1 /* 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if.c 8.3 (Berkeley) 1/4/94 30 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $ 31 */ 32 33 #include "opt_inet6.h" 34 #include "opt_inet.h" 35 #include "opt_ifpoll.h" 36 37 #include <sys/param.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/systm.h> 41 #include <sys/proc.h> 42 #include <sys/priv.h> 43 #include <sys/protosw.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/socketops.h> 47 #include <sys/kernel.h> 48 #include <sys/ktr.h> 49 #include <sys/mutex.h> 50 #include <sys/sockio.h> 51 #include <sys/syslog.h> 52 #include <sys/sysctl.h> 53 #include <sys/domain.h> 54 #include <sys/thread.h> 55 #include <sys/serialize.h> 56 #include <sys/bus.h> 57 58 #include <sys/thread2.h> 59 #include <sys/msgport2.h> 60 #include <sys/mutex2.h> 61 62 #include <net/if.h> 63 #include <net/if_arp.h> 64 #include <net/if_dl.h> 65 #include <net/if_types.h> 66 #include <net/if_var.h> 67 #include <net/if_ringmap.h> 68 #include <net/ifq_var.h> 69 #include <net/radix.h> 70 #include <net/route.h> 71 #include <net/if_clone.h> 72 #include <net/netisr2.h> 73 #include <net/netmsg2.h> 74 75 #include <machine/atomic.h> 76 #include <machine/stdarg.h> 77 #include <machine/smp.h> 78 79 #if defined(INET) || defined(INET6) 80 /*XXX*/ 81 #include <netinet/in.h> 82 #include <netinet/in_var.h> 83 #include <netinet/if_ether.h> 84 #ifdef INET6 85 #include <netinet6/in6_var.h> 86 #include <netinet6/in6_ifattach.h> 87 #endif 88 #endif 89 90 struct netmsg_ifaddr { 91 struct netmsg_base base; 92 struct ifaddr *ifa; 93 struct ifnet *ifp; 94 int tail; 95 }; 96 97 struct ifsubq_stage_head { 98 TAILQ_HEAD(, ifsubq_stage) stg_head; 99 } __cachealign; 100 101 struct if_ringmap { 102 int rm_cnt; 103 int rm_grid; 104 int rm_cpumap[]; 105 }; 106 107 #define RINGMAP_FLAG_NONE 0x0 108 #define RINGMAP_FLAG_POWEROF2 0x1 109 110 /* 111 * System initialization 112 */ 113 static void if_attachdomain(void *); 114 static void if_attachdomain1(struct ifnet *); 115 static int ifconf(u_long, caddr_t, struct ucred *); 116 static void ifinit(void *); 117 static void ifnetinit(void *); 118 static void if_slowtimo(void *); 119 static void link_rtrequest(int, struct rtentry *); 120 static int if_rtdel(struct radix_node *, void *); 121 static void if_slowtimo_dispatch(netmsg_t); 122 123 /* Helper functions */ 124 static void ifsq_watchdog_reset(struct ifsubq_watchdog *); 125 static int if_delmulti_serialized(struct ifnet *, struct sockaddr *); 126 static struct ifnet_array *ifnet_array_alloc(int); 127 static void ifnet_array_free(struct ifnet_array *); 128 static struct ifnet_array *ifnet_array_add(struct ifnet *, 129 const struct ifnet_array *); 130 static struct ifnet_array *ifnet_array_del(struct ifnet *, 131 const struct ifnet_array *); 132 133 #ifdef INET6 134 /* 135 * XXX: declare here to avoid to include many inet6 related files.. 136 * should be more generalized? 137 */ 138 extern void nd6_setmtu(struct ifnet *); 139 #endif 140 141 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 142 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 143 SYSCTL_NODE(_net_link, OID_AUTO, ringmap, CTLFLAG_RW, 0, "link ringmap"); 144 145 static int ifsq_stage_cntmax = 4; 146 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax); 147 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW, 148 &ifsq_stage_cntmax, 0, "ifq staging packet count max"); 149 150 static int if_stats_compat = 0; 151 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW, 152 &if_stats_compat, 0, "Compat the old ifnet stats"); 153 154 static int if_ringmap_dumprdr = 0; 155 SYSCTL_INT(_net_link_ringmap, OID_AUTO, dump_rdr, CTLFLAG_RW, 156 &if_ringmap_dumprdr, 0, "dump redirect table"); 157 158 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL); 159 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, ifnetinit, NULL); 160 161 static if_com_alloc_t *if_com_alloc[256]; 162 static if_com_free_t *if_com_free[256]; 163 164 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 165 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 166 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure"); 167 168 int ifqmaxlen = IFQ_MAXLEN; 169 struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet); 170 171 static struct ifnet_array ifnet_array0; 172 static struct ifnet_array *ifnet_array = &ifnet_array0; 173 174 static struct callout if_slowtimo_timer; 175 static struct netmsg_base if_slowtimo_netmsg; 176 177 int if_index = 0; 178 struct ifnet **ifindex2ifnet = NULL; 179 static struct mtx ifnet_mtx = MTX_INITIALIZER("ifnet"); 180 181 static struct ifsubq_stage_head ifsubq_stage_heads[MAXCPU]; 182 183 #ifdef notyet 184 #define IFQ_KTR_STRING "ifq=%p" 185 #define IFQ_KTR_ARGS struct ifaltq *ifq 186 #ifndef KTR_IFQ 187 #define KTR_IFQ KTR_ALL 188 #endif 189 KTR_INFO_MASTER(ifq); 190 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS); 191 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS); 192 #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg) 193 194 #define IF_START_KTR_STRING "ifp=%p" 195 #define IF_START_KTR_ARGS struct ifnet *ifp 196 #ifndef KTR_IF_START 197 #define KTR_IF_START KTR_ALL 198 #endif 199 KTR_INFO_MASTER(if_start); 200 KTR_INFO(KTR_IF_START, if_start, run, 0, 201 IF_START_KTR_STRING, IF_START_KTR_ARGS); 202 KTR_INFO(KTR_IF_START, if_start, sched, 1, 203 IF_START_KTR_STRING, IF_START_KTR_ARGS); 204 KTR_INFO(KTR_IF_START, if_start, avoid, 2, 205 IF_START_KTR_STRING, IF_START_KTR_ARGS); 206 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3, 207 IF_START_KTR_STRING, IF_START_KTR_ARGS); 208 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4, 209 IF_START_KTR_STRING, IF_START_KTR_ARGS); 210 #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg) 211 #endif 212 213 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head); 214 215 /* 216 * Network interface utility routines. 217 * 218 * Routines with ifa_ifwith* names take sockaddr *'s as 219 * parameters. 220 */ 221 /* ARGSUSED*/ 222 static void 223 ifinit(void *dummy) 224 { 225 struct ifnet *ifp; 226 227 callout_init_mp(&if_slowtimo_timer); 228 netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport, 229 MSGF_PRIORITY, if_slowtimo_dispatch); 230 231 /* XXX is this necessary? */ 232 ifnet_lock(); 233 TAILQ_FOREACH(ifp, &ifnetlist, if_link) { 234 if (ifp->if_snd.altq_maxlen == 0) { 235 if_printf(ifp, "XXX: driver didn't set altq_maxlen\n"); 236 ifq_set_maxlen(&ifp->if_snd, ifqmaxlen); 237 } 238 } 239 ifnet_unlock(); 240 241 /* Start if_slowtimo */ 242 lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg); 243 } 244 245 static void 246 ifsq_ifstart_ipifunc(void *arg) 247 { 248 struct ifaltq_subque *ifsq = arg; 249 struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid); 250 251 crit_enter(); 252 if (lmsg->ms_flags & MSGF_DONE) 253 lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg); 254 crit_exit(); 255 } 256 257 static __inline void 258 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage) 259 { 260 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED); 261 TAILQ_REMOVE(&head->stg_head, stage, stg_link); 262 stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED); 263 stage->stg_cnt = 0; 264 stage->stg_len = 0; 265 } 266 267 static __inline void 268 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage) 269 { 270 KKASSERT((stage->stg_flags & 271 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0); 272 stage->stg_flags |= IFSQ_STAGE_FLAG_QUED; 273 TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link); 274 } 275 276 /* 277 * Schedule ifnet.if_start on the subqueue owner CPU 278 */ 279 static void 280 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force) 281 { 282 int cpu; 283 284 if (!force && curthread->td_type == TD_TYPE_NETISR && 285 ifsq_stage_cntmax > 0) { 286 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid); 287 288 stage->stg_cnt = 0; 289 stage->stg_len = 0; 290 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0) 291 ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage); 292 stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED; 293 return; 294 } 295 296 cpu = ifsq_get_cpuid(ifsq); 297 if (cpu != mycpuid) 298 lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq); 299 else 300 ifsq_ifstart_ipifunc(ifsq); 301 } 302 303 /* 304 * NOTE: 305 * This function will release ifnet.if_start subqueue interlock, 306 * if ifnet.if_start for the subqueue does not need to be scheduled 307 */ 308 static __inline int 309 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running) 310 { 311 if (!running || ifsq_is_empty(ifsq) 312 #ifdef ALTQ 313 || ifsq->ifsq_altq->altq_tbr != NULL 314 #endif 315 ) { 316 ALTQ_SQ_LOCK(ifsq); 317 /* 318 * ifnet.if_start subqueue interlock is released, if: 319 * 1) Hardware can not take any packets, due to 320 * o interface is marked down 321 * o hardware queue is full (ifsq_is_oactive) 322 * Under the second situation, hardware interrupt 323 * or polling(4) will call/schedule ifnet.if_start 324 * on the subqueue when hardware queue is ready 325 * 2) There is no packet in the subqueue. 326 * Further ifq_dispatch or ifq_handoff will call/ 327 * schedule ifnet.if_start on the subqueue. 328 * 3) TBR is used and it does not allow further 329 * dequeueing. 330 * TBR callout will call ifnet.if_start on the 331 * subqueue. 332 */ 333 if (!running || !ifsq_data_ready(ifsq)) { 334 ifsq_clr_started(ifsq); 335 ALTQ_SQ_UNLOCK(ifsq); 336 return 0; 337 } 338 ALTQ_SQ_UNLOCK(ifsq); 339 } 340 return 1; 341 } 342 343 static void 344 ifsq_ifstart_dispatch(netmsg_t msg) 345 { 346 struct lwkt_msg *lmsg = &msg->base.lmsg; 347 struct ifaltq_subque *ifsq = lmsg->u.ms_resultp; 348 struct ifnet *ifp = ifsq_get_ifp(ifsq); 349 struct globaldata *gd = mycpu; 350 int running = 0, need_sched; 351 352 crit_enter_gd(gd); 353 354 lwkt_replymsg(lmsg, 0); /* reply ASAP */ 355 356 if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) { 357 /* 358 * We need to chase the subqueue owner CPU change. 359 */ 360 ifsq_ifstart_schedule(ifsq, 1); 361 crit_exit_gd(gd); 362 return; 363 } 364 365 ifsq_serialize_hw(ifsq); 366 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) { 367 ifp->if_start(ifp, ifsq); 368 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) 369 running = 1; 370 } 371 need_sched = ifsq_ifstart_need_schedule(ifsq, running); 372 ifsq_deserialize_hw(ifsq); 373 374 if (need_sched) { 375 /* 376 * More data need to be transmitted, ifnet.if_start is 377 * scheduled on the subqueue owner CPU, and we keep going. 378 * NOTE: ifnet.if_start subqueue interlock is not released. 379 */ 380 ifsq_ifstart_schedule(ifsq, 0); 381 } 382 383 crit_exit_gd(gd); 384 } 385 386 /* Device driver ifnet.if_start helper function */ 387 void 388 ifsq_devstart(struct ifaltq_subque *ifsq) 389 { 390 struct ifnet *ifp = ifsq_get_ifp(ifsq); 391 int running = 0; 392 393 ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq); 394 395 ALTQ_SQ_LOCK(ifsq); 396 if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) { 397 ALTQ_SQ_UNLOCK(ifsq); 398 return; 399 } 400 ifsq_set_started(ifsq); 401 ALTQ_SQ_UNLOCK(ifsq); 402 403 ifp->if_start(ifp, ifsq); 404 405 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) 406 running = 1; 407 408 if (ifsq_ifstart_need_schedule(ifsq, running)) { 409 /* 410 * More data need to be transmitted, ifnet.if_start is 411 * scheduled on ifnet's CPU, and we keep going. 412 * NOTE: ifnet.if_start interlock is not released. 413 */ 414 ifsq_ifstart_schedule(ifsq, 0); 415 } 416 } 417 418 void 419 if_devstart(struct ifnet *ifp) 420 { 421 ifsq_devstart(ifq_get_subq_default(&ifp->if_snd)); 422 } 423 424 /* Device driver ifnet.if_start schedule helper function */ 425 void 426 ifsq_devstart_sched(struct ifaltq_subque *ifsq) 427 { 428 ifsq_ifstart_schedule(ifsq, 1); 429 } 430 431 void 432 if_devstart_sched(struct ifnet *ifp) 433 { 434 ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd)); 435 } 436 437 static void 438 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 439 { 440 lwkt_serialize_enter(ifp->if_serializer); 441 } 442 443 static void 444 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 445 { 446 lwkt_serialize_exit(ifp->if_serializer); 447 } 448 449 static int 450 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 451 { 452 return lwkt_serialize_try(ifp->if_serializer); 453 } 454 455 #ifdef INVARIANTS 456 static void 457 if_default_serialize_assert(struct ifnet *ifp, 458 enum ifnet_serialize slz __unused, 459 boolean_t serialized) 460 { 461 if (serialized) 462 ASSERT_SERIALIZED(ifp->if_serializer); 463 else 464 ASSERT_NOT_SERIALIZED(ifp->if_serializer); 465 } 466 #endif 467 468 /* 469 * Attach an interface to the list of "active" interfaces. 470 * 471 * The serializer is optional. 