sdl->sdl_type = ifp->if_type;
585 	ifp->if_lladdr = ifa;
586 	ifa->ifa_ifp = ifp;
587 	ifa->ifa_rtrequest = link_rtrequest;
588 	ifa->ifa_addr = (struct sockaddr *)sdl;
589 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
590 	ifa->ifa_netmask = (struct sockaddr *)sdl;
591 	sdl->sdl_len = masklen;
592 	while (namelen != 0)
593 		sdl->sdl_data[--namelen] = 0xff;
594 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
595 
596 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
597 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
598 
599 	ifq = &ifp->if_snd;
600 	ifq->altq_type = 0;
601 	ifq->altq_disc = NULL;
602 	ifq->altq_flags &= ALTQF_CANTCHANGE;
603 	ifq->altq_tbr = NULL;
604 	ifq->altq_ifp = ifp;
605 	ifq->altq_started = 0;
606 	ifq->altq_prepended = NULL;
607 	ALTQ_LOCK_INIT(ifq);
608 	ifq_set_classic(ifq);
609 
610 	if (!SLIST_EMPTY(&domains))
611 		if_attachdomain1(ifp);
612 
613 	/* Announce the interface. */
614 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
615 }
616 
617 static void
618 if_attachdomain(void *dummy)
619 {
620 	struct ifnet *ifp;
621 
622 	crit_enter();
623 	TAILQ_FOREACH(ifp, &ifnet, if_list)
624 		if_attachdomain1(ifp);
625 	crit_exit();
626 }
627 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
628 	if_attachdomain, NULL);
629 
630 static void
631 if_attachdomain1(struct ifnet *ifp)
632 {
633 	struct domain *dp;
634 
635 	crit_enter();
636 
637 	/* address family dependent data region */
638 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
639 	SLIST_FOREACH(dp, &domains, dom_next)
640 		if (dp->dom_ifattach)
641 			ifp->if_afdata[dp->dom_family] =
642 				(*dp->dom_ifattach)(ifp);
643 	crit_exit();
644 }
645 
646 /*
647  * Purge all addresses whose type is _not_ AF_LINK
648  */
649 void
650 if_purgeaddrs_nolink(struct ifnet *ifp)
651 {
652 	struct ifaddr_container *ifac, *next;
653 
654 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
655 			      ifa_link, next) {
656 		struct ifaddr *ifa = ifac->ifa;
657 
658 		/* Leave link ifaddr as it is */
659 		if (ifa->ifa_addr->sa_family == AF_LINK)
660 			continue;
661 #ifdef INET
662 		/* XXX: Ugly!! ad hoc just for INET */
663 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
664 			struct ifaliasreq ifr;
665 #ifdef IFADDR_DEBUG_VERBOSE
666 			int i;
667 
668 			kprintf("purge in4 addr %p: ", ifa);
669 			for (i = 0; i < ncpus; ++i)
670 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
671 			kprintf("\n");
672 #endif
673 
674 			bzero(&ifr, sizeof ifr);
675 			ifr.ifra_addr = *ifa->ifa_addr;
676 			if (ifa->ifa_dstaddr)
677 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
678 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
679 				       NULL) == 0)
680 				continue;
681 		}
682 #endif /* INET */
683 #ifdef INET6
684 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
685 #ifdef IFADDR_DEBUG_VERBOSE
686 			int i;
687 
688 			kprintf("purge in6 addr %p: ", ifa);
689 			for (i = 0; i < ncpus; ++i)
690 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
691 			kprintf("\n");
692 #endif
693 
694 			in6_purgeaddr(ifa);
695 			/* ifp_addrhead is already updated */
696 			continue;
697 		}
698 #endif /* INET6 */
699 		ifa_ifunlink(ifa, ifp);
700 		ifa_destroy(ifa);
701 	}
702 }
703 
704 /*
705  * Detach an interface, removing it from the
706  * list of "active" interfaces.
707  */
708 void
709 if_detach(struct ifnet *ifp)
710 {
711 	struct radix_node_head	*rnh;
712 	int i;
713 	int cpu, origcpu;
714 	struct domain *dp;
715 
716 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
717 
718 	/*
719 	 * Remove routes and flush queues.
720 	 */
721 	crit_enter();
722 #ifdef DEVICE_POLLING
723 	if (ifp->if_flags & IFF_POLLING)
724 		ether_poll_deregister(ifp);
725 #endif
726 #ifdef IFPOLL_ENABLE
727 	if (ifp->if_flags & IFF_NPOLLING)
728 		ifpoll_deregister(ifp);
729 #endif
730 	if_down(ifp);
731 
732 #ifdef ALTQ
733 	if (ifq_is_enabled(&ifp->if_snd))
734 		altq_disable(&ifp->if_snd);
735 	if (ifq_is_attached(&ifp->if_snd))
736 		altq_detach(&ifp->if_snd);
737 #endif
738 
739 	/*
740 	 * Clean up all addresses.
741 	 */
742 	ifp->if_lladdr = NULL;
743 
744 	if_purgeaddrs_nolink(ifp);
745 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
746 		struct ifaddr *ifa;
747 
748 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
749 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
750 			("non-link ifaddr is left on if_addrheads"));
751 
752 		ifa_ifunlink(ifa, ifp);
753 		ifa_destroy(ifa);
754 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
755 			("there are still ifaddrs left on if_addrheads"));
756 	}
757 
758 #ifdef INET
759 	/*
760 	 * Remove all IPv4 kernel structures related to ifp.
761 	 */
762 	in_ifdetach(ifp);
763 #endif
764 
765 #ifdef INET6
766 	/*
767 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
768 	 * before removing routing entries below, since IPv6 interface direct
769 	 * routes are expected to be removed by the IPv6-specific kernel API.
770 	 * Otherwise, the kernel will detect some inconsistency and bark it.
771 	 */
772 	in6_ifdetach(ifp);
773 #endif
774 
775 	/*
776 	 * Delete all remaining routes using this interface
777 	 * Unfortuneatly the only way to do this is to slog through
778 	 * the entire routing table looking for routes which point
779 	 * to this interface...oh well...
