xref: /dflybsd-src/sys/net/if.c (revision 69baab3b6fefbaae4cf4bc59d5556b43dccf8af8)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_inet6.h"
34 #include "opt_inet.h"
35 #include "opt_ifpoll.h"
36 
37 #include <sys/param.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/socketops.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/mutex.h>
50 #include <sys/sockio.h>
51 #include <sys/syslog.h>
52 #include <sys/sysctl.h>
53 #include <sys/domain.h>
54 #include <sys/thread.h>
55 #include <sys/serialize.h>
56 #include <sys/bus.h>
57 
58 #include <sys/thread2.h>
59 #include <sys/msgport2.h>
60 #include <sys/mutex2.h>
61 
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_types.h>
66 #include <net/if_var.h>
67 #include <net/if_ringmap.h>
68 #include <net/ifq_var.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/if_clone.h>
72 #include <net/netisr2.h>
73 #include <net/netmsg2.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/stdarg.h>
77 #include <machine/smp.h>
78 
79 #if defined(INET) || defined(INET6)
80 /*XXX*/
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #ifdef INET6
85 #include <netinet6/in6_var.h>
86 #include <netinet6/in6_ifattach.h>
87 #endif
88 #endif
89 
90 struct netmsg_ifaddr {
91 	struct netmsg_base base;
92 	struct ifaddr	*ifa;
93 	struct ifnet	*ifp;
94 	int		tail;
95 };
96 
97 struct ifsubq_stage_head {
98 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
99 } __cachealign;
100 
101 struct if_ringmap {
102 	int		rm_cnt;
103 	int		rm_grid;
104 	int		rm_cpumap[];
105 };
106 
107 #define RINGMAP_FLAG_NONE		0x0
108 #define RINGMAP_FLAG_POWEROF2		0x1
109 
110 /*
111  * System initialization
112  */
113 static void	if_attachdomain(void *);
114 static void	if_attachdomain1(struct ifnet *);
115 static int	ifconf(u_long, caddr_t, struct ucred *);
116 static void	ifinit(void *);
117 static void	ifnetinit(void *);
118 static void	if_slowtimo(void *);
119 static void	link_rtrequest(int, struct rtentry *);
120 static int	if_rtdel(struct radix_node *, void *);
121 static void	if_slowtimo_dispatch(netmsg_t);
122 
123 /* Helper functions */
124 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
125 static int	if_delmulti_serialized(struct ifnet *, struct sockaddr *);
126 static struct ifnet_array *ifnet_array_alloc(int);
127 static void	ifnet_array_free(struct ifnet_array *);
128 static struct ifnet_array *ifnet_array_add(struct ifnet *,
129 		    const struct ifnet_array *);
130 static struct ifnet_array *ifnet_array_del(struct ifnet *,
131 		    const struct ifnet_array *);
132 
133 #ifdef INET6
134 /*
135  * XXX: declare here to avoid to include many inet6 related files..
136  * should be more generalized?
137  */
138 extern void	nd6_setmtu(struct ifnet *);
139 #endif
140 
141 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
142 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
143 SYSCTL_NODE(_net_link, OID_AUTO, ringmap, CTLFLAG_RW, 0, "link ringmap");
144 
145 static int ifsq_stage_cntmax = 4;
146 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
147 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
148     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
149 
150 static int if_stats_compat = 0;
151 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
152     &if_stats_compat, 0, "Compat the old ifnet stats");
153 
154 static int if_ringmap_dumprdr = 0;
155 SYSCTL_INT(_net_link_ringmap, OID_AUTO, dump_rdr, CTLFLAG_RW,
156     &if_ringmap_dumprdr, 0, "dump redirect table");
157 
158 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
159 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, ifnetinit, NULL);
160 
161 static  if_com_alloc_t *if_com_alloc[256];
162 static  if_com_free_t *if_com_free[256];
163 
164 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
165 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
166 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
167 
168 int			ifqmaxlen = IFQ_MAXLEN;
169 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
170 
171 static struct ifnet_array	ifnet_array0;
172 static struct ifnet_array	*ifnet_array = &ifnet_array0;
173 
174 static struct callout		if_slowtimo_timer;
175 static struct netmsg_base	if_slowtimo_netmsg;
176 
177 int			if_index = 0;
178 struct ifnet		**ifindex2ifnet = NULL;
179 static struct mtx	ifnet_mtx = MTX_INITIALIZER("ifnet");
180 
181 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
182 
183 #ifdef notyet
184 #define IFQ_KTR_STRING		"ifq=%p"
185 #define IFQ_KTR_ARGS	struct ifaltq *ifq
186 #ifndef KTR_IFQ
187 #define KTR_IFQ			KTR_ALL
188 #endif
189 KTR_INFO_MASTER(ifq);
190 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
191 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
192 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
193 
194 #define IF_START_KTR_STRING	"ifp=%p"
195 #define IF_START_KTR_ARGS	struct ifnet *ifp
196 #ifndef KTR_IF_START
197 #define KTR_IF_START		KTR_ALL
198 #endif
199 KTR_INFO_MASTER(if_start);
200 KTR_INFO(KTR_IF_START, if_start, run, 0,
201 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
202 KTR_INFO(KTR_IF_START, if_start, sched, 1,
203 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
204 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
205 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
206 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
207 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
208 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
209 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
210 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
211 #endif
212 
213 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
214 
215 /*
216  * Network interface utility routines.
217  *
218  * Routines with ifa_ifwith* names take sockaddr *'s as
219  * parameters.
220  */
221 /* ARGSUSED*/
222 static void
223 ifinit(void *dummy)
224 {
225 	struct ifnet *ifp;
226 
227 	callout_init_mp(&if_slowtimo_timer);
228 	netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
229 	    MSGF_PRIORITY, if_slowtimo_dispatch);
230 
231 	/* XXX is this necessary? */
232 	ifnet_lock();
233 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
234 		if (ifp->if_snd.altq_maxlen == 0) {
235 			if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
236 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
237 		}
238 	}
239 	ifnet_unlock();
240 
241 	/* Start if_slowtimo */
242 	lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
243 }
244 
245 static void
246 ifsq_ifstart_ipifunc(void *arg)
247 {
248 	struct ifaltq_subque *ifsq = arg;
249 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
250 
251 	crit_enter();
252 	if (lmsg->ms_flags & MSGF_DONE)
253 		lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
254 	crit_exit();
255 }
256 
257 static __inline void
258 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
259 {
260 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
261 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
262 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
263 	stage->stg_cnt = 0;
264 	stage->stg_len = 0;
265 }
266 
267 static __inline void
268 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
269 {
270 	KKASSERT((stage->stg_flags &
271 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
272 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
273 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
274 }
275 
276 /*
277  * Schedule ifnet.if_start on the subqueue owner CPU
278  */
279 static void
280 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
281 {
282 	int cpu;
283 
284 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
285 	    ifsq_stage_cntmax > 0) {
286 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
287 
288 		stage->stg_cnt = 0;
289 		stage->stg_len = 0;
290 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
291 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
292 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
293 		return;
294 	}
295 
296 	cpu = ifsq_get_cpuid(ifsq);
297 	if (cpu != mycpuid)
298 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
299 	else
300 		ifsq_ifstart_ipifunc(ifsq);
301 }
302 
303 /*
304  * NOTE:
305  * This function will release ifnet.if_start subqueue interlock,
306  * if ifnet.if_start for the subqueue does not need to be scheduled
307  */
308 static __inline int
309 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
310 {
311 	if (!running || ifsq_is_empty(ifsq)
312 #ifdef ALTQ
313 	    || ifsq->ifsq_altq->altq_tbr != NULL
314 #endif
315 	) {
316 		ALTQ_SQ_LOCK(ifsq);
317 		/*
318 		 * ifnet.if_start subqueue interlock is released, if:
319 		 * 1) Hardware can not take any packets, due to
320 		 *    o  interface is marked down
321 		 *    o  hardware queue is full (ifsq_is_oactive)
322 		 *    Under the second situation, hardware interrupt
323 		 *    or polling(4) will call/schedule ifnet.if_start
324 		 *    on the subqueue when hardware queue is ready
325 		 * 2) There is no packet in the subqueue.
326 		 *    Further ifq_dispatch or ifq_handoff will call/
327 		 *    schedule ifnet.if_start on the subqueue.
328 		 * 3) TBR is used and it does not allow further
329 		 *    dequeueing.
330 		 *    TBR callout will call ifnet.if_start on the
331 		 *    subqueue.
332 		 */
333 		if (!running || !ifsq_data_ready(ifsq)) {
334 			ifsq_clr_started(ifsq);
335 			ALTQ_SQ_UNLOCK(ifsq);
336 			return 0;
337 		}
338 		ALTQ_SQ_UNLOCK(ifsq);
339 	}
340 	return 1;
341 }
342 
343 static void
344 ifsq_ifstart_dispatch(netmsg_t msg)
345 {
346 	struct lwkt_msg *lmsg = &msg->base.lmsg;
347 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
348 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
349 	struct globaldata *gd = mycpu;
350 	int running = 0, need_sched;
351 
352 	crit_enter_gd(gd);
353 
354 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
355 
356 	if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
357 		/*
358 		 * We need to chase the subqueue owner CPU change.
359 		 */
360 		ifsq_ifstart_schedule(ifsq, 1);
361 		crit_exit_gd(gd);
362 		return;
363 	}
364 
365 	ifsq_serialize_hw(ifsq);
366 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
367 		ifp->if_start(ifp, ifsq);
368 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
369 			running = 1;
370 	}
371 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
372 	ifsq_deserialize_hw(ifsq);
373 
374 	if (need_sched) {
375 		/*
376 		 * More data need to be transmitted, ifnet.if_start is
377 		 * scheduled on the subqueue owner CPU, and we keep going.
378 		 * NOTE: ifnet.if_start subqueue interlock is not released.
379 		 */
380 		ifsq_ifstart_schedule(ifsq, 0);
381 	}
382 
383 	crit_exit_gd(gd);
384 }
385 
386 /* Device driver ifnet.if_start helper function */
387 void
388 ifsq_devstart(struct ifaltq_subque *ifsq)
389 {
390 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
391 	int running = 0;
392 
393 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
394 
395 	ALTQ_SQ_LOCK(ifsq);
396 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
397 		ALTQ_SQ_UNLOCK(ifsq);
398 		return;
399 	}
400 	ifsq_set_started(ifsq);
401 	ALTQ_SQ_UNLOCK(ifsq);
402 
403 	ifp->if_start(ifp, ifsq);
404 
405 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
406 		running = 1;
407 
408 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
409 		/*
410 		 * More data need to be transmitted, ifnet.if_start is
411 		 * scheduled on ifnet's CPU, and we keep going.
412 		 * NOTE: ifnet.if_start interlock is not released.
413 		 */
414 		ifsq_ifstart_schedule(ifsq, 0);
415 	}
416 }
417 
418 void
419 if_devstart(struct ifnet *ifp)
420 {
421 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
422 }
423 
424 /* Device driver ifnet.if_start schedule helper function */
425 void
426 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
427 {
428 	ifsq_ifstart_schedule(ifsq, 1);
429 }
430 
431 void
432 if_devstart_sched(struct ifnet *ifp)
433 {
434 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
435 }
436 
437 static void
438 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
439 {
440 	lwkt_serialize_enter(ifp->if_serializer);
441 }
442 
443 static void
444 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
445 {
446 	lwkt_serialize_exit(ifp->if_serializer);
447 }
448 
449 static int
450 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
451 {
452 	return lwkt_serialize_try(ifp->if_serializer);
453 }
454 
455 #ifdef INVARIANTS
456 static void
457 if_default_serialize_assert(struct ifnet *ifp,
458 			    enum ifnet_serialize slz __unused,
459 			    boolean_t serialized)
460 {
461 	if (serialized)
462 		ASSERT_SERIALIZED(ifp->if_serializer);
463 	else
464 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
465 }
466 #endif
467 
468 /*
469  * Attach an interface to the list of "active" interfaces.
470  *
471  * The serializer is optional.
472  */
473 void
474 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
475 {
476 	unsigned socksize;
477 	int namelen, masklen;
478 	struct sockaddr_dl *sdl, *sdl_addr;
479 	struct ifaddr *ifa;
480 	struct ifaltq *ifq;
481 	struct ifnet **old_ifindex2ifnet = NULL;
482 	struct ifnet_array *old_ifnet_array;
483 	int i, q;
484 
485 	static int if_indexlim = 8;
486 
487 	if (ifp->if_serialize != NULL) {
488 		KASSERT(ifp->if_deserialize != NULL &&
489 			ifp->if_tryserialize != NULL &&
490 			ifp->if_serialize_assert != NULL,
491 			("serialize functions are partially setup"));
492 
493 		/*
494 		 * If the device supplies serialize functions,
495 		 * then clear if_serializer to catch any invalid
496 		 * usage of this field.
497 		 */
498 		KASSERT(serializer == NULL,
499 			("both serialize functions and default serializer "
500 			 "are supplied"));
501 		ifp->if_serializer = NULL;
502 	} else {
503 		KASSERT(ifp->if_deserialize == NULL &&
504 			ifp->if_tryserialize == NULL &&
505 			ifp->if_serialize_assert == NULL,
506 			("serialize functions are partially setup"));
507 		ifp->if_serialize = if_default_serialize;
508 		ifp->if_deserialize = if_default_deserialize;
509 		ifp->if_tryserialize = if_default_tryserialize;
510 #ifdef INVARIANTS
511 		ifp->if_serialize_assert = if_default_serialize_assert;
512 #endif
513 
514 		/*
515 		 * The serializer can be passed in from the device,
516 		 * allowing the same serializer to be used for both
517 		 * the interrupt interlock and the device queue.
518 		 * If not specified, the netif structure will use an
519 		 * embedded serializer.
520 		 */
521 		if (serializer == NULL) {
522 			serializer = &ifp->if_default_serializer;
523 			lwkt_serialize_init(serializer);
524 		}
525 		ifp->if_serializer = serializer;
526 	}
527 
528 	/*
529 	 * XXX -
530 	 * The old code would work if the interface passed a pre-existing
531 	 * chain of ifaddrs to this code.  We don't trust our callers to
532 	 * properly initialize the tailq, however, so we no longer allow
533 	 * this unlikely case.