472 */ 473 void 474 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer) 475 { 476 unsigned socksize; 477 int namelen, masklen; 478 struct sockaddr_dl *sdl, *sdl_addr; 479 struct ifaddr *ifa; 480 struct ifaltq *ifq; 481 struct ifnet **old_ifindex2ifnet = NULL; 482 struct ifnet_array *old_ifnet_array; 483 int i, q; 484 485 static int if_indexlim = 8; 486 487 if (ifp->if_serialize != NULL) { 488 KASSERT(ifp->if_deserialize != NULL && 489 ifp->if_tryserialize != NULL && 490 ifp->if_serialize_assert != NULL, 491 ("serialize functions are partially setup")); 492 493 /* 494 * If the device supplies serialize functions, 495 * then clear if_serializer to catch any invalid 496 * usage of this field. 497 */ 498 KASSERT(serializer == NULL, 499 ("both serialize functions and default serializer " 500 "are supplied")); 501 ifp->if_serializer = NULL; 502 } else { 503 KASSERT(ifp->if_deserialize == NULL && 504 ifp->if_tryserialize == NULL && 505 ifp->if_serialize_assert == NULL, 506 ("serialize functions are partially setup")); 507 ifp->if_serialize = if_default_serialize; 508 ifp->if_deserialize = if_default_deserialize; 509 ifp->if_tryserialize = if_default_tryserialize; 510 #ifdef INVARIANTS 511 ifp->if_serialize_assert = if_default_serialize_assert; 512 #endif 513 514 /* 515 * The serializer can be passed in from the device, 516 * allowing the same serializer to be used for both 517 * the interrupt interlock and the device queue. 518 * If not specified, the netif structure will use an 519 * embedded serializer. 520 */ 521 if (serializer == NULL) { 522 serializer = &ifp->if_default_serializer; 523 lwkt_serialize_init(serializer); 524 } 525 ifp->if_serializer = serializer; 526 } 527 528 /* 529 * XXX - 530 * The old code would work if the interface passed a pre-existing 531 * chain of ifaddrs to this code. We don't trust our callers to 532 * properly initialize the tailq, however, so we no longer allow 533 * this unlikely case. 534 */ 535 ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead), 536 M_IFADDR, M_WAITOK | M_ZERO); 537 for (i = 0; i < ncpus; ++i) 538 TAILQ_INIT(&ifp->if_addrheads[i]); 539 540 TAILQ_INIT(&ifp->if_multiaddrs); 541 TAILQ_INIT(&ifp->if_groups); 542 getmicrotime(&ifp->if_lastchange); 543 544 /* 545 * create a Link Level name for this device 546 */ 547 namelen = strlen(ifp->if_xname); 548 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; 549 socksize = masklen + ifp->if_addrlen; 550 if (socksize < sizeof(*sdl)) 551 socksize = sizeof(*sdl); 552 socksize = RT_ROUNDUP(socksize); 553 ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize); 554 sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1); 555 sdl->sdl_len = socksize; 556 sdl->sdl_family = AF_LINK; 557 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 558 sdl->sdl_nlen = namelen; 559 sdl->sdl_type = ifp->if_type; 560 ifp->if_lladdr = ifa; 561 ifa->ifa_ifp = ifp; 562 ifa->ifa_rtrequest = link_rtrequest; 563 ifa->ifa_addr = (struct sockaddr *)sdl; 564 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 565 ifa->ifa_netmask = (struct sockaddr *)sdl; 566 sdl->sdl_len = masklen; 567 while (namelen != 0) 568 sdl->sdl_data[--namelen] = 0xff; 569 ifa_iflink(ifa, ifp, 0 /* Insert head */); 570 571 ifp->if_data_pcpu = kmalloc_cachealign( 572 ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO); 573 574 if (ifp->if_mapsubq == NULL) 575 ifp->if_mapsubq = ifq_mapsubq_default; 576 577 ifq = &ifp->if_snd; 578 ifq->altq_type = 0; 579 ifq->altq_disc = NULL; 580 ifq->altq_flags &= ALTQF_CANTCHANGE; 581 ifq->altq_tbr = NULL; 582 ifq->altq_ifp = ifp; 583 584 if (ifq->altq_subq_cnt <= 0) 585 ifq->altq_subq_cnt = 1; 586 ifq->altq_subq = kmalloc_cachealign( 587 ifq->altq_subq_cnt * sizeof(struct ifaltq_subque), 588 M_DEVBUF, M_WAITOK | M_ZERO); 589 590 if (ifq->altq_maxlen == 0) { 591 if_printf(ifp, "driver didn't set altq_maxlen\n"); 592 ifq_set_maxlen(ifq, ifqmaxlen); 593 } 594 595 for (q = 0; q < ifq->altq_subq_cnt; ++q) { 596 struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; 597 598 ALTQ_SQ_LOCK_INIT(ifsq); 599 ifsq->ifsq_index = q; 600 601 ifsq->ifsq_altq = ifq; 602 ifsq->ifsq_ifp = ifp; 603 604 ifsq->ifsq_maxlen = ifq->altq_maxlen; 605 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES; 606 ifsq->ifsq_prepended = NULL; 607 ifsq->ifsq_started = 0; 608 ifsq->ifsq_hw_oactive = 0; 609 ifsq_set_cpuid(ifsq, 0); 610 if (ifp->if_serializer != NULL) 611 ifsq_set_hw_serialize(ifsq, ifp->if_serializer); 612 613 ifsq->ifsq_stage = 614 kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage), 615 M_DEVBUF, M_WAITOK | M_ZERO); 616 for (i = 0; i < ncpus; ++i) 617 ifsq->ifsq_stage[i].stg_subq = ifsq; 618 619 ifsq->ifsq_ifstart_nmsg = 620 kmalloc(ncpus * sizeof(struct netmsg_base), 621 M_LWKTMSG, M_WAITOK); 622 for (i = 0; i < ncpus; ++i) { 623 netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL, 624 &netisr_adone_rport, 0, ifsq_ifstart_dispatch); 625 ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq; 626 } 627 } 628 ifq_set_classic(ifq); 629 630 /* 631 * Increase mbuf cluster/jcluster limits for the mbufs that 632 * could sit on the device queues for quite some time. 633 */ 634 if (ifp->if_nmbclusters > 0) 635 mcl_inclimit(ifp->if_nmbclusters); 636 if (ifp->if_nmbjclusters > 0) 637 mjcl_inclimit(ifp->if_nmbjclusters); 638 639 /* 640 * Install this ifp into ifindex2inet, ifnet queue and ifnet 641 * array after it is setup. 642 * 643 * Protect ifindex2ifnet, ifnet queue and ifnet array changes 644 * by ifnet lock, so that non-netisr threads could get a 645 * consistent view. 646 */ 647 ifnet_lock(); 648 649 /* Don't update if_index until ifindex2ifnet is setup */ 650 ifp->if_index = if_index + 1; 651 sdl_addr->sdl_index = ifp->if_index; 652 653 /* 654 * Install this ifp into ifindex2ifnet 655 */ 656 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 657 unsigned int n; 658 struct ifnet **q; 659 660 /* 661 * Grow ifindex2ifnet 662 */ 663 if_indexlim <<= 1; 664 n = if_indexlim * sizeof(*q); 665 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO); 666 if (ifindex2ifnet != NULL) { 667 bcopy(ifindex2ifnet, q, n/2); 668 /* Free old ifindex2ifnet after sync all netisrs */ 669 old_ifindex2ifnet = ifindex2ifnet; 670 } 671 ifindex2ifnet = q; 672 } 673 ifindex2ifnet[ifp->if_index] = ifp; 674 /* 675 * Update if_index after this ifp is installed into ifindex2ifnet, 676 * so that netisrs could get a consistent view of ifindex2ifnet. 677 */ 678 cpu_sfence(); 679 if_index = ifp->if_index; 680 681 /* 682 * Install this ifp into ifnet array. 683 */ 684 /* Free old ifnet array after sync all netisrs */ 685 old_ifnet_array = ifnet_array; 686 ifnet_array = ifnet_array_add(ifp, old_ifnet_array); 687 688 /* 689 * Install this ifp into ifnet queue. 690 */ 691 TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link); 692 693 ifnet_unlock(); 694 695 /* 696 * Sync all netisrs so that the old ifindex2ifnet and ifnet array 697 * are no longer accessed and we can free them safely later on. 698 */ 699 netmsg_service_sync(); 700 if (old_ifindex2ifnet != NULL) 701 kfree(old_ifindex2ifnet, M_IFADDR); 702 ifnet_array_free(old_ifnet_array); 703 704 if (!SLIST_EMPTY(&domains)) 705 if_attachdomain1(ifp); 706 707 /* Announce the interface. */ 708 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 709 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 710 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 711 } 712 713 static void 714 if_attachdomain(void *dummy) 715 { 716 struct ifnet *ifp; 717 718 ifnet_lock(); 719 TAILQ_FOREACH(ifp, &ifnetlist, if_list) 720 if_attachdomain1(ifp); 721 ifnet_unlock(); 722 } 723 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, 724 if_attachdomain, NULL); 725 726 static void 727 if_attachdomain1(struct ifnet *ifp) 728 { 729 struct domain *dp; 730 731 crit_enter(); 732 733 /* address family dependent data region */ 734 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 735 SLIST_FOREACH(dp, &domains, dom_next) 736 if (dp->dom_ifattach) 737 ifp->if_afdata[dp->dom_family] = 738 (*dp->dom_ifattach)(ifp); 739 crit_exit(); 740 } 741 742 /* 743 * Purge all addresses whose type is _not_ AF_LINK 744 */ 745 static void 746 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg) 747 { 748 struct lwkt_msg *lmsg = &nmsg->lmsg; 749 struct ifnet *ifp = lmsg->u.ms_resultp; 750 struct ifaddr_container *ifac, *next; 751 752 ASSERT_IN_NETISR(0); 753 754 /* 755 * The ifaddr processing in the following loop will block, 756 * however, this function is called in netisr0, in which 757 * ifaddr list changes happen, so we don't care about the 758 * blockness of the ifaddr processing here. 759 */ 760 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid], 761 ifa_link, next) { 762 struct ifaddr *ifa = ifac->ifa; 763 764 /* Ignore marker */ 765 if (ifa->ifa_addr->sa_family == AF_UNSPEC) 766 continue; 767 768 /* Leave link ifaddr as it is */ 769 if (ifa->ifa_addr->sa_family == AF_LINK) 770 continue; 771 #ifdef INET 772 /* XXX: Ugly!! ad hoc just for INET */ 773 if (ifa->ifa_addr->sa_family == AF_INET) { 774 struct ifaliasreq ifr; 775 struct sockaddr_in saved_addr, saved_dst; 776 #ifdef IFADDR_DEBUG_VERBOSE 777 int i; 778 779 kprintf("purge in4 addr %p: ", ifa); 780 for (i = 0; i < ncpus; ++i) { 781 kprintf("%d ", 782 ifa->ifa_containers[i].ifa_refcnt); 783 } 784 kprintf("\n"); 785 #endif 786 787 /* Save information for panic. */ 788 memcpy(&saved_addr, ifa->ifa_addr, sizeof(saved_addr)); 789 if (ifa->ifa_dstaddr != NULL) { 790 memcpy(&saved_dst, ifa->ifa_dstaddr, 791 sizeof(saved_dst)); 792 } else { 793 memset(&saved_dst, 0, sizeof(saved_dst)); 794 } 795 796 bzero(&ifr, sizeof ifr); 797 ifr.ifra_addr = *ifa->ifa_addr; 798 if (ifa->ifa_dstaddr) 799 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 800 if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp, 801 NULL) == 0) 802 continue; 803 804 /* MUST NOT HAPPEN */ 805 panic("%s: in_control failed %x, dst %x", ifp->if_xname, 806 ntohl(saved_addr.sin_addr.s_addr), 807 ntohl(saved_dst.sin_addr.s_addr)); 808 } 809 #endif /* INET */ 810 #ifdef INET6 811 if (ifa->ifa_addr->sa_family == AF_INET6) { 812 #ifdef IFADDR_DEBUG_VERBOSE 813 int i; 814 815 kprintf("purge in6 addr %p: ", ifa); 816 for (i = 0; i < ncpus; ++i) { 817 kprintf("%d ", 818 ifa->ifa_containers[i].ifa_refcnt); 819 } 820 kprintf("\n"); 821 #endif 822 823 in6_purgeaddr(ifa); 824 /* ifp_addrhead is already updated */ 825 continue; 826 } 827 #endif /* INET6 */ 828 if_printf(ifp, "destrot ifaddr family %d\n", 829 ifa->ifa_addr->sa_family); 830 ifa_ifunlink(ifa, ifp); 831 ifa_destroy(ifa); 832 } 833 834 lwkt_replymsg(lmsg, 0); 835 } 836 837 void 838 if_purgeaddrs_nolink(struct ifnet *ifp) 839 { 840 struct netmsg_base nmsg; 841 struct lwkt_msg *lmsg = &nmsg.lmsg; 842 843 ASSERT_CANDOMSG_NETISR0(curthread); 844 845 netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0, 846 if_purgeaddrs_nolink_dispatch); 847 lmsg->u.ms_resultp = ifp; 848 lwkt_domsg(netisr_cpuport(0), lmsg, 0); 849 } 850 851 static void 852 ifq_stage_detach_handler(netmsg_t nmsg) 853 { 854 struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp; 855 int q; 856 857 for (q = 0; q < ifq->altq_subq_cnt; ++q) { 858 struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; 859 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid); 860 861 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) 862 ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage); 863 } 864 lwkt_replymsg(&nmsg->lmsg, 0); 865 } 866 867 static void 868 ifq_stage_detach(struct ifaltq *ifq) 869 { 870 struct netmsg_base base; 871 int cpu; 872 873 netmsg_init(&base, NULL, &curthread->td_msgport, 0, 874 ifq_stage_detach_handler); 875 base.lmsg.u.ms_resultp = ifq; 876 877 for (cpu = 0; cpu < ncpus; ++cpu) 878 lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0); 879 } 880 881 struct netmsg_if_rtdel { 882 struct netmsg_base base; 883 struct ifnet *ifp; 884 }; 885 886 static void 887 if_rtdel_dispatch(netmsg_t msg) 888 { 889 struct netmsg_if_rtdel *rmsg = (void *)msg; 890 int i, nextcpu, cpu; 891 892 cpu = mycpuid; 893 for (i = 1; i <= AF_MAX; i++) { 894 struct radix_node_head *rnh; 895 896 if ((rnh = rt_tables[cpu][i]) == NULL) 897 continue; 898 rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp); 899 } 900 901 nextcpu = cpu + 1; 902 if (nextcpu < ncpus) 903 lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg); 904 else 905 lwkt_replymsg(&rmsg->base.lmsg, 0); 906 } 907 908 /* 909 * Detach an interface, removing it from the 910 * list of "active" interfaces. 911 */ 912 void 913 if_detach(struct ifnet *ifp) 914 { 915 struct ifnet_array *old_ifnet_array; 916 struct netmsg_if_rtdel msg; 917 struct domain *dp; 918 int q; 919 920 /* Announce that the interface is gone. */ 921 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 922 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 923 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 924 925 /* 926 * Remove this ifp from ifindex2inet, ifnet queue and ifnet 927 * array before it is whacked. 