780 	 */
781 	origcpu = mycpuid;
782 	for (cpu = 0; cpu < ncpus2; cpu++) {
783 		lwkt_migratecpu(cpu);
784 		for (i = 1; i <= AF_MAX; i++) {
785 			if ((rnh = rt_tables[cpu][i]) == NULL)
786 				continue;
787 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
788 		}
789 	}
790 	lwkt_migratecpu(origcpu);
791 
792 	/* Announce that the interface is gone. */
793 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
794 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
795 
796 	SLIST_FOREACH(dp, &domains, dom_next)
797 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
798 			(*dp->dom_ifdetach)(ifp,
799 				ifp->if_afdata[dp->dom_family]);
800 
801 	/*
802 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
803 	 */
804 	ifindex2ifnet[ifp->if_index] = NULL;
805 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
806 		if_index--;
807 
808 	TAILQ_REMOVE(&ifnet, ifp, if_link);
809 	kfree(ifp->if_addrheads, M_IFADDR);
810 	kfree(ifp->if_start_nmsg, M_LWKTMSG);
811 	crit_exit();
812 }
813 
814 /*
815  * Create interface group without members
816  */
817 struct ifg_group *
818 if_creategroup(const char *groupname)
819 {
820         struct ifg_group        *ifg = NULL;
821 
822         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
823             M_TEMP, M_NOWAIT)) == NULL)
824                 return (NULL);
825 
826         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
827         ifg->ifg_refcnt = 0;
828         ifg->ifg_carp_demoted = 0;
829         TAILQ_INIT(&ifg->ifg_members);
830 #if NPF > 0
831         pfi_attach_ifgroup(ifg);
832 #endif
833         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
834 
835         return (ifg);
836 }
837 
838 /*
839  * Add a group to an interface
840  */
841 int
842 if_addgroup(struct ifnet *ifp, const char *groupname)
843 {
844 	struct ifg_list		*ifgl;
845 	struct ifg_group	*ifg = NULL;
846 	struct ifg_member	*ifgm;
847 
848 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
849 	    groupname[strlen(groupname) - 1] <= '9')
850 		return (EINVAL);
851 
852 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
853 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
854 			return (EEXIST);
855 
856 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
857 		return (ENOMEM);
858 
859 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
860 		kfree(ifgl, M_TEMP);
861 		return (ENOMEM);
862 	}
863 
864 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
865 		if (!strcmp(ifg->ifg_group, groupname))
866 			break;
867 
868 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
869 		kfree(ifgl, M_TEMP);
870 		kfree(ifgm, M_TEMP);
871 		return (ENOMEM);
872 	}
873 
874 	ifg->ifg_refcnt++;
875 	ifgl->ifgl_group = ifg;
876 	ifgm->ifgm_ifp = ifp;
877 
878 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
879 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
880 
881 #if NPF > 0
882 	pfi_group_change(groupname);
883 #endif
884 
885 	return (0);
886 }
887 
888 /*
889  * Remove a group from an interface
890  */
891 int
892 if_delgroup(struct ifnet *ifp, const char *groupname)
893 {
894 	struct ifg_list		*ifgl;
895 	struct ifg_member	*ifgm;
896 
897 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
898 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
899 			break;
900 	if (ifgl == NULL)
901 		return (ENOENT);
902 
903 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
904 
905 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
906 		if (ifgm->ifgm_ifp == ifp)
907 			break;
908 
909 	if (ifgm != NULL) {
910 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
911 		kfree(ifgm, M_TEMP);
912 	}
913 
914 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
915 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
916 #if NPF > 0
917 		pfi_detach_ifgroup(ifgl->ifgl_group);
918 #endif
919 		kfree(ifgl->ifgl_group, M_TEMP);
920 	}
921 
922 	kfree(ifgl, M_TEMP);
923 
924 #if NPF > 0
925 	pfi_group_change(groupname);
926 #endif
927 
928 	return (0);
929 }
930 
931 /*
932  * Stores all groups from an interface in memory pointed
933  * to by data
934  */
935 int
936 if_getgroup(caddr_t data, struct ifnet *ifp)
937 {
938 	int			 len, error;
939 	struct ifg_list		*ifgl;
940 	struct ifg_req		 ifgrq, *ifgp;
941 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
942 
943 	if (ifgr->ifgr_len == 0) {
944 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
945 			ifgr->ifgr_len += sizeof(struct ifg_req);
946 		return (0);
947 	}
948 
949 	len = ifgr->ifgr_len;
950 	ifgp = ifgr->ifgr_groups;
951 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
952 		if (len < sizeof(ifgrq))
953 			return (EINVAL);
954 		bzero(&ifgrq, sizeof ifgrq);
955 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
956 		    sizeof(ifgrq.ifgrq_group));
957 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
958 		    sizeof(struct ifg_req))))
959 			return (error);
960 		len -= sizeof(ifgrq);
961 		ifgp++;
962 	}
963 
964 	return (0);
965 }
966 
967 /*
968  * Stores all members of a group in memory pointed to by data
969  */
970 int
971 if_getgroupmembers(caddr_t data)
972 {
973 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
974 	struct ifg_group	*ifg;
975 	struct ifg_member	*ifgm;
976 	struct ifg_req		 ifgrq, *ifgp;
977 	int			 len, error;
978 
979 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
980 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
981 			break;
982 	if (ifg == NULL)
983 		return (ENOENT);
984 
985 	if (ifgr->ifgr_len == 0) {
986 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
987 			ifgr->ifgr_len += sizeof(ifgrq);
988 		return (0);
989 	}
990 
991 	len = ifgr->ifgr_len;
992 	ifgp = ifgr->ifgr_groups;
993 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
994 		if (len < sizeof(ifgrq))
995 			return (EINVAL);
996 		bzero(&ifgrq, sizeof ifgrq);
997 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
998 		    sizeof(ifgrq.ifgrq_member));
999 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1000 		    sizeof(struct ifg_req))))
1001 			return (error);
1002 		len -= sizeof(ifgrq);
1003 		ifgp++;
1004 	}
1005 
1006 	return (0);
1007 }
1008 
1009 /*
1010  * Delete Routes for a Network Interface
1011  *
1012  * Called for each routing entry via the rnh->rnh_walktree() call above
1013  * to delete all route entries referencing a detaching network interface.
1014  *
1015  * Arguments:
1016  *	rn	pointer to node in the routing table
1017  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1018  *
1019  * Returns:
1020  *	0	successful
1021  *	errno	failed - reason indicated
1022  *
1023  */
1024 static int
1025 if_rtdel(struct radix_node *rn, void *arg)
1026 {
1027 	struct rtentry	*rt = (struct rtentry *)rn;
1028 	struct ifnet	*ifp = arg;
1029 	int		err;
1030 
1031 	if (rt->rt_ifp == ifp) {
1032 
1033 		/*
1034 		 * Protect (sorta) against walktree recursion problems
1035 		 * with cloned routes
1036 		 */
1037 		if (!(rt->rt_flags & RTF_UP))
1038 			return (0);
1039 
1040 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1041 				rt_mask(rt), rt->rt_flags,
1042 				NULL);
1043 		if (err) {
1044 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1045 		}
1046 	}
1047 
1048 	return (0);
1049 }
1050 
1051 /*
1052  * Locate an interface based on a complete address.
1053  */
1054 struct ifaddr *
1055 ifa_ifwithaddr(struct sockaddr *addr)
1056 {
1057 	struct ifnet *ifp;
1058 
1059 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1060 		struct ifaddr_container *ifac;
1061 
1062 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1063 			struct ifaddr *ifa = ifac->ifa;
1064 
1065 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1066 				continue;
1067 			if (sa_equal(addr, ifa->ifa_addr))
1068 				return (ifa);
1069 			if ((ifp->if_flags & IFF_BROADCAST) &&
1070 			    ifa->ifa_broadaddr &&
1071 			    /* IPv6 doesn't have broadcast */
1072 			    ifa->ifa_broadaddr->sa_len != 0 &&
1073 			    sa_equal(ifa->ifa_broadaddr, addr))
1074 				return (ifa);
1075 		}
1076 	}
1077 	return (NULL);
1078 }
1079 /*
1080  * Locate the point to point interface with a given destination address.
1081  */
1082 struct ifaddr *
1083 ifa_ifwithdstaddr(struct sockaddr *addr)
1084 {
1085 	struct ifnet *ifp;
1086 
1087 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1088 		struct ifaddr_container *ifac;
1089 
1090 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1091 			continue;
1092 
1093 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1094 			struct ifaddr *ifa = ifac->ifa;
1095 
1096 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1097 				continue;
1098 			if (ifa->ifa_dstaddr &&
1099 			    sa_equal(addr, ifa->ifa_dstaddr))
1100 				return (ifa);
1101 		}
1102 	}
1103 	return (NULL);
1104 }
1105 
1106 /*
1107  * Find an interface on a specific network.  If many, choice
1108  * is most specific found.
1109  */
1110 struct ifaddr *
1111 ifa_ifwithnet(struct sockaddr *addr)
1112 {
1113 	struct ifnet *ifp;
1114 	struct ifaddr *ifa_maybe = NULL;
1115 	u_int af = addr->sa_family;
1116 	char *addr_data = addr->sa_data, *cplim;
1117 
1118 	/*
1119 	 * AF_LINK addresses can be looked up directly by their index number,
1120 	 * so do that if we can.
1121 	 */
1122 	if (af == AF_LINK) {
1123 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1124 
1125 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1126 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1127 	}
1128 
1129 	/*
1130 	 * Scan though each interface, looking for ones that have
1131 	 * addresses in this address family.
1132 	 */
1133 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1134 		struct ifaddr_container *ifac;
1135 
1136 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1137 			struct ifaddr *ifa = ifac->ifa;
1138 			char *cp, *cp2, *cp3;
1139 
1140 			if (ifa->ifa_addr->sa_family != af)
1141 next:				continue;
1142 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1143 				/*
1144 				 * This is a bit broken as it doesn't
1145 				 * take into account that the remote end may
1146 				 * be a single node in the network we are
1147 				 * looking for.
1148 				 * The trouble is that we don't know the
1149 				 * netmask for the remote end.
1150 				 */
1151 				if (ifa->ifa_dstaddr != NULL &&
1152 				    sa_equal(addr, ifa->ifa_dstaddr))
1153 					return (ifa);
1154 			} else {
1155 				/*
1156 				 * if we have a special address handler,
1157 				 * then use it instead of the generic one.
1158 				 */
1159 				if (ifa->ifa_claim_addr) {
1160 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1161 						return (ifa);
1162 					} else {
1163 						continue;
1164 					}
1165 				}
1166 
1167 				/*
1168 				 * Scan all the bits in the ifa's address.