534 	 */
535 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
536 				    M_IFADDR, M_WAITOK | M_ZERO);
537 	for (i = 0; i < ncpus; ++i)
538 		TAILQ_INIT(&ifp->if_addrheads[i]);
539 
540 	TAILQ_INIT(&ifp->if_multiaddrs);
541 	TAILQ_INIT(&ifp->if_groups);
542 	getmicrotime(&ifp->if_lastchange);
543 
544 	/*
545 	 * create a Link Level name for this device
546 	 */
547 	namelen = strlen(ifp->if_xname);
548 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
549 	socksize = masklen + ifp->if_addrlen;
550 	if (socksize < sizeof(*sdl))
551 		socksize = sizeof(*sdl);
552 	socksize = RT_ROUNDUP(socksize);
553 	ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize);
554 	sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
555 	sdl->sdl_len = socksize;
556 	sdl->sdl_family = AF_LINK;
557 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
558 	sdl->sdl_nlen = namelen;
559 	sdl->sdl_type = ifp->if_type;
560 	ifp->if_lladdr = ifa;
561 	ifa->ifa_ifp = ifp;
562 	ifa->ifa_rtrequest = link_rtrequest;
563 	ifa->ifa_addr = (struct sockaddr *)sdl;
564 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
565 	ifa->ifa_netmask = (struct sockaddr *)sdl;
566 	sdl->sdl_len = masklen;
567 	while (namelen != 0)
568 		sdl->sdl_data[--namelen] = 0xff;
569 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
570 
571 	ifp->if_data_pcpu = kmalloc_cachealign(
572 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
573 
574 	if (ifp->if_mapsubq == NULL)
575 		ifp->if_mapsubq = ifq_mapsubq_default;
576 
577 	ifq = &ifp->if_snd;
578 	ifq->altq_type = 0;
579 	ifq->altq_disc = NULL;
580 	ifq->altq_flags &= ALTQF_CANTCHANGE;
581 	ifq->altq_tbr = NULL;
582 	ifq->altq_ifp = ifp;
583 
584 	if (ifq->altq_subq_cnt <= 0)
585 		ifq->altq_subq_cnt = 1;
586 	ifq->altq_subq = kmalloc_cachealign(
587 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
588 	    M_DEVBUF, M_WAITOK | M_ZERO);
589 
590 	if (ifq->altq_maxlen == 0) {
591 		if_printf(ifp, "driver didn't set altq_maxlen\n");
592 		ifq_set_maxlen(ifq, ifqmaxlen);
593 	}
594 
595 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
596 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
597 
598 		ALTQ_SQ_LOCK_INIT(ifsq);
599 		ifsq->ifsq_index = q;
600 
601 		ifsq->ifsq_altq = ifq;
602 		ifsq->ifsq_ifp = ifp;
603 
604 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
605 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
606 		ifsq->ifsq_prepended = NULL;
607 		ifsq->ifsq_started = 0;
608 		ifsq->ifsq_hw_oactive = 0;
609 		ifsq_set_cpuid(ifsq, 0);
610 		if (ifp->if_serializer != NULL)
611 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
612 
613 		ifsq->ifsq_stage =
614 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
615 		    M_DEVBUF, M_WAITOK | M_ZERO);
616 		for (i = 0; i < ncpus; ++i)
617 			ifsq->ifsq_stage[i].stg_subq = ifsq;
618 
619 		ifsq->ifsq_ifstart_nmsg =
620 		    kmalloc(ncpus * sizeof(struct netmsg_base),
621 		    M_LWKTMSG, M_WAITOK);
622 		for (i = 0; i < ncpus; ++i) {
623 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
624 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
625 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
626 		}
627 	}
628 	ifq_set_classic(ifq);
629 
630 	/*
631 	 * Increase mbuf cluster/jcluster limits for the mbufs that
632 	 * could sit on the device queues for quite some time.
633 	 */
634 	if (ifp->if_nmbclusters > 0)
635 		mcl_inclimit(ifp->if_nmbclusters);
636 	if (ifp->if_nmbjclusters > 0)
637 		mjcl_inclimit(ifp->if_nmbjclusters);
638 
639 	/*
640 	 * Install this ifp into ifindex2inet, ifnet queue and ifnet
641 	 * array after it is setup.
642 	 *
643 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
644 	 * by ifnet lock, so that non-netisr threads could get a
645 	 * consistent view.
646 	 */
647 	ifnet_lock();
648 
649 	/* Don't update if_index until ifindex2ifnet is setup */
650 	ifp->if_index = if_index + 1;
651 	sdl_addr->sdl_index = ifp->if_index;
652 
653 	/*
654 	 * Install this ifp into ifindex2ifnet
655 	 */
656 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
657 		unsigned int n;
658 		struct ifnet **q;
659 
660 		/*
661 		 * Grow ifindex2ifnet
662 		 */
663 		if_indexlim <<= 1;
664 		n = if_indexlim * sizeof(*q);
665 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
666 		if (ifindex2ifnet != NULL) {
667 			bcopy(ifindex2ifnet, q, n/2);
668 			/* Free old ifindex2ifnet after sync all netisrs */
669 			old_ifindex2ifnet = ifindex2ifnet;
670 		}
671 		ifindex2ifnet = q;
672 	}
673 	ifindex2ifnet[ifp->if_index] = ifp;
674 	/*
675 	 * Update if_index after this ifp is installed into ifindex2ifnet,
676 	 * so that netisrs could get a consistent view of ifindex2ifnet.
677 	 */
678 	cpu_sfence();
679 	if_index = ifp->if_index;
680 
681 	/*
682 	 * Install this ifp into ifnet array.
683 	 */
684 	/* Free old ifnet array after sync all netisrs */
685 	old_ifnet_array = ifnet_array;
686 	ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
687 
688 	/*
689 	 * Install this ifp into ifnet queue.
690 	 */
691 	TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
692 
693 	ifnet_unlock();
694 
695 	/*
696 	 * Sync all netisrs so that the old ifindex2ifnet and ifnet array
697 	 * are no longer accessed and we can free them safely later on.
698 	 */
699 	netmsg_service_sync();
700 	if (old_ifindex2ifnet != NULL)
701 		kfree(old_ifindex2ifnet, M_IFADDR);
702 	ifnet_array_free(old_ifnet_array);
703 
704 	if (!SLIST_EMPTY(&domains))
705 		if_attachdomain1(ifp);
706 
707 	/* Announce the interface. */
708 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
709 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
710 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
711 }
712 
713 static void
714 if_attachdomain(void *dummy)
715 {
716 	struct ifnet *ifp;
717 
718 	ifnet_lock();
719 	TAILQ_FOREACH(ifp, &ifnetlist, if_list)
720 		if_attachdomain1(ifp);
721 	ifnet_unlock();
722 }
723 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
724 	if_attachdomain, NULL);
725 
726 static void
727 if_attachdomain1(struct ifnet *ifp)
728 {
729 	struct domain *dp;
730 
731 	crit_enter();
732 
733 	/* address family dependent data region */
734 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
735 	SLIST_FOREACH(dp, &domains, dom_next)
736 		if (dp->dom_ifattach)
737 			ifp->if_afdata[dp->dom_family] =
738 				(*dp->dom_ifattach)(ifp);
739 	crit_exit();
740 }
741 
742 /*
743  * Purge all addresses whose type is _not_ AF_LINK
744  */
745 static void
746 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
747 {
748 	struct lwkt_msg *lmsg = &nmsg->lmsg;
749 	struct ifnet *ifp = lmsg->u.ms_resultp;
750 	struct ifaddr_container *ifac, *next;
751 
752 	ASSERT_IN_NETISR(0);
753 
754 	/*
755 	 * The ifaddr processing in the following loop will block,
756 	 * however, this function is called in netisr0, in which
757 	 * ifaddr list changes happen, so we don't care about the
758 	 * blockness of the ifaddr processing here.
759 	 */
760 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
761 			      ifa_link, next) {
762 		struct ifaddr *ifa = ifac->ifa;
763 
764 		/* Ignore marker */
765 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
766 			continue;
767 
768 		/* Leave link ifaddr as it is */
769 		if (ifa->ifa_addr->sa_family == AF_LINK)
770 			continue;
771 #ifdef INET
772 		/* XXX: Ugly!! ad hoc just for INET */
773 		if (ifa->ifa_addr->sa_family == AF_INET) {
774 			struct ifaliasreq ifr;
775 			struct sockaddr_in saved_addr, saved_dst;
776 #ifdef IFADDR_DEBUG_VERBOSE
777 			int i;
778 
779 			kprintf("purge in4 addr %p: ", ifa);
780 			for (i = 0; i < ncpus; ++i) {
781 				kprintf("%d ",
782 				    ifa->ifa_containers[i].ifa_refcnt);
783 			}
784 			kprintf("\n");
785 #endif
786 
787 			/* Save information for panic. */
788 			memcpy(&saved_addr, ifa->ifa_addr, sizeof(saved_addr));
789 			if (ifa->ifa_dstaddr != NULL) {
790 				memcpy(&saved_dst, ifa->ifa_dstaddr,
791 				    sizeof(saved_dst));
792 			} else {
793 				memset(&saved_dst, 0, sizeof(saved_dst));
794 			}
795 
796 			bzero(&ifr, sizeof ifr);
797 			ifr.ifra_addr = *ifa->ifa_addr;
798 			if (ifa->ifa_dstaddr)
799 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
800 			if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
801 				       NULL) == 0)
802 				continue;
803 
804 			/* MUST NOT HAPPEN */
805 			panic("%s: in_control failed %x, dst %x", ifp->if_xname,
806 			    ntohl(saved_addr.sin_addr.s_addr),
807 			    ntohl(saved_dst.sin_addr.s_addr));
808 		}
809 #endif /* INET */
810 #ifdef INET6
811 		if (ifa->ifa_addr->sa_family == AF_INET6) {
812 #ifdef IFADDR_DEBUG_VERBOSE
813 			int i;
814 
815 			kprintf("purge in6 addr %p: ", ifa);
816 			for (i = 0; i < ncpus; ++i) {
817 				kprintf("%d ",
818 				    ifa->ifa_containers[i].ifa_refcnt);
819 			}
820 			kprintf("\n");
821 #endif
822 
823 			in6_purgeaddr(ifa);
824 			/* ifp_addrhead is already updated */
825 			continue;
826 		}
827 #endif /* INET6 */
828 		if_printf(ifp, "destrot ifaddr family %d\n",
829 		    ifa->ifa_addr->sa_family);
830 		ifa_ifunlink(ifa, ifp);
831 		ifa_destroy(ifa);
832 	}
833 
834 	lwkt_replymsg(lmsg, 0);
835 }
836 
837 void
838 if_purgeaddrs_nolink(struct ifnet *ifp)
839 {
840 	struct netmsg_base nmsg;
841 	struct lwkt_msg *lmsg = &nmsg.lmsg;
842 
843 	ASSERT_CANDOMSG_NETISR0(curthread);
844 
845 	netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
846 	    if_purgeaddrs_nolink_dispatch);
847 	lmsg->u.ms_resultp = ifp;
848 	lwkt_domsg(netisr_cpuport(0), lmsg, 0);
849 }
850 
851 static void
852 ifq_stage_detach_handler(netmsg_t nmsg)
853 {
854 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
855 	int q;
856 
857 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
858 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
859 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
860 
861 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
862 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
863 	}
864 	lwkt_replymsg(&nmsg->lmsg, 0);
865 }
866 
867 static void
868 ifq_stage_detach(struct ifaltq *ifq)
869 {
870 	struct netmsg_base base;
871 	int cpu;
872 
873 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
874 	    ifq_stage_detach_handler);
875 	base.lmsg.u.ms_resultp = ifq;
876 
877 	for (cpu = 0; cpu < ncpus; ++cpu)
878 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
879 }
880 
881 struct netmsg_if_rtdel {
882 	struct netmsg_base	base;
883 	struct ifnet		*ifp;
884 };
885 
886 static void
887 if_rtdel_dispatch(netmsg_t msg)
888 {
889 	struct netmsg_if_rtdel *rmsg = (void *)msg;
890 	int i, nextcpu, cpu;
891 
892 	cpu = mycpuid;
893 	for (i = 1; i <= AF_MAX; i++) {
894 		struct radix_node_head	*rnh;
895 
896 		if ((rnh = rt_tables[cpu][i]) == NULL)
897 			continue;
898 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
899 	}
900 
901 	nextcpu = cpu + 1;
902 	if (nextcpu < ncpus)
903 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
904 	else
905 		lwkt_replymsg(&rmsg->base.lmsg, 0);
906 }
907 
908 /*
909  * Detach an interface, removing it from the
910  * list of "active" interfaces.
911  */
912 void
913 if_detach(struct ifnet *ifp)
914 {
915 	struct ifnet_array *old_ifnet_array;
916 	struct netmsg_if_rtdel msg;
917 	struct domain *dp;
918 	int q;
919 
920 	/* Announce that the interface is gone. */
921 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
922 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
923 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
924 
925 	/*
926 	 * Remove this ifp from ifindex2inet, ifnet queue and ifnet
927 	 * array before it is whacked.
928 	 *
929 	 * Protect ifindex2ifnet, ifnet queue and ifnet array changes
930 	 * by ifnet lock, so that non-netisr threads could get a
931 	 * consistent view.
932 	 */
933 	ifnet_lock();
934 
935 	/*
936 	 * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
937 	 */
938 	ifindex2ifnet[ifp->if_index] = NULL;
939 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
940 		if_index--;
941 
942 	/*
943 	 * Remove this ifp from ifnet queue.
944 	 */
945 	TAILQ_REMOVE(&ifnetlist, ifp, if_link);
946 
947 	/*
948 	 * Remove this ifp from ifnet array.
949 	 */
950 	/* Free old ifnet array after sync all netisrs */
951 	old_ifnet_array = ifnet_array;
952 	ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
953 
954 	ifnet_unlock();
955 
956 	/*
957 	 * Sync all netisrs so that the old ifnet array is no longer
958 	 * accessed and we can free it safely later on.
959 	 */
960 	netmsg_service_sync();
961 	ifnet_array_free(old_ifnet_array);
962 
963 	/*
964 	 * Remove routes and flush queues.
965 	 */
966 	crit_enter();
967 #ifdef IFPOLL_ENABLE
968 	if (ifp->if_flags & IFF_NPOLLING)
969 		ifpoll_deregister(ifp);
970 #endif
971 	if_down(ifp);
972 
973 	/* Decrease the mbuf clusters/jclusters limits increased by us */
974 	if (ifp->if_nmbclusters > 0)
975 		mcl_inclimit(-ifp->if_nmbclusters);
976 	if (ifp->if_nmbjclusters > 0)
977 		mjcl_inclimit(-ifp->if_nmbjclusters);
978 
979 #ifdef ALTQ
980 	if (ifq_is_enabled(&ifp->if_snd))
981 		altq_disable(&ifp->if_snd);
982 	if (ifq_is_attached(&ifp->if_snd))
983 		altq_detach(&ifp->if_snd);
984 #endif
985 
986 	/*
987 	 * Clean up all addresses.