928 * 929 * Protect ifindex2ifnet, ifnet queue and ifnet array changes 930 * by ifnet lock, so that non-netisr threads could get a 931 * consistent view. 932 */ 933 ifnet_lock(); 934 935 /* 936 * Remove this ifp from ifindex2ifnet and maybe decrement if_index. 937 */ 938 ifindex2ifnet[ifp->if_index] = NULL; 939 while (if_index > 0 && ifindex2ifnet[if_index] == NULL) 940 if_index--; 941 942 /* 943 * Remove this ifp from ifnet queue. 944 */ 945 TAILQ_REMOVE(&ifnetlist, ifp, if_link); 946 947 /* 948 * Remove this ifp from ifnet array. 949 */ 950 /* Free old ifnet array after sync all netisrs */ 951 old_ifnet_array = ifnet_array; 952 ifnet_array = ifnet_array_del(ifp, old_ifnet_array); 953 954 ifnet_unlock(); 955 956 /* 957 * Sync all netisrs so that the old ifnet array is no longer 958 * accessed and we can free it safely later on. 959 */ 960 netmsg_service_sync(); 961 ifnet_array_free(old_ifnet_array); 962 963 /* 964 * Remove routes and flush queues. 965 */ 966 crit_enter(); 967 #ifdef IFPOLL_ENABLE 968 if (ifp->if_flags & IFF_NPOLLING) 969 ifpoll_deregister(ifp); 970 #endif 971 if_down(ifp); 972 973 /* Decrease the mbuf clusters/jclusters limits increased by us */ 974 if (ifp->if_nmbclusters > 0) 975 mcl_inclimit(-ifp->if_nmbclusters); 976 if (ifp->if_nmbjclusters > 0) 977 mjcl_inclimit(-ifp->if_nmbjclusters); 978 979 #ifdef ALTQ 980 if (ifq_is_enabled(&ifp->if_snd)) 981 altq_disable(&ifp->if_snd); 982 if (ifq_is_attached(&ifp->if_snd)) 983 altq_detach(&ifp->if_snd); 984 #endif 985 986 /* 987 * Clean up all addresses. 988 */ 989 ifp->if_lladdr = NULL; 990 991 if_purgeaddrs_nolink(ifp); 992 if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) { 993 struct ifaddr *ifa; 994 995 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 996 KASSERT(ifa->ifa_addr->sa_family == AF_LINK, 997 ("non-link ifaddr is left on if_addrheads")); 998 999 ifa_ifunlink(ifa, ifp); 1000 ifa_destroy(ifa); 1001 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]), 1002 ("there are still ifaddrs left on if_addrheads")); 1003 } 1004 1005 #ifdef INET 1006 /* 1007 * Remove all IPv4 kernel structures related to ifp. 1008 */ 1009 in_ifdetach(ifp); 1010 #endif 1011 1012 #ifdef INET6 1013 /* 1014 * Remove all IPv6 kernel structs related to ifp. This should be done 1015 * before removing routing entries below, since IPv6 interface direct 1016 * routes are expected to be removed by the IPv6-specific kernel API. 1017 * Otherwise, the kernel will detect some inconsistency and bark it. 1018 */ 1019 in6_ifdetach(ifp); 1020 #endif 1021 1022 /* 1023 * Delete all remaining routes using this interface 1024 */ 1025 netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY, 1026 if_rtdel_dispatch); 1027 msg.ifp = ifp; 1028 rt_domsg_global(&msg.base); 1029 1030 SLIST_FOREACH(dp, &domains, dom_next) 1031 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 1032 (*dp->dom_ifdetach)(ifp, 1033 ifp->if_afdata[dp->dom_family]); 1034 1035 kfree(ifp->if_addrheads, M_IFADDR); 1036 1037 lwkt_synchronize_ipiqs("if_detach"); 1038 ifq_stage_detach(&ifp->if_snd); 1039 1040 for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) { 1041 struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q]; 1042 1043 kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG); 1044 kfree(ifsq->ifsq_stage, M_DEVBUF); 1045 } 1046 kfree(ifp->if_snd.altq_subq, M_DEVBUF); 1047 1048 kfree(ifp->if_data_pcpu, M_DEVBUF); 1049 1050 crit_exit(); 1051 } 1052 1053 /* 1054 * Create interface group without members 1055 */ 1056 struct ifg_group * 1057 if_creategroup(const char *groupname) 1058 { 1059 struct ifg_group *ifg = NULL; 1060 1061 if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group), 1062 M_TEMP, M_NOWAIT)) == NULL) 1063 return (NULL); 1064 1065 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1066 ifg->ifg_refcnt = 0; 1067 ifg->ifg_carp_demoted = 0; 1068 TAILQ_INIT(&ifg->ifg_members); 1069 #if NPF > 0 1070 pfi_attach_ifgroup(ifg); 1071 #endif 1072 TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next); 1073 1074 return (ifg); 1075 } 1076 1077 /* 1078 * Add a group to an interface 1079 */ 1080 int 1081 if_addgroup(struct ifnet *ifp, const char *groupname) 1082 { 1083 struct ifg_list *ifgl; 1084 struct ifg_group *ifg = NULL; 1085 struct ifg_member *ifgm; 1086 1087 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1088 groupname[strlen(groupname) - 1] <= '9') 1089 return (EINVAL); 1090 1091 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1092 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 1093 return (EEXIST); 1094 1095 if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) 1096 return (ENOMEM); 1097 1098 if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 1099 kfree(ifgl, M_TEMP); 1100 return (ENOMEM); 1101 } 1102 1103 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 1104 if (!strcmp(ifg->ifg_group, groupname)) 1105 break; 1106 1107 if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) { 1108 kfree(ifgl, M_TEMP); 1109 kfree(ifgm, M_TEMP); 1110 return (ENOMEM); 1111 } 1112 1113 ifg->ifg_refcnt++; 1114 ifgl->ifgl_group = ifg; 1115 ifgm->ifgm_ifp = ifp; 1116 1117 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1118 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1119 1120 #if NPF > 0 1121 pfi_group_change(groupname); 1122 #endif 1123 1124 return (0); 1125 } 1126 1127 /* 1128 * Remove a group from an interface 1129 */ 1130 int 1131 if_delgroup(struct ifnet *ifp, const char *groupname) 1132 { 1133 struct ifg_list *ifgl; 1134 struct ifg_member *ifgm; 1135 1136 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1137 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 1138 break; 1139 if (ifgl == NULL) 1140 return (ENOENT); 1141 1142 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1143 1144 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1145 if (ifgm->ifgm_ifp == ifp) 1146 break; 1147 1148 if (ifgm != NULL) { 1149 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 1150 kfree(ifgm, M_TEMP); 1151 } 1152 1153 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1154 TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next); 1155 #if NPF > 0 1156 pfi_detach_ifgroup(ifgl->ifgl_group); 1157 #endif 1158 kfree(ifgl->ifgl_group, M_TEMP); 1159 } 1160 1161 kfree(ifgl, M_TEMP); 1162 1163 #if NPF > 0 1164 pfi_group_change(groupname); 1165 #endif 1166 1167 return (0); 1168 } 1169 1170 /* 1171 * Stores all groups from an interface in memory pointed 1172 * to by data 1173 */ 1174 int 1175 if_getgroup(caddr_t data, struct ifnet *ifp) 1176 { 1177 int len, error; 1178 struct ifg_list *ifgl; 1179 struct ifg_req ifgrq, *ifgp; 1180 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 1181 1182 if (ifgr->ifgr_len == 0) { 1183 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1184 ifgr->ifgr_len += sizeof(struct ifg_req); 1185 return (0); 1186 } 1187 1188 len = ifgr->ifgr_len; 1189 ifgp = ifgr->ifgr_groups; 1190 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1191 if (len < sizeof(ifgrq)) 1192 return (EINVAL); 1193 bzero(&ifgrq, sizeof ifgrq); 1194 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1195 sizeof(ifgrq.ifgrq_group)); 1196 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 1197 sizeof(struct ifg_req)))) 1198 return (error); 1199 len -= sizeof(ifgrq); 1200 ifgp++; 1201 } 1202 1203 return (0); 1204 } 1205 1206 /* 1207 * Stores all members of a group in memory pointed to by data 1208 */ 1209 int 1210 if_getgroupmembers(caddr_t data) 1211 { 1212 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 1213 struct ifg_group *ifg; 1214 struct ifg_member *ifgm; 1215 struct ifg_req ifgrq, *ifgp; 1216 int len, error; 1217 1218 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 1219 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 1220 break; 1221 if (ifg == NULL) 1222 return (ENOENT); 1223 1224 if (ifgr->ifgr_len == 0) { 1225 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1226 ifgr->ifgr_len += sizeof(ifgrq); 1227 return (0); 1228 } 1229 1230 len = ifgr->ifgr_len; 1231 ifgp = ifgr->ifgr_groups; 1232 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1233 if (len < sizeof(ifgrq)) 1234 return (EINVAL); 1235 bzero(&ifgrq, sizeof ifgrq); 1236 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1237 sizeof(ifgrq.ifgrq_member)); 1238 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 1239 sizeof(struct ifg_req)))) 1240 return (error); 1241 len -= sizeof(ifgrq); 1242 ifgp++; 1243 } 1244 1245 return (0); 1246 } 1247 1248 /* 1249 * Delete Routes for a Network Interface 1250 * 1251 * Called for each routing entry via the rnh->rnh_walktree() call above 1252 * to delete all route entries referencing a detaching network interface. 1253 * 1254 * Arguments: 1255 * rn pointer to node in the routing table 1256 * arg argument passed to rnh->rnh_walktree() - detaching interface 1257 * 1258 * Returns: 1259 * 0 successful 1260 * errno failed - reason indicated 1261 * 1262 */ 1263 static int 1264 if_rtdel(struct radix_node *rn, void *arg) 1265 { 1266 struct rtentry *rt = (struct rtentry *)rn; 1267 struct ifnet *ifp = arg; 1268 int err; 1269 1270 if (rt->rt_ifp == ifp) { 1271 1272 /* 1273 * Protect (sorta) against walktree recursion problems 1274 * with cloned routes 1275 */ 1276 if (!(rt->rt_flags & RTF_UP)) 1277 return (0); 1278 1279 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, 1280 rt_mask(rt), rt->rt_flags, 1281 NULL); 1282 if (err) { 1283 log(LOG_WARNING, "if_rtdel: error %d\n", err); 1284 } 1285 } 1286 1287 return (0); 1288 } 1289 1290 static __inline boolean_t 1291 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa) 1292 { 1293 if (old_ifa == NULL) 1294 return TRUE; 1295 1296 if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 && 1297 (cur_ifa->ifa_ifp->if_flags & IFF_UP)) 1298 return TRUE; 1299 if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 && 1300 (cur_ifa->ifa_flags & IFA_ROUTE)) 1301 return TRUE; 1302 return FALSE; 1303 } 1304 1305 /* 1306 * Locate an interface based on a complete address. 1307 */ 1308 struct ifaddr * 1309 ifa_ifwithaddr(struct sockaddr *addr) 1310 { 1311 const struct ifnet_array *arr; 1312 int i; 1313 1314 arr = ifnet_array_get(); 1315 for (i = 0; i < arr->ifnet_count; ++i) { 1316 struct ifnet *ifp = arr->ifnet_arr[i]; 1317 struct ifaddr_container *ifac; 1318 1319 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1320 struct ifaddr *ifa = ifac->ifa; 1321 1322 if (ifa->ifa_addr->sa_family != addr->sa_family) 1323 continue; 1324 if (sa_equal(addr, ifa->ifa_addr)) 1325 return (ifa); 1326 if ((ifp->if_flags & IFF_BROADCAST) && 1327 ifa->ifa_broadaddr && 1328 /* IPv6 doesn't have broadcast */ 1329 ifa->ifa_broadaddr->sa_len != 0 && 1330 sa_equal(ifa->ifa_broadaddr, addr)) 1331 return (ifa); 1332 } 1333 } 1334 return (NULL); 1335 } 1336 1337 /* 1338 * Locate the point to point interface with a given destination address. 1339 */ 1340 struct ifaddr * 1341 ifa_ifwithdstaddr(struct sockaddr *addr) 1342 { 1343 const struct ifnet_array *arr; 1344 int i; 1345 1346 arr = ifnet_array_get(); 1347 for (i = 0; i < arr->ifnet_count; ++i) { 1348 struct ifnet *ifp = arr->ifnet_arr[i]; 1349 struct ifaddr_container *ifac; 1350 1351 if (!(ifp->if_flags & IFF_POINTOPOINT)) 1352 continue; 1353 1354 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1355 struct ifaddr *ifa = ifac->ifa; 1356 1357 if (ifa->ifa_addr->sa_family != addr->sa_family) 1358 continue; 1359 if (ifa->ifa_dstaddr && 1360 sa_equal(addr, ifa->ifa_dstaddr)) 1361 return (ifa); 1362 } 1363 } 1364 return (NULL); 1365 } 1366 1367 /* 1368 * Find an interface on a specific network. If many, choice 1369 * is most specific found. 1370 */ 1371 struct ifaddr * 1372 ifa_ifwithnet(struct sockaddr *addr) 1373 { 1374 struct ifaddr *ifa_maybe = NULL; 1375 u_int af = addr->sa_family; 1376 char *addr_data = addr->sa_data, *cplim; 1377 const struct ifnet_array *arr; 1378 int i; 1379 1380 /* 1381 * AF_LINK addresses can be looked up directly by their index number, 1382 * so do that if we can. 1383 */ 1384 if (af == AF_LINK) { 1385 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 1386 1387 if (sdl->sdl_index && sdl->sdl_index <= if_index) 1388 return (ifindex2ifnet[sdl->sdl_index]->if_lladdr); 1389 } 1390 1391 /* 1392 * Scan though each interface, looking for ones that have 1393 * addresses in this address family. 1394 */ 1395 arr = ifnet_array_get(); 1396 for (i = 0; i < arr->ifnet_count; ++i) { 1397 struct ifnet *ifp = arr->ifnet_arr[i]; 1398 struct ifaddr_container *ifac; 1399 1400 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1401 struct ifaddr *ifa = ifac->ifa; 1402 char *cp, *cp2, *cp3; 1403 1404 if (ifa->ifa_addr->sa_family != af) 1405 next: continue; 1406 if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) { 1407 /* 1408 * This is a bit broken as it doesn't 1409 * take into account that the remote end may 1410 * be a single node in the network we are 1411 * looking for. 1412 * The trouble is that we don't know the 1413 * netmask for the remote end. 1414 */ 1415 if (ifa->ifa_dstaddr != NULL && 1416 sa_equal(addr, ifa->ifa_dstaddr)) 1417 return (ifa); 1418 } else { 1419 /* 1420 * if we have a special address handler, 1421 * then use it instead of the generic one. 1422 */ 1423 if (ifa->ifa_claim_addr) { 1424 if ((*ifa->ifa_claim_addr)(ifa, addr)) { 1425 return (ifa); 1426 } else { 1427 continue; 1428 } 1429 } 1430 1431 /* 1432 * Scan all the bits in the ifa's address. 