1169 				 * If a bit dissagrees with what we are
1170 				 * looking for, mask it with the netmask
1171 				 * to see if it really matters.
1172 				 * (A byte at a time)
1173 				 */
1174 				if (ifa->ifa_netmask == 0)
1175 					continue;
1176 				cp = addr_data;
1177 				cp2 = ifa->ifa_addr->sa_data;
1178 				cp3 = ifa->ifa_netmask->sa_data;
1179 				cplim = ifa->ifa_netmask->sa_len +
1180 					(char *)ifa->ifa_netmask;
1181 				while (cp3 < cplim)
1182 					if ((*cp++ ^ *cp2++) & *cp3++)
1183 						goto next; /* next address! */
1184 				/*
1185 				 * If the netmask of what we just found
1186 				 * is more specific than what we had before
1187 				 * (if we had one) then remember the new one
1188 				 * before continuing to search
1189 				 * for an even better one.
1190 				 */
1191 				if (ifa_maybe == 0 ||
1192 				    rn_refines((char *)ifa->ifa_netmask,
1193 					       (char *)ifa_maybe->ifa_netmask))
1194 					ifa_maybe = ifa;
1195 			}
1196 		}
1197 	}
1198 	return (ifa_maybe);
1199 }
1200 
1201 /*
1202  * Find an interface address specific to an interface best matching
1203  * a given address.
1204  */
1205 struct ifaddr *
1206 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1207 {
1208 	struct ifaddr_container *ifac;
1209 	char *cp, *cp2, *cp3;
1210 	char *cplim;
1211 	struct ifaddr *ifa_maybe = 0;
1212 	u_int af = addr->sa_family;
1213 
1214 	if (af >= AF_MAX)
1215 		return (0);
1216 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1217 		struct ifaddr *ifa = ifac->ifa;
1218 
1219 		if (ifa->ifa_addr->sa_family != af)
1220 			continue;
1221 		if (ifa_maybe == 0)
1222 			ifa_maybe = ifa;
1223 		if (ifa->ifa_netmask == NULL) {
1224 			if (sa_equal(addr, ifa->ifa_addr) ||
1225 			    (ifa->ifa_dstaddr != NULL &&
1226 			     sa_equal(addr, ifa->ifa_dstaddr)))
1227 				return (ifa);
1228 			continue;
1229 		}
1230 		if (ifp->if_flags & IFF_POINTOPOINT) {
1231 			if (sa_equal(addr, ifa->ifa_dstaddr))
1232 				return (ifa);
1233 		} else {
1234 			cp = addr->sa_data;
1235 			cp2 = ifa->ifa_addr->sa_data;
1236 			cp3 = ifa->ifa_netmask->sa_data;
1237 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1238 			for (; cp3 < cplim; cp3++)
1239 				if ((*cp++ ^ *cp2++) & *cp3)
1240 					break;
1241 			if (cp3 == cplim)
1242 				return (ifa);
1243 		}
1244 	}
1245 	return (ifa_maybe);
1246 }
1247 
1248 /*
1249  * Default action when installing a route with a Link Level gateway.
1250  * Lookup an appropriate real ifa to point to.
1251  * This should be moved to /sys/net/link.c eventually.
1252  */
1253 static void
1254 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1255 {
1256 	struct ifaddr *ifa;
1257 	struct sockaddr *dst;
1258 	struct ifnet *ifp;
1259 
1260 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1261 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1262 		return;
1263 	ifa = ifaof_ifpforaddr(dst, ifp);
1264 	if (ifa != NULL) {
1265 		IFAFREE(rt->rt_ifa);
1266 		IFAREF(ifa);
1267 		rt->rt_ifa = ifa;
1268 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1269 			ifa->ifa_rtrequest(cmd, rt, info);
1270 	}
1271 }
1272 
1273 /*
1274  * Mark an interface down and notify protocols of
1275  * the transition.
1276  * NOTE: must be called at splnet or eqivalent.
1277  */
1278 void
1279 if_unroute(struct ifnet *ifp, int flag, int fam)
1280 {
1281 	struct ifaddr_container *ifac;
1282 
1283 	ifp->if_flags &= ~flag;
1284 	getmicrotime(&ifp->if_lastchange);
1285 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1286 		struct ifaddr *ifa = ifac->ifa;
1287 
1288 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1289 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1290 	}
1291 	ifq_purge(&ifp->if_snd);
1292 	rt_ifmsg(ifp);
1293 }
1294 
1295 /*
1296  * Mark an interface up and notify protocols of
1297  * the transition.
1298  * NOTE: must be called at splnet or eqivalent.
1299  */
1300 void
1301 if_route(struct ifnet *ifp, int flag, int fam)
1302 {
1303 	struct ifaddr_container *ifac;
1304 
1305 	ifq_purge(&ifp->if_snd);
1306 	ifp->if_flags |= flag;
1307 	getmicrotime(&ifp->if_lastchange);
1308 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1309 		struct ifaddr *ifa = ifac->ifa;
1310 
1311 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1312 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1313 	}
1314 	rt_ifmsg(ifp);
1315 #ifdef INET6
1316 	in6_if_up(ifp);
1317 #endif
1318 }
1319 
1320 /*
1321  * Mark an interface down and notify protocols of the transition.  An
1322  * interface going down is also considered to be a synchronizing event.
1323  * We must ensure that all packet processing related to the interface
1324  * has completed before we return so e.g. the caller can free the ifnet
1325  * structure that the mbufs may be referencing.
1326  *
1327  * NOTE: must be called at splnet or eqivalent.
1328  */
1329 void
1330 if_down(struct ifnet *ifp)
1331 {
1332 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1333 	netmsg_service_sync();
1334 }
1335 
1336 /*
1337  * Mark an interface up and notify protocols of
1338  * the transition.
1339  * NOTE: must be called at splnet or eqivalent.
1340  */
1341 void
1342 if_up(struct ifnet *ifp)
1343 {
1344 	if_route(ifp, IFF_UP, AF_UNSPEC);
1345 }
1346 
1347 /*
1348  * Process a link state change.
1349  * NOTE: must be called at splsoftnet or equivalent.
1350  */
1351 void
1352 if_link_state_change(struct ifnet *ifp)
1353 {
1354 	int link_state = ifp->if_link_state;
1355 
1356 	rt_ifmsg(ifp);
1357 	devctl_notify("IFNET", ifp->if_xname,
1358 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1359 }
1360 
1361 /*
1362  * Handle interface watchdog timer routines.  Called
1363  * from softclock, we decrement timers (if set) and
1364  * call the appropriate interface routine on expiration.
1365  */
1366 static void
1367 if_slowtimo(void *arg)
1368 {
1369 	struct ifnet *ifp;
1370 
1371 	crit_enter();
1372 
1373 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1374 		if (ifp->if_timer == 0 || --ifp->if_timer)
1375 			continue;
1376 		if (ifp->if_watchdog) {
1377 			if (ifnet_tryserialize_all(ifp)) {
1378 				(*ifp->if_watchdog)(ifp);
1379 				ifnet_deserialize_all(ifp);
1380 			} else {
1381 				/* try again next timeout */
1382 				++ifp->if_timer;
1383 			}
1384 		}
1385 	}
1386 
1387 	crit_exit();
1388 
1389 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1390 }
1391 
1392 /*
1393  * Map interface name to
1394  * interface structure pointer.
1395  */
1396 struct ifnet *
1397 ifunit(const char *name)
1398 {
1399 	struct ifnet *ifp;
1400 
1401 	/*
1402 	 * Search all the interfaces for this name/number
1403 	 */
1404 
1405 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1406 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1407 			break;
1408 	}
1409 	return (ifp);
1410 }
1411 
1412 
1413 /*
1414  * Map interface name in a sockaddr_dl to
1415  * interface structure pointer.
1416  */
1417 struct ifnet *
1418 if_withname(struct sockaddr *sa)
1419 {
1420 	char ifname[IFNAMSIZ+1];
1421 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1422 
1423 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1424 	     (sdl->sdl_nlen > IFNAMSIZ) )
1425 		return NULL;
1426 
1427 	/*
1428 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1429 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1430 	 * and there might not be room to put the trailing null anyway, so we
1431 	 * make a local copy that we know we can null terminate safely.
1432 	 */
1433 
1434 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1435 	ifname[sdl->sdl_nlen] = '\0';
1436 	return ifunit(ifname);
1437 }
1438 
1439 
1440 /*
1441  * Interface ioctls.