988 	 */
989 	ifp->if_lladdr = NULL;
990 
991 	if_purgeaddrs_nolink(ifp);
992 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
993 		struct ifaddr *ifa;
994 
995 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
996 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
997 			("non-link ifaddr is left on if_addrheads"));
998 
999 		ifa_ifunlink(ifa, ifp);
1000 		ifa_destroy(ifa);
1001 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
1002 			("there are still ifaddrs left on if_addrheads"));
1003 	}
1004 
1005 #ifdef INET
1006 	/*
1007 	 * Remove all IPv4 kernel structures related to ifp.
1008 	 */
1009 	in_ifdetach(ifp);
1010 #endif
1011 
1012 #ifdef INET6
1013 	/*
1014 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
1015 	 * before removing routing entries below, since IPv6 interface direct
1016 	 * routes are expected to be removed by the IPv6-specific kernel API.
1017 	 * Otherwise, the kernel will detect some inconsistency and bark it.
1018 	 */
1019 	in6_ifdetach(ifp);
1020 #endif
1021 
1022 	/*
1023 	 * Delete all remaining routes using this interface
1024 	 */
1025 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
1026 	    if_rtdel_dispatch);
1027 	msg.ifp = ifp;
1028 	rt_domsg_global(&msg.base);
1029 
1030 	SLIST_FOREACH(dp, &domains, dom_next)
1031 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
1032 			(*dp->dom_ifdetach)(ifp,
1033 				ifp->if_afdata[dp->dom_family]);
1034 
1035 	kfree(ifp->if_addrheads, M_IFADDR);
1036 
1037 	lwkt_synchronize_ipiqs("if_detach");
1038 	ifq_stage_detach(&ifp->if_snd);
1039 
1040 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
1041 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1042 
1043 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1044 		kfree(ifsq->ifsq_stage, M_DEVBUF);
1045 	}
1046 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1047 
1048 	kfree(ifp->if_data_pcpu, M_DEVBUF);
1049 
1050 	crit_exit();
1051 }
1052 
1053 /*
1054  * Create interface group without members
1055  */
1056 struct ifg_group *
1057 if_creategroup(const char *groupname)
1058 {
1059         struct ifg_group        *ifg = NULL;
1060 
1061         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
1062             M_TEMP, M_NOWAIT)) == NULL)
1063                 return (NULL);
1064 
1065         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1066         ifg->ifg_refcnt = 0;
1067         ifg->ifg_carp_demoted = 0;
1068         TAILQ_INIT(&ifg->ifg_members);
1069 #if NPF > 0
1070         pfi_attach_ifgroup(ifg);
1071 #endif
1072         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1073 
1074         return (ifg);
1075 }
1076 
1077 /*
1078  * Add a group to an interface
1079  */
1080 int
1081 if_addgroup(struct ifnet *ifp, const char *groupname)
1082 {
1083 	struct ifg_list		*ifgl;
1084 	struct ifg_group	*ifg = NULL;
1085 	struct ifg_member	*ifgm;
1086 
1087 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1088 	    groupname[strlen(groupname) - 1] <= '9')
1089 		return (EINVAL);
1090 
1091 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1092 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1093 			return (EEXIST);
1094 
1095 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
1096 		return (ENOMEM);
1097 
1098 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1099 		kfree(ifgl, M_TEMP);
1100 		return (ENOMEM);
1101 	}
1102 
1103 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1104 		if (!strcmp(ifg->ifg_group, groupname))
1105 			break;
1106 
1107 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
1108 		kfree(ifgl, M_TEMP);
1109 		kfree(ifgm, M_TEMP);
1110 		return (ENOMEM);
1111 	}
1112 
1113 	ifg->ifg_refcnt++;
1114 	ifgl->ifgl_group = ifg;
1115 	ifgm->ifgm_ifp = ifp;
1116 
1117 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1118 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1119 
1120 #if NPF > 0
1121 	pfi_group_change(groupname);
1122 #endif
1123 
1124 	return (0);
1125 }
1126 
1127 /*
1128  * Remove a group from an interface
1129  */
1130 int
1131 if_delgroup(struct ifnet *ifp, const char *groupname)
1132 {
1133 	struct ifg_list		*ifgl;
1134 	struct ifg_member	*ifgm;
1135 
1136 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1137 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1138 			break;
1139 	if (ifgl == NULL)
1140 		return (ENOENT);
1141 
1142 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1143 
1144 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
1145 		if (ifgm->ifgm_ifp == ifp)
1146 			break;
1147 
1148 	if (ifgm != NULL) {
1149 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1150 		kfree(ifgm, M_TEMP);
1151 	}
1152 
1153 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1154 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1155 #if NPF > 0
1156 		pfi_detach_ifgroup(ifgl->ifgl_group);
1157 #endif
1158 		kfree(ifgl->ifgl_group, M_TEMP);
1159 	}
1160 
1161 	kfree(ifgl, M_TEMP);
1162 
1163 #if NPF > 0
1164 	pfi_group_change(groupname);
1165 #endif
1166 
1167 	return (0);
1168 }
1169 
1170 /*
1171  * Stores all groups from an interface in memory pointed
1172  * to by data
1173  */
1174 int
1175 if_getgroup(caddr_t data, struct ifnet *ifp)
1176 {
1177 	int			 len, error;
1178 	struct ifg_list		*ifgl;
1179 	struct ifg_req		 ifgrq, *ifgp;
1180 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1181 
1182 	if (ifgr->ifgr_len == 0) {
1183 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1184 			ifgr->ifgr_len += sizeof(struct ifg_req);
1185 		return (0);
1186 	}
1187 
1188 	len = ifgr->ifgr_len;
1189 	ifgp = ifgr->ifgr_groups;
1190 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1191 		if (len < sizeof(ifgrq))
1192 			return (EINVAL);
1193 		bzero(&ifgrq, sizeof ifgrq);
1194 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1195 		    sizeof(ifgrq.ifgrq_group));
1196 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1197 		    sizeof(struct ifg_req))))
1198 			return (error);
1199 		len -= sizeof(ifgrq);
1200 		ifgp++;
1201 	}
1202 
1203 	return (0);
1204 }
1205 
1206 /*
1207  * Stores all members of a group in memory pointed to by data
1208  */
1209 int
1210 if_getgroupmembers(caddr_t data)
1211 {
1212 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1213 	struct ifg_group	*ifg;
1214 	struct ifg_member	*ifgm;
1215 	struct ifg_req		 ifgrq, *ifgp;
1216 	int			 len, error;
1217 
1218 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1219 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1220 			break;
1221 	if (ifg == NULL)
1222 		return (ENOENT);
1223 
1224 	if (ifgr->ifgr_len == 0) {
1225 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1226 			ifgr->ifgr_len += sizeof(ifgrq);
1227 		return (0);
1228 	}
1229 
1230 	len = ifgr->ifgr_len;
1231 	ifgp = ifgr->ifgr_groups;
1232 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1233 		if (len < sizeof(ifgrq))
1234 			return (EINVAL);
1235 		bzero(&ifgrq, sizeof ifgrq);
1236 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1237 		    sizeof(ifgrq.ifgrq_member));
1238 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1239 		    sizeof(struct ifg_req))))
1240 			return (error);
1241 		len -= sizeof(ifgrq);
1242 		ifgp++;
1243 	}
1244 
1245 	return (0);
1246 }
1247 
1248 /*
1249  * Delete Routes for a Network Interface
1250  *
1251  * Called for each routing entry via the rnh->rnh_walktree() call above
1252  * to delete all route entries referencing a detaching network interface.
1253  *
1254  * Arguments:
1255  *	rn	pointer to node in the routing table
1256  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1257  *
1258  * Returns:
1259  *	0	successful
1260  *	errno	failed - reason indicated
1261  *
1262  */
1263 static int
1264 if_rtdel(struct radix_node *rn, void *arg)
1265 {
1266 	struct rtentry	*rt = (struct rtentry *)rn;
1267 	struct ifnet	*ifp = arg;
1268 	int		err;
1269 
1270 	if (rt->rt_ifp == ifp) {
1271 
1272 		/*
1273 		 * Protect (sorta) against walktree recursion problems
1274 		 * with cloned routes
1275 		 */
1276 		if (!(rt->rt_flags & RTF_UP))
1277 			return (0);
1278 
1279 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1280 				rt_mask(rt), rt->rt_flags,
1281 				NULL);
1282 		if (err) {
1283 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1284 		}
1285 	}
1286 
1287 	return (0);
1288 }
1289 
1290 static __inline boolean_t
1291 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa)
1292 {
1293 	if (old_ifa == NULL)
1294 		return TRUE;
1295 
1296 	if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 &&
1297 	    (cur_ifa->ifa_ifp->if_flags & IFF_UP))
1298 		return TRUE;
1299 	if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 &&
1300 	    (cur_ifa->ifa_flags & IFA_ROUTE))
1301 		return TRUE;
1302 	return FALSE;
1303 }
1304 
1305 /*
1306  * Locate an interface based on a complete address.
1307  */
1308 struct ifaddr *
1309 ifa_ifwithaddr(struct sockaddr *addr)
1310 {
1311 	const struct ifnet_array *arr;
1312 	int i;
1313 
1314 	arr = ifnet_array_get();
1315 	for (i = 0; i < arr->ifnet_count; ++i) {
1316 		struct ifnet *ifp = arr->ifnet_arr[i];
1317 		struct ifaddr_container *ifac;
1318 
1319 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1320 			struct ifaddr *ifa = ifac->ifa;
1321 
1322 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1323 				continue;
1324 			if (sa_equal(addr, ifa->ifa_addr))
1325 				return (ifa);
1326 			if ((ifp->if_flags & IFF_BROADCAST) &&
1327 			    ifa->ifa_broadaddr &&
1328 			    /* IPv6 doesn't have broadcast */
1329 			    ifa->ifa_broadaddr->sa_len != 0 &&
1330 			    sa_equal(ifa->ifa_broadaddr, addr))
1331 				return (ifa);
1332 		}
1333 	}
1334 	return (NULL);
1335 }
1336 
1337 /*
1338  * Locate the point to point interface with a given destination address.
1339  */
1340 struct ifaddr *
1341 ifa_ifwithdstaddr(struct sockaddr *addr)
1342 {
1343 	const struct ifnet_array *arr;
1344 	int i;
1345 
1346 	arr = ifnet_array_get();
1347 	for (i = 0; i < arr->ifnet_count; ++i) {
1348 		struct ifnet *ifp = arr->ifnet_arr[i];
1349 		struct ifaddr_container *ifac;
1350 
1351 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1352 			continue;
1353 
1354 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1355 			struct ifaddr *ifa = ifac->ifa;
1356 
1357 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1358 				continue;
1359 			if (ifa->ifa_dstaddr &&
1360 			    sa_equal(addr, ifa->ifa_dstaddr))
1361 				return (ifa);
1362 		}
1363 	}
1364 	return (NULL);
1365 }
1366 
1367 /*
1368  * Find an interface on a specific network.  If many, choice
1369  * is most specific found.
1370  */
1371 struct ifaddr *
1372 ifa_ifwithnet(struct sockaddr *addr)
1373 {
1374 	struct ifaddr *ifa_maybe = NULL;
1375 	u_int af = addr->sa_family;
1376 	char *addr_data = addr->sa_data, *cplim;
1377 	const struct ifnet_array *arr;
1378 	int i;
1379 
1380 	/*
1381 	 * AF_LINK addresses can be looked up directly by their index number,
1382 	 * so do that if we can.
1383 	 */
1384 	if (af == AF_LINK) {
1385 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1386 
1387 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1388 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1389 	}
1390 
1391 	/*
1392 	 * Scan though each interface, looking for ones that have
1393 	 * addresses in this address family.
1394 	 */
1395 	arr = ifnet_array_get();
1396 	for (i = 0; i < arr->ifnet_count; ++i) {
1397 		struct ifnet *ifp = arr->ifnet_arr[i];
1398 		struct ifaddr_container *ifac;
1399 
1400 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1401 			struct ifaddr *ifa = ifac->ifa;
1402 			char *cp, *cp2, *cp3;
1403 
1404 			if (ifa->ifa_addr->sa_family != af)
1405 next:				continue;
1406 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1407 				/*
1408 				 * This is a bit broken as it doesn't
1409 				 * take into account that the remote end may
1410 				 * be a single node in the network we are
1411 				 * looking for.
1412 				 * The trouble is that we don't know the
1413 				 * netmask for the remote end.
1414 				 */
1415 				if (ifa->ifa_dstaddr != NULL &&
1416 				    sa_equal(addr, ifa->ifa_dstaddr))
1417 					return (ifa);
1418 			} else {
1419 				/*
1420 				 * if we have a special address handler,
1421 				 * then use it instead of the generic one.
1422 				 */
1423 				if (ifa->ifa_claim_addr) {
1424 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1425 						return (ifa);
1426 					} else {
1427 						continue;
1428 					}
1429 				}
1430 
1431 				/*
1432 				 * Scan all the bits in the ifa's address.
1433 				 * If a bit dissagrees with what we are
1434 				 * looking for, mask it with the netmask
1435 				 * to see if it really matters.
1436 				 * (A byte at a time)
1437 				 */
1438 				if (ifa->ifa_netmask == 0)
1439 					continue;
1440 				cp = addr_data;
1441 				cp2 = ifa->ifa_addr->sa_data;
1442 				cp3 = ifa->ifa_netmask->sa_data;
1443 				cplim = ifa->ifa_netmask->sa_len +
1444 					(char *)ifa->ifa_netmask;
1445 				while (cp3 < cplim)
1446 					if ((*cp++ ^ *cp2++) & *cp3++)
1447 						goto next; /* next address! */
1448 				/*
1449 				 * If the netmask of what we just found
1450 				 * is more specific than what we had before
1451 				 * (if we had one) then remember the new one
1452 				 * before continuing to search for an even
1453 				 * better one.  If the netmasks are equal,
1454 				 * we prefer the this ifa based on the result
1455 				 * of ifa_prefer().
1456 				 */
1457 				if (ifa_maybe == NULL ||
1458 				    rn_refines((char *)ifa->ifa_netmask,
1459 				        (char *)ifa_maybe->ifa_netmask) ||
1460 				    (sa_equal(ifa_maybe->ifa_netmask,
1461 				        ifa->ifa_netmask) &&
1462 				     ifa_prefer(ifa, ifa_maybe)))
1463 					ifa_maybe = ifa;
1464 			}
1465 		}
1466 	}
1467 	return (ifa_maybe);
1468 }
1469 
1470 /*
1471  * Find an interface address specific to an interface best matching
1472  * a given address.
