1 /* 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)if.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $ 35 */ 36 37 #include "opt_compat.h" 38 #include "opt_inet6.h" 39 #include "opt_inet.h" 40 #include "opt_ifpoll.h" 41 42 #include <sys/param.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/priv.h> 48 #include <sys/protosw.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/socketops.h> 52 #include <sys/protosw.h> 53 #include <sys/kernel.h> 54 #include <sys/ktr.h> 55 #include <sys/mutex.h> 56 #include <sys/sockio.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 #include <sys/domain.h> 60 #include <sys/thread.h> 61 #include <sys/serialize.h> 62 #include <sys/bus.h> 63 64 #include <sys/thread2.h> 65 #include <sys/msgport2.h> 66 #include <sys/mutex2.h> 67 68 #include <net/if.h> 69 #include <net/if_arp.h> 70 #include <net/if_dl.h> 71 #include <net/if_types.h> 72 #include <net/if_var.h> 73 #include <net/ifq_var.h> 74 #include <net/radix.h> 75 #include <net/route.h> 76 #include <net/if_clone.h> 77 #include <net/netisr.h> 78 #include <net/netmsg2.h> 79 80 #include <machine/atomic.h> 81 #include <machine/stdarg.h> 82 #include <machine/smp.h> 83 84 #if defined(INET) || defined(INET6) 85 /*XXX*/ 86 #include <netinet/in.h> 87 #include <netinet/in_var.h> 88 #include <netinet/if_ether.h> 89 #ifdef INET6 90 #include <netinet6/in6_var.h> 91 #include <netinet6/in6_ifattach.h> 92 #endif 93 #endif 94 95 #if defined(COMPAT_43) 96 #include <emulation/43bsd/43bsd_socket.h> 97 #endif /* COMPAT_43 */ 98 99 struct netmsg_ifaddr { 100 struct netmsg_base base; 101 struct ifaddr *ifa; 102 struct ifnet *ifp; 103 int tail; 104 }; 105 106 /* 107 * System initialization 108 */ 109 static void if_attachdomain(void *); 110 static void if_attachdomain1(struct ifnet *); 111 static int ifconf(u_long, caddr_t, struct ucred *); 112 static void ifinit(void *); 113 static void ifnetinit(void *); 114 static void if_slowtimo(void *); 115 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 116 static int if_rtdel(struct radix_node *, void *); 117 118 #ifdef INET6 119 /* 120 * XXX: declare here to avoid to include many inet6 related files.. 121 * should be more generalized? 122 */ 123 extern void nd6_setmtu(struct ifnet *); 124 #endif 125 126 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 127 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 128 129 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL) 130 /* Must be after netisr_init */ 131 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL) 132 133 static if_com_alloc_t *if_com_alloc[256]; 134 static if_com_free_t *if_com_free[256]; 135 136 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 137 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 138 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure"); 139 140 int ifqmaxlen = IFQ_MAXLEN; 141 struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet); 142 143 struct callout if_slowtimo_timer; 144 145 int if_index = 0; 146 struct ifnet **ifindex2ifnet = NULL; 147 static struct thread ifnet_threads[MAXCPU]; 148 149 #define IFQ_KTR_STRING "ifq=%p" 150 #define IFQ_KTR_ARGS struct ifaltq *ifq 151 #ifndef KTR_IFQ 152 #define KTR_IFQ KTR_ALL 153 #endif 154 KTR_INFO_MASTER(ifq); 155 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS); 156 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS); 157 #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg) 158 159 #define IF_START_KTR_STRING "ifp=%p" 160 #define IF_START_KTR_ARGS struct ifnet *ifp 161 #ifndef KTR_IF_START 162 #define KTR_IF_START KTR_ALL 163 #endif 164 KTR_INFO_MASTER(if_start); 165 KTR_INFO(KTR_IF_START, if_start, run, 0, 166 IF_START_KTR_STRING, IF_START_KTR_ARGS); 167 KTR_INFO(KTR_IF_START, if_start, sched, 1, 168 IF_START_KTR_STRING, IF_START_KTR_ARGS); 169 KTR_INFO(KTR_IF_START, if_start, avoid, 2, 170 IF_START_KTR_STRING, IF_START_KTR_ARGS); 171 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3, 172 IF_START_KTR_STRING, IF_START_KTR_ARGS); 173 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4, 174 IF_START_KTR_STRING, IF_START_KTR_ARGS); 175 #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg) 176 177 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head); 178 179 /* 180 * Network interface utility routines. 