1442  */
1443 int
1444 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1445 {
1446 	struct ifnet *ifp;
1447 	struct ifreq *ifr;
1448 	struct ifstat *ifs;
1449 	int error;
1450 	short oif_flags;
1451 	int new_flags;
1452 	size_t namelen, onamelen;
1453 	char new_name[IFNAMSIZ];
1454 	struct ifaddr *ifa;
1455 	struct sockaddr_dl *sdl;
1456 
1457 	switch (cmd) {
1458 
1459 	case SIOCGIFCONF:
1460 	case OSIOCGIFCONF:
1461 		return (ifconf(cmd, data, cred));
1462 	}
1463 	ifr = (struct ifreq *)data;
1464 
1465 	switch (cmd) {
1466 	case SIOCIFCREATE:
1467 	case SIOCIFCREATE2:
1468 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1469 			return (error);
1470 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1471 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1472 	case SIOCIFDESTROY:
1473 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1474 			return (error);
1475 		return (if_clone_destroy(ifr->ifr_name));
1476 
1477 	case SIOCIFGCLONERS:
1478 		return (if_clone_list((struct if_clonereq *)data));
1479 	}
1480 
1481 	ifp = ifunit(ifr->ifr_name);
1482 	if (ifp == 0)
1483 		return (ENXIO);
1484 	switch (cmd) {
1485 
1486 	case SIOCGIFINDEX:
1487 		ifr->ifr_index = ifp->if_index;
1488 		break;
1489 
1490 	case SIOCGIFFLAGS:
1491 		ifr->ifr_flags = ifp->if_flags;
1492 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1493 		break;
1494 
1495 	case SIOCGIFCAP:
1496 		ifr->ifr_reqcap = ifp->if_capabilities;
1497 		ifr->ifr_curcap = ifp->if_capenable;
1498 		break;
1499 
1500 	case SIOCGIFMETRIC:
1501 		ifr->ifr_metric = ifp->if_metric;
1502 		break;
1503 
1504 	case SIOCGIFMTU:
1505 		ifr->ifr_mtu = ifp->if_mtu;
1506 		break;
1507 
1508 	case SIOCGIFDATA:
1509 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1510 		    sizeof(ifp->if_data));
1511 		break;
1512 
1513 
1514 	case SIOCGIFPHYS:
1515 		ifr->ifr_phys = ifp->if_physical;
1516 		break;
1517 
1518 	case SIOCGIFPOLLCPU:
1519 #ifdef DEVICE_POLLING
1520 		ifr->ifr_pollcpu = ifp->if_poll_cpuid;
1521 #else
1522 		ifr->ifr_pollcpu = -1;
1523 #endif
1524 		break;
1525 
1526 	case SIOCSIFPOLLCPU:
1527 #ifdef DEVICE_POLLING
1528 		if ((ifp->if_flags & IFF_POLLING) == 0)
1529 			ether_pollcpu_register(ifp, ifr->ifr_pollcpu);
1530 #endif
1531 		break;
1532 
1533 	case SIOCSIFFLAGS:
1534 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1535 		if (error)
1536 			return (error);
1537 		new_flags = (ifr->ifr_flags & 0xffff) |
1538 		    (ifr->ifr_flagshigh << 16);
1539 		if (ifp->if_flags & IFF_SMART) {
1540 			/* Smart drivers twiddle their own routes */
1541 		} else if (ifp->if_flags & IFF_UP &&
1542 		    (new_flags & IFF_UP) == 0) {
1543 			crit_enter();
1544 			if_down(ifp);
1545 			crit_exit();
1546 		} else if (new_flags & IFF_UP &&
1547 		    (ifp->if_flags & IFF_UP) == 0) {
1548 			crit_enter();
1549 			if_up(ifp);
1550 			crit_exit();
1551 		}
1552 
1553 #ifdef DEVICE_POLLING
1554 		if ((new_flags ^ ifp->if_flags) & IFF_POLLING) {
1555 			if (new_flags & IFF_POLLING) {
1556 				ether_poll_register(ifp);
1557 			} else {
1558 				ether_poll_deregister(ifp);
1559 			}
1560 		}
1561 #endif
1562 #ifdef IFPOLL_ENABLE
1563 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1564 			if (new_flags & IFF_NPOLLING)
1565 				ifpoll_register(ifp);
1566 			else
1567 				ifpoll_deregister(ifp);
1568 		}
1569 #endif
1570 
1571 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1572 			(new_flags &~ IFF_CANTCHANGE);
1573 		if (new_flags & IFF_PPROMISC) {
1574 			/* Permanently promiscuous mode requested */
1575 			ifp->if_flags |= IFF_PROMISC;
1576 		} else if (ifp->if_pcount == 0) {
1577 			ifp->if_flags &= ~IFF_PROMISC;
1578 		}
1579 		if (ifp->if_ioctl) {
1580 			ifnet_serialize_all(ifp);
1581 			ifp->if_ioctl(ifp, cmd, data, cred);
1582 			ifnet_deserialize_all(ifp);
1583 		}
1584 		getmicrotime(&ifp->if_lastchange);
1585 		break;
1586 
1587 	case SIOCSIFCAP:
1588 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1589 		if (error)
1590 			return (error);
1591 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
1592 			return (EINVAL);
1593 		ifnet_serialize_all(ifp);
1594 		ifp->if_ioctl(ifp, cmd, data, cred);
1595 		ifnet_deserialize_all(ifp);
1596 		break;
1597 
1598 	case SIOCSIFNAME:
1599 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1600 		if (error != 0)
1601 			return (error);
1602 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1603 		if (error != 0)
1604 			return (error);
1605 		if (new_name[0] == '\0')
1606 			return (EINVAL);
1607 		if (ifunit(new_name) != NULL)
1608 			return (EEXIST);
1609 
1610 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1611 
1612 		/* Announce the departure of the interface. */
1613 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1614 
1615 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1616 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1617 		/* XXX IFA_LOCK(ifa); */
1618 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1619 		namelen = strlen(new_name);
1620 		onamelen = sdl->sdl_nlen;
1621 		/*
1622 		 * Move the address if needed.  This is safe because we
1623 		 * allocate space for a name of length IFNAMSIZ when we
1624 		 * create this in if_attach().
1625 		 */
1626 		if (namelen != onamelen) {
1627 			bcopy(sdl->sdl_data + onamelen,
1628 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1629 		}
1630 		bcopy(new_name, sdl->sdl_data, namelen);
1631 		sdl->sdl_nlen = namelen;
1632 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1633 		bzero(sdl->sdl_data, onamelen);
1634 		while (namelen != 0)
1635 			sdl->sdl_data[--namelen] = 0xff;
1636 		/* XXX IFA_UNLOCK(ifa) */
1637 
1638 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1639 
1640 		/* Announce the return of the interface. */
1641 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1642 		break;
1643 
1644 	case SIOCSIFMETRIC:
1645 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1646 		if (error)
1647 			return (error);
1648 		ifp->if_metric = ifr->ifr_metric;
1649 		getmicrotime(&ifp->if_lastchange);
1650 		break;
1651 
1652 	case SIOCSIFPHYS:
1653 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1654 		if (error)
1655 			return error;
1656 		if (!ifp->if_ioctl)
1657 		        return EOPNOTSUPP;
1658 		ifnet_serialize_all(ifp);
1659 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1660 		ifnet_deserialize_all(ifp);
1661 		if (error == 0)
1662 			getmicrotime(&ifp->if_lastchange);
1663 		return (error);
1664 
1665 	case SIOCSIFMTU:
1666 	{
1667 		u_long oldmtu = ifp->if_mtu;
1668 
1669 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1670 		if (error)
1671 			return (error);
1672 		if (ifp->if_ioctl == NULL)
1673 			return (EOPNOTSUPP);
1674 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
1675 			return (EINVAL);
1676 		ifnet_serialize_all(ifp);
1677 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1678 		ifnet_deserialize_all(ifp);
1679 		if (error == 0) {
1680 			getmicrotime(&ifp->if_lastchange);
1681 			rt_ifmsg(ifp);
1682 		}
1683 		/*
1684 		 * If the link MTU changed, do network layer specific procedure.