1473  */
1474 struct ifaddr *
1475 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1476 {
1477 	struct ifaddr_container *ifac;
1478 	char *cp, *cp2, *cp3;
1479 	char *cplim;
1480 	struct ifaddr *ifa_maybe = NULL;
1481 	u_int af = addr->sa_family;
1482 
1483 	if (af >= AF_MAX)
1484 		return (0);
1485 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1486 		struct ifaddr *ifa = ifac->ifa;
1487 
1488 		if (ifa->ifa_addr->sa_family != af)
1489 			continue;
1490 		if (ifa_maybe == NULL)
1491 			ifa_maybe = ifa;
1492 		if (ifa->ifa_netmask == NULL) {
1493 			if (sa_equal(addr, ifa->ifa_addr) ||
1494 			    (ifa->ifa_dstaddr != NULL &&
1495 			     sa_equal(addr, ifa->ifa_dstaddr)))
1496 				return (ifa);
1497 			continue;
1498 		}
1499 		if (ifp->if_flags & IFF_POINTOPOINT) {
1500 			if (sa_equal(addr, ifa->ifa_dstaddr))
1501 				return (ifa);
1502 		} else {
1503 			cp = addr->sa_data;
1504 			cp2 = ifa->ifa_addr->sa_data;
1505 			cp3 = ifa->ifa_netmask->sa_data;
1506 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1507 			for (; cp3 < cplim; cp3++)
1508 				if ((*cp++ ^ *cp2++) & *cp3)
1509 					break;
1510 			if (cp3 == cplim)
1511 				return (ifa);
1512 		}
1513 	}
1514 	return (ifa_maybe);
1515 }
1516 
1517 /*
1518  * Default action when installing a route with a Link Level gateway.
1519  * Lookup an appropriate real ifa to point to.
1520  * This should be moved to /sys/net/link.c eventually.
1521  */
1522 static void
1523 link_rtrequest(int cmd, struct rtentry *rt)
1524 {
1525 	struct ifaddr *ifa;
1526 	struct sockaddr *dst;
1527 	struct ifnet *ifp;
1528 
1529 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1530 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1531 		return;
1532 	ifa = ifaof_ifpforaddr(dst, ifp);
1533 	if (ifa != NULL) {
1534 		IFAFREE(rt->rt_ifa);
1535 		IFAREF(ifa);
1536 		rt->rt_ifa = ifa;
1537 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1538 			ifa->ifa_rtrequest(cmd, rt);
1539 	}
1540 }
1541 
1542 struct netmsg_ifroute {
1543 	struct netmsg_base	base;
1544 	struct ifnet		*ifp;
1545 	int			flag;
1546 	int			fam;
1547 };
1548 
1549 /*
1550  * Mark an interface down and notify protocols of the transition.
1551  */
1552 static void
1553 if_unroute_dispatch(netmsg_t nmsg)
1554 {
1555 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1556 	struct ifnet *ifp = msg->ifp;
1557 	int flag = msg->flag, fam = msg->fam;
1558 	struct ifaddr_container *ifac;
1559 
1560 	ifp->if_flags &= ~flag;
1561 	getmicrotime(&ifp->if_lastchange);
1562 	/*
1563 	 * The ifaddr processing in the following loop will block,
1564 	 * however, this function is called in netisr0, in which
1565 	 * ifaddr list changes happen, so we don't care about the
1566 	 * blockness of the ifaddr processing here.
1567 	 */
1568 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1569 		struct ifaddr *ifa = ifac->ifa;
1570 
1571 		/* Ignore marker */
1572 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1573 			continue;
1574 
1575 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1576 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1577 	}
1578 	ifq_purge_all(&ifp->if_snd);
1579 	rt_ifmsg(ifp);
1580 
1581 	lwkt_replymsg(&nmsg->lmsg, 0);
1582 }
1583 
1584 void
1585 if_unroute(struct ifnet *ifp, int flag, int fam)
1586 {
1587 	struct netmsg_ifroute msg;
1588 
1589 	ASSERT_CANDOMSG_NETISR0(curthread);
1590 
1591 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1592 	    if_unroute_dispatch);
1593 	msg.ifp = ifp;
1594 	msg.flag = flag;
1595 	msg.fam = fam;
1596 	lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1597 }
1598 
1599 /*
1600  * Mark an interface up and notify protocols of the transition.
1601  */
1602 static void
1603 if_route_dispatch(netmsg_t nmsg)
1604 {
1605 	struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1606 	struct ifnet *ifp = msg->ifp;
1607 	int flag = msg->flag, fam = msg->fam;
1608 	struct ifaddr_container *ifac;
1609 
1610 	ifq_purge_all(&ifp->if_snd);
1611 	ifp->if_flags |= flag;
1612 	getmicrotime(&ifp->if_lastchange);
1613 	/*
1614 	 * The ifaddr processing in the following loop will block,
1615 	 * however, this function is called in netisr0, in which
1616 	 * ifaddr list changes happen, so we don't care about the
1617 	 * blockness of the ifaddr processing here.
1618 	 */
1619 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1620 		struct ifaddr *ifa = ifac->ifa;
1621 
1622 		/* Ignore marker */
1623 		if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1624 			continue;
1625 
1626 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1627 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1628 	}
1629 	rt_ifmsg(ifp);
1630 #ifdef INET6
1631 	in6_if_up(ifp);
1632 #endif
1633 
1634 	lwkt_replymsg(&nmsg->lmsg, 0);
1635 }
1636 
1637 void
1638 if_route(struct ifnet *ifp, int flag, int fam)
1639 {
1640 	struct netmsg_ifroute msg;
1641 
1642 	ASSERT_CANDOMSG_NETISR0(curthread);
1643 
1644 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1645 	    if_route_dispatch);
1646 	msg.ifp = ifp;
1647 	msg.flag = flag;
1648 	msg.fam = fam;
1649 	lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1650 }
1651 
1652 /*
1653  * Mark an interface down and notify protocols of the transition.  An
1654  * interface going down is also considered to be a synchronizing event.
1655  * We must ensure that all packet processing related to the interface
1656  * has completed before we return so e.g. the caller can free the ifnet
1657  * structure that the mbufs may be referencing.
1658  *
1659  * NOTE: must be called at splnet or eqivalent.
1660  */
1661 void
1662 if_down(struct ifnet *ifp)
1663 {
1664 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1665 	netmsg_service_sync();
1666 }
1667 
1668 /*
1669  * Mark an interface up and notify protocols of
1670  * the transition.
1671  * NOTE: must be called at splnet or eqivalent.
1672  */
1673 void
1674 if_up(struct ifnet *ifp)
1675 {
1676 	if_route(ifp, IFF_UP, AF_UNSPEC);
1677 }
1678 
1679 /*
1680  * Process a link state change.
1681  * NOTE: must be called at splsoftnet or equivalent.
1682  */
1683 void
1684 if_link_state_change(struct ifnet *ifp)
1685 {
1686 	int link_state = ifp->if_link_state;
1687 
1688 	rt_ifmsg(ifp);
1689 	devctl_notify("IFNET", ifp->if_xname,
1690 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1691 }
1692 
1693 /*
1694  * Handle interface watchdog timer routines.  Called
1695  * from softclock, we decrement timers (if set) and
1696  * call the appropriate interface routine on expiration.
1697  */
1698 static void
1699 if_slowtimo_dispatch(netmsg_t nmsg)
1700 {
1701 	struct globaldata *gd = mycpu;
1702 	const struct ifnet_array *arr;
1703 	int i;
1704 
1705 	ASSERT_IN_NETISR(0);
1706 
1707 	crit_enter_gd(gd);
1708 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1709 	crit_exit_gd(gd);
1710 
1711 	arr = ifnet_array_get();
1712 	for (i = 0; i < arr->ifnet_count; ++i) {
1713 		struct ifnet *ifp = arr->ifnet_arr[i];
1714 
1715 		crit_enter_gd(gd);
1716 
1717 		if (if_stats_compat) {
1718 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1719 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1720 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1721 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1722 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1723 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1724 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1725 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1726 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1727 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1728 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1729 			IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops);
1730 		}
1731 
1732 		if (ifp->if_timer == 0 || --ifp->if_timer) {
1733 			crit_exit_gd(gd);
1734 			continue;
1735 		}
1736 		if (ifp->if_watchdog) {
1737 			if (ifnet_tryserialize_all(ifp)) {
1738 				(*ifp->if_watchdog)(ifp);
1739 				ifnet_deserialize_all(ifp);
1740 			} else {
1741 				/* try again next timeout */
1742 				++ifp->if_timer;
1743 			}
1744 		}
1745 
1746 		crit_exit_gd(gd);
1747 	}
1748 
1749 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1750 }
1751 
1752 static void
1753 if_slowtimo(void *arg __unused)
1754 {
1755 	struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1756 
1757 	KASSERT(mycpuid == 0, ("not on cpu0"));
1758 	crit_enter();
1759 	if (lmsg->ms_flags & MSGF_DONE)
1760 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1761 	crit_exit();
1762 }
1763 
1764 /*
1765  * Map interface name to
1766  * interface structure pointer.
1767  */
1768 struct ifnet *
1769 ifunit(const char *name)
1770 {
1771 	struct ifnet *ifp;
1772 
1773 	/*
1774 	 * Search all the interfaces for this name/number
1775 	 */
1776 	KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1777 
1778 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1779 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1780 			break;
1781 	}
1782 	return (ifp);
1783 }
1784 
1785 struct ifnet *
1786 ifunit_netisr(const char *name)
1787 {
1788 	const struct ifnet_array *arr;
1789 	int i;
1790 
1791 	/*
1792 	 * Search all the interfaces for this name/number
1793 	 */
1794 
1795 	arr = ifnet_array_get();
1796 	for (i = 0; i < arr->ifnet_count; ++i) {
1797 		struct ifnet *ifp = arr->ifnet_arr[i];
1798 
1799 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1800 			return ifp;
1801 	}
1802 	return NULL;
1803 }
1804 
1805 /*
1806  * Interface ioctls.
1807  */
1808 int
1809 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1810 {
1811 	struct ifnet *ifp;
1812 	struct ifreq *ifr;
1813 	struct ifstat *ifs;
1814 	int error, do_ifup = 0;
1815 	short oif_flags;
1816 	int new_flags;
1817 	size_t namelen, onamelen;
1818 	char new_name[IFNAMSIZ];
1819 	struct ifaddr *ifa;
1820 	struct sockaddr_dl *sdl;
1821 
1822 	switch (cmd) {
1823 	case SIOCGIFCONF:
1824 	case OSIOCGIFCONF:
1825 		return (ifconf(cmd, data, cred));
1826 	default:
1827 		break;
1828 	}
1829 
1830 	ifr = (struct ifreq *)data;
1831 
1832 	switch (cmd) {
1833 	case SIOCIFCREATE:
1834 	case SIOCIFCREATE2:
1835 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1836 			return (error);
1837 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1838 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1839 	case SIOCIFDESTROY:
1840 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1841 			return (error);
1842 		return (if_clone_destroy(ifr->ifr_name));
1843 	case SIOCIFGCLONERS:
1844 		return (if_clone_list((struct if_clonereq *)data));
1845 	default:
1846 		break;
1847 	}
1848 
1849 	/*
1850 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1851 	 * lock to serialize the ifconfig ioctl operation.
1852 	 */
1853 	ifnet_lock();
1854 
1855 	ifp = ifunit(ifr->ifr_name);
1856 	if (ifp == NULL) {
1857 		ifnet_unlock();
1858 		return (ENXIO);
1859 	}
1860 	error = 0;
1861 
1862 	switch (cmd) {
1863 	case SIOCGIFINDEX:
1864 		ifr->ifr_index = ifp->if_index;
1865 		break;
1866 
1867 	case SIOCGIFFLAGS:
1868 		ifr->ifr_flags = ifp->if_flags;
1869 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1870 		break;
1871 
1872 	case SIOCGIFCAP:
1873 		ifr->ifr_reqcap = ifp->if_capabilities;
1874 		ifr->ifr_curcap = ifp->if_capenable;
1875 		break;
1876 
1877 	case SIOCGIFMETRIC:
1878 		ifr->ifr_metric = ifp->if_metric;
1879 		break;
1880 
1881 	case SIOCGIFMTU:
1882 		ifr->ifr_mtu = ifp->if_mtu;
1883 		break;
1884 
1885 	case SIOCGIFTSOLEN:
1886 		ifr->ifr_tsolen = ifp->if_tsolen;
1887 		break;
1888 
1889 	case SIOCGIFDATA:
1890 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1891 				sizeof(ifp->if_data));
1892 		break;
1893 
1894 	case SIOCGIFPHYS:
1895 		ifr->ifr_phys = ifp->if_physical;
1896 		break;
1897 
1898 	case SIOCGIFPOLLCPU:
1899 		ifr->ifr_pollcpu = -1;
1900 		break;
1901 
1902 	case SIOCSIFPOLLCPU:
1903 		break;
1904 
1905 	case SIOCSIFFLAGS:
1906 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1907 		if (error)
1908 			break;
1909 		new_flags = (ifr->ifr_flags & 0xffff) |
1910 		    (ifr->ifr_flagshigh << 16);
1911 		if (ifp->if_flags & IFF_SMART) {
1912 			/* Smart drivers twiddle their own routes */
1913 		} else if (ifp->if_flags & IFF_UP &&
1914 		    (new_flags & IFF_UP) == 0) {
1915 			if_down(ifp);
1916 		} else if (new_flags & IFF_UP &&
1917 		    (ifp->if_flags & IFF_UP) == 0) {
1918 			do_ifup = 1;
1919 		}
1920 
1921 #ifdef IFPOLL_ENABLE
1922 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1923 			if (new_flags & IFF_NPOLLING)
1924 				ifpoll_register(ifp);
1925 			else
1926 				ifpoll_deregister(ifp);
1927 		}
1928 #endif
1929 
1930 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1931 			(new_flags &~ IFF_CANTCHANGE);
1932 		if (new_flags & IFF_PPROMISC) {
1933 			/* Permanently promiscuous mode requested */
1934 			ifp->if_flags |= IFF_PROMISC;
1935 		} else if (ifp->if_pcount == 0) {
1936 			ifp->if_flags &= ~IFF_PROMISC;
1937 		}
1938 		if (ifp->if_ioctl) {
1939 			ifnet_serialize_all(ifp);
1940 			ifp->if_ioctl(ifp, cmd, data, cred);
1941 			ifnet_deserialize_all(ifp);
1942 		}
1943 		if (do_ifup)
1944 			if_up(ifp);
1945 		getmicrotime(&ifp->if_lastchange);
1946 		break;
1947 
1948 	case SIOCSIFCAP:
1949 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1950 		if (error)
1951 			break;
1952 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1953 			error = EINVAL;
1954 			break;
1955 		}
1956 		ifnet_serialize_all(ifp);
1957 		ifp->if_ioctl(ifp, cmd, data, cred);
1958 		ifnet_deserialize_all(ifp);
1959 		break;
1960 
1961 	case SIOCSIFNAME:
1962 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1963 		if (error)
1964 			break;
1965 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1966 		if (error)
1967 			break;
1968 		if (new_name[0] == '\0') {
1969 			error = EINVAL;
1970 			break;
1971 		}
1972 		if (ifunit(new_name) != NULL) {
1973 			error = EEXIST;
1974 			break;
1975 		}
1976 
1977 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1978 
1979 		/* Announce the departure of the interface. */
1980 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1981 
1982 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1983 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1984 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1985 		namelen = strlen(new_name);
1986 		onamelen = sdl->sdl_nlen;
1987 		/*
1988 		 * Move the address if needed.  This is safe because we
1989 		 * allocate space for a name of length IFNAMSIZ when we
1990 		 * create this in if_attach().