1433 * If a bit dissagrees with what we are 1434 * looking for, mask it with the netmask 1435 * to see if it really matters. 1436 * (A byte at a time) 1437 */ 1438 if (ifa->ifa_netmask == 0) 1439 continue; 1440 cp = addr_data; 1441 cp2 = ifa->ifa_addr->sa_data; 1442 cp3 = ifa->ifa_netmask->sa_data; 1443 cplim = ifa->ifa_netmask->sa_len + 1444 (char *)ifa->ifa_netmask; 1445 while (cp3 < cplim) 1446 if ((*cp++ ^ *cp2++) & *cp3++) 1447 goto next; /* next address! */ 1448 /* 1449 * If the netmask of what we just found 1450 * is more specific than what we had before 1451 * (if we had one) then remember the new one 1452 * before continuing to search for an even 1453 * better one. If the netmasks are equal, 1454 * we prefer the this ifa based on the result 1455 * of ifa_prefer(). 1456 */ 1457 if (ifa_maybe == NULL || 1458 rn_refines((char *)ifa->ifa_netmask, 1459 (char *)ifa_maybe->ifa_netmask) || 1460 (sa_equal(ifa_maybe->ifa_netmask, 1461 ifa->ifa_netmask) && 1462 ifa_prefer(ifa, ifa_maybe))) 1463 ifa_maybe = ifa; 1464 } 1465 } 1466 } 1467 return (ifa_maybe); 1468 } 1469 1470 /* 1471 * Find an interface address specific to an interface best matching 1472 * a given address. 1473 */ 1474 struct ifaddr * 1475 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1476 { 1477 struct ifaddr_container *ifac; 1478 char *cp, *cp2, *cp3; 1479 char *cplim; 1480 struct ifaddr *ifa_maybe = NULL; 1481 u_int af = addr->sa_family; 1482 1483 if (af >= AF_MAX) 1484 return (0); 1485 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1486 struct ifaddr *ifa = ifac->ifa; 1487 1488 if (ifa->ifa_addr->sa_family != af) 1489 continue; 1490 if (ifa_maybe == NULL) 1491 ifa_maybe = ifa; 1492 if (ifa->ifa_netmask == NULL) { 1493 if (sa_equal(addr, ifa->ifa_addr) || 1494 (ifa->ifa_dstaddr != NULL && 1495 sa_equal(addr, ifa->ifa_dstaddr))) 1496 return (ifa); 1497 continue; 1498 } 1499 if (ifp->if_flags & IFF_POINTOPOINT) { 1500 if (sa_equal(addr, ifa->ifa_dstaddr)) 1501 return (ifa); 1502 } else { 1503 cp = addr->sa_data; 1504 cp2 = ifa->ifa_addr->sa_data; 1505 cp3 = ifa->ifa_netmask->sa_data; 1506 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1507 for (; cp3 < cplim; cp3++) 1508 if ((*cp++ ^ *cp2++) & *cp3) 1509 break; 1510 if (cp3 == cplim) 1511 return (ifa); 1512 } 1513 } 1514 return (ifa_maybe); 1515 } 1516 1517 /* 1518 * Default action when installing a route with a Link Level gateway. 1519 * Lookup an appropriate real ifa to point to. 1520 * This should be moved to /sys/net/link.c eventually. 1521 */ 1522 static void 1523 link_rtrequest(int cmd, struct rtentry *rt) 1524 { 1525 struct ifaddr *ifa; 1526 struct sockaddr *dst; 1527 struct ifnet *ifp; 1528 1529 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1530 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL) 1531 return; 1532 ifa = ifaof_ifpforaddr(dst, ifp); 1533 if (ifa != NULL) { 1534 IFAFREE(rt->rt_ifa); 1535 IFAREF(ifa); 1536 rt->rt_ifa = ifa; 1537 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1538 ifa->ifa_rtrequest(cmd, rt); 1539 } 1540 } 1541 1542 struct netmsg_ifroute { 1543 struct netmsg_base base; 1544 struct ifnet *ifp; 1545 int flag; 1546 int fam; 1547 }; 1548 1549 /* 1550 * Mark an interface down and notify protocols of the transition. 1551 */ 1552 static void 1553 if_unroute_dispatch(netmsg_t nmsg) 1554 { 1555 struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg; 1556 struct ifnet *ifp = msg->ifp; 1557 int flag = msg->flag, fam = msg->fam; 1558 struct ifaddr_container *ifac; 1559 1560 ifp->if_flags &= ~flag; 1561 getmicrotime(&ifp->if_lastchange); 1562 /* 1563 * The ifaddr processing in the following loop will block, 1564 * however, this function is called in netisr0, in which 1565 * ifaddr list changes happen, so we don't care about the 1566 * blockness of the ifaddr processing here. 1567 */ 1568 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1569 struct ifaddr *ifa = ifac->ifa; 1570 1571 /* Ignore marker */ 1572 if (ifa->ifa_addr->sa_family == AF_UNSPEC) 1573 continue; 1574 1575 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1576 kpfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1577 } 1578 ifq_purge_all(&ifp->if_snd); 1579 rt_ifmsg(ifp); 1580 1581 lwkt_replymsg(&nmsg->lmsg, 0); 1582 } 1583 1584 void 1585 if_unroute(struct ifnet *ifp, int flag, int fam) 1586 { 1587 struct netmsg_ifroute msg; 1588 1589 ASSERT_CANDOMSG_NETISR0(curthread); 1590 1591 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0, 1592 if_unroute_dispatch); 1593 msg.ifp = ifp; 1594 msg.flag = flag; 1595 msg.fam = fam; 1596 lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0); 1597 } 1598 1599 /* 1600 * Mark an interface up and notify protocols of the transition. 1601 */ 1602 static void 1603 if_route_dispatch(netmsg_t nmsg) 1604 { 1605 struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg; 1606 struct ifnet *ifp = msg->ifp; 1607 int flag = msg->flag, fam = msg->fam; 1608 struct ifaddr_container *ifac; 1609 1610 ifq_purge_all(&ifp->if_snd); 1611 ifp->if_flags |= flag; 1612 getmicrotime(&ifp->if_lastchange); 1613 /* 1614 * The ifaddr processing in the following loop will block, 1615 * however, this function is called in netisr0, in which 1616 * ifaddr list changes happen, so we don't care about the 1617 * blockness of the ifaddr processing here. 1618 */ 1619 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1620 struct ifaddr *ifa = ifac->ifa; 1621 1622 /* Ignore marker */ 1623 if (ifa->ifa_addr->sa_family == AF_UNSPEC) 1624 continue; 1625 1626 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1627 kpfctlinput(PRC_IFUP, ifa->ifa_addr); 1628 } 1629 rt_ifmsg(ifp); 1630 #ifdef INET6 1631 in6_if_up(ifp); 1632 #endif 1633 1634 lwkt_replymsg(&nmsg->lmsg, 0); 1635 } 1636 1637 void 1638 if_route(struct ifnet *ifp, int flag, int fam) 1639 { 1640 struct netmsg_ifroute msg; 1641 1642 ASSERT_CANDOMSG_NETISR0(curthread); 1643 1644 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0, 1645 if_route_dispatch); 1646 msg.ifp = ifp; 1647 msg.flag = flag; 1648 msg.fam = fam; 1649 lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0); 1650 } 1651 1652 /* 1653 * Mark an interface down and notify protocols of the transition. An 1654 * interface going down is also considered to be a synchronizing event. 1655 * We must ensure that all packet processing related to the interface 1656 * has completed before we return so e.g. the caller can free the ifnet 1657 * structure that the mbufs may be referencing. 1658 * 1659 * NOTE: must be called at splnet or eqivalent. 1660 */ 1661 void 1662 if_down(struct ifnet *ifp) 1663 { 1664 if_unroute(ifp, IFF_UP, AF_UNSPEC); 1665 netmsg_service_sync(); 1666 } 1667 1668 /* 1669 * Mark an interface up and notify protocols of 1670 * the transition. 1671 * NOTE: must be called at splnet or eqivalent. 1672 */ 1673 void 1674 if_up(struct ifnet *ifp) 1675 { 1676 if_route(ifp, IFF_UP, AF_UNSPEC); 1677 } 1678 1679 /* 1680 * Process a link state change. 1681 * NOTE: must be called at splsoftnet or equivalent. 1682 */ 1683 void 1684 if_link_state_change(struct ifnet *ifp) 1685 { 1686 int link_state = ifp->if_link_state; 1687 1688 rt_ifmsg(ifp); 1689 devctl_notify("IFNET", ifp->if_xname, 1690 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); 1691 } 1692 1693 /* 1694 * Handle interface watchdog timer routines. Called 1695 * from softclock, we decrement timers (if set) and 1696 * call the appropriate interface routine on expiration. 1697 */ 1698 static void 1699 if_slowtimo_dispatch(netmsg_t nmsg) 1700 { 1701 struct globaldata *gd = mycpu; 1702 const struct ifnet_array *arr; 1703 int i; 1704 1705 ASSERT_IN_NETISR(0); 1706 1707 crit_enter_gd(gd); 1708 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */ 1709 crit_exit_gd(gd); 1710 1711 arr = ifnet_array_get(); 1712 for (i = 0; i < arr->ifnet_count; ++i) { 1713 struct ifnet *ifp = arr->ifnet_arr[i]; 1714 1715 crit_enter_gd(gd); 1716 1717 if (if_stats_compat) { 1718 IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets); 1719 IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors); 1720 IFNET_STAT_GET(ifp, opackets, ifp->if_opackets); 1721 IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors); 1722 IFNET_STAT_GET(ifp, collisions, ifp->if_collisions); 1723 IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes); 1724 IFNET_STAT_GET(ifp, obytes, ifp->if_obytes); 1725 IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts); 1726 IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts); 1727 IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops); 1728 IFNET_STAT_GET(ifp, noproto, ifp->if_noproto); 1729 IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops); 1730 } 1731 1732 if (ifp->if_timer == 0 || --ifp->if_timer) { 1733 crit_exit_gd(gd); 1734 continue; 1735 } 1736 if (ifp->if_watchdog) { 1737 if (ifnet_tryserialize_all(ifp)) { 1738 (*ifp->if_watchdog)(ifp); 1739 ifnet_deserialize_all(ifp); 1740 } else { 1741 /* try again next timeout */ 1742 ++ifp->if_timer; 1743 } 1744 } 1745 1746 crit_exit_gd(gd); 1747 } 1748 1749 callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL); 1750 } 1751 1752 static void 1753 if_slowtimo(void *arg __unused) 1754 { 1755 struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg; 1756 1757 KASSERT(mycpuid == 0, ("not on cpu0")); 1758 crit_enter(); 1759 if (lmsg->ms_flags & MSGF_DONE) 1760 lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg); 1761 crit_exit(); 1762 } 1763 1764 /* 1765 * Map interface name to 1766 * interface structure pointer. 1767 */ 1768 struct ifnet * 1769 ifunit(const char *name) 1770 { 1771 struct ifnet *ifp; 1772 1773 /* 1774 * Search all the interfaces for this name/number 1775 */ 1776 KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked")); 1777 1778 TAILQ_FOREACH(ifp, &ifnetlist, if_link) { 1779 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) 1780 break; 1781 } 1782 return (ifp); 1783 } 1784 1785 struct ifnet * 1786 ifunit_netisr(const char *name) 1787 { 1788 const struct ifnet_array *arr; 1789 int i; 1790 1791 /* 1792 * Search all the interfaces for this name/number 1793 */ 1794 1795 arr = ifnet_array_get(); 1796 for (i = 0; i < arr->ifnet_count; ++i) { 1797 struct ifnet *ifp = arr->ifnet_arr[i]; 1798 1799 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) 1800 return ifp; 1801 } 1802 return NULL; 1803 } 1804 1805 /* 1806 * Interface ioctls. 1807 */ 1808 int 1809 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred) 1810 { 1811 struct ifnet *ifp; 1812 struct ifreq *ifr; 1813 struct ifstat *ifs; 1814 int error, do_ifup = 0; 1815 short oif_flags; 1816 int new_flags; 1817 size_t namelen, onamelen; 1818 char new_name[IFNAMSIZ]; 1819 struct ifaddr *ifa; 1820 struct sockaddr_dl *sdl; 1821 1822 switch (cmd) { 1823 case SIOCGIFCONF: 1824 case OSIOCGIFCONF: 1825 return (ifconf(cmd, data, cred)); 1826 default: 1827 break; 1828 } 1829 1830 ifr = (struct ifreq *)data; 1831 1832 switch (cmd) { 1833 case SIOCIFCREATE: 1834 case SIOCIFCREATE2: 1835 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1836 return (error); 1837 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), 1838 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL)); 1839 case SIOCIFDESTROY: 1840 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1841 return (error); 1842 return (if_clone_destroy(ifr->ifr_name)); 1843 case SIOCIFGCLONERS: 1844 return (if_clone_list((struct if_clonereq *)data)); 1845 default: 1846 break; 1847 } 1848 1849 /* 1850 * Nominal ioctl through interface, lookup the ifp and obtain a 1851 * lock to serialize the ifconfig ioctl operation. 