1685 		 */
1686 		if (ifp->if_mtu != oldmtu) {
1687 #ifdef INET6
1688 			nd6_setmtu(ifp);
1689 #endif
1690 		}
1691 		return (error);
1692 	}
1693 
1694 	case SIOCADDMULTI:
1695 	case SIOCDELMULTI:
1696 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1697 		if (error)
1698 			return (error);
1699 
1700 		/* Don't allow group membership on non-multicast interfaces. */
1701 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
1702 			return EOPNOTSUPP;
1703 
1704 		/* Don't let users screw up protocols' entries. */
1705 		if (ifr->ifr_addr.sa_family != AF_LINK)
1706 			return EINVAL;
1707 
1708 		if (cmd == SIOCADDMULTI) {
1709 			struct ifmultiaddr *ifma;
1710 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1711 		} else {
1712 			error = if_delmulti(ifp, &ifr->ifr_addr);
1713 		}
1714 		if (error == 0)
1715 			getmicrotime(&ifp->if_lastchange);
1716 		return error;
1717 
1718 	case SIOCSIFPHYADDR:
1719 	case SIOCDIFPHYADDR:
1720 #ifdef INET6
1721 	case SIOCSIFPHYADDR_IN6:
1722 #endif
1723 	case SIOCSLIFPHYADDR:
1724         case SIOCSIFMEDIA:
1725 	case SIOCSIFGENERIC:
1726 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1727 		if (error)
1728 			return (error);
1729 		if (ifp->if_ioctl == 0)
1730 			return (EOPNOTSUPP);
1731 		ifnet_serialize_all(ifp);
1732 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1733 		ifnet_deserialize_all(ifp);
1734 		if (error == 0)
1735 			getmicrotime(&ifp->if_lastchange);
1736 		return error;
1737 
1738 	case SIOCGIFSTATUS:
1739 		ifs = (struct ifstat *)data;
1740 		ifs->ascii[0] = '\0';
1741 
1742 	case SIOCGIFPSRCADDR:
1743 	case SIOCGIFPDSTADDR:
1744 	case SIOCGLIFPHYADDR:
1745 	case SIOCGIFMEDIA:
1746 	case SIOCGIFGENERIC:
1747 		if (ifp->if_ioctl == NULL)
1748 			return (EOPNOTSUPP);
1749 		ifnet_serialize_all(ifp);
1750 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1751 		ifnet_deserialize_all(ifp);
1752 		return (error);
1753 
1754 	case SIOCSIFLLADDR:
1755 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1756 		if (error)
1757 			return (error);
1758 		error = if_setlladdr(ifp,
1759 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
1760 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1761 		return (error);
1762 
1763 	default:
1764 		oif_flags = ifp->if_flags;
1765 		if (so->so_proto == 0)
1766 			return (EOPNOTSUPP);
1767 #ifndef COMPAT_43
1768 		error = so_pru_control(so, cmd, data, ifp);
1769 #else
1770 	    {
1771 		int ocmd = cmd;
1772 
1773 		switch (cmd) {
1774 
1775 		case SIOCSIFDSTADDR:
1776 		case SIOCSIFADDR:
1777 		case SIOCSIFBRDADDR:
1778 		case SIOCSIFNETMASK:
1779 #if BYTE_ORDER != BIG_ENDIAN
1780 			if (ifr->ifr_addr.sa_family == 0 &&
1781 			    ifr->ifr_addr.sa_len < 16) {
1782 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1783 				ifr->ifr_addr.sa_len = 16;
1784 			}
1785 #else
1786 			if (ifr->ifr_addr.sa_len == 0)
1787 				ifr->ifr_addr.sa_len = 16;
1788 #endif
1789 			break;
1790 
1791 		case OSIOCGIFADDR:
1792 			cmd = SIOCGIFADDR;
1793 			break;
1794 
1795 		case OSIOCGIFDSTADDR:
1796 			cmd = SIOCGIFDSTADDR;
1797 			break;
1798 
1799 		case OSIOCGIFBRDADDR:
1800 			cmd = SIOCGIFBRDADDR;
1801 			break;
1802 
1803 		case OSIOCGIFNETMASK:
1804 			cmd = SIOCGIFNETMASK;
1805 		}
1806 		error =  so_pru_control(so, cmd, data, ifp);
1807 		switch (ocmd) {
1808 
1809 		case OSIOCGIFADDR:
1810 		case OSIOCGIFDSTADDR:
1811 		case OSIOCGIFBRDADDR:
1812 		case OSIOCGIFNETMASK:
1813 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1814 
1815 		}
1816 	    }
1817 #endif /* COMPAT_43 */
1818 
1819 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1820 #ifdef INET6
1821 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1822 			if (ifp->if_flags & IFF_UP) {
1823 				crit_enter();
1824 				in6_if_up(ifp);
1825 				crit_exit();
1826 			}
1827 #endif
1828 		}
1829 		return (error);
1830 
1831 	}
1832 	return (0);
1833 }
1834 
1835 /*
1836  * Set/clear promiscuous mode on interface ifp based on the truth value
1837  * of pswitch.  The calls are reference counted so that only the first
1838  * "on" request actually has an effect, as does the final "off" request.
1839  * Results are undefined if the "off" and "on" requests are not matched.
1840  */
1841 int
1842 ifpromisc(struct ifnet *ifp, int pswitch)
1843 {
1844 	struct ifreq ifr;
1845 	int error;
1846 	int oldflags;
1847 
1848 	oldflags = ifp->if_flags;
1849 	if (ifp->if_flags & IFF_PPROMISC) {
1850 		/* Do nothing if device is in permanently promiscuous mode */
1851 		ifp->if_pcount += pswitch ? 1 : -1;
1852 		return (0);
1853 	}
1854 	if (pswitch) {
1855 		/*
1856 		 * If the device is not configured up, we cannot put it in
1857 		 * promiscuous mode.
1858 		 */
1859 		if ((ifp->if_flags & IFF_UP) == 0)
1860 			return (ENETDOWN);
1861 		if (ifp->if_pcount++ != 0)
1862 			return (0);
1863 		ifp->if_flags |= IFF_PROMISC;
1864 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1865 		    ifp->if_xname);
1866 	} else {
1867 		if (--ifp->if_pcount > 0)
1868 			return (0);
1869 		ifp->if_flags &= ~IFF_PROMISC;
1870 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1871 		    ifp->if_xname);
1872 	}
1873 	ifr.ifr_flags = ifp->if_flags;
1874 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1875 	ifnet_serialize_all(ifp);
1876 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1877 	ifnet_deserialize_all(ifp);
1878 	if (error == 0)
1879 		rt_ifmsg(ifp);
1880 	else
1881 		ifp->if_flags = oldflags;
1882 	return error;
1883 }
1884 
1885 /*
1886  * Return interface configuration
1887  * of system.  List may be used
1888  * in later ioctl's (above) to get
1889  * other information.
1890  */
1891 static int
1892 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1893 {
1894 	struct ifconf *ifc = (struct ifconf *)data;
1895 	struct ifnet *ifp;
1896 	struct sockaddr *sa;
1897 	struct ifreq ifr, *ifrp;
1898 	int space = ifc->ifc_len, error = 0;
1899 
1900 	ifrp = ifc->ifc_req;
1901 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1902 		struct ifaddr_container *ifac;
1903 		int addrs;
1904 
1905 		if (space <= sizeof ifr)
1906 			break;
1907 
1908 		/*
1909 		 * Zero the stack declared structure first to prevent
1910 		 * memory disclosure.