1991 		 */
1992 		if (namelen != onamelen) {
1993 			bcopy(sdl->sdl_data + onamelen,
1994 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1995 		}
1996 		bcopy(new_name, sdl->sdl_data, namelen);
1997 		sdl->sdl_nlen = namelen;
1998 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1999 		bzero(sdl->sdl_data, onamelen);
2000 		while (namelen != 0)
2001 			sdl->sdl_data[--namelen] = 0xff;
2002 
2003 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
2004 
2005 		/* Announce the return of the interface. */
2006 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
2007 		break;
2008 
2009 	case SIOCSIFMETRIC:
2010 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2011 		if (error)
2012 			break;
2013 		ifp->if_metric = ifr->ifr_metric;
2014 		getmicrotime(&ifp->if_lastchange);
2015 		break;
2016 
2017 	case SIOCSIFPHYS:
2018 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2019 		if (error)
2020 			break;
2021 		if (ifp->if_ioctl == NULL) {
2022 		        error = EOPNOTSUPP;
2023 			break;
2024 		}
2025 		ifnet_serialize_all(ifp);
2026 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2027 		ifnet_deserialize_all(ifp);
2028 		if (error == 0)
2029 			getmicrotime(&ifp->if_lastchange);
2030 		break;
2031 
2032 	case SIOCSIFMTU:
2033 	{
2034 		u_long oldmtu = ifp->if_mtu;
2035 
2036 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2037 		if (error)
2038 			break;
2039 		if (ifp->if_ioctl == NULL) {
2040 			error = EOPNOTSUPP;
2041 			break;
2042 		}
2043 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
2044 			error = EINVAL;
2045 			break;
2046 		}
2047 		ifnet_serialize_all(ifp);
2048 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2049 		ifnet_deserialize_all(ifp);
2050 		if (error == 0) {
2051 			getmicrotime(&ifp->if_lastchange);
2052 			rt_ifmsg(ifp);
2053 		}
2054 		/*
2055 		 * If the link MTU changed, do network layer specific procedure.
2056 		 */
2057 		if (ifp->if_mtu != oldmtu) {
2058 #ifdef INET6
2059 			nd6_setmtu(ifp);
2060 #endif
2061 		}
2062 		break;
2063 	}
2064 
2065 	case SIOCSIFTSOLEN:
2066 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2067 		if (error)
2068 			break;
2069 
2070 		/* XXX need driver supplied upper limit */
2071 		if (ifr->ifr_tsolen <= 0) {
2072 			error = EINVAL;
2073 			break;
2074 		}
2075 		ifp->if_tsolen = ifr->ifr_tsolen;
2076 		break;
2077 
2078 	case SIOCADDMULTI:
2079 	case SIOCDELMULTI:
2080 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2081 		if (error)
2082 			break;
2083 
2084 		/* Don't allow group membership on non-multicast interfaces. */
2085 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2086 			error = EOPNOTSUPP;
2087 			break;
2088 		}
2089 
2090 		/* Don't let users screw up protocols' entries. */
2091 		if (ifr->ifr_addr.sa_family != AF_LINK) {
2092 			error = EINVAL;
2093 			break;
2094 		}
2095 
2096 		if (cmd == SIOCADDMULTI) {
2097 			struct ifmultiaddr *ifma;
2098 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2099 		} else {
2100 			error = if_delmulti(ifp, &ifr->ifr_addr);
2101 		}
2102 		if (error == 0)
2103 			getmicrotime(&ifp->if_lastchange);
2104 		break;
2105 
2106 	case SIOCSIFPHYADDR:
2107 	case SIOCDIFPHYADDR:
2108 #ifdef INET6
2109 	case SIOCSIFPHYADDR_IN6:
2110 #endif
2111 	case SIOCSLIFPHYADDR:
2112         case SIOCSIFMEDIA:
2113 	case SIOCSIFGENERIC:
2114 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2115 		if (error)
2116 			break;
2117 		if (ifp->if_ioctl == 0) {
2118 			error = EOPNOTSUPP;
2119 			break;
2120 		}
2121 		ifnet_serialize_all(ifp);
2122 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2123 		ifnet_deserialize_all(ifp);
2124 		if (error == 0)
2125 			getmicrotime(&ifp->if_lastchange);
2126 		break;
2127 
2128 	case SIOCGIFSTATUS:
2129 		ifs = (struct ifstat *)data;
2130 		ifs->ascii[0] = '\0';
2131 		/* fall through */
2132 	case SIOCGIFPSRCADDR:
2133 	case SIOCGIFPDSTADDR:
2134 	case SIOCGLIFPHYADDR:
2135 	case SIOCGIFMEDIA:
2136 	case SIOCGIFGENERIC:
2137 		if (ifp->if_ioctl == NULL) {
2138 			error = EOPNOTSUPP;
2139 			break;
2140 		}
2141 		ifnet_serialize_all(ifp);
2142 		error = ifp->if_ioctl(ifp, cmd, data, cred);
2143 		ifnet_deserialize_all(ifp);
2144 		break;
2145 
2146 	case SIOCSIFLLADDR:
2147 		error = priv_check_cred(cred, PRIV_ROOT, 0);
2148 		if (error)
2149 			break;
2150 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2151 				     ifr->ifr_addr.sa_len);
2152 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2153 		break;
2154 
2155 	default:
2156 		oif_flags = ifp->if_flags;
2157 		if (so->so_proto == 0) {
2158 			error = EOPNOTSUPP;
2159 			break;
2160 		}
2161 		error = so_pru_control_direct(so, cmd, data, ifp);
2162 
2163 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2164 #ifdef INET6
2165 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
2166 			if (ifp->if_flags & IFF_UP) {
2167 				crit_enter();
2168 				in6_if_up(ifp);
2169 				crit_exit();
2170 			}
2171 #endif
2172 		}
2173 		break;
2174 	}
2175 
2176 	ifnet_unlock();
2177 	return (error);
2178 }
2179 
2180 /*
2181  * Set/clear promiscuous mode on interface ifp based on the truth value
2182  * of pswitch.  The calls are reference counted so that only the first
2183  * "on" request actually has an effect, as does the final "off" request.
2184  * Results are undefined if the "off" and "on" requests are not matched.
2185  */
2186 int
2187 ifpromisc(struct ifnet *ifp, int pswitch)
2188 {
2189 	struct ifreq ifr;
2190 	int error;
2191 	int oldflags;
2192 
2193 	oldflags = ifp->if_flags;
2194 	if (ifp->if_flags & IFF_PPROMISC) {
2195 		/* Do nothing if device is in permanently promiscuous mode */
2196 		ifp->if_pcount += pswitch ? 1 : -1;
2197 		return (0);
2198 	}
2199 	if (pswitch) {
2200 		/*
2201 		 * If the device is not configured up, we cannot put it in
2202 		 * promiscuous mode.
2203 		 */
2204 		if ((ifp->if_flags & IFF_UP) == 0)
2205 			return (ENETDOWN);
2206 		if (ifp->if_pcount++ != 0)
2207 			return (0);
2208 		ifp->if_flags |= IFF_PROMISC;
2209 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
2210 		    ifp->if_xname);
2211 	} else {
2212 		if (--ifp->if_pcount > 0)
2213 			return (0);
2214 		ifp->if_flags &= ~IFF_PROMISC;
2215 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
2216 		    ifp->if_xname);
2217 	}
2218 	ifr.ifr_flags = ifp->if_flags;
2219 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2220 	ifnet_serialize_all(ifp);
2221 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2222 	ifnet_deserialize_all(ifp);
2223 	if (error == 0)
2224 		rt_ifmsg(ifp);
2225 	else
2226 		ifp->if_flags = oldflags;
2227 	return error;
2228 }
2229 
2230 /*
2231  * Return interface configuration
2232  * of system.  List may be used
2233  * in later ioctl's (above) to get
2234  * other information.
2235  */
2236 static int
2237 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2238 {
2239 	struct ifconf *ifc = (struct ifconf *)data;
2240 	struct ifnet *ifp;
2241 	struct sockaddr *sa;
2242 	struct ifreq ifr, *ifrp;
2243 	int space = ifc->ifc_len, error = 0;
2244 
2245 	ifrp = ifc->ifc_req;
2246 
2247 	ifnet_lock();
2248 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2249 		struct ifaddr_container *ifac, *ifac_mark;
2250 		struct ifaddr_marker mark;
2251 		struct ifaddrhead *head;
2252 		int addrs;
2253 
2254 		if (space <= sizeof ifr)
2255 			break;
2256 
2257 		/*
2258 		 * Zero the stack declared structure first to prevent
2259 		 * memory disclosure.
2260 		 */
2261 		bzero(&ifr, sizeof(ifr));
2262 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2263 		    >= sizeof(ifr.ifr_name)) {
2264 			error = ENAMETOOLONG;
2265 			break;
2266 		}
2267 
2268 		/*
2269 		 * Add a marker, since copyout() could block and during that
2270 		 * period the list could be changed.  Inserting the marker to
2271 		 * the header of the list will not cause trouble for the code
2272 		 * assuming that the first element of the list is AF_LINK; the
2273 		 * marker will be moved to the next position w/o blocking.
2274 		 */
2275 		ifa_marker_init(&mark, ifp);
2276 		ifac_mark = &mark.ifac;
2277 		head = &ifp->if_addrheads[mycpuid];
2278 
2279 		addrs = 0;
2280 		TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2281 		while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2282 			struct ifaddr *ifa = ifac->ifa;
2283 
2284 			TAILQ_REMOVE(head, ifac_mark, ifa_link);
2285 			TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2286 
2287 			/* Ignore marker */
2288 			if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2289 				continue;
2290 
2291 			if (space <= sizeof ifr)
2292 				break;
2293 			sa = ifa->ifa_addr;
2294 			if (cred->cr_prison &&
2295 			    prison_if(cred, sa))
2296 				continue;
2297 			addrs++;
2298 			/*
2299 			 * Keep a reference on this ifaddr, so that it will
2300 			 * not be destroyed when its address is copied to
2301 			 * the userland, which could block.
2302 			 */
2303 			IFAREF(ifa);
2304 			if (sa->sa_len <= sizeof(*sa)) {
2305 				ifr.ifr_addr = *sa;
2306 				error = copyout(&ifr, ifrp, sizeof ifr);
2307 				ifrp++;
2308 			} else {
2309 				if (space < (sizeof ifr) + sa->sa_len -
2310 					    sizeof(*sa)) {
2311 					IFAFREE(ifa);
2312 					break;
2313 				}
2314 				space -= sa->sa_len - sizeof(*sa);
2315 				error = copyout(&ifr, ifrp,
2316 						sizeof ifr.ifr_name);
2317 				if (error == 0)
2318 					error = copyout(sa, &ifrp->ifr_addr,
2319 							sa->sa_len);
2320 				ifrp = (struct ifreq *)
2321 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2322 			}
2323 			IFAFREE(ifa);
2324 			if (error)
2325 				break;
2326 			space -= sizeof ifr;
2327 		}
2328 		TAILQ_REMOVE(head, ifac_mark, ifa_link);
2329 		if (error)
2330 			break;
2331 		if (!addrs) {
2332 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2333 			error = copyout(&ifr, ifrp, sizeof ifr);
2334 			if (error)
2335 				break;
2336 			space -= sizeof ifr;
2337 			ifrp++;
2338 		}
2339 	}
2340 	ifnet_unlock();
2341 
2342 	ifc->ifc_len -= space;
2343 	return (error);
2344 }
2345 
2346 /*
2347  * Just like if_promisc(), but for all-multicast-reception mode.
2348  */
2349 int
2350 if_allmulti(struct ifnet *ifp, int onswitch)
2351 {
2352 	int error = 0;
2353 	struct ifreq ifr;
2354 
2355 	crit_enter();
2356 
2357 	if (onswitch) {
2358 		if (ifp->if_amcount++ == 0) {
2359 			ifp->if_flags |= IFF_ALLMULTI;
2360 			ifr.ifr_flags = ifp->if_flags;
2361 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2362 			ifnet_serialize_all(ifp);
2363 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2364 					      NULL);
2365 			ifnet_deserialize_all(ifp);
2366 		}
2367 	} else {
2368 		if (ifp->if_amcount > 1) {
2369 			ifp->if_amcount--;
2370 		} else {
2371 			ifp->if_amcount = 0;
2372 			ifp->if_flags &= ~IFF_ALLMULTI;
2373 			ifr.ifr_flags = ifp->if_flags;
2374 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2375 			ifnet_serialize_all(ifp);
2376 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2377 					      NULL);
2378 			ifnet_deserialize_all(ifp);
2379 		}
2380 	}
2381 
2382 	crit_exit();
2383 
2384 	if (error == 0)
2385 		rt_ifmsg(ifp);
2386 	return error;
2387 }
2388 
2389 /*
2390  * Add a multicast listenership to the interface in question.
2391  * The link layer provides a routine which converts
2392  */
2393 int
2394 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2395     struct ifmultiaddr **retifma)
2396 {
2397 	struct sockaddr *llsa, *dupsa;
2398 	int error;
2399 	struct ifmultiaddr *ifma;
2400 
2401 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2402 
2403 	/*
2404 	 * If the matching multicast address already exists
2405 	 * then don't add a new one, just add a reference
2406 	 */
2407 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2408 		if (sa_equal(sa, ifma->ifma_addr)) {
2409 			ifma->ifma_refcount++;
2410 			if (retifma)
2411 				*retifma = ifma;
2412 			return 0;
2413 		}
2414 	}
2415 
2416 	/*
2417 	 * Give the link layer a chance to accept/reject it, and also
2418 	 * find out which AF_LINK address this maps to, if it isn't one
2419 	 * already.
2420 	 */
2421 	if (ifp->if_resolvemulti) {
2422 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2423 		if (error)
2424 			return error;
2425 	} else {
2426 		llsa = NULL;
2427 	}
2428 
2429 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2430 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT);
2431 	bcopy(sa, dupsa, sa->sa_len);
2432 
2433 	ifma->ifma_addr = dupsa;
2434 	ifma->ifma_lladdr = llsa;
2435 	ifma->ifma_ifp = ifp;
2436 	ifma->ifma_refcount = 1;
2437 	ifma->ifma_protospec = NULL;
2438 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2439 
2440 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2441 	if (retifma)
2442 		*retifma = ifma;
2443 
2444 	if (llsa != NULL) {
2445 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2446 			if (sa_equal(ifma->ifma_addr, llsa))
2447 				break;
2448 		}
2449 		if (ifma) {
2450 			ifma->ifma_refcount++;
2451 		} else {
2452 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2453 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT);
2454 			bcopy(llsa, dupsa, llsa->sa_len);
2455 			ifma->ifma_addr = dupsa;
2456 			ifma->ifma_ifp = ifp;
2457 			ifma->ifma_refcount = 1;
2458 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2459 		}
2460 	}
2461 	/*
2462 	 * We are certain we have added something, so call down to the
2463 	 * interface to let them know about it.