181 * 182 * Routines with ifa_ifwith* names take sockaddr *'s as 183 * parameters. 184 */ 185 /* ARGSUSED*/ 186 void 187 ifinit(void *dummy) 188 { 189 struct ifnet *ifp; 190 191 callout_init(&if_slowtimo_timer); 192 193 crit_enter(); 194 TAILQ_FOREACH(ifp, &ifnet, if_link) { 195 if (ifp->if_snd.ifq_maxlen == 0) { 196 if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n"); 197 ifp->if_snd.ifq_maxlen = ifqmaxlen; 198 } 199 } 200 crit_exit(); 201 202 if_slowtimo(0); 203 } 204 205 static int 206 if_start_cpuid(struct ifnet *ifp) 207 { 208 return ifp->if_cpuid; 209 } 210 211 #ifdef IFPOLL_ENABLE 212 static int 213 if_start_cpuid_npoll(struct ifnet *ifp) 214 { 215 int poll_cpuid = ifp->if_npoll_cpuid; 216 217 if (poll_cpuid >= 0) 218 return poll_cpuid; 219 else 220 return ifp->if_cpuid; 221 } 222 #endif 223 224 static void 225 if_start_ipifunc(void *arg) 226 { 227 struct ifnet *ifp = arg; 228 struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].lmsg; 229 230 crit_enter(); 231 if (lmsg->ms_flags & MSGF_DONE) 232 lwkt_sendmsg(netisr_portfn(mycpuid), lmsg); 233 crit_exit(); 234 } 235 236 /* 237 * Schedule ifnet.if_start on ifnet's CPU 238 */ 239 static void 240 if_start_schedule(struct ifnet *ifp) 241 { 242 int cpu; 243 244 cpu = ifp->if_start_cpuid(ifp); 245 if (cpu != mycpuid) 246 lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp); 247 else 248 if_start_ipifunc(ifp); 249 } 250 251 /* 252 * NOTE: 253 * This function will release ifnet.if_start interlock, 254 * if ifnet.if_start does not need to be scheduled 255 */ 256 static __inline int 257 if_start_need_schedule(struct ifaltq *ifq, int running) 258 { 259 if (!running || ifq_is_empty(ifq) 260 #ifdef ALTQ 261 || ifq->altq_tbr != NULL 262 #endif 263 ) { 264 ALTQ_LOCK(ifq); 265 /* 266 * ifnet.if_start interlock is released, if: 267 * 1) Hardware can not take any packets, due to 268 * o interface is marked down 269 * o hardware queue is full (IFF_OACTIVE) 270 * Under the second situation, hardware interrupt 271 * or polling(4) will call/schedule ifnet.if_start 272 * when hardware queue is ready 273 * 2) There is not packet in the ifnet.if_snd. 274 * Further ifq_dispatch or ifq_handoff will call/ 275 * schedule ifnet.if_start 276 * 3) TBR is used and it does not allow further 277 * dequeueing. 278 * TBR callout will call ifnet.if_start 279 */ 280 if (!running || !ifq_data_ready(ifq)) { 281 ifq->altq_started = 0; 282 ALTQ_UNLOCK(ifq); 283 return 0; 284 } 285 ALTQ_UNLOCK(ifq); 286 } 287 return 1; 288 } 289 290 static void 291 if_start_dispatch(netmsg_t msg) 292 { 293 struct lwkt_msg *lmsg = &msg->base.lmsg; 294 struct ifnet *ifp = lmsg->u.ms_resultp; 295 struct ifaltq *ifq = &ifp->if_snd; 296 int running = 0; 297 298 crit_enter(); 299 lwkt_replymsg(lmsg, 0); /* reply ASAP */ 300 crit_exit(); 301 302 if (mycpuid != ifp->if_start_cpuid(ifp)) { 303 /* 304 * If the ifnet is still up, we need to 305 * chase its CPU change. 306 */ 307 if (ifp->if_flags & IFF_UP) { 308 logifstart(chase_sched, ifp); 309 if_start_schedule(ifp); 310 return; 311 } else { 312 goto check; 313 } 314 } 315 316 if (ifp->if_flags & IFF_UP) { 317 ifnet_serialize_tx(ifp); /* XXX try? */ 318 if ((ifp->if_flags & IFF_OACTIVE) == 0) { 319 logifstart(run, ifp); 320 ifp->if_start(ifp); 321 if ((ifp->if_flags & 322 (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING) 323 running = 1; 324 } 325 ifnet_deserialize_tx(ifp); 326 } 327 check: 328 if (if_start_need_schedule(ifq, running)) { 329 crit_enter(); 330 if (lmsg->ms_flags & MSGF_DONE) { /* XXX necessary? */ 331 logifstart(sched, ifp); 332 lwkt_sendmsg(netisr_portfn(mycpuid), lmsg); 333 } 334 crit_exit(); 335 } 336 } 337 338 /* Device driver ifnet.if_start helper function */ 339 void 340 if_devstart(struct ifnet *ifp) 341 { 342 struct ifaltq *ifq = &ifp->if_snd; 343 int running = 0; 344 345 ASSERT_IFNET_SERIALIZED_TX(ifp); 346 347 ALTQ_LOCK(ifq); 348 if (ifq->altq_started || !ifq_data_ready(ifq)) { 349 logifstart(avoid, ifp); 350 ALTQ_UNLOCK(ifq); 351 return; 352 } 353 ifq->altq_started = 1; 354 ALTQ_UNLOCK(ifq); 355 356 logifstart(run, ifp); 357 ifp->if_start(ifp); 358 359 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING) 360 running = 1; 361 362 if (if_start_need_schedule(ifq, running)) { 363 /* 364 * More data need to be transmitted, ifnet.if_start is 365 * scheduled on ifnet's CPU, and we keep going. 