1911 		 */
1912 		bzero(&ifr, sizeof(ifr));
1913 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
1914 		    >= sizeof(ifr.ifr_name)) {
1915 			error = ENAMETOOLONG;
1916 			break;
1917 		}
1918 
1919 		addrs = 0;
1920 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1921 			struct ifaddr *ifa = ifac->ifa;
1922 
1923 			if (space <= sizeof ifr)
1924 				break;
1925 			sa = ifa->ifa_addr;
1926 			if (cred->cr_prison &&
1927 			    prison_if(cred, sa))
1928 				continue;
1929 			addrs++;
1930 #ifdef COMPAT_43
1931 			if (cmd == OSIOCGIFCONF) {
1932 				struct osockaddr *osa =
1933 					 (struct osockaddr *)&ifr.ifr_addr;
1934 				ifr.ifr_addr = *sa;
1935 				osa->sa_family = sa->sa_family;
1936 				error = copyout(&ifr, ifrp, sizeof ifr);
1937 				ifrp++;
1938 			} else
1939 #endif
1940 			if (sa->sa_len <= sizeof(*sa)) {
1941 				ifr.ifr_addr = *sa;
1942 				error = copyout(&ifr, ifrp, sizeof ifr);
1943 				ifrp++;
1944 			} else {
1945 				if (space < (sizeof ifr) + sa->sa_len -
1946 					    sizeof(*sa))
1947 					break;
1948 				space -= sa->sa_len - sizeof(*sa);
1949 				error = copyout(&ifr, ifrp,
1950 						sizeof ifr.ifr_name);
1951 				if (error == 0)
1952 					error = copyout(sa, &ifrp->ifr_addr,
1953 							sa->sa_len);
1954 				ifrp = (struct ifreq *)
1955 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
1956 			}
1957 			if (error)
1958 				break;
1959 			space -= sizeof ifr;
1960 		}
1961 		if (error)
1962 			break;
1963 		if (!addrs) {
1964 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
1965 			error = copyout(&ifr, ifrp, sizeof ifr);
1966 			if (error)
1967 				break;
1968 			space -= sizeof ifr;
1969 			ifrp++;
1970 		}
1971 	}
1972 	ifc->ifc_len -= space;
1973 	return (error);
1974 }
1975 
1976 /*
1977  * Just like if_promisc(), but for all-multicast-reception mode.
1978  */
1979 int
1980 if_allmulti(struct ifnet *ifp, int onswitch)
1981 {
1982 	int error = 0;
1983 	struct ifreq ifr;
1984 
1985 	crit_enter();
1986 
1987 	if (onswitch) {
1988 		if (ifp->if_amcount++ == 0) {
1989 			ifp->if_flags |= IFF_ALLMULTI;
1990 			ifr.ifr_flags = ifp->if_flags;
1991 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
1992 			ifnet_serialize_all(ifp);
1993 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
1994 					      NULL);
1995 			ifnet_deserialize_all(ifp);
1996 		}
1997 	} else {
1998 		if (ifp->if_amcount > 1) {
1999 			ifp->if_amcount--;
2000 		} else {
2001 			ifp->if_amcount = 0;
2002 			ifp->if_flags &= ~IFF_ALLMULTI;
2003 			ifr.ifr_flags = ifp->if_flags;
2004 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2005 			ifnet_serialize_all(ifp);
2006 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2007 					      NULL);
2008 			ifnet_deserialize_all(ifp);
2009 		}
2010 	}
2011 
2012 	crit_exit();
2013 
2014 	if (error == 0)
2015 		rt_ifmsg(ifp);
2016 	return error;
2017 }
2018 
2019 /*
2020  * Add a multicast listenership to the interface in question.
2021  * The link layer provides a routine which converts
2022  */
2023 int
2024 if_addmulti(
2025 	struct ifnet *ifp,	/* interface to manipulate */
2026 	struct sockaddr *sa,	/* address to add */
2027 	struct ifmultiaddr **retifma)
2028 {
2029 	struct sockaddr *llsa, *dupsa;
2030 	int error;
2031 	struct ifmultiaddr *ifma;
2032 
2033 	/*
2034 	 * If the matching multicast address already exists
2035 	 * then don't add a new one, just add a reference
2036 	 */
2037 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2038 		if (sa_equal(sa, ifma->ifma_addr)) {
2039 			ifma->ifma_refcount++;
2040 			if (retifma)
2041 				*retifma = ifma;
2042 			return 0;
2043 		}
2044 	}
2045 
2046 	/*
2047 	 * Give the link layer a chance to accept/reject it, and also
2048 	 * find out which AF_LINK address this maps to, if it isn't one
2049 	 * already.
2050 	 */
2051 	if (ifp->if_resolvemulti) {
2052 		ifnet_serialize_all(ifp);
2053 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2054 		ifnet_deserialize_all(ifp);
2055 		if (error)
2056 			return error;
2057 	} else {
2058 		llsa = 0;
2059 	}
2060 
2061 	MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK);
2062 	MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK);
2063 	bcopy(sa, dupsa, sa->sa_len);
2064 
2065 	ifma->ifma_addr = dupsa;
2066 	ifma->ifma_lladdr = llsa;
2067 	ifma->ifma_ifp = ifp;
2068 	ifma->ifma_refcount = 1;
2069 	ifma->ifma_protospec = 0;
2070 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2071 
2072 	/*
2073 	 * Some network interfaces can scan the address list at
2074 	 * interrupt time; lock them out.
2075 	 */
2076 	crit_enter();
2077 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2078 	crit_exit();
2079 	if (retifma)
2080 		*retifma = ifma;
2081 
2082 	if (llsa != 0) {
2083 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2084 			if (sa_equal(ifma->ifma_addr, llsa))
2085 				break;
2086 		}
2087 		if (ifma) {
2088 			ifma->ifma_refcount++;
2089 		} else {
2090 			MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma,
2091 			       M_IFMADDR, M_WAITOK);
2092 			MALLOC(dupsa, struct sockaddr *, llsa->sa_len,
2093 			       M_IFMADDR, M_WAITOK);
2094 			bcopy(llsa, dupsa, llsa->sa_len);
2095 			ifma->ifma_addr = dupsa;
2096 			ifma->ifma_ifp = ifp;
2097 			ifma->ifma_refcount = 1;
2098 			crit_enter();
2099 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2100 			crit_exit();
2101 		}
2102 	}
2103 	/*
2104 	 * We are certain we have added something, so call down to the
2105 	 * interface to let them know about it.
2106 	 */
2107 	crit_enter();
2108 	ifnet_serialize_all(ifp);
2109 	if (ifp->if_ioctl)
2110 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2111 	ifnet_deserialize_all(ifp);
2112 	crit_exit();
2113 
2114 	return 0;
2115 }
2116 
2117 /*
2118  * Remove a reference to a multicast address on this interface.  Yell
2119  * if the request does not match an existing membership.
2120  */
2121 int
2122 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2123 {
2124 	struct ifmultiaddr *ifma;
2125 
2126 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2127 		if (sa_equal(sa, ifma->ifma_addr))
2128 			break;
2129 	if (ifma == 0)
2130 		return ENOENT;
2131 
2132 	if (ifma->ifma_refcount > 1) {
2133 		ifma->ifma_refcount--;
2134 		return 0;
2135 	}
2136 
2137 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2138 	sa = ifma->ifma_lladdr;
2139 	crit_enter();
2140 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2141 	/*
2142 	 * Make sure the interface driver is notified
2143 	 * in the case of a link layer mcast group being left.
2144 	 */
2145 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0) {
2146 		ifnet_serialize_all(ifp);
2147 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2148 		ifnet_deserialize_all(ifp);
2149 	}
2150 	crit_exit();
2151 	kfree(ifma->ifma_addr, M_IFMADDR);
2152 	kfree(ifma, M_IFMADDR);
2153 	if (sa == 0)
2154 		return 0;
2155 
2156 	/*
2157 	 * Now look for the link-layer address which corresponds to
2158 	 * this network address.  It had been squirreled away in
2159 	 * ifma->ifma_lladdr for this purpose (so we don't have
2160 	 * to call ifp->if_resolvemulti() again), and we saved that
2161 	 * value in sa above.  If some nasty deleted the
2162 	 * link-layer address out from underneath us, we can deal because
2163 	 * the address we stored was is not the same as the one which was
2164 	 * in the record for the link-layer address.  (So we don't complain
2165 	 * in that case.)
2166 	 */
2167 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2168 		if (sa_equal(sa, ifma->ifma_addr))
2169 			break;
2170 	if (ifma == 0)
2171 		return 0;
2172 
2173 	if (ifma->ifma_refcount > 1) {
2174 		ifma->ifma_refcount--;
2175 		return 0;
2176 	}
2177 
2178 	crit_enter();
2179 	ifnet_serialize_all(ifp);
2180 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2181 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2182 	ifnet_deserialize_all(ifp);
2183 	crit_exit();
2184 	kfree(ifma->ifma_addr, M_IFMADDR);
2185 	kfree(sa, M_IFMADDR);
2186 	kfree(ifma, M_IFMADDR);
2187 
2188 	return 0;
2189 }
2190 
2191 /*
2192  * Delete all multicast group membership for an interface.
2193  * Should be used to quickly flush all multicast filters.
2194  */
2195 void
2196 if_delallmulti(struct ifnet *ifp)
2197 {
2198 	struct ifmultiaddr *ifma;
2199 	struct ifmultiaddr *next;
2200 
2201 	TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
2202 		if_delmulti(ifp, ifma->ifma_addr);
2203 }
2204 
2205 
2206 /*
2207  * Set the link layer address on an interface.