2464 	 */
2465 	if (ifp->if_ioctl)
2466 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2467 
2468 	return 0;
2469 }
2470 
2471 int
2472 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2473     struct ifmultiaddr **retifma)
2474 {
2475 	int error;
2476 
2477 	ifnet_serialize_all(ifp);
2478 	error = if_addmulti_serialized(ifp, sa, retifma);
2479 	ifnet_deserialize_all(ifp);
2480 
2481 	return error;
2482 }
2483 
2484 /*
2485  * Remove a reference to a multicast address on this interface.  Yell
2486  * if the request does not match an existing membership.
2487  */
2488 static int
2489 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2490 {
2491 	struct ifmultiaddr *ifma;
2492 
2493 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2494 
2495 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2496 		if (sa_equal(sa, ifma->ifma_addr))
2497 			break;
2498 	if (ifma == NULL)
2499 		return ENOENT;
2500 
2501 	if (ifma->ifma_refcount > 1) {
2502 		ifma->ifma_refcount--;
2503 		return 0;
2504 	}
2505 
2506 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2507 	sa = ifma->ifma_lladdr;
2508 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2509 	/*
2510 	 * Make sure the interface driver is notified
2511 	 * in the case of a link layer mcast group being left.
2512 	 */
2513 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2514 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2515 	kfree(ifma->ifma_addr, M_IFMADDR);
2516 	kfree(ifma, M_IFMADDR);
2517 	if (sa == NULL)
2518 		return 0;
2519 
2520 	/*
2521 	 * Now look for the link-layer address which corresponds to
2522 	 * this network address.  It had been squirreled away in
2523 	 * ifma->ifma_lladdr for this purpose (so we don't have
2524 	 * to call ifp->if_resolvemulti() again), and we saved that
2525 	 * value in sa above.  If some nasty deleted the
2526 	 * link-layer address out from underneath us, we can deal because
2527 	 * the address we stored was is not the same as the one which was
2528 	 * in the record for the link-layer address.  (So we don't complain
2529 	 * in that case.)
2530 	 */
2531 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2532 		if (sa_equal(sa, ifma->ifma_addr))
2533 			break;
2534 	if (ifma == NULL)
2535 		return 0;
2536 
2537 	if (ifma->ifma_refcount > 1) {
2538 		ifma->ifma_refcount--;
2539 		return 0;
2540 	}
2541 
2542 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2543 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2544 	kfree(ifma->ifma_addr, M_IFMADDR);
2545 	kfree(sa, M_IFMADDR);
2546 	kfree(ifma, M_IFMADDR);
2547 
2548 	return 0;
2549 }
2550 
2551 int
2552 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2553 {
2554 	int error;
2555 
2556 	ifnet_serialize_all(ifp);
2557 	error = if_delmulti_serialized(ifp, sa);
2558 	ifnet_deserialize_all(ifp);
2559 
2560 	return error;
2561 }
2562 
2563 /*
2564  * Delete all multicast group membership for an interface.
2565  * Should be used to quickly flush all multicast filters.
2566  */
2567 void
2568 if_delallmulti_serialized(struct ifnet *ifp)
2569 {
2570 	struct ifmultiaddr *ifma, mark;
2571 	struct sockaddr sa;
2572 
2573 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2574 
2575 	bzero(&sa, sizeof(sa));
2576 	sa.sa_family = AF_UNSPEC;
2577 	sa.sa_len = sizeof(sa);
2578 
2579 	bzero(&mark, sizeof(mark));
2580 	mark.ifma_addr = &sa;
2581 
2582 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2583 	while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2584 		TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2585 		TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2586 		    ifma_link);
2587 
2588 		if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2589 			continue;
2590 
2591 		if_delmulti_serialized(ifp, ifma->ifma_addr);
2592 	}
2593 	TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2594 }
2595 
2596 
2597 /*
2598  * Set the link layer address on an interface.
2599  *
2600  * At this time we only support certain types of interfaces,
2601  * and we don't allow the length of the address to change.
2602  */
2603 int
2604 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2605 {
2606 	struct sockaddr_dl *sdl;
2607 	struct ifreq ifr;
2608 
2609 	sdl = IF_LLSOCKADDR(ifp);
2610 	if (sdl == NULL)
2611 		return (EINVAL);
2612 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2613 		return (EINVAL);
2614 	switch (ifp->if_type) {
2615 	case IFT_ETHER:			/* these types use struct arpcom */
2616 	case IFT_XETHER:
2617 	case IFT_L2VLAN:
2618 	case IFT_IEEE8023ADLAG:
2619 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2620 		bcopy(lladdr, LLADDR(sdl), len);
2621 		break;
2622 	default:
2623 		return (ENODEV);
2624 	}
2625 	/*
2626 	 * If the interface is already up, we need
2627 	 * to re-init it in order to reprogram its
2628 	 * address filter.
2629 	 */
2630 	ifnet_serialize_all(ifp);
2631 	if ((ifp->if_flags & IFF_UP) != 0) {
2632 #ifdef INET
2633 		struct ifaddr_container *ifac;
2634 #endif
2635 
2636 		ifp->if_flags &= ~IFF_UP;
2637 		ifr.ifr_flags = ifp->if_flags;
2638 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2639 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2640 			      NULL);
2641 		ifp->if_flags |= IFF_UP;
2642 		ifr.ifr_flags = ifp->if_flags;
2643 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2644 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2645 				 NULL);
2646 #ifdef INET
2647 		/*
2648 		 * Also send gratuitous ARPs to notify other nodes about
2649 		 * the address change.
2650 		 */
2651 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2652 			struct ifaddr *ifa = ifac->ifa;
2653 
2654 			if (ifa->ifa_addr != NULL &&
2655 			    ifa->ifa_addr->sa_family == AF_INET)
2656 				arp_gratuitous(ifp, ifa);
2657 		}
2658 #endif
2659 	}
2660 	ifnet_deserialize_all(ifp);
2661 	return (0);
2662 }
2663 
2664 struct ifmultiaddr *
2665 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2666 {
2667 	struct ifmultiaddr *ifma;
2668 
2669 	/* TODO: need ifnet_serialize_main */
2670 	ifnet_serialize_all(ifp);
2671 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2672 		if (sa_equal(ifma->ifma_addr, sa))
2673 			break;
2674 	ifnet_deserialize_all(ifp);
2675 
2676 	return ifma;
2677 }
2678 
2679 /*
2680  * This function locates the first real ethernet MAC from a network
2681  * card and loads it into node, returning 0 on success or ENOENT if
2682  * no suitable interfaces were found.  It is used by the uuid code to
2683  * generate a unique 6-byte number.
2684  */
2685 int
2686 if_getanyethermac(uint16_t *node, int minlen)
2687 {
2688 	struct ifnet *ifp;
2689 	struct sockaddr_dl *sdl;
2690 
2691 	ifnet_lock();
2692 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2693 		if (ifp->if_type != IFT_ETHER)
2694 			continue;
2695 		sdl = IF_LLSOCKADDR(ifp);
2696 		if (sdl->sdl_alen < minlen)
2697 			continue;
2698 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2699 		      minlen);
2700 		ifnet_unlock();
2701 		return(0);
2702 	}
2703 	ifnet_unlock();
2704 	return (ENOENT);
2705 }
2706 
2707 /*
2708  * The name argument must be a pointer to storage which will last as
2709  * long as the interface does.  For physical devices, the result of
2710  * device_get_name(dev) is a good choice and for pseudo-devices a
2711  * static string works well.
2712  */
2713 void
2714 if_initname(struct ifnet *ifp, const char *name, int unit)
2715 {
2716 	ifp->if_dname = name;
2717 	ifp->if_dunit = unit;
2718 	if (unit != IF_DUNIT_NONE)
2719 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2720 	else
2721 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2722 }
2723 
2724 int
2725 if_printf(struct ifnet *ifp, const char *fmt, ...)
2726 {
2727 	__va_list ap;
2728 	int retval;
2729 
2730 	retval = kprintf("%s: ", ifp->if_xname);
2731 	__va_start(ap, fmt);
2732 	retval += kvprintf(fmt, ap);
2733 	__va_end(ap);
2734 	return (retval);
2735 }
2736 
2737 struct ifnet *
2738 if_alloc(uint8_t type)
2739 {
2740         struct ifnet *ifp;
2741 	size_t size;
2742 
2743 	/*
2744 	 * XXX temporary hack until arpcom is setup in if_l2com
2745 	 */
2746 	if (type == IFT_ETHER)
2747 		size = sizeof(struct arpcom);
2748 	else
2749 		size = sizeof(struct ifnet);
2750 
2751 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2752 
2753 	ifp->if_type = type;
2754 
2755 	if (if_com_alloc[type] != NULL) {
2756 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2757 		if (ifp->if_l2com == NULL) {
2758 			kfree(ifp, M_IFNET);
2759 			return (NULL);
2760 		}
2761 	}
2762 	return (ifp);
2763 }
2764 
2765 void
2766 if_free(struct ifnet *ifp)
2767 {
2768 	kfree(ifp, M_IFNET);
2769 }
2770 
2771 void
2772 ifq_set_classic(struct ifaltq *ifq)
2773 {
2774 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2775 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2776 }
2777 
2778 void
2779 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2780     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2781 {
2782 	int q;
2783 
2784 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2785 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2786 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2787 	KASSERT(request != NULL, ("request is not specified"));
2788 
2789 	ifq->altq_mapsubq = mapsubq;
2790 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2791 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2792 
2793 		ifsq->ifsq_enqueue = enqueue;
2794 		ifsq->ifsq_dequeue = dequeue;
2795 		ifsq->ifsq_request = request;
2796 	}
2797 }
2798 
2799 static void
2800 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2801 {
2802 
2803 	classq_add(&ifsq->ifsq_norm, m);
2804 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2805 }
2806 
2807 static void
2808 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2809 {
2810 
2811 	classq_add(&ifsq->ifsq_prio, m);
2812 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2813 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2814 }
2815 
2816 static struct mbuf *
2817 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2818 {
2819 	struct mbuf *m;
2820 
2821 	m = classq_get(&ifsq->ifsq_norm);
2822 	if (m != NULL)
2823 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2824 	return (m);
2825 }
2826 
2827 static struct mbuf *
2828 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2829 {
2830 	struct mbuf *m;
2831 
2832 	m = classq_get(&ifsq->ifsq_prio);
2833 	if (m != NULL) {
2834 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2835 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2836 	}
2837 	return (m);
2838 }
2839 
2840 int
2841 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2842     struct altq_pktattr *pa __unused)
2843 {
2844 
2845 	M_ASSERTPKTHDR(m);
2846 again:
2847 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2848 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2849 		struct mbuf *m_drop;
2850 
2851 		if (m->m_flags & M_PRIO) {
2852 			m_drop = NULL;
2853 			if (ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen >> 1) &&
2854 			    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt >> 1)) {
2855 				/* Try dropping some from normal queue. */
2856 				m_drop = ifsq_norm_dequeue(ifsq);
2857 			}
2858 			if (m_drop == NULL)
2859 				m_drop = ifsq_prio_dequeue(ifsq);
2860 		} else {
2861 			m_drop = ifsq_norm_dequeue(ifsq);
2862 		}
2863 		if (m_drop != NULL) {
2864 			IFNET_STAT_INC(ifsq->ifsq_ifp, oqdrops, 1);
2865 			m_freem(m_drop);
2866 			goto again;
2867 		}
2868 		/*
2869 		 * No old packets could be dropped!
2870 		 * NOTE: Caller increases oqdrops.
2871 		 */
2872 		m_freem(m);
2873 		return (ENOBUFS);
2874 	} else {
2875 		if (m->m_flags & M_PRIO)
2876 			ifsq_prio_enqueue(ifsq, m);
2877 		else
2878 			ifsq_norm_enqueue(ifsq, m);
2879 		return (0);
2880 	}
2881 }
2882 
2883 struct mbuf *
2884 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2885 {
2886 	struct mbuf *m;
2887 
2888 	switch (op) {
2889 	case ALTDQ_POLL:
2890 		m = classq_head(&ifsq->ifsq_prio);
2891 		if (m == NULL)
2892 			m = classq_head(&ifsq->ifsq_norm);
2893 		break;
2894 
2895 	case ALTDQ_REMOVE:
2896 		m = ifsq_prio_dequeue(ifsq);
2897 		if (m == NULL)
2898 			m = ifsq_norm_dequeue(ifsq);
2899 		break;
2900 
2901 	default:
2902 		panic("unsupported ALTQ dequeue op: %d", op);
2903 	}
2904 	return m;
2905 }
2906 
2907 int
2908 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2909 {
2910 	switch (req) {
2911 	case ALTRQ_PURGE:
2912 		for (;;) {
2913 			struct mbuf *m;
2914 
2915 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2916 			if (m == NULL)
2917 				break;
2918 			m_freem(m);
2919 		}
2920 		break;
2921 
2922 	default:
2923 		panic("unsupported ALTQ request: %d", req);
2924 	}
2925 	return 0;
2926 }
2927 
2928 static void
2929 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2930 {
2931 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2932 	int running = 0, need_sched;
2933 
2934 	/*
2935 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
2936 	 * contention on the subqueue hardware serializer, ifnet.if_start on
2937 	 * the subqueue will be scheduled on the subqueue owner CPU.
2938 	 */
2939 	if (!ifsq_tryserialize_hw(ifsq)) {
2940 		/*
2941 		 * Subqueue hardware serializer contention happened,
2942 		 * ifnet.if_start on the subqueue is scheduled on
2943 		 * the subqueue owner CPU, and we keep going.
2944 		 */
2945 		ifsq_ifstart_schedule(ifsq, 1);
2946 		return;
2947 	}
2948 
2949 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2950 		ifp->if_start(ifp, ifsq);
2951 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2952 			running = 1;
2953 	}
2954 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2955 
2956 	ifsq_deserialize_hw(ifsq);
2957 
2958 	if (need_sched) {
2959 		/*
2960 		 * More data need to be transmitted, ifnet.if_start on the
2961 		 * subqueue is scheduled on the subqueue owner CPU, and we
2962 		 * keep going.
2963 		 * NOTE: ifnet.if_start subqueue interlock is not released.