1852 */ 1853 ifnet_lock(); 1854 1855 ifp = ifunit(ifr->ifr_name); 1856 if (ifp == NULL) { 1857 ifnet_unlock(); 1858 return (ENXIO); 1859 } 1860 error = 0; 1861 1862 switch (cmd) { 1863 case SIOCGIFINDEX: 1864 ifr->ifr_index = ifp->if_index; 1865 break; 1866 1867 case SIOCGIFFLAGS: 1868 ifr->ifr_flags = ifp->if_flags; 1869 ifr->ifr_flagshigh = ifp->if_flags >> 16; 1870 break; 1871 1872 case SIOCGIFCAP: 1873 ifr->ifr_reqcap = ifp->if_capabilities; 1874 ifr->ifr_curcap = ifp->if_capenable; 1875 break; 1876 1877 case SIOCGIFMETRIC: 1878 ifr->ifr_metric = ifp->if_metric; 1879 break; 1880 1881 case SIOCGIFMTU: 1882 ifr->ifr_mtu = ifp->if_mtu; 1883 break; 1884 1885 case SIOCGIFTSOLEN: 1886 ifr->ifr_tsolen = ifp->if_tsolen; 1887 break; 1888 1889 case SIOCGIFDATA: 1890 error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data, 1891 sizeof(ifp->if_data)); 1892 break; 1893 1894 case SIOCGIFPHYS: 1895 ifr->ifr_phys = ifp->if_physical; 1896 break; 1897 1898 case SIOCGIFPOLLCPU: 1899 ifr->ifr_pollcpu = -1; 1900 break; 1901 1902 case SIOCSIFPOLLCPU: 1903 break; 1904 1905 case SIOCSIFFLAGS: 1906 error = priv_check_cred(cred, PRIV_ROOT, 0); 1907 if (error) 1908 break; 1909 new_flags = (ifr->ifr_flags & 0xffff) | 1910 (ifr->ifr_flagshigh << 16); 1911 if (ifp->if_flags & IFF_SMART) { 1912 /* Smart drivers twiddle their own routes */ 1913 } else if (ifp->if_flags & IFF_UP && 1914 (new_flags & IFF_UP) == 0) { 1915 if_down(ifp); 1916 } else if (new_flags & IFF_UP && 1917 (ifp->if_flags & IFF_UP) == 0) { 1918 do_ifup = 1; 1919 } 1920 1921 #ifdef IFPOLL_ENABLE 1922 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) { 1923 if (new_flags & IFF_NPOLLING) 1924 ifpoll_register(ifp); 1925 else 1926 ifpoll_deregister(ifp); 1927 } 1928 #endif 1929 1930 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 1931 (new_flags &~ IFF_CANTCHANGE); 1932 if (new_flags & IFF_PPROMISC) { 1933 /* Permanently promiscuous mode requested */ 1934 ifp->if_flags |= IFF_PROMISC; 1935 } else if (ifp->if_pcount == 0) { 1936 ifp->if_flags &= ~IFF_PROMISC; 1937 } 1938 if (ifp->if_ioctl) { 1939 ifnet_serialize_all(ifp); 1940 ifp->if_ioctl(ifp, cmd, data, cred); 1941 ifnet_deserialize_all(ifp); 1942 } 1943 if (do_ifup) 1944 if_up(ifp); 1945 getmicrotime(&ifp->if_lastchange); 1946 break; 1947 1948 case SIOCSIFCAP: 1949 error = priv_check_cred(cred, PRIV_ROOT, 0); 1950 if (error) 1951 break; 1952 if (ifr->ifr_reqcap & ~ifp->if_capabilities) { 1953 error = EINVAL; 1954 break; 1955 } 1956 ifnet_serialize_all(ifp); 1957 ifp->if_ioctl(ifp, cmd, data, cred); 1958 ifnet_deserialize_all(ifp); 1959 break; 1960 1961 case SIOCSIFNAME: 1962 error = priv_check_cred(cred, PRIV_ROOT, 0); 1963 if (error) 1964 break; 1965 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 1966 if (error) 1967 break; 1968 if (new_name[0] == '\0') { 1969 error = EINVAL; 1970 break; 1971 } 1972 if (ifunit(new_name) != NULL) { 1973 error = EEXIST; 1974 break; 1975 } 1976 1977 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 1978 1979 /* Announce the departure of the interface. */ 1980 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1981 1982 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 1983 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 1984 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1985 namelen = strlen(new_name); 1986 onamelen = sdl->sdl_nlen; 1987 /* 1988 * Move the address if needed. This is safe because we 1989 * allocate space for a name of length IFNAMSIZ when we 1990 * create this in if_attach(). 1991 */ 1992 if (namelen != onamelen) { 1993 bcopy(sdl->sdl_data + onamelen, 1994 sdl->sdl_data + namelen, sdl->sdl_alen); 1995 } 1996 bcopy(new_name, sdl->sdl_data, namelen); 1997 sdl->sdl_nlen = namelen; 1998 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 1999 bzero(sdl->sdl_data, onamelen); 2000 while (namelen != 0) 2001 sdl->sdl_data[--namelen] = 0xff; 2002 2003 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 2004 2005 /* Announce the return of the interface. */ 2006 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 2007 break; 2008 2009 case SIOCSIFMETRIC: 2010 error = priv_check_cred(cred, PRIV_ROOT, 0); 2011 if (error) 2012 break; 2013 ifp->if_metric = ifr->ifr_metric; 2014 getmicrotime(&ifp->if_lastchange); 2015 break; 2016 2017 case SIOCSIFPHYS: 2018 error = priv_check_cred(cred, PRIV_ROOT, 0); 2019 if (error) 2020 break; 2021 if (ifp->if_ioctl == NULL) { 2022 error = EOPNOTSUPP; 2023 break; 2024 } 2025 ifnet_serialize_all(ifp); 2026 error = ifp->if_ioctl(ifp, cmd, data, cred); 2027 ifnet_deserialize_all(ifp); 2028 if (error == 0) 2029 getmicrotime(&ifp->if_lastchange); 2030 break; 2031 2032 case SIOCSIFMTU: 2033 { 2034 u_long oldmtu = ifp->if_mtu; 2035 2036 error = priv_check_cred(cred, PRIV_ROOT, 0); 2037 if (error) 2038 break; 2039 if (ifp->if_ioctl == NULL) { 2040 error = EOPNOTSUPP; 2041 break; 2042 } 2043 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) { 2044 error = EINVAL; 2045 break; 2046 } 2047 ifnet_serialize_all(ifp); 2048 error = ifp->if_ioctl(ifp, cmd, data, cred); 2049 ifnet_deserialize_all(ifp); 2050 if (error == 0) { 2051 getmicrotime(&ifp->if_lastchange); 2052 rt_ifmsg(ifp); 2053 } 2054 /* 2055 * If the link MTU changed, do network layer specific procedure. 2056 */ 2057 if (ifp->if_mtu != oldmtu) { 2058 #ifdef INET6 2059 nd6_setmtu(ifp); 2060 #endif 2061 } 2062 break; 2063 } 2064 2065 case SIOCSIFTSOLEN: 2066 error = priv_check_cred(cred, PRIV_ROOT, 0); 2067 if (error) 2068 break; 2069 2070 /* XXX need driver supplied upper limit */ 2071 if (ifr->ifr_tsolen <= 0) { 2072 error = EINVAL; 2073 break; 2074 } 2075 ifp->if_tsolen = ifr->ifr_tsolen; 2076 break; 2077 2078 case SIOCADDMULTI: 2079 case SIOCDELMULTI: 2080 error = priv_check_cred(cred, PRIV_ROOT, 0); 2081 if (error) 2082 break; 2083 2084 /* Don't allow group membership on non-multicast interfaces. */ 2085 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2086 error = EOPNOTSUPP; 2087 break; 2088 } 2089 2090 /* Don't let users screw up protocols' entries. */ 2091 if (ifr->ifr_addr.sa_family != AF_LINK) { 2092 error = EINVAL; 2093 break; 2094 } 2095 2096 if (cmd == SIOCADDMULTI) { 2097 struct ifmultiaddr *ifma; 2098 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2099 } else { 2100 error = if_delmulti(ifp, &ifr->ifr_addr); 2101 } 2102 if (error == 0) 2103 getmicrotime(&ifp->if_lastchange); 2104 break; 2105 2106 case SIOCSIFPHYADDR: 2107 case SIOCDIFPHYADDR: 2108 #ifdef INET6 2109 case SIOCSIFPHYADDR_IN6: 2110 #endif 2111 case SIOCSLIFPHYADDR: 2112 case SIOCSIFMEDIA: 2113 case SIOCSIFGENERIC: 2114 error = priv_check_cred(cred, PRIV_ROOT, 0); 2115 if (error) 2116 break; 2117 if (ifp->if_ioctl == 0) { 2118 error = EOPNOTSUPP; 2119 break; 2120 } 2121 ifnet_serialize_all(ifp); 2122 error = ifp->if_ioctl(ifp, cmd, data, cred); 2123 ifnet_deserialize_all(ifp); 2124 if (error == 0) 2125 getmicrotime(&ifp->if_lastchange); 2126 break; 2127 2128 case SIOCGIFSTATUS: 2129 ifs = (struct ifstat *)data; 2130 ifs->ascii[0] = '\0'; 2131 /* fall through */ 2132 case SIOCGIFPSRCADDR: 2133 case SIOCGIFPDSTADDR: 2134 case SIOCGLIFPHYADDR: 2135 case SIOCGIFMEDIA: 2136 case SIOCGIFGENERIC: 2137 if (ifp->if_ioctl == NULL) { 2138 error = EOPNOTSUPP; 2139 break; 2140 } 2141 ifnet_serialize_all(ifp); 2142 error = ifp->if_ioctl(ifp, cmd, data, cred); 2143 ifnet_deserialize_all(ifp); 2144 break; 2145 2146 case SIOCSIFLLADDR: 2147 error = priv_check_cred(cred, PRIV_ROOT, 0); 2148 if (error) 2149 break; 2150 error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, 2151 ifr->ifr_addr.sa_len); 2152 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 2153 break; 2154 2155 default: 2156 oif_flags = ifp->if_flags; 2157 if (so->so_proto == 0) { 2158 error = EOPNOTSUPP; 2159 break; 2160 } 2161 error = so_pru_control_direct(so, cmd, data, ifp); 2162 2163 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 2164 #ifdef INET6 2165 DELAY(100);/* XXX: temporary workaround for fxp issue*/ 2166 if (ifp->if_flags & IFF_UP) { 2167 crit_enter(); 2168 in6_if_up(ifp); 2169 crit_exit(); 2170 } 2171 #endif 2172 } 2173 break; 2174 } 2175 2176 ifnet_unlock(); 2177 return (error); 2178 } 2179 2180 /* 2181 * Set/clear promiscuous mode on interface ifp based on the truth value 2182 * of pswitch. The calls are reference counted so that only the first 2183 * "on" request actually has an effect, as does the final "off" request. 2184 * Results are undefined if the "off" and "on" requests are not matched. 2185 */ 2186 int 2187 ifpromisc(struct ifnet *ifp, int pswitch) 2188 { 2189 struct ifreq ifr; 2190 int error; 2191 int oldflags; 2192 2193 oldflags = ifp->if_flags; 2194 if (ifp->if_flags & IFF_PPROMISC) { 2195 /* Do nothing if device is in permanently promiscuous mode */ 2196 ifp->if_pcount += pswitch ? 1 : -1; 2197 return (0); 2198 } 2199 if (pswitch) { 2200 /* 2201 * If the device is not configured up, we cannot put it in 2202 * promiscuous mode. 2203 */ 2204 if ((ifp->if_flags & IFF_UP) == 0) 2205 return (ENETDOWN); 2206 if (ifp->if_pcount++ != 0) 2207 return (0); 2208 ifp->if_flags |= IFF_PROMISC; 2209 log(LOG_INFO, "%s: promiscuous mode enabled\n", 2210 ifp->if_xname); 2211 } else { 2212 if (--ifp->if_pcount > 0) 2213 return (0); 2214 ifp->if_flags &= ~IFF_PROMISC; 2215 log(LOG_INFO, "%s: promiscuous mode disabled\n", 2216 ifp->if_xname); 2217 } 2218 ifr.ifr_flags = ifp->if_flags; 2219 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2220 ifnet_serialize_all(ifp); 2221 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); 2222 ifnet_deserialize_all(ifp); 2223 if (error == 0) 2224 rt_ifmsg(ifp); 2225 else 2226 ifp->if_flags = oldflags; 2227 return error; 2228 } 2229 2230 /* 2231 * Return interface configuration 2232 * of system. List may be used 2233 * in later ioctl's (above) to get 2234 * other information. 2235 */ 2236 static int 2237 ifconf(u_long cmd, caddr_t data, struct ucred *cred) 2238 { 2239 struct ifconf *ifc = (struct ifconf *)data; 2240 struct ifnet *ifp; 2241 struct sockaddr *sa; 2242 struct ifreq ifr, *ifrp; 2243 int space = ifc->ifc_len, error = 0; 2244 2245 ifrp = ifc->ifc_req; 2246 2247 ifnet_lock(); 2248 TAILQ_FOREACH(ifp, &ifnetlist, if_link) { 2249 struct ifaddr_container *ifac, *ifac_mark; 2250 struct ifaddr_marker mark; 2251 struct ifaddrhead *head; 2252 int addrs; 2253 2254 if (space <= sizeof ifr) 2255 break; 2256 2257 /* 2258 * Zero the stack declared structure first to prevent 2259 * memory disclosure. 2260 */ 2261 bzero(&ifr, sizeof(ifr)); 2262 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 2263 >= sizeof(ifr.ifr_name)) { 2264 error = ENAMETOOLONG; 2265 break; 2266 } 2267 2268 /* 2269 * Add a marker, since copyout() could block and during that 2270 * period the list could be changed. Inserting the marker to 2271 * the header of the list will not cause trouble for the code 2272 * assuming that the first element of the list is AF_LINK; the 2273 * marker will be moved to the next position w/o blocking. 2274 */ 2275 ifa_marker_init(&mark, ifp); 2276 ifac_mark = &mark.ifac; 2277 head = &ifp->if_addrheads[mycpuid]; 2278 2279 addrs = 0; 2280 TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link); 2281 while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) { 2282 struct ifaddr *ifa = ifac->ifa; 2283 2284 TAILQ_REMOVE(head, ifac_mark, ifa_link); 2285 TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link); 2286 2287 /* Ignore marker */ 2288 if (ifa->ifa_addr->sa_family == AF_UNSPEC) 2289 continue; 2290 2291 if (space <= sizeof ifr) 2292 break; 2293 sa = ifa->ifa_addr; 2294 if (cred->cr_prison && 2295 prison_if(cred, sa)) 2296 continue; 2297 addrs++; 2298 /* 2299 * Keep a reference on this ifaddr, so that it will 2300 * not be destroyed when its address is copied to 2301 * the userland, which could block. 2302 */ 2303 IFAREF(ifa); 2304 if (sa->sa_len <= sizeof(*sa)) { 2305 ifr.ifr_addr = *sa; 2306 error = copyout(&ifr, ifrp, sizeof ifr); 2307 ifrp++; 2308 } else { 2309 if (space < (sizeof ifr) + sa->sa_len - 2310 sizeof(*sa)) { 2311 IFAFREE(ifa); 2312 break; 2313 } 2314 space -= sa->sa_len - sizeof(*sa); 2315 error = copyout(&ifr, ifrp, 2316 sizeof ifr.ifr_name); 2317 if (error == 0) 2318 error = copyout(sa, &ifrp->ifr_addr, 2319 sa->sa_len); 2320 ifrp = (struct ifreq *) 2321 (sa->sa_len + (caddr_t)&ifrp->ifr_addr); 2322 } 2323 IFAFREE(ifa); 2324 if (error) 2325 break; 2326 space -= sizeof ifr; 2327 } 2328 TAILQ_REMOVE(head, ifac_mark, ifa_link); 2329 if (error) 2330 break; 2331 if (!addrs) { 2332 bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr); 2333 error = copyout(&ifr, ifrp, sizeof ifr); 2334 if (error) 2335 break; 2336 space -= sizeof ifr; 2337 ifrp++; 2338 } 2339 } 2340 ifnet_unlock(); 2341 2342 ifc->ifc_len -= space; 2343 return (error); 2344 } 2345 2346 /* 2347 * Just like if_promisc(), but for all-multicast-reception mode. 2348 */ 2349 int 2350 if_allmulti(struct ifnet *ifp, int onswitch) 2351 { 2352 int error = 0; 2353 struct ifreq ifr; 2354 2355 crit_enter(); 2356 2357 if (onswitch) { 2358 if (ifp->if_amcount++ == 0) { 2359 ifp->if_flags |= IFF_ALLMULTI; 2360 ifr.ifr_flags = ifp->if_flags; 2361 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2362 ifnet_serialize_all(ifp); 2363 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2364 NULL); 2365 ifnet_deserialize_all(ifp); 2366 } 2367 } else { 2368 if (ifp->if_amcount > 1) { 2369 ifp->if_amcount--; 2370 } else { 2371 ifp->if_amcount = 0; 2372 ifp->if_flags &= ~IFF_ALLMULTI; 2373 ifr.ifr_flags = ifp->if_flags; 2374 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2375 ifnet_serialize_all(ifp); 2376 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2377 NULL); 2378 ifnet_deserialize_all(ifp); 2379 } 2380 } 2381 2382 crit_exit(); 2383 2384 if (error == 0) 2385 rt_ifmsg(ifp); 2386 return error; 2387 } 2388 2389 /* 2390 * Add a multicast listenership to the interface in question. 