2208  *
2209  * At this time we only support certain types of interfaces,
2210  * and we don't allow the length of the address to change.
2211  */
2212 int
2213 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2214 {
2215 	struct sockaddr_dl *sdl;
2216 	struct ifreq ifr;
2217 
2218 	sdl = IF_LLSOCKADDR(ifp);
2219 	if (sdl == NULL)
2220 		return (EINVAL);
2221 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2222 		return (EINVAL);
2223 	switch (ifp->if_type) {
2224 	case IFT_ETHER:			/* these types use struct arpcom */
2225 	case IFT_XETHER:
2226 	case IFT_L2VLAN:
2227 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2228 		bcopy(lladdr, LLADDR(sdl), len);
2229 		break;
2230 	default:
2231 		return (ENODEV);
2232 	}
2233 	/*
2234 	 * If the interface is already up, we need
2235 	 * to re-init it in order to reprogram its
2236 	 * address filter.
2237 	 */
2238 	ifnet_serialize_all(ifp);
2239 	if ((ifp->if_flags & IFF_UP) != 0) {
2240 		struct ifaddr_container *ifac;
2241 
2242 		ifp->if_flags &= ~IFF_UP;
2243 		ifr.ifr_flags = ifp->if_flags;
2244 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2245 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2246 			      NULL);
2247 		ifp->if_flags |= IFF_UP;
2248 		ifr.ifr_flags = ifp->if_flags;
2249 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2250 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2251 				 NULL);
2252 #ifdef INET
2253 		/*
2254 		 * Also send gratuitous ARPs to notify other nodes about
2255 		 * the address change.
2256 		 */
2257 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2258 			struct ifaddr *ifa = ifac->ifa;
2259 
2260 			if (ifa->ifa_addr != NULL &&
2261 			    ifa->ifa_addr->sa_family == AF_INET)
2262 				arp_ifinit(ifp, ifa);
2263 		}
2264 #endif
2265 	}
2266 	ifnet_deserialize_all(ifp);
2267 	return (0);
2268 }
2269 
2270 struct ifmultiaddr *
2271 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2272 {
2273 	struct ifmultiaddr *ifma;
2274 
2275 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2276 		if (sa_equal(ifma->ifma_addr, sa))
2277 			break;
2278 
2279 	return ifma;
2280 }
2281 
2282 /*
2283  * This function locates the first real ethernet MAC from a network
2284  * card and loads it into node, returning 0 on success or ENOENT if
2285  * no suitable interfaces were found.  It is used by the uuid code to
2286  * generate a unique 6-byte number.
2287  */
2288 int
2289 if_getanyethermac(uint16_t *node, int minlen)
2290 {
2291 	struct ifnet *ifp;
2292 	struct sockaddr_dl *sdl;
2293 
2294 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2295 		if (ifp->if_type != IFT_ETHER)
2296 			continue;
2297 		sdl = IF_LLSOCKADDR(ifp);
2298 		if (sdl->sdl_alen < minlen)
2299 			continue;
2300 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2301 		      minlen);
2302 		return(0);
2303 	}
2304 	return (ENOENT);
2305 }
2306 
2307 /*
2308  * The name argument must be a pointer to storage which will last as
2309  * long as the interface does.  For physical devices, the result of
2310  * device_get_name(dev) is a good choice and for pseudo-devices a
2311  * static string works well.
2312  */
2313 void
2314 if_initname(struct ifnet *ifp, const char *name, int unit)
2315 {
2316 	ifp->if_dname = name;
2317 	ifp->if_dunit = unit;
2318 	if (unit != IF_DUNIT_NONE)
2319 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2320 	else
2321 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2322 }
2323 
2324 int
2325 if_printf(struct ifnet *ifp, const char *fmt, ...)
2326 {
2327 	__va_list ap;
2328 	int retval;
2329 
2330 	retval = kprintf("%s: ", ifp->if_xname);
2331 	__va_start(ap, fmt);
2332 	retval += kvprintf(fmt, ap);
2333 	__va_end(ap);
2334 	return (retval);
2335 }
2336 
2337 struct ifnet *
2338 if_alloc(uint8_t type)
2339 {
2340         struct ifnet *ifp;
2341 	size_t size;
2342 
2343 	/*
2344 	 * XXX temporary hack until arpcom is setup in if_l2com
2345 	 */
2346 	if (type == IFT_ETHER)
2347 		size = sizeof(struct arpcom);
2348 	else
2349 		size = sizeof(struct ifnet);
2350 
2351 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2352 
2353 	ifp->if_type = type;
2354 
2355 	if (if_com_alloc[type] != NULL) {
2356 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2357 		if (ifp->if_l2com == NULL) {
2358 			kfree(ifp, M_IFNET);
2359 			return (NULL);
2360 		}
2361 	}
2362 	return (ifp);
2363 }
2364 
2365 void
2366 if_free(struct ifnet *ifp)
2367 {
2368 	kfree(ifp, M_IFNET);
2369 }
2370 
2371 void
2372 ifq_set_classic(struct ifaltq *ifq)
2373 {
2374 	ifq->altq_enqueue = ifq_classic_enqueue;
2375 	ifq->altq_dequeue = ifq_classic_dequeue;
2376 	ifq->altq_request = ifq_classic_request;
2377 }
2378 
2379 int
2380 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m,
2381 		    struct altq_pktattr *pa __unused)
2382 {
2383 	logifq(enqueue, ifq);
2384 	if (IF_QFULL(ifq)) {
2385 		m_freem(m);
2386 		return(ENOBUFS);
2387 	} else {
2388 		IF_ENQUEUE(ifq, m);
2389 		return(0);
2390 	}
2391 }
2392 
2393 struct mbuf *
2394 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op)
2395 {
2396 	struct mbuf *m;
2397 
2398 	switch (op) {
2399 	case ALTDQ_POLL:
2400 		IF_POLL(ifq, m);
2401 		break;
2402 	case ALTDQ_REMOVE:
2403 		logifq(dequeue, ifq);
2404 		IF_DEQUEUE(ifq, m);
2405 		break;
2406 	default:
2407 		panic("unsupported ALTQ dequeue op: %d", op);
2408 	}
2409 	KKASSERT(mpolled == NULL || mpolled == m);
2410 	return(m);
2411 }
2412 
2413 int
2414 ifq_classic_request(struct ifaltq *ifq, int req, void *arg)
2415 {
2416 	switch (req) {
2417 	case ALTRQ_PURGE:
2418 		IF_DRAIN(ifq);
2419 		break;
2420 	default:
2421 		panic("unsupported ALTQ request: %d", req);
2422 	}
2423 	return(0);
2424 }
2425 
2426 int
2427 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2428 {
2429 	struct ifaltq *ifq = &ifp->if_snd;
2430 	int running = 0, error, start = 0;
2431 
2432 	ASSERT_IFNET_NOT_SERIALIZED_TX(ifp);
2433 
2434 	ALTQ_LOCK(ifq);
2435 	error = ifq_enqueue_locked(ifq, m, pa);
2436 	if (error) {
2437 		ALTQ_UNLOCK(ifq);
2438 		return error;
2439 	}
2440 	if (!ifq->altq_started) {
2441 		/*
2442 		 * Hold the interlock of ifnet.if_start
2443 		 */
2444 		ifq->altq_started = 1;
2445 		start = 1;
2446 	}
2447 	ALTQ_UNLOCK(ifq);
2448 
2449 	ifp->if_obytes += m->m_pkthdr.len;
2450 	if (m->m_flags & M_MCAST)
2451 		ifp->if_omcasts++;
2452 
2453 	if (!start) {
2454 		logifstart(avoid, ifp);
2455 		return 0;
2456 	}
2457 
2458 	if (ifq_dispatch_schedonly) {
2459 		/*
2460 		 * Always schedule ifnet.if_start on ifnet's CPU,
2461 		 * short circuit the rest of this function.
2462 		 */
2463 		logifstart(sched, ifp);
2464 		if_start_schedule(ifp);
2465 		return 0;
2466 	}
2467 
2468 	/*
2469 	 * Try to do direct ifnet.if_start first, if there is
2470 	 * contention on ifnet's serializer, ifnet.if_start will
2471 	 * be scheduled on ifnet's CPU.