2964 		 */
2965 		ifsq_ifstart_schedule(ifsq, force_sched);
2966 	}
2967 }
2968 
2969 /*
2970  * Subqeue packets staging mechanism:
2971  *
2972  * The packets enqueued into the subqueue are staged to a certain amount
2973  * before the ifnet.if_start on the subqueue is called.  In this way, the
2974  * driver could avoid writing to hardware registers upon every packet,
2975  * instead, hardware registers could be written when certain amount of
2976  * packets are put onto hardware TX ring.  The measurement on several modern
2977  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2978  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2979  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
2980  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2981  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2982  *
2983  * Subqueue packets staging is performed for two entry points into drivers'
2984  * transmission function:
2985  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2986  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2987  *
2988  * Subqueue packets staging will be stopped upon any of the following
2989  * conditions:
2990  * - If the count of packets enqueued on the current CPU is great than or
2991  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2992  * - If the total length of packets enqueued on the current CPU is great
2993  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2994  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2995  *   is usually less than hardware's MTU.
2996  * - ifsq_ifstart_schedule() is not pending on the current CPU and
2997  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
2998  *   released.
2999  * - The if_start_rollup(), which is registered as low priority netisr
3000  *   rollup function, is called; probably because no more work is pending
3001  *   for netisr.
3002  *
3003  * NOTE:
3004  * Currently subqueue packet staging is only performed in netisr threads.
3005  */
3006 int
3007 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
3008 {
3009 	struct ifaltq *ifq = &ifp->if_snd;
3010 	struct ifaltq_subque *ifsq;
3011 	int error, start = 0, len, mcast = 0, avoid_start = 0;
3012 	struct ifsubq_stage_head *head = NULL;
3013 	struct ifsubq_stage *stage = NULL;
3014 	struct globaldata *gd = mycpu;
3015 	struct thread *td = gd->gd_curthread;
3016 
3017 	crit_enter_quick(td);
3018 
3019 	ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
3020 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
3021 
3022 	len = m->m_pkthdr.len;
3023 	if (m->m_flags & M_MCAST)
3024 		mcast = 1;
3025 
3026 	if (td->td_type == TD_TYPE_NETISR) {
3027 		head = &ifsubq_stage_heads[mycpuid];
3028 		stage = ifsq_get_stage(ifsq, mycpuid);
3029 
3030 		stage->stg_cnt++;
3031 		stage->stg_len += len;
3032 		if (stage->stg_cnt < ifsq_stage_cntmax &&
3033 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
3034 			avoid_start = 1;
3035 	}
3036 
3037 	ALTQ_SQ_LOCK(ifsq);
3038 	error = ifsq_enqueue_locked(ifsq, m, pa);
3039 	if (error) {
3040 		IFNET_STAT_INC(ifp, oqdrops, 1);
3041 		if (!ifsq_data_ready(ifsq)) {
3042 			ALTQ_SQ_UNLOCK(ifsq);
3043 			crit_exit_quick(td);
3044 			return error;
3045 		}
3046 		avoid_start = 0;
3047 	}
3048 	if (!ifsq_is_started(ifsq)) {
3049 		if (avoid_start) {
3050 			ALTQ_SQ_UNLOCK(ifsq);
3051 
3052 			KKASSERT(!error);
3053 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3054 				ifsq_stage_insert(head, stage);
3055 
3056 			IFNET_STAT_INC(ifp, obytes, len);
3057 			if (mcast)
3058 				IFNET_STAT_INC(ifp, omcasts, 1);
3059 			crit_exit_quick(td);
3060 			return error;
3061 		}
3062 
3063 		/*
3064 		 * Hold the subqueue interlock of ifnet.if_start
3065 		 */
3066 		ifsq_set_started(ifsq);
3067 		start = 1;
3068 	}
3069 	ALTQ_SQ_UNLOCK(ifsq);
3070 
3071 	if (!error) {
3072 		IFNET_STAT_INC(ifp, obytes, len);
3073 		if (mcast)
3074 			IFNET_STAT_INC(ifp, omcasts, 1);
3075 	}
3076 
3077 	if (stage != NULL) {
3078 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3079 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3080 			if (!avoid_start) {
3081 				ifsq_stage_remove(head, stage);
3082 				ifsq_ifstart_schedule(ifsq, 1);
3083 			}
3084 			crit_exit_quick(td);
3085 			return error;
3086 		}
3087 
3088 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3089 			ifsq_stage_remove(head, stage);
3090 		} else {
3091 			stage->stg_cnt = 0;
3092 			stage->stg_len = 0;
3093 		}
3094 	}
3095 
3096 	if (!start) {
3097 		crit_exit_quick(td);
3098 		return error;
3099 	}
3100 
3101 	ifsq_ifstart_try(ifsq, 0);
3102 
3103 	crit_exit_quick(td);
3104 	return error;
3105 }
3106 
3107 void *
3108 ifa_create(int size)
3109 {
3110 	struct ifaddr *ifa;
3111 	int i;
3112 
3113 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3114 
3115 	ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO);
3116 	ifa->ifa_containers =
3117 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
3118 	        M_IFADDR, M_INTWAIT | M_ZERO);
3119 
3120 	ifa->ifa_ncnt = ncpus;
3121 	for (i = 0; i < ncpus; ++i) {
3122 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3123 
3124 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3125 		ifac->ifa = ifa;
3126 		ifac->ifa_refcnt = 1;
3127 	}
3128 #ifdef IFADDR_DEBUG
3129 	kprintf("alloc ifa %p %d\n", ifa, size);
3130 #endif
3131 	return ifa;
3132 }
3133 
3134 void
3135 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3136 {
3137 	struct ifaddr *ifa = ifac->ifa;
3138 
3139 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3140 	KKASSERT(ifac->ifa_refcnt == 0);
3141 	KASSERT(ifac->ifa_listmask == 0,
3142 		("ifa is still on %#x lists", ifac->ifa_listmask));
3143 
3144 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
3145 
3146 #ifdef IFADDR_DEBUG_VERBOSE
3147 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3148 #endif
3149 
3150 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3151 		("invalid # of ifac, %d", ifa->ifa_ncnt));
3152 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3153 #ifdef IFADDR_DEBUG
3154 		kprintf("free ifa %p\n", ifa);
3155 #endif
3156 		kfree(ifa->ifa_containers, M_IFADDR);
3157 		kfree(ifa, M_IFADDR);
3158 	}
3159 }
3160 
3161 static void
3162 ifa_iflink_dispatch(netmsg_t nmsg)
3163 {
3164 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3165 	struct ifaddr *ifa = msg->ifa;
3166 	struct ifnet *ifp = msg->ifp;
3167 	int cpu = mycpuid;
3168 	struct ifaddr_container *ifac;
3169 
3170 	crit_enter();
3171 
3172 	ifac = &ifa->ifa_containers[cpu];
3173 	ASSERT_IFAC_VALID(ifac);
3174 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3175 		("ifaddr is on if_addrheads"));
3176 
3177 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3178 	if (msg->tail)
3179 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3180 	else
3181 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3182 
3183 	crit_exit();
3184 
3185 	netisr_forwardmsg(&nmsg->base, cpu + 1);
3186 }
3187 
3188 void
3189 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3190 {
3191 	struct netmsg_ifaddr msg;
3192 
3193 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3194 		    0, ifa_iflink_dispatch);
3195 	msg.ifa = ifa;
3196 	msg.ifp = ifp;
3197 	msg.tail = tail;
3198 
3199 	netisr_domsg(&msg.base, 0);
3200 }
3201 
3202 static void
3203 ifa_ifunlink_dispatch(netmsg_t nmsg)
3204 {
3205 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3206 	struct ifaddr *ifa = msg->ifa;
3207 	struct ifnet *ifp = msg->ifp;
3208 	int cpu = mycpuid;
3209 	struct ifaddr_container *ifac;
3210 
3211 	crit_enter();
3212 
3213 	ifac = &ifa->ifa_containers[cpu];
3214 	ASSERT_IFAC_VALID(ifac);
3215 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3216 		("ifaddr is not on if_addrhead"));
3217 
3218 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3219 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3220 
3221 	crit_exit();
3222 
3223 	netisr_forwardmsg(&nmsg->base, cpu + 1);
3224 }
3225 
3226 void
3227 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3228 {
3229 	struct netmsg_ifaddr msg;
3230 
3231 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3232 		    0, ifa_ifunlink_dispatch);
3233 	msg.ifa = ifa;
3234 	msg.ifp = ifp;
3235 
3236 	netisr_domsg(&msg.base, 0);
3237 }
3238 
3239 static void
3240 ifa_destroy_dispatch(netmsg_t nmsg)
3241 {
3242 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3243 
3244 	IFAFREE(msg->ifa);
3245 	netisr_forwardmsg(&nmsg->base, mycpuid + 1);
3246 }
3247 
3248 void
3249 ifa_destroy(struct ifaddr *ifa)
3250 {
3251 	struct netmsg_ifaddr msg;
3252 
3253 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3254 		    0, ifa_destroy_dispatch);
3255 	msg.ifa = ifa;
3256 
3257 	netisr_domsg(&msg.base, 0);
3258 }
3259 
3260 static void
3261 if_start_rollup(void)
3262 {
3263 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3264 	struct ifsubq_stage *stage;
3265 
3266 	crit_enter();
3267 
3268 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3269 		struct ifaltq_subque *ifsq = stage->stg_subq;
3270 		int is_sched = 0;
3271 
3272 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3273 			is_sched = 1;
3274 		ifsq_stage_remove(head, stage);
3275 
3276 		if (is_sched) {
3277 			ifsq_ifstart_schedule(ifsq, 1);
3278 		} else {
3279 			int start = 0;
3280 
3281 			ALTQ_SQ_LOCK(ifsq);
3282 			if (!ifsq_is_started(ifsq)) {
3283 				/*
3284 				 * Hold the subqueue interlock of
3285 				 * ifnet.if_start
3286 				 */
3287 				ifsq_set_started(ifsq);
3288 				start = 1;
3289 			}
3290 			ALTQ_SQ_UNLOCK(ifsq);
3291 
3292 			if (start)
3293 				ifsq_ifstart_try(ifsq, 1);
3294 		}
3295 		KKASSERT((stage->stg_flags &
3296 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3297 	}
3298 
3299 	crit_exit();
3300 }
3301 
3302 static void
3303 ifnetinit(void *dummy __unused)
3304 {
3305 	int i;
3306 
3307 	for (i = 0; i < ncpus; ++i)
3308 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3309 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3310 }
3311 
3312 void
3313 if_register_com_alloc(u_char type,
3314     if_com_alloc_t *a, if_com_free_t *f)
3315 {
3316 
3317         KASSERT(if_com_alloc[type] == NULL,
3318             ("if_register_com_alloc: %d already registered", type));
3319         KASSERT(if_com_free[type] == NULL,
3320             ("if_register_com_alloc: %d free already registered", type));
3321 
3322         if_com_alloc[type] = a;
3323         if_com_free[type] = f;
3324 }
3325 
3326 void
3327 if_deregister_com_alloc(u_char type)
3328 {
3329 
3330         KASSERT(if_com_alloc[type] != NULL,
3331             ("if_deregister_com_alloc: %d not registered", type));
3332         KASSERT(if_com_free[type] != NULL,
3333             ("if_deregister_com_alloc: %d free not registered", type));
3334         if_com_alloc[type] = NULL;
3335         if_com_free[type] = NULL;
3336 }
3337 
3338 void
3339 ifq_set_maxlen(struct ifaltq *ifq, int len)
3340 {
3341 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3342 }
3343 
3344 int
3345 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3346 {
3347 	return ALTQ_SUBQ_INDEX_DEFAULT;
3348 }
3349 
3350 int
3351 ifq_mapsubq_modulo(struct ifaltq *ifq, int cpuid)
3352 {
3353 
3354 	return (cpuid % ifq->altq_subq_mappriv);
3355 }
3356 
3357 static void
3358 ifsq_watchdog(void *arg)
3359 {
3360 	struct ifsubq_watchdog *wd = arg;
3361 	struct ifnet *ifp;
3362 
3363 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3364 		goto done;
3365 
3366 	ifp = ifsq_get_ifp(wd->wd_subq);
3367 	if (ifnet_tryserialize_all(ifp)) {
3368 		wd->wd_watchdog(wd->wd_subq);
3369 		ifnet_deserialize_all(ifp);
3370 	} else {
3371 		/* try again next timeout */
3372 		wd->wd_timer = 1;
3373 	}
3374 done:
3375 	ifsq_watchdog_reset(wd);
3376 }
3377 
3378 static void
3379 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3380 {
3381 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3382 	    ifsq_get_cpuid(wd->wd_subq));
3383 }
3384 
3385 void
3386 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3387     ifsq_watchdog_t watchdog)
3388 {
3389 	callout_init_mp(&wd->wd_callout);
3390 	wd->wd_timer = 0;
3391 	wd->wd_subq = ifsq;
3392 	wd->wd_watchdog = watchdog;
3393 }
3394 
3395 void
3396 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3397 {
3398 	wd->wd_timer = 0;
3399 	ifsq_watchdog_reset(wd);
3400 }
3401 
3402 void
3403 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3404 {
3405 	wd->wd_timer = 0;
3406 	callout_stop(&wd->wd_callout);
3407 }
3408 
3409 void
3410 ifnet_lock(void)
3411 {
3412 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3413 	    ("try holding ifnet lock in netisr"));
3414 	mtx_lock(&ifnet_mtx);
3415 }
3416 
3417 void
3418 ifnet_unlock(void)
3419 {
3420 	KASSERT(curthread->td_type != TD_TYPE_NETISR,
3421 	    ("try holding ifnet lock in netisr"));
3422 	mtx_unlock(&ifnet_mtx);
3423 }
3424 
3425 static struct ifnet_array *
3426 ifnet_array_alloc(int count)
3427 {
3428 	struct ifnet_array *arr;
3429 
3430 	arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3431 	    M_IFNET, M_WAITOK);
3432 	arr->ifnet_count = count;
3433 
3434 	return arr;
3435 }
3436 
3437 static void
3438 ifnet_array_free(struct ifnet_array *arr)
3439 {
3440 	if (arr == &ifnet_array0)
3441 		return;
3442 	kfree(arr, M_IFNET);
3443 }
3444 
3445 static struct ifnet_array *
3446 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3447 {
3448 	struct ifnet_array *arr;
3449 	int count, i;
3450 
3451 	KASSERT(old_arr->ifnet_count >= 0,
3452 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3453 	count = old_arr->ifnet_count + 1;
3454 	arr = ifnet_array_alloc(count);
3455 
3456 	/*
3457 	 * Save the old ifnet array and append this ifp to the end of
3458 	 * the new ifnet array.