2391 * The link layer provides a routine which converts 2392 */ 2393 int 2394 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa, 2395 struct ifmultiaddr **retifma) 2396 { 2397 struct sockaddr *llsa, *dupsa; 2398 int error; 2399 struct ifmultiaddr *ifma; 2400 2401 ASSERT_IFNET_SERIALIZED_ALL(ifp); 2402 2403 /* 2404 * If the matching multicast address already exists 2405 * then don't add a new one, just add a reference 2406 */ 2407 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2408 if (sa_equal(sa, ifma->ifma_addr)) { 2409 ifma->ifma_refcount++; 2410 if (retifma) 2411 *retifma = ifma; 2412 return 0; 2413 } 2414 } 2415 2416 /* 2417 * Give the link layer a chance to accept/reject it, and also 2418 * find out which AF_LINK address this maps to, if it isn't one 2419 * already. 2420 */ 2421 if (ifp->if_resolvemulti) { 2422 error = ifp->if_resolvemulti(ifp, &llsa, sa); 2423 if (error) 2424 return error; 2425 } else { 2426 llsa = NULL; 2427 } 2428 2429 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT); 2430 dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT); 2431 bcopy(sa, dupsa, sa->sa_len); 2432 2433 ifma->ifma_addr = dupsa; 2434 ifma->ifma_lladdr = llsa; 2435 ifma->ifma_ifp = ifp; 2436 ifma->ifma_refcount = 1; 2437 ifma->ifma_protospec = NULL; 2438 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 2439 2440 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2441 if (retifma) 2442 *retifma = ifma; 2443 2444 if (llsa != NULL) { 2445 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2446 if (sa_equal(ifma->ifma_addr, llsa)) 2447 break; 2448 } 2449 if (ifma) { 2450 ifma->ifma_refcount++; 2451 } else { 2452 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT); 2453 dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT); 2454 bcopy(llsa, dupsa, llsa->sa_len); 2455 ifma->ifma_addr = dupsa; 2456 ifma->ifma_ifp = ifp; 2457 ifma->ifma_refcount = 1; 2458 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2459 } 2460 } 2461 /* 2462 * We are certain we have added something, so call down to the 2463 * interface to let them know about it. 2464 */ 2465 if (ifp->if_ioctl) 2466 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL); 2467 2468 return 0; 2469 } 2470 2471 int 2472 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 2473 struct ifmultiaddr **retifma) 2474 { 2475 int error; 2476 2477 ifnet_serialize_all(ifp); 2478 error = if_addmulti_serialized(ifp, sa, retifma); 2479 ifnet_deserialize_all(ifp); 2480 2481 return error; 2482 } 2483 2484 /* 2485 * Remove a reference to a multicast address on this interface. Yell 2486 * if the request does not match an existing membership. 2487 */ 2488 static int 2489 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa) 2490 { 2491 struct ifmultiaddr *ifma; 2492 2493 ASSERT_IFNET_SERIALIZED_ALL(ifp); 2494 2495 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2496 if (sa_equal(sa, ifma->ifma_addr)) 2497 break; 2498 if (ifma == NULL) 2499 return ENOENT; 2500 2501 if (ifma->ifma_refcount > 1) { 2502 ifma->ifma_refcount--; 2503 return 0; 2504 } 2505 2506 rt_newmaddrmsg(RTM_DELMADDR, ifma); 2507 sa = ifma->ifma_lladdr; 2508 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2509 /* 2510 * Make sure the interface driver is notified 2511 * in the case of a link layer mcast group being left. 2512 */ 2513 if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) 2514 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2515 kfree(ifma->ifma_addr, M_IFMADDR); 2516 kfree(ifma, M_IFMADDR); 2517 if (sa == NULL) 2518 return 0; 2519 2520 /* 2521 * Now look for the link-layer address which corresponds to 2522 * this network address. It had been squirreled away in 2523 * ifma->ifma_lladdr for this purpose (so we don't have 2524 * to call ifp->if_resolvemulti() again), and we saved that 2525 * value in sa above. If some nasty deleted the 2526 * link-layer address out from underneath us, we can deal because 2527 * the address we stored was is not the same as the one which was 2528 * in the record for the link-layer address. (So we don't complain 2529 * in that case.) 2530 */ 2531 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2532 if (sa_equal(sa, ifma->ifma_addr)) 2533 break; 2534 if (ifma == NULL) 2535 return 0; 2536 2537 if (ifma->ifma_refcount > 1) { 2538 ifma->ifma_refcount--; 2539 return 0; 2540 } 2541 2542 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2543 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2544 kfree(ifma->ifma_addr, M_IFMADDR); 2545 kfree(sa, M_IFMADDR); 2546 kfree(ifma, M_IFMADDR); 2547 2548 return 0; 2549 } 2550 2551 int 2552 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 2553 { 2554 int error; 2555 2556 ifnet_serialize_all(ifp); 2557 error = if_delmulti_serialized(ifp, sa); 2558 ifnet_deserialize_all(ifp); 2559 2560 return error; 2561 } 2562 2563 /* 2564 * Delete all multicast group membership for an interface. 2565 * Should be used to quickly flush all multicast filters. 2566 */ 2567 void 2568 if_delallmulti_serialized(struct ifnet *ifp) 2569 { 2570 struct ifmultiaddr *ifma, mark; 2571 struct sockaddr sa; 2572 2573 ASSERT_IFNET_SERIALIZED_ALL(ifp); 2574 2575 bzero(&sa, sizeof(sa)); 2576 sa.sa_family = AF_UNSPEC; 2577 sa.sa_len = sizeof(sa); 2578 2579 bzero(&mark, sizeof(mark)); 2580 mark.ifma_addr = &sa; 2581 2582 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link); 2583 while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) { 2584 TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link); 2585 TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark, 2586 ifma_link); 2587 2588 if (ifma->ifma_addr->sa_family == AF_UNSPEC) 2589 continue; 2590 2591 if_delmulti_serialized(ifp, ifma->ifma_addr); 2592 } 2593 TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link); 2594 } 2595 2596 2597 /* 2598 * Set the link layer address on an interface. 2599 * 2600 * At this time we only support certain types of interfaces, 2601 * and we don't allow the length of the address to change. 2602 */ 2603 int 2604 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 2605 { 2606 struct sockaddr_dl *sdl; 2607 struct ifreq ifr; 2608 2609 sdl = IF_LLSOCKADDR(ifp); 2610 if (sdl == NULL) 2611 return (EINVAL); 2612 if (len != sdl->sdl_alen) /* don't allow length to change */ 2613 return (EINVAL); 2614 switch (ifp->if_type) { 2615 case IFT_ETHER: /* these types use struct arpcom */ 2616 case IFT_XETHER: 2617 case IFT_L2VLAN: 2618 case IFT_IEEE8023ADLAG: 2619 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len); 2620 bcopy(lladdr, LLADDR(sdl), len); 2621 break; 2622 default: 2623 return (ENODEV); 2624 } 2625 /* 2626 * If the interface is already up, we need 2627 * to re-init it in order to reprogram its 2628 * address filter. 2629 */ 2630 ifnet_serialize_all(ifp); 2631 if ((ifp->if_flags & IFF_UP) != 0) { 2632 #ifdef INET 2633 struct ifaddr_container *ifac; 2634 #endif 2635 2636 ifp->if_flags &= ~IFF_UP; 2637 ifr.ifr_flags = ifp->if_flags; 2638 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2639 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2640 NULL); 2641 ifp->if_flags |= IFF_UP; 2642 ifr.ifr_flags = ifp->if_flags; 2643 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2644 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2645 NULL); 2646 #ifdef INET 2647 /* 2648 * Also send gratuitous ARPs to notify other nodes about 2649 * the address change. 2650 */ 2651 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2652 struct ifaddr *ifa = ifac->ifa; 2653 2654 if (ifa->ifa_addr != NULL && 2655 ifa->ifa_addr->sa_family == AF_INET) 2656 arp_gratuitous(ifp, ifa); 2657 } 2658 #endif 2659 } 2660 ifnet_deserialize_all(ifp); 2661 return (0); 2662 } 2663 2664 struct ifmultiaddr * 2665 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp) 2666 { 2667 struct ifmultiaddr *ifma; 2668 2669 /* TODO: need ifnet_serialize_main */ 2670 ifnet_serialize_all(ifp); 2671 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2672 if (sa_equal(ifma->ifma_addr, sa)) 2673 break; 2674 ifnet_deserialize_all(ifp); 2675 2676 return ifma; 2677 } 2678 2679 /* 2680 * This function locates the first real ethernet MAC from a network 2681 * card and loads it into node, returning 0 on success or ENOENT if 2682 * no suitable interfaces were found. It is used by the uuid code to 2683 * generate a unique 6-byte number. 2684 */ 2685 int 2686 if_getanyethermac(uint16_t *node, int minlen) 2687 { 2688 struct ifnet *ifp; 2689 struct sockaddr_dl *sdl; 2690 2691 ifnet_lock(); 2692 TAILQ_FOREACH(ifp, &ifnetlist, if_link) { 2693 if (ifp->if_type != IFT_ETHER) 2694 continue; 2695 sdl = IF_LLSOCKADDR(ifp); 2696 if (sdl->sdl_alen < minlen) 2697 continue; 2698 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node, 2699 minlen); 2700 ifnet_unlock(); 2701 return(0); 2702 } 2703 ifnet_unlock(); 2704 return (ENOENT); 2705 } 2706 2707 /* 2708 * The name argument must be a pointer to storage which will last as 2709 * long as the interface does. For physical devices, the result of 2710 * device_get_name(dev) is a good choice and for pseudo-devices a 2711 * static string works well. 2712 */ 2713 void 2714 if_initname(struct ifnet *ifp, const char *name, int unit) 2715 { 2716 ifp->if_dname = name; 2717 ifp->if_dunit = unit; 2718 if (unit != IF_DUNIT_NONE) 2719 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 2720 else 2721 strlcpy(ifp->if_xname, name, IFNAMSIZ); 2722 } 2723 2724 int 2725 if_printf(struct ifnet *ifp, const char *fmt, ...) 2726 { 2727 __va_list ap; 2728 int retval; 2729 2730 retval = kprintf("%s: ", ifp->if_xname); 2731 __va_start(ap, fmt); 2732 retval += kvprintf(fmt, ap); 2733 __va_end(ap); 2734 return (retval); 2735 } 2736 2737 struct ifnet * 2738 if_alloc(uint8_t type) 2739 { 2740 struct ifnet *ifp; 2741 size_t size; 2742 2743 /* 2744 * XXX temporary hack until arpcom is setup in if_l2com 2745 */ 2746 if (type == IFT_ETHER) 2747 size = sizeof(struct arpcom); 2748 else 2749 size = sizeof(struct ifnet); 2750 2751 ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO); 2752 2753 ifp->if_type = type; 2754 2755 if (if_com_alloc[type] != NULL) { 2756 ifp->if_l2com = if_com_alloc[type](type, ifp); 2757 if (ifp->if_l2com == NULL) { 2758 kfree(ifp, M_IFNET); 2759 return (NULL); 2760 } 2761 } 2762 return (ifp); 2763 } 2764 2765 void 2766 if_free(struct ifnet *ifp) 2767 { 2768 kfree(ifp, M_IFNET); 2769 } 2770 2771 void 2772 ifq_set_classic(struct ifaltq *ifq) 2773 { 2774 ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq, 2775 ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request); 2776 } 2777 2778 void 2779 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq, 2780 ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request) 2781 { 2782 int q; 2783 2784 KASSERT(mapsubq != NULL, ("mapsubq is not specified")); 2785 KASSERT(enqueue != NULL, ("enqueue is not specified")); 2786 KASSERT(dequeue != NULL, ("dequeue is not specified")); 2787 KASSERT(request != NULL, ("request is not specified")); 2788 2789 ifq->altq_mapsubq = mapsubq; 2790 for (q = 0; q < ifq->altq_subq_cnt; ++q) { 2791 struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; 2792 2793 ifsq->ifsq_enqueue = enqueue; 2794 ifsq->ifsq_dequeue = dequeue; 2795 ifsq->ifsq_request = request; 2796 } 2797 } 2798 2799 static void 2800 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m) 2801 { 2802 2803 classq_add(&ifsq->ifsq_norm, m); 2804 ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len); 2805 } 2806 2807 static void 2808 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m) 2809 { 2810 2811 classq_add(&ifsq->ifsq_prio, m); 2812 ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len); 2813 ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len); 2814 } 2815 2816 static struct mbuf * 2817 ifsq_norm_dequeue(struct ifaltq_subque *ifsq) 2818 { 2819 struct mbuf *m; 2820 2821 m = classq_get(&ifsq->ifsq_norm); 2822 if (m != NULL) 2823 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len); 2824 return (m); 2825 } 2826 2827 static struct mbuf * 2828 ifsq_prio_dequeue(struct ifaltq_subque *ifsq) 2829 { 2830 struct mbuf *m; 2831 2832 m = classq_get(&ifsq->ifsq_prio); 2833 if (m != NULL) { 2834 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len); 2835 ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len); 2836 } 2837 return (m); 2838 } 2839 2840 int 2841 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m, 2842 struct altq_pktattr *pa __unused) 2843 { 2844 2845 M_ASSERTPKTHDR(m); 2846 again: 2847 if (ifsq->ifsq_len >= ifsq->ifsq_maxlen || 2848 ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) { 2849 struct mbuf *m_drop; 2850 2851 if (m->m_flags & M_PRIO) { 2852 m_drop = NULL; 2853 if (ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen >> 1) && 2854 ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt >> 1)) { 2855 /* Try dropping some from normal queue. */ 2856 m_drop = ifsq_norm_dequeue(ifsq); 2857 } 2858 if (m_drop == NULL) 2859 m_drop = ifsq_prio_dequeue(ifsq); 2860 } else { 2861 m_drop = ifsq_norm_dequeue(ifsq); 2862 } 2863 if (m_drop != NULL) { 2864 IFNET_STAT_INC(ifsq->ifsq_ifp, oqdrops, 1); 2865 m_freem(m_drop); 2866 goto again; 2867 } 2868 /* 2869 * No old packets could be dropped! 