2472 	 */
2473 	if (!ifnet_tryserialize_tx(ifp)) {
2474 		/*
2475 		 * ifnet serializer contention happened,
2476 		 * ifnet.if_start is scheduled on ifnet's
2477 		 * CPU, and we keep going.
2478 		 */
2479 		logifstart(contend_sched, ifp);
2480 		if_start_schedule(ifp);
2481 		return 0;
2482 	}
2483 
2484 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2485 		logifstart(run, ifp);
2486 		ifp->if_start(ifp);
2487 		if ((ifp->if_flags &
2488 		     (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING)
2489 			running = 1;
2490 	}
2491 
2492 	ifnet_deserialize_tx(ifp);
2493 
2494 	if (ifq_dispatch_schednochk || if_start_need_schedule(ifq, running)) {
2495 		/*
2496 		 * More data need to be transmitted, ifnet.if_start is
2497 		 * scheduled on ifnet's CPU, and we keep going.
2498 		 * NOTE: ifnet.if_start interlock is not released.
2499 		 */
2500 		logifstart(sched, ifp);
2501 		if_start_schedule(ifp);
2502 	}
2503 	return 0;
2504 }
2505 
2506 void *
2507 ifa_create(int size, int flags)
2508 {
2509 	struct ifaddr *ifa;
2510 	int i;
2511 
2512 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small\n"));
2513 
2514 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2515 	if (ifa == NULL)
2516 		return NULL;
2517 
2518 	ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container),
2519 				      M_IFADDR, M_WAITOK | M_ZERO);
2520 	ifa->ifa_ncnt = ncpus;
2521 	for (i = 0; i < ncpus; ++i) {
2522 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2523 
2524 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2525 		ifac->ifa = ifa;
2526 		ifac->ifa_refcnt = 1;
2527 	}
2528 #ifdef IFADDR_DEBUG
2529 	kprintf("alloc ifa %p %d\n", ifa, size);
2530 #endif
2531 	return ifa;
2532 }
2533 
2534 void
2535 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2536 {
2537 	struct ifaddr *ifa = ifac->ifa;
2538 
2539 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2540 	KKASSERT(ifac->ifa_refcnt == 0);
2541 	KASSERT(ifac->ifa_listmask == 0,
2542 		("ifa is still on %#x lists\n", ifac->ifa_listmask));
2543 
2544 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2545 
2546 #ifdef IFADDR_DEBUG_VERBOSE
2547 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2548 #endif
2549 
2550 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2551 		("invalid # of ifac, %d\n", ifa->ifa_ncnt));
2552 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2553 #ifdef IFADDR_DEBUG
2554 		kprintf("free ifa %p\n", ifa);
2555 #endif
2556 		kfree(ifa->ifa_containers, M_IFADDR);
2557 		kfree(ifa, M_IFADDR);
2558 	}
2559 }
2560 
2561 static void
2562 ifa_iflink_dispatch(struct netmsg *nmsg)
2563 {
2564 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2565 	struct ifaddr *ifa = msg->ifa;
2566 	struct ifnet *ifp = msg->ifp;
2567 	int cpu = mycpuid;
2568 	struct ifaddr_container *ifac;
2569 
2570 	crit_enter();
2571 
2572 	ifac = &ifa->ifa_containers[cpu];
2573 	ASSERT_IFAC_VALID(ifac);
2574 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2575 		("ifaddr is on if_addrheads\n"));
2576 
2577 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2578 	if (msg->tail)
2579 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2580 	else
2581 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2582 
2583 	crit_exit();
2584 
2585 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2586 }
2587 
2588 void
2589 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2590 {
2591 	struct netmsg_ifaddr msg;
2592 
2593 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2594 		    0, ifa_iflink_dispatch);
2595 	msg.ifa = ifa;
2596 	msg.ifp = ifp;
2597 	msg.tail = tail;
2598 
2599 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2600 }
2601 
2602 static void
2603 ifa_ifunlink_dispatch(struct netmsg *nmsg)
2604 {
2605 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2606 	struct ifaddr *ifa = msg->ifa;
2607 	struct ifnet *ifp = msg->ifp;
2608 	int cpu = mycpuid;
2609 	struct ifaddr_container *ifac;
2610 
2611 	crit_enter();
2612 
2613 	ifac = &ifa->ifa_containers[cpu];
2614 	ASSERT_IFAC_VALID(ifac);
2615 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2616 		("ifaddr is not on if_addrhead\n"));
2617 
2618 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2619 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2620 
2621 	crit_exit();
2622 
2623 	ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1);
2624 }
2625 
2626 void
2627 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2628 {
2629 	struct netmsg_ifaddr msg;
2630 
2631 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2632 		    0, ifa_ifunlink_dispatch);
2633 	msg.ifa = ifa;
2634 	msg.ifp = ifp;
2635 
2636 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2637 }
2638 
2639 static void
2640 ifa_destroy_dispatch(struct netmsg *nmsg)
2641 {
2642 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2643 
2644 	IFAFREE(msg->ifa);
2645 	ifa_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1);
2646 }
2647 
2648 void
2649 ifa_destroy(struct ifaddr *ifa)
2650 {
2651 	struct netmsg_ifaddr msg;
2652 
2653 	netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport,
2654 		    0, ifa_destroy_dispatch);
2655 	msg.ifa = ifa;
2656 
2657 	ifa_domsg(&msg.netmsg.nm_lmsg, 0);
2658 }
2659 
2660 struct lwkt_port *
2661 ifnet_portfn(int cpu)
2662 {
2663 	return &ifnet_threads[cpu].td_msgport;
2664 }
2665 
2666 void
2667 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2668 {
2669 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2670 
2671 	if (next_cpu < ncpus)
2672 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2673 	else
2674 		lwkt_replymsg(lmsg, 0);
2675 }
2676 
2677 int
2678 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2679 {
2680 	KKASSERT(cpu < ncpus);
2681 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2682 }
2683 
2684 void
2685 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2686 {
2687 	KKASSERT(cpu < ncpus);
2688 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2689 }
2690 
2691 /*
2692  * Generic netmsg service loop.  Some protocols may roll their own but all
2693  * must do the basic command dispatch function call done here.
2694  */
2695 static void
2696 ifnet_service_loop(void *arg __unused)
2697 {
2698 	struct netmsg *msg;
2699 
2700 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
2701 		KASSERT(msg->nm_dispatch, ("ifnet_service: badmsg"));
2702 		msg->nm_dispatch(msg);
2703 	}
2704 }
2705 
2706 static void
2707 ifnetinit(void *dummy __unused)
2708 {
2709 	int i;
2710 
2711 	for (i = 0; i < ncpus; ++i) {
2712 		struct thread *thr = &ifnet_threads[i];
2713 
2714 		lwkt_create(ifnet_service_loop, NULL, NULL,
2715 			    thr, TDF_STOPREQ, i, "ifnet %d", i);
2716 		netmsg_service_port_init(&thr->td_msgport);
2717 		lwkt_schedule(thr);
2718 	}
2719 }
2720 
2721 struct ifnet *
2722 ifnet_byindex(unsigned short idx)
2723 {
2724 	if (idx > if_index)
2725 		return NULL;
2726 	return ifindex2ifnet[idx];
2727 }
2728 
2729 struct ifaddr *
2730 ifaddr_byindex(unsigned short idx)
2731 {
2732 	struct ifnet *ifp;
2733 
2734 	ifp = ifnet_byindex(idx);
2735 	if (!ifp)
2736 		return NULL;
2737 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2738 }
2739 
2740 void
2741 if_register_com_alloc(u_char type,
2742     if_com_alloc_t *a, if_com_free_t *f)
2743 {
2744 
2745         KASSERT(if_com_alloc[type] == NULL,
2746             ("if_register_com_alloc: %d already registered", type));
2747         KASSERT(if_com_free[type] == NULL,
2748             ("if_register_com_alloc: %d free already registered", type));
2749 
2750         if_com_alloc[type] = a;
2751         if_com_free[type] = f;
2752 }
2753 
2754 void
2755 if_deregister_com_alloc(u_char type)
2756 {
2757 
2758         KASSERT(if_com_alloc[type] != NULL,
2759             ("if_deregister_com_alloc: %d not registered", type));
2760         KASSERT(if_com_free[type] != NULL,
2761             ("if_deregister_com_alloc: %d free not registered", type));
2762         if_com_alloc[type] = NULL;
2763         if_com_free[type] = NULL;
2764 }
2765