3459 	 */
3460 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3461 		KASSERT(old_arr->ifnet_arr[i] != ifp,
3462 		    ("%s is already in ifnet array", ifp->if_xname));
3463 		arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3464 	}
3465 	KASSERT(i == count - 1,
3466 	    ("add %s, ifnet array index mismatch, should be %d, but got %d",
3467 	     ifp->if_xname, count - 1, i));
3468 	arr->ifnet_arr[i] = ifp;
3469 
3470 	return arr;
3471 }
3472 
3473 static struct ifnet_array *
3474 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3475 {
3476 	struct ifnet_array *arr;
3477 	int count, i, idx, found = 0;
3478 
3479 	KASSERT(old_arr->ifnet_count > 0,
3480 	    ("invalid ifnet array count %d", old_arr->ifnet_count));
3481 	count = old_arr->ifnet_count - 1;
3482 	arr = ifnet_array_alloc(count);
3483 
3484 	/*
3485 	 * Save the old ifnet array, but skip this ifp.
3486 	 */
3487 	idx = 0;
3488 	for (i = 0; i < old_arr->ifnet_count; ++i) {
3489 		if (old_arr->ifnet_arr[i] == ifp) {
3490 			KASSERT(!found,
3491 			    ("dup %s is in ifnet array", ifp->if_xname));
3492 			found = 1;
3493 			continue;
3494 		}
3495 		KASSERT(idx < count,
3496 		    ("invalid ifnet array index %d, count %d", idx, count));
3497 		arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3498 		++idx;
3499 	}
3500 	KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3501 	KASSERT(idx == count,
3502 	    ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3503 	     ifp->if_xname, count, idx));
3504 
3505 	return arr;
3506 }
3507 
3508 const struct ifnet_array *
3509 ifnet_array_get(void)
3510 {
3511 	const struct ifnet_array *ret;
3512 
3513 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3514 	ret = ifnet_array;
3515 	/* Make sure 'ret' is really used. */
3516 	cpu_ccfence();
3517 	return (ret);
3518 }
3519 
3520 int
3521 ifnet_array_isempty(void)
3522 {
3523 	KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3524 	if (ifnet_array->ifnet_count == 0)
3525 		return 1;
3526 	else
3527 		return 0;
3528 }
3529 
3530 void
3531 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3532 {
3533 	struct ifaddr *ifa;
3534 
3535 	memset(mark, 0, sizeof(*mark));
3536 	ifa = &mark->ifa;
3537 
3538 	mark->ifac.ifa = ifa;
3539 
3540 	ifa->ifa_addr = &mark->addr;
3541 	ifa->ifa_dstaddr = &mark->dstaddr;
3542 	ifa->ifa_netmask = &mark->netmask;
3543 	ifa->ifa_ifp = ifp;
3544 }
3545 
3546 static int
3547 if_ringcnt_fixup(int ring_cnt, int ring_cntmax)
3548 {
3549 
3550 	KASSERT(ring_cntmax > 0, ("invalid ring count max %d", ring_cntmax));
3551 
3552 	if (ring_cnt <= 0 || ring_cnt > ring_cntmax)
3553 		ring_cnt = ring_cntmax;
3554 	if (ring_cnt > netisr_ncpus)
3555 		ring_cnt = netisr_ncpus;
3556 	return (ring_cnt);
3557 }
3558 
3559 static void
3560 if_ringmap_set_grid(device_t dev, struct if_ringmap *rm, int grid)
3561 {
3562 	int i, offset;
3563 
3564 	KASSERT(grid > 0, ("invalid if_ringmap grid %d", grid));
3565 	KASSERT(grid >= rm->rm_cnt, ("invalid if_ringmap grid %d, count %d",
3566 	    grid, rm->rm_cnt));
3567 	rm->rm_grid = grid;
3568 
3569 	offset = (rm->rm_grid * device_get_unit(dev)) % netisr_ncpus;
3570 	for (i = 0; i < rm->rm_cnt; ++i) {
3571 		rm->rm_cpumap[i] = offset + i;
3572 		KASSERT(rm->rm_cpumap[i] < netisr_ncpus,
3573 		    ("invalid cpumap[%d] = %d, offset %d", i,
3574 		     rm->rm_cpumap[i], offset));
3575 	}
3576 }
3577 
3578 static struct if_ringmap *
3579 if_ringmap_alloc_flags(device_t dev, int ring_cnt, int ring_cntmax,
3580     uint32_t flags)
3581 {
3582 	struct if_ringmap *rm;
3583 	int i, grid = 0, prev_grid;
3584 
3585 	ring_cnt = if_ringcnt_fixup(ring_cnt, ring_cntmax);
3586 	rm = kmalloc(__offsetof(struct if_ringmap, rm_cpumap[ring_cnt]),
3587 	    M_DEVBUF, M_WAITOK | M_ZERO);
3588 
3589 	rm->rm_cnt = ring_cnt;
3590 	if (flags & RINGMAP_FLAG_POWEROF2)
3591 		rm->rm_cnt = 1 << (fls(rm->rm_cnt) - 1);
3592 
3593 	prev_grid = netisr_ncpus;
3594 	for (i = 0; i < netisr_ncpus; ++i) {
3595 		if (netisr_ncpus % (i + 1) != 0)
3596 			continue;
3597 
3598 		grid = netisr_ncpus / (i + 1);
3599 		if (rm->rm_cnt > grid) {
3600 			grid = prev_grid;
3601 			break;
3602 		}
3603 
3604 		if (rm->rm_cnt > netisr_ncpus / (i + 2))
3605 			break;
3606 		prev_grid = grid;
3607 	}
3608 	if_ringmap_set_grid(dev, rm, grid);
3609 
3610 	return (rm);
3611 }
3612 
3613 struct if_ringmap *
3614 if_ringmap_alloc(device_t dev, int ring_cnt, int ring_cntmax)
3615 {
3616 
3617 	return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax,
3618 	    RINGMAP_FLAG_NONE));
3619 }
3620 
3621 struct if_ringmap *
3622 if_ringmap_alloc2(device_t dev, int ring_cnt, int ring_cntmax)
3623 {
3624 
3625 	return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax,
3626 	    RINGMAP_FLAG_POWEROF2));
3627 }
3628 
3629 void
3630 if_ringmap_free(struct if_ringmap *rm)
3631 {
3632 
3633 	kfree(rm, M_DEVBUF);
3634 }
3635 
3636 /*
3637  * Align the two ringmaps.
3638  *
3639  * e.g. 8 netisrs, rm0 contains 4 rings, rm1 contains 2 rings.
3640  *
3641  * Before:
3642  *
3643  * CPU      0  1  2  3   4  5  6  7
3644  * NIC_RX               n0 n1 n2 n3
3645  * NIC_TX        N0 N1
3646  *
3647  * After:
3648  *
3649  * CPU      0  1  2  3   4  5  6  7
3650  * NIC_RX               n0 n1 n2 n3
3651  * NIC_TX               N0 N1
3652  */
3653 void
3654 if_ringmap_align(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1)
3655 {
3656 
3657 	if (rm0->rm_grid > rm1->rm_grid)
3658 		if_ringmap_set_grid(dev, rm1, rm0->rm_grid);
3659 	else if (rm0->rm_grid < rm1->rm_grid)
3660 		if_ringmap_set_grid(dev, rm0, rm1->rm_grid);
3661 }
3662 
3663 void
3664 if_ringmap_match(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1)
3665 {
3666 	int subset_grid, cnt, divisor, mod, offset, i;
3667 	struct if_ringmap *subset_rm, *rm;
3668 	int old_rm0_grid, old_rm1_grid;
3669 
3670 	if (rm0->rm_grid == rm1->rm_grid)
3671 		return;
3672 
3673 	/* Save grid for later use */
3674 	old_rm0_grid = rm0->rm_grid;
3675 	old_rm1_grid = rm1->rm_grid;
3676 
3677 	if_ringmap_align(dev, rm0, rm1);
3678 
3679 	/*
3680 	 * Re-shuffle rings to get more even distribution.
3681 	 *
3682 	 * e.g. 12 netisrs, rm0 contains 4 rings, rm1 contains 2 rings.
3683 	 *
3684 	 * CPU       0  1  2  3   4  5  6  7   8  9 10 11
3685 	 *
3686 	 * NIC_RX   a0 a1 a2 a3  b0 b1 b2 b3  c0 c1 c2 c3
3687 	 * NIC_TX   A0 A1        B0 B1        C0 C1
3688 	 *
3689 	 * NIC_RX   d0 d1 d2 d3  e0 e1 e2 e3  f0 f1 f2 f3
3690 	 * NIC_TX         D0 D1        E0 E1        F0 F1
3691 	 */
3692 
3693 	if (rm0->rm_cnt >= (2 * old_rm1_grid)) {
3694 		cnt = rm0->rm_cnt;
3695 		subset_grid = old_rm1_grid;
3696 		subset_rm = rm1;
3697 		rm = rm0;
3698 	} else if (rm1->rm_cnt > (2 * old_rm0_grid)) {
3699 		cnt = rm1->rm_cnt;
3700 		subset_grid = old_rm0_grid;
3701 		subset_rm = rm0;
3702 		rm = rm1;
3703 	} else {
3704 		/* No space to shuffle. */
3705 		return;
3706 	}
3707 
3708 	mod = cnt / subset_grid;
3709 	KKASSERT(mod >= 2);
3710 	divisor = netisr_ncpus / rm->rm_grid;
3711 	offset = ((device_get_unit(dev) / divisor) % mod) * subset_grid;
3712 
3713 	for (i = 0; i < subset_rm->rm_cnt; ++i) {
3714 		subset_rm->rm_cpumap[i] += offset;
3715 		KASSERT(subset_rm->rm_cpumap[i] < netisr_ncpus,
3716 		    ("match: invalid cpumap[%d] = %d, offset %d",
3717 		     i, subset_rm->rm_cpumap[i], offset));
3718 	}
3719 #ifdef INVARIANTS
3720 	for (i = 0; i < subset_rm->rm_cnt; ++i) {
3721 		int j;
3722 
3723 		for (j = 0; j < rm->rm_cnt; ++j) {
3724 			if (rm->rm_cpumap[j] == subset_rm->rm_cpumap[i])
3725 				break;
3726 		}
3727 		KASSERT(j < rm->rm_cnt,
3728 		    ("subset cpumap[%d] = %d not found in superset",
3729 		     i, subset_rm->rm_cpumap[i]));
3730 	}
3731 #endif
3732 }
3733 
3734 int
3735 if_ringmap_count(const struct if_ringmap *rm)
3736 {
3737 
3738 	return (rm->rm_cnt);
3739 }
3740 
3741 int
3742 if_ringmap_cpumap(const struct if_ringmap *rm, int ring)
3743 {
3744 
3745 	KASSERT(ring >= 0 && ring < rm->rm_cnt, ("invalid ring %d", ring));
3746 	return (rm->rm_cpumap[ring]);
3747 }
3748 
3749 void
3750 if_ringmap_rdrtable(const struct if_ringmap *rm, int table[], int table_nent)
3751 {
3752 	int i, grid_idx, grid_cnt, patch_off, patch_cnt, ncopy;
3753 
3754 	KASSERT(table_nent > 0 && (table_nent & NETISR_CPUMASK) == 0,
3755 	    ("invalid redirect table entries %d", table_nent));
3756 
3757 	grid_idx = 0;
3758 	for (i = 0; i < NETISR_CPUMAX; ++i) {
3759 		table[i] = grid_idx++ % rm->rm_cnt;
3760 
3761 		if (grid_idx == rm->rm_grid)
3762 			grid_idx = 0;
3763 	}
3764 
3765 	/*
3766 	 * Make the ring distributed more evenly for the remainder
3767 	 * of each grid.
3768 	 *
3769 	 * e.g. 12 netisrs, rm contains 8 rings.
3770 	 *
3771 	 * Redirect table before:
3772 	 *
3773 	 *  0  1  2  3  4  5  6  7  0  1  2  3  0  1  2  3
3774 	 *  4  5  6  7  0  1  2  3  0  1  2  3  4  5  6  7
3775 	 *  0  1  2  3  0  1  2  3  4  5  6  7  0  1  2  3
3776 	 *  ....
3777 	 *
3778 	 * Redirect table after being patched (pX, patched entries):
3779 	 *
3780 	 *  0  1  2  3  4  5  6  7 p0 p1 p2 p3  0  1  2  3
3781 	 *  4  5  6  7 p4 p5 p6 p7  0  1  2  3  4  5  6  7
3782 	 * p0 p1 p2 p3  0  1  2  3  4  5  6  7 p4 p5 p6 p7
3783 	 *  ....
3784 	 */
3785 	patch_cnt = rm->rm_grid % rm->rm_cnt;
3786 	if (patch_cnt == 0)
3787 		goto done;
3788 	patch_off = rm->rm_grid - (rm->rm_grid % rm->rm_cnt);
3789 
3790 	grid_cnt = roundup(NETISR_CPUMAX, rm->rm_grid) / rm->rm_grid;
3791 	grid_idx = 0;
3792 	for (i = 0; i < grid_cnt; ++i) {
3793 		int j;
3794 
3795 		for (j = 0; j < patch_cnt; ++j) {
3796 			int fix_idx;
3797 
3798 			fix_idx = (i * rm->rm_grid) + patch_off + j;
3799 			if (fix_idx >= NETISR_CPUMAX)
3800 				goto done;
3801 			table[fix_idx] = grid_idx++ % rm->rm_cnt;
3802 		}
3803 	}
3804 done:
3805 	/*
3806 	 * If the device supports larger redirect table, duplicate
3807 	 * the first NETISR_CPUMAX entries to the rest of the table,
3808 	 * so that it matches upper layer's expectation:
3809 	 * (hash & NETISR_CPUMASK) % netisr_ncpus
3810 	 */
3811 	ncopy = table_nent / NETISR_CPUMAX;
3812 	for (i = 1; i < ncopy; ++i) {
3813 		memcpy(&table[i * NETISR_CPUMAX], table,
3814 		    NETISR_CPUMAX * sizeof(table[0]));
3815 	}
3816 	if (if_ringmap_dumprdr) {
3817 		for (i = 0; i < table_nent; ++i) {
3818 			if (i != 0 && i % 16 == 0)
3819 				kprintf("\n");
3820 			kprintf("%03d ", table[i]);
3821 		}
3822 		kprintf("\n");
3823 	}
3824 }
3825 
3826 int
3827 if_ringmap_cpumap_sysctl(SYSCTL_HANDLER_ARGS)
3828 {
3829 	struct if_ringmap *rm = arg1;
3830 	int i, error = 0;
3831 
3832 	for (i = 0; i < rm->rm_cnt; ++i) {
3833 		int cpu = rm->rm_cpumap[i];
3834 
3835 		error = SYSCTL_OUT(req, &cpu, sizeof(cpu));
3836 		if (error)
3837 			break;
3838 	}
3839 	return (error);
3840 }
3841