2870 * NOTE: Caller increases oqdrops. 2871 */ 2872 m_freem(m); 2873 return (ENOBUFS); 2874 } else { 2875 if (m->m_flags & M_PRIO) 2876 ifsq_prio_enqueue(ifsq, m); 2877 else 2878 ifsq_norm_enqueue(ifsq, m); 2879 return (0); 2880 } 2881 } 2882 2883 struct mbuf * 2884 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op) 2885 { 2886 struct mbuf *m; 2887 2888 switch (op) { 2889 case ALTDQ_POLL: 2890 m = classq_head(&ifsq->ifsq_prio); 2891 if (m == NULL) 2892 m = classq_head(&ifsq->ifsq_norm); 2893 break; 2894 2895 case ALTDQ_REMOVE: 2896 m = ifsq_prio_dequeue(ifsq); 2897 if (m == NULL) 2898 m = ifsq_norm_dequeue(ifsq); 2899 break; 2900 2901 default: 2902 panic("unsupported ALTQ dequeue op: %d", op); 2903 } 2904 return m; 2905 } 2906 2907 int 2908 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg) 2909 { 2910 switch (req) { 2911 case ALTRQ_PURGE: 2912 for (;;) { 2913 struct mbuf *m; 2914 2915 m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE); 2916 if (m == NULL) 2917 break; 2918 m_freem(m); 2919 } 2920 break; 2921 2922 default: 2923 panic("unsupported ALTQ request: %d", req); 2924 } 2925 return 0; 2926 } 2927 2928 static void 2929 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched) 2930 { 2931 struct ifnet *ifp = ifsq_get_ifp(ifsq); 2932 int running = 0, need_sched; 2933 2934 /* 2935 * Try to do direct ifnet.if_start on the subqueue first, if there is 2936 * contention on the subqueue hardware serializer, ifnet.if_start on 2937 * the subqueue will be scheduled on the subqueue owner CPU. 2938 */ 2939 if (!ifsq_tryserialize_hw(ifsq)) { 2940 /* 2941 * Subqueue hardware serializer contention happened, 2942 * ifnet.if_start on the subqueue is scheduled on 2943 * the subqueue owner CPU, and we keep going. 2944 */ 2945 ifsq_ifstart_schedule(ifsq, 1); 2946 return; 2947 } 2948 2949 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) { 2950 ifp->if_start(ifp, ifsq); 2951 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) 2952 running = 1; 2953 } 2954 need_sched = ifsq_ifstart_need_schedule(ifsq, running); 2955 2956 ifsq_deserialize_hw(ifsq); 2957 2958 if (need_sched) { 2959 /* 2960 * More data need to be transmitted, ifnet.if_start on the 2961 * subqueue is scheduled on the subqueue owner CPU, and we 2962 * keep going. 2963 * NOTE: ifnet.if_start subqueue interlock is not released. 2964 */ 2965 ifsq_ifstart_schedule(ifsq, force_sched); 2966 } 2967 } 2968 2969 /* 2970 * Subqeue packets staging mechanism: 2971 * 2972 * The packets enqueued into the subqueue are staged to a certain amount 2973 * before the ifnet.if_start on the subqueue is called. In this way, the 2974 * driver could avoid writing to hardware registers upon every packet, 2975 * instead, hardware registers could be written when certain amount of 2976 * packets are put onto hardware TX ring. The measurement on several modern 2977 * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware 2978 * registers writing aggregation could save ~20% CPU time when 18bytes UDP 2979 * datagrams are transmitted at 1.48Mpps. The performance improvement by 2980 * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's 2981 * netmap paper (http://info.iet.unipi.it/~luigi/netmap/). 2982 * 2983 * Subqueue packets staging is performed for two entry points into drivers' 2984 * transmission function: 2985 * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try() 2986 * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule() 2987 * 2988 * Subqueue packets staging will be stopped upon any of the following 2989 * conditions: 2990 * - If the count of packets enqueued on the current CPU is great than or 2991 * equal to ifsq_stage_cntmax. (XXX this should be per-interface) 2992 * - If the total length of packets enqueued on the current CPU is great 2993 * than or equal to the hardware's MTU - max_protohdr. max_protohdr is 2994 * cut from the hardware's MTU mainly bacause a full TCP segment's size 2995 * is usually less than hardware's MTU. 2996 * - ifsq_ifstart_schedule() is not pending on the current CPU and 2997 * ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not 2998 * released. 2999 * - The if_start_rollup(), which is registered as low priority netisr 3000 * rollup function, is called; probably because no more work is pending 3001 * for netisr. 3002 * 3003 * NOTE: 3004 * Currently subqueue packet staging is only performed in netisr threads. 3005 */ 3006 int 3007 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa) 3008 { 3009 struct ifaltq *ifq = &ifp->if_snd; 3010 struct ifaltq_subque *ifsq; 3011 int error, start = 0, len, mcast = 0, avoid_start = 0; 3012 struct ifsubq_stage_head *head = NULL; 3013 struct ifsubq_stage *stage = NULL; 3014 struct globaldata *gd = mycpu; 3015 struct thread *td = gd->gd_curthread; 3016 3017 crit_enter_quick(td); 3018 3019 ifsq = ifq_map_subq(ifq, gd->gd_cpuid); 3020 ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq); 3021 3022 len = m->m_pkthdr.len; 3023 if (m->m_flags & M_MCAST) 3024 mcast = 1; 3025 3026 if (td->td_type == TD_TYPE_NETISR) { 3027 head = &ifsubq_stage_heads[mycpuid]; 3028 stage = ifsq_get_stage(ifsq, mycpuid); 3029 3030 stage->stg_cnt++; 3031 stage->stg_len += len; 3032 if (stage->stg_cnt < ifsq_stage_cntmax && 3033 stage->stg_len < (ifp->if_mtu - max_protohdr)) 3034 avoid_start = 1; 3035 } 3036 3037 ALTQ_SQ_LOCK(ifsq); 3038 error = ifsq_enqueue_locked(ifsq, m, pa); 3039 if (error) { 3040 IFNET_STAT_INC(ifp, oqdrops, 1); 3041 if (!ifsq_data_ready(ifsq)) { 3042 ALTQ_SQ_UNLOCK(ifsq); 3043 crit_exit_quick(td); 3044 return error; 3045 } 3046 avoid_start = 0; 3047 } 3048 if (!ifsq_is_started(ifsq)) { 3049 if (avoid_start) { 3050 ALTQ_SQ_UNLOCK(ifsq); 3051 3052 KKASSERT(!error); 3053 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0) 3054 ifsq_stage_insert(head, stage); 3055 3056 IFNET_STAT_INC(ifp, obytes, len); 3057 if (mcast) 3058 IFNET_STAT_INC(ifp, omcasts, 1); 3059 crit_exit_quick(td); 3060 return error; 3061 } 3062 3063 /* 3064 * Hold the subqueue interlock of ifnet.if_start 3065 */ 3066 ifsq_set_started(ifsq); 3067 start = 1; 3068 } 3069 ALTQ_SQ_UNLOCK(ifsq); 3070 3071 if (!error) { 3072 IFNET_STAT_INC(ifp, obytes, len); 3073 if (mcast) 3074 IFNET_STAT_INC(ifp, omcasts, 1); 3075 } 3076 3077 if (stage != NULL) { 3078 if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) { 3079 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED); 3080 if (!avoid_start) { 3081 ifsq_stage_remove(head, stage); 3082 ifsq_ifstart_schedule(ifsq, 1); 3083 } 3084 crit_exit_quick(td); 3085 return error; 3086 } 3087 3088 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) { 3089 ifsq_stage_remove(head, stage); 3090 } else { 3091 stage->stg_cnt = 0; 3092 stage->stg_len = 0; 3093 } 3094 } 3095 3096 if (!start) { 3097 crit_exit_quick(td); 3098 return error; 3099 } 3100 3101 ifsq_ifstart_try(ifsq, 0); 3102 3103 crit_exit_quick(td); 3104 return error; 3105 } 3106 3107 void * 3108 ifa_create(int size) 3109 { 3110 struct ifaddr *ifa; 3111 int i; 3112 3113 KASSERT(size >= sizeof(*ifa), ("ifaddr size too small")); 3114 3115 ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO); 3116 ifa->ifa_containers = 3117 kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container), 3118 M_IFADDR, M_INTWAIT | M_ZERO); 3119 3120 ifa->ifa_ncnt = ncpus; 3121 for (i = 0; i < ncpus; ++i) { 3122 struct ifaddr_container *ifac = &ifa->ifa_containers[i]; 3123 3124 ifac->ifa_magic = IFA_CONTAINER_MAGIC; 3125 ifac->ifa = ifa; 3126 ifac->ifa_refcnt = 1; 3127 } 3128 #ifdef IFADDR_DEBUG 3129 kprintf("alloc ifa %p %d\n", ifa, size); 3130 #endif 3131 return ifa; 3132 } 3133 3134 void 3135 ifac_free(struct ifaddr_container *ifac, int cpu_id) 3136 { 3137 struct ifaddr *ifa = ifac->ifa; 3138 3139 KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC); 3140 KKASSERT(ifac->ifa_refcnt == 0); 3141 KASSERT(ifac->ifa_listmask == 0, 3142 ("ifa is still on %#x lists", ifac->ifa_listmask)); 3143 3144 ifac->ifa_magic = IFA_CONTAINER_DEAD; 3145 3146 #ifdef IFADDR_DEBUG_VERBOSE 3147 kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id); 3148 #endif 3149 3150 KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus, 3151 ("invalid # of ifac, %d", ifa->ifa_ncnt)); 3152 if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) { 3153 #ifdef IFADDR_DEBUG 3154 kprintf("free ifa %p\n", ifa); 3155 #endif 3156 kfree(ifa->ifa_containers, M_IFADDR); 3157 kfree(ifa, M_IFADDR); 3158 } 3159 } 3160 3161 static void 3162 ifa_iflink_dispatch(netmsg_t nmsg) 3163 { 3164 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 3165 struct ifaddr *ifa = msg->ifa; 3166 struct ifnet *ifp = msg->ifp; 3167 int cpu = mycpuid; 3168 struct ifaddr_container *ifac; 3169 3170 crit_enter(); 3171 3172 ifac = &ifa->ifa_containers[cpu]; 3173 ASSERT_IFAC_VALID(ifac); 3174 KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0, 3175 ("ifaddr is on if_addrheads")); 3176 3177 ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD; 3178 if (msg->tail) 3179 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link); 3180 else 3181 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link); 3182 3183 crit_exit(); 3184 3185 netisr_forwardmsg(&nmsg->base, cpu + 1); 3186 } 3187 3188 void 3189 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail) 3190 { 3191 struct netmsg_ifaddr msg; 3192 3193 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 3194 0, ifa_iflink_dispatch); 3195 msg.ifa = ifa; 3196 msg.ifp = ifp; 3197 msg.tail = tail; 3198 3199 netisr_domsg(&msg.base, 0); 3200 } 3201 3202 static void 3203 ifa_ifunlink_dispatch(netmsg_t nmsg) 3204 { 3205 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 3206 struct ifaddr *ifa = msg->ifa; 3207 struct ifnet *ifp = msg->ifp; 3208 int cpu = mycpuid; 3209 struct ifaddr_container *ifac; 3210 3211 crit_enter(); 3212 3213 ifac = &ifa->ifa_containers[cpu]; 3214 ASSERT_IFAC_VALID(ifac); 3215 KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD, 3216 ("ifaddr is not on if_addrhead")); 3217 3218 TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link); 3219 ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD; 3220 3221 crit_exit(); 3222 3223 netisr_forwardmsg(&nmsg->base, cpu + 1); 3224 } 3225 3226 void 3227 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp) 3228 { 3229 struct netmsg_ifaddr msg; 3230 3231 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 3232 0, ifa_ifunlink_dispatch); 3233 msg.ifa = ifa; 3234 msg.ifp = ifp; 3235 3236 netisr_domsg(&msg.base, 0); 3237 } 3238 3239 static void 3240 ifa_destroy_dispatch(netmsg_t nmsg) 3241 { 3242 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 3243 3244 IFAFREE(msg->ifa); 3245 netisr_forwardmsg(&nmsg->base, mycpuid + 1); 3246 } 3247 3248 void 3249 ifa_destroy(struct ifaddr *ifa) 3250 { 3251 struct netmsg_ifaddr msg; 3252 3253 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 3254 0, ifa_destroy_dispatch); 3255 msg.ifa = ifa; 3256 3257 netisr_domsg(&msg.base, 0); 3258 } 3259 3260 static void 3261 if_start_rollup(void) 3262 { 3263 struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid]; 3264 struct ifsubq_stage *stage; 3265 3266 crit_enter(); 3267 3268 while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) { 3269 struct ifaltq_subque *ifsq = stage->stg_subq; 3270 int is_sched = 0; 3271 3272 if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED) 3273 is_sched = 1; 3274 ifsq_stage_remove(head, stage); 3275 3276 if (is_sched) { 3277 ifsq_ifstart_schedule(ifsq, 1); 3278 } else { 3279 int start = 0; 3280 3281 ALTQ_SQ_LOCK(ifsq); 3282 if (!ifsq_is_started(ifsq)) { 3283 /* 3284 * Hold the subqueue interlock of 3285 * ifnet.if_start 3286 */ 3287 ifsq_set_started(ifsq); 3288 start = 1; 3289 } 3290 ALTQ_SQ_UNLOCK(ifsq); 3291 3292 if (start) 3293 ifsq_ifstart_try(ifsq, 1); 3294 } 3295 KKASSERT((stage->stg_flags & 3296 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0); 3297 } 3298 3299 crit_exit(); 3300 } 3301 3302 static void 3303 ifnetinit(void *dummy __unused) 3304 { 3305 int i; 3306 3307 for (i = 0; i < ncpus; ++i) 3308 TAILQ_INIT(&ifsubq_stage_heads[i].stg_head); 3309 netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART); 3310 } 3311 3312 void 3313 if_register_com_alloc(u_char type, 3314 if_com_alloc_t *a, if_com_free_t *f) 3315 { 3316 3317 KASSERT(if_com_alloc[type] == NULL, 3318 ("if_register_com_alloc: %d already registered", type)); 3319 KASSERT(if_com_free[type] == NULL, 3320 ("if_register_com_alloc: %d free already registered", type)); 3321 3322 if_com_alloc[type] = a; 3323 if_com_free[type] = f; 3324 } 3325 3326 void 3327 if_deregister_com_alloc(u_char type) 3328 { 3329 3330 KASSERT(if_com_alloc[type] != NULL, 3331 ("if_deregister_com_alloc: %d not registered", type)); 3332 KASSERT(if_com_free[type] != NULL, 3333 ("if_deregister_com_alloc: %d free not registered", type)); 3334 if_com_alloc[type] = NULL; 3335 if_com_free[type] = NULL; 3336 } 3337 3338 void 3339 ifq_set_maxlen(struct ifaltq *ifq, int len) 3340 { 3341 ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax); 3342 } 3343 3344 int 3345 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused) 3346 { 3347 return ALTQ_SUBQ_INDEX_DEFAULT; 3348 } 3349 3350 int 3351 ifq_mapsubq_modulo(struct ifaltq *ifq, int cpuid) 3352 { 3353 3354 return (cpuid % ifq->altq_subq_mappriv); 3355 } 3356 3357 static void 3358 ifsq_watchdog(void *arg) 3359 { 3360 struct ifsubq_watchdog *wd = arg; 3361 struct ifnet *ifp; 3362 3363 if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer)) 3364 goto done; 3365 3366 ifp = ifsq_get_ifp(wd->wd_subq); 3367 if (ifnet_tryserialize_all(ifp)) { 3368 wd->wd_watchdog(wd->wd_subq); 3369 ifnet_deserialize_all(ifp); 3370 } else { 3371 /* try again next timeout */ 3372 wd->wd_timer = 1; 3373 } 3374 done: 3375 ifsq_watchdog_reset(wd); 3376 } 3377 3378 static void 3379 ifsq_watchdog_reset(struct ifsubq_watchdog *wd) 3380 { 3381 callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd, 3382 ifsq_get_cpuid(wd->wd_subq)); 3383 } 3384 3385 void 3386 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq, 3387 ifsq_watchdog_t watchdog) 3388 { 3389 callout_init_mp(&wd->wd_callout); 3390 wd->wd_timer = 0; 3391 wd->wd_subq = ifsq; 3392 wd->wd_watchdog = watchdog; 3393 } 3394 3395 void 3396 ifsq_watchdog_start(struct ifsubq_watchdog *wd) 3397 { 3398 wd->wd_timer = 0; 3399 ifsq_watchdog_reset(wd); 3400 } 3401 3402 void 3403 ifsq_watchdog_stop(struct ifsubq_watchdog *wd) 3404 { 3405 wd->wd_timer = 0; 3406 callout_stop(&wd->wd_callout); 3407 } 3408 3409 void 3410 ifnet_lock(void) 3411 { 3412 KASSERT(curthread->td_type != TD_TYPE_NETISR, 3413 ("try holding ifnet lock in netisr")); 3414 mtx_lock(&ifnet_mtx); 3415 } 3416 3417 void 3418 ifnet_unlock(void) 3419 { 3420 KASSERT(curthread->td_type != TD_TYPE_NETISR, 3421 ("try holding ifnet lock in netisr")); 3422 mtx_unlock(&ifnet_mtx); 3423 } 3424 3425 static struct ifnet_array * 3426 ifnet_array_alloc(int count) 3427 { 3428 struct ifnet_array *arr; 3429 3430 arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]), 3431 M_IFNET, M_WAITOK); 3432 arr->ifnet_count = count; 3433 3434 return arr; 3435 } 3436 3437 static void 3438 ifnet_array_free(struct ifnet_array *arr) 3439 { 3440 if (arr == &ifnet_array0) 3441 return; 3442 kfree(arr, M_IFNET); 3443 } 3444 3445 static struct ifnet_array * 3446 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr) 3447 { 3448 struct ifnet_array *arr; 3449 int count, i; 3450 3451 KASSERT(old_arr->ifnet_count >= 0, 3452 ("invalid ifnet array count %d", old_arr->ifnet_count)); 3453 count = old_arr->ifnet_count + 1; 3454 arr = ifnet_array_alloc(count); 3455 3456 /* 3457 * Save the old ifnet array and append this ifp to the end of 3458 * the new ifnet array. 3459 */ 3460 for (i = 0; i < old_arr->ifnet_count; ++i) { 3461 KASSERT(old_arr->ifnet_arr[i] != ifp, 3462 ("%s is already in ifnet array", ifp->if_xname)); 3463 arr->ifnet_arr[i] = old_arr->ifnet_arr[i]; 3464 } 3465 KASSERT(i == count - 1, 3466 ("add %s, ifnet array index mismatch, should be %d, but got %d", 3467 ifp->if_xname, count - 1, i)); 3468 arr->ifnet_arr[i] = ifp; 3469 3470 return arr; 3471 } 3472 3473 static struct ifnet_array * 3474 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr) 3475 { 3476 struct ifnet_array *arr; 3477 int count, i, idx, found = 0; 3478 3479 KASSERT(old_arr->ifnet_count > 0, 3480 ("invalid ifnet array count %d", old_arr->ifnet_count)); 3481 count = old_arr->ifnet_count - 1; 3482 arr = ifnet_array_alloc(count); 3483 3484 /* 3485 * Save the old ifnet array, but skip this ifp. 3486 */ 3487 idx = 0; 3488 for (i = 0; i < old_arr->ifnet_count; ++i) { 3489 if (old_arr->ifnet_arr[i] == ifp) { 3490 KASSERT(!found, 3491 ("dup %s is in ifnet array", ifp->if_xname)); 3492 found = 1; 3493 continue; 3494 } 3495 KASSERT(idx < count, 3496 ("invalid ifnet array index %d, count %d", idx, count)); 3497 arr->ifnet_arr[idx] = old_arr->ifnet_arr[i]; 3498 ++idx; 3499 } 3500 KASSERT(found, ("%s is not in ifnet array", ifp->if_xname)); 3501 KASSERT(idx == count, 3502 ("del %s, ifnet array count mismatch, should be %d, but got %d ", 3503 ifp->if_xname, count, idx)); 3504 3505 return arr; 3506 } 3507 3508 const struct ifnet_array * 3509 ifnet_array_get(void) 3510 { 3511 const struct ifnet_array *ret; 3512 3513 KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr")); 3514 ret = ifnet_array; 3515 /* Make sure 'ret' is really used. */ 3516 cpu_ccfence(); 3517 return (ret); 3518 } 3519 3520 int 3521 ifnet_array_isempty(void) 3522 { 3523 KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr")); 3524 if (ifnet_array->ifnet_count == 0) 3525 return 1; 3526 else 3527 return 0; 3528 } 3529 3530 void 3531 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp) 3532 { 3533 struct ifaddr *ifa; 3534 3535 memset(mark, 0, sizeof(*mark)); 3536 ifa = &mark->ifa; 3537 3538 mark->ifac.ifa = ifa; 3539 3540 ifa->ifa_addr = &mark->addr; 3541 ifa->ifa_dstaddr = &mark->dstaddr; 3542 ifa->ifa_netmask = &mark->netmask; 3543 ifa->ifa_ifp = ifp; 3544 } 3545 3546 static int 3547 if_ringcnt_fixup(int ring_cnt, int ring_cntmax) 3548 { 3549 3550 KASSERT(ring_cntmax > 0, ("invalid ring count max %d", ring_cntmax)); 3551 3552 if (ring_cnt <= 0 || ring_cnt > ring_cntmax) 3553 ring_cnt = ring_cntmax; 3554 if (ring_cnt > netisr_ncpus) 3555 ring_cnt = netisr_ncpus; 3556 return (ring_cnt); 3557 } 3558 3559 static void 3560 if_ringmap_set_grid(device_t dev, struct if_ringmap *rm, int grid) 3561 { 3562 int i, offset; 3563 3564 KASSERT(grid > 0, ("invalid if_ringmap grid %d", grid)); 3565 KASSERT(grid >= rm->rm_cnt, ("invalid if_ringmap grid %d, count %d", 3566 grid, rm->rm_cnt)); 3567 rm->rm_grid = grid; 3568 3569 offset = (rm->rm_grid * device_get_unit(dev)) % netisr_ncpus; 3570 for (i = 0; i < rm->rm_cnt; ++i) { 3571 rm->rm_cpumap[i] = offset + i; 3572 KASSERT(rm->rm_cpumap[i] < netisr_ncpus, 3573 ("invalid cpumap[%d] = %d, offset %d", i, 3574 rm->rm_cpumap[i], offset)); 3575 } 3576 } 3577 3578 static struct if_ringmap * 3579 if_ringmap_alloc_flags(device_t dev, int ring_cnt, int ring_cntmax, 3580 uint32_t flags) 3581 { 3582 struct if_ringmap *rm; 3583 int i, grid = 0, prev_grid; 3584 3585 ring_cnt = if_ringcnt_fixup(ring_cnt, ring_cntmax); 3586 rm = kmalloc(__offsetof(struct if_ringmap, rm_cpumap[ring_cnt]), 3587 M_DEVBUF, M_WAITOK | M_ZERO); 3588 3589 rm->rm_cnt = ring_cnt; 3590 if (flags & RINGMAP_FLAG_POWEROF2) 3591 rm->rm_cnt = 1 << (fls(rm->rm_cnt) - 1); 3592 3593 prev_grid = netisr_ncpus; 3594 for (i = 0; i < netisr_ncpus; ++i) { 3595 if (netisr_ncpus % (i + 1) != 0) 3596 continue; 3597 3598 grid = netisr_ncpus / (i + 1); 3599 if (rm->rm_cnt > grid) { 3600 grid = prev_grid; 3601 break; 3602 } 3603 3604 if (rm->rm_cnt > netisr_ncpus / (i + 2)) 3605 break; 3606 prev_grid = grid; 3607 } 3608 if_ringmap_set_grid(dev, rm, grid); 3609 3610 return (rm); 3611 } 3612 3613 struct if_ringmap * 3614 if_ringmap_alloc(device_t dev, int ring_cnt, int ring_cntmax) 3615 { 3616 3617 return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax, 3618 RINGMAP_FLAG_NONE)); 3619 } 3620 3621 struct if_ringmap * 3622 if_ringmap_alloc2(device_t dev, int ring_cnt, int ring_cntmax) 3623 { 3624 3625 return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax, 3626 RINGMAP_FLAG_POWEROF2)); 3627 } 3628 3629 void 3630 if_ringmap_free(struct if_ringmap *rm) 3631 { 3632 3633 kfree(rm, M_DEVBUF); 3634 } 3635 3636 /* 3637 * Align the two ringmaps. 3638 * 3639 * e.g. 8 netisrs, rm0 contains 4 rings, rm1 contains 2 rings. 3640 * 3641 * Before: 3642 * 3643 * CPU 0 1 2 3 4 5 6 7 3644 * NIC_RX n0 n1 n2 n3 3645 * NIC_TX N0 N1 3646 * 3647 * After: 3648 * 3649 * CPU 0 1 2 3 4 5 6 7 3650 * NIC_RX n0 n1 n2 n3 3651 * NIC_TX N0 N1 3652 */ 3653 void 3654 if_ringmap_align(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1) 3655 { 3656 3657 if (rm0->rm_grid > rm1->rm_grid) 3658 if_ringmap_set_grid(dev, rm1, rm0->rm_grid); 3659 else if (rm0->rm_grid < rm1->rm_grid) 3660 if_ringmap_set_grid(dev, rm0, rm1->rm_grid); 3661 } 3662 3663 void 3664 if_ringmap_match(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1) 3665 { 3666 int subset_grid, cnt, divisor, mod, offset, i; 3667 struct if_ringmap *subset_rm, *rm; 3668 int old_rm0_grid, old_rm1_grid; 3669 3670 if (rm0->rm_grid == rm1->rm_grid) 3671 return; 3672 3673 /* Save grid for later use */ 3674 old_rm0_grid = rm0->rm_grid; 3675 old_rm1_grid = rm1->rm_grid; 3676 3677 if_ringmap_align(dev, rm0, rm1); 3678 3679 /* 3680 * Re-shuffle rings to get more even distribution. 3681 * 3682 * e.g. 12 netisrs, rm0 contains 4 rings, rm1 contains 2 rings. 3683 * 3684 * CPU 0 1 2 3 4 5 6 7 8 9 10 11 3685 * 3686 * NIC_RX a0 a1 a2 a3 b0 b1 b2 b3 c0 c1 c2 c3 3687 * NIC_TX A0 A1 B0 B1 C0 C1 3688 * 3689 * NIC_RX d0 d1 d2 d3 e0 e1 e2 e3 f0 f1 f2 f3 3690 * NIC_TX D0 D1 E0 E1 F0 F1 3691 */ 3692 3693 if (rm0->rm_cnt >= (2 * old_rm1_grid)) { 3694 cnt = rm0->rm_cnt; 3695 subset_grid = old_rm1_grid; 3696 subset_rm = rm1; 3697 rm = rm0; 3698 } else if (rm1->rm_cnt > (2 * old_rm0_grid)) { 3699 cnt = rm1->rm_cnt; 3700 subset_grid = old_rm0_grid; 3701 subset_rm = rm0; 3702 rm = rm1; 3703 } else { 3704 /* No space to shuffle. */ 3705 return; 3706 } 3707 3708 mod = cnt / subset_grid; 3709 KKASSERT(mod >= 2); 3710 divisor = netisr_ncpus / rm->rm_grid; 3711 offset = ((device_get_unit(dev) / divisor) % mod) * subset_grid; 3712 3713 for (i = 0; i < subset_rm->rm_cnt; ++i) { 3714 subset_rm->rm_cpumap[i] += offset; 3715 KASSERT(subset_rm->rm_cpumap[i] < netisr_ncpus, 3716 ("match: invalid cpumap[%d] = %d, offset %d", 3717 i, subset_rm->rm_cpumap[i], offset)); 3718 } 3719 #ifdef INVARIANTS 3720 for (i = 0; i < subset_rm->rm_cnt; ++i) { 3721 int j; 3722 3723 for (j = 0; j < rm->rm_cnt; ++j) { 3724 if (rm->rm_cpumap[j] == subset_rm->rm_cpumap[i]) 3725 break; 3726 } 3727 KASSERT(j < rm->rm_cnt, 3728 ("subset cpumap[%d] = %d not found in superset", 3729 i, subset_rm->rm_cpumap[i])); 3730 } 3731 #endif 3732 } 3733 3734 int 3735 if_ringmap_count(const struct if_ringmap *rm) 3736 { 3737 3738 return (rm->rm_cnt); 3739 } 3740 3741 int 3742 if_ringmap_cpumap(const struct if_ringmap *rm, int ring) 3743 { 3744 3745 KASSERT(ring >= 0 && ring < rm->rm_cnt, ("invalid ring %d", ring)); 3746 return (rm->rm_cpumap[ring]); 3747 } 3748 3749 void 3750 if_ringmap_rdrtable(const struct if_ringmap *rm, int table[], int table_nent) 3751 { 3752 int i, grid_idx, grid_cnt, patch_off, patch_cnt, ncopy; 3753 3754 KASSERT(table_nent > 0 && (table_nent & NETISR_CPUMASK) == 0, 3755 ("invalid redirect table entries %d", table_nent)); 3756 3757 grid_idx = 0; 3758 for (i = 0; i < NETISR_CPUMAX; ++i) { 3759 table[i] = grid_idx++ % rm->rm_cnt; 3760 3761 if (grid_idx == rm->rm_grid) 3762 grid_idx = 0; 3763 } 3764 3765 /* 3766 * Make the ring distributed more evenly for the remainder 3767 * of each grid. 3768 * 3769 * e.g. 12 netisrs, rm contains 8 rings. 3770 * 3771 * Redirect table before: 3772 * 3773 * 0 1 2 3 4 5 6 7 0 1 2 3 0 1 2 3 3774 * 4 5 6 7 0 1 2 3 0 1 2 3 4 5 6 7 3775 * 0 1 2 3 0 1 2 3 4 5 6 7 0 1 2 3 3776 * .... 3777 * 3778 * Redirect table after being patched (pX, patched entries): 3779 * 3780 * 0 1 2 3 4 5 6 7 p0 p1 p2 p3 0 1 2 3 3781 * 4 5 6 7 p4 p5 p6 p7 0 1 2 3 4 5 6 7 3782 * p0 p1 p2 p3 0 1 2 3 4 5 6 7 p4 p5 p6 p7 3783 * .... 3784 */ 3785 patch_cnt = rm->rm_grid % rm->rm_cnt; 3786 if (patch_cnt == 0) 3787 goto done; 3788 patch_off = rm->rm_grid - (rm->rm_grid % rm->rm_cnt); 3789 3790 grid_cnt = roundup(NETISR_CPUMAX, rm->rm_grid) / rm->rm_grid; 3791 grid_idx = 0; 3792 for (i = 0; i < grid_cnt; ++i) { 3793 int j; 3794 3795 for (j = 0; j < patch_cnt; ++j) { 3796 int fix_idx; 3797 3798 fix_idx = (i * rm->rm_grid) + patch_off + j; 3799 if (fix_idx >= NETISR_CPUMAX) 3800 goto done; 3801 table[fix_idx] = grid_idx++ % rm->rm_cnt; 3802 } 3803 } 3804 done: 3805 /* 3806 * If the device supports larger redirect table, duplicate 3807 * the first NETISR_CPUMAX entries to the rest of the table, 3808 * so that it matches upper layer's expectation: 3809 * (hash & NETISR_CPUMASK) % netisr_ncpus 3810 */ 3811 ncopy = table_nent / NETISR_CPUMAX; 3812 for (i = 1; i < ncopy; ++i) { 3813 memcpy(&table[i * NETISR_CPUMAX], table, 3814 NETISR_CPUMAX * sizeof(table[0])); 3815 } 3816 if (if_ringmap_dumprdr) { 3817 for (i = 0; i < table_nent; ++i) { 3818 if (i != 0 && i % 16 == 0) 3819 kprintf("\n"); 3820 kprintf("%03d ", table[i]); 3821 } 3822 kprintf("\n"); 3823 } 3824 } 3825 3826 int 3827 if_ringmap_cpumap_sysctl(SYSCTL_HANDLER_ARGS) 3828 { 3829 struct if_ringmap *rm = arg1; 3830 int i, error = 0; 3831 3832 for (i = 0; i < rm->rm_cnt; ++i) { 3833 int cpu = rm->rm_cpumap[i]; 3834 3835 error = SYSCTL_OUT(req, &cpu, sizeof(cpu)); 3836 if (error) 3837 break; 3838 } 3839 return (error); 3840 } 3841