366 * NOTE: ifnet.if_start interlock is not released. 367 */ 368 logifstart(sched, ifp); 369 if_start_schedule(ifp); 370 } 371 } 372 373 static void 374 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 375 { 376 lwkt_serialize_enter(ifp->if_serializer); 377 } 378 379 static void 380 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 381 { 382 lwkt_serialize_exit(ifp->if_serializer); 383 } 384 385 static int 386 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 387 { 388 return lwkt_serialize_try(ifp->if_serializer); 389 } 390 391 #ifdef INVARIANTS 392 static void 393 if_default_serialize_assert(struct ifnet *ifp, 394 enum ifnet_serialize slz __unused, 395 boolean_t serialized) 396 { 397 if (serialized) 398 ASSERT_SERIALIZED(ifp->if_serializer); 399 else 400 ASSERT_NOT_SERIALIZED(ifp->if_serializer); 401 } 402 #endif 403 404 /* 405 * Attach an interface to the list of "active" interfaces. 406 * 407 * The serializer is optional. If non-NULL access to the interface 408 * may be MPSAFE. 409 */ 410 void 411 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer) 412 { 413 unsigned socksize, ifasize; 414 int namelen, masklen; 415 struct sockaddr_dl *sdl; 416 struct ifaddr *ifa; 417 struct ifaltq *ifq; 418 int i; 419 420 static int if_indexlim = 8; 421 422 if (ifp->if_serialize != NULL) { 423 KASSERT(ifp->if_deserialize != NULL && 424 ifp->if_tryserialize != NULL && 425 ifp->if_serialize_assert != NULL, 426 ("serialize functions are partially setup")); 427 428 /* 429 * If the device supplies serialize functions, 430 * then clear if_serializer to catch any invalid 431 * usage of this field. 432 */ 433 KASSERT(serializer == NULL, 434 ("both serialize functions and default serializer " 435 "are supplied")); 436 ifp->if_serializer = NULL; 437 } else { 438 KASSERT(ifp->if_deserialize == NULL && 439 ifp->if_tryserialize == NULL && 440 ifp->if_serialize_assert == NULL, 441 ("serialize functions are partially setup")); 442 ifp->if_serialize = if_default_serialize; 443 ifp->if_deserialize = if_default_deserialize; 444 ifp->if_tryserialize = if_default_tryserialize; 445 #ifdef INVARIANTS 446 ifp->if_serialize_assert = if_default_serialize_assert; 447 #endif 448 449 /* 450 * The serializer can be passed in from the device, 451 * allowing the same serializer to be used for both 452 * the interrupt interlock and the device queue. 453 * If not specified, the netif structure will use an 454 * embedded serializer. 455 */ 456 if (serializer == NULL) { 457 serializer = &ifp->if_default_serializer; 458 lwkt_serialize_init(serializer); 459 } 460 ifp->if_serializer = serializer; 461 } 462 463 ifp->if_start_cpuid = if_start_cpuid; 464 ifp->if_cpuid = 0; 465 466 #ifdef IFPOLL_ENABLE 467 /* Device is not in polling mode by default */ 468 ifp->if_npoll_cpuid = -1; 469 if (ifp->if_npoll != NULL) 470 ifp->if_start_cpuid = if_start_cpuid_npoll; 471 #endif 472 473 ifp->if_start_nmsg = kmalloc(ncpus * sizeof(*ifp->if_start_nmsg), 474 M_LWKTMSG, M_WAITOK); 475 for (i = 0; i < ncpus; ++i) { 476 netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport, 477 0, if_start_dispatch); 478 ifp->if_start_nmsg[i].lmsg.u.ms_resultp = ifp; 479 } 480 481 mtx_init(&ifp->if_ioctl_mtx); 482 mtx_lock(&ifp->if_ioctl_mtx); 483 484 TAILQ_INSERT_TAIL(&ifnet, ifp, if_link); 485 ifp->if_index = ++if_index; 486 487 /* 488 * XXX - 489 * The old code would work if the interface passed a pre-existing 490 * chain of ifaddrs to this code. We don't trust our callers to 491 * properly initialize the tailq, however, so we no longer allow 492 * this unlikely case. 493 */ 494 ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead), 495 M_IFADDR, M_WAITOK | M_ZERO); 496 for (i = 0; i < ncpus; ++i) 497 TAILQ_INIT(&ifp->if_addrheads[i]); 498 499 TAILQ_INIT(&ifp->if_prefixhead); 500 TAILQ_INIT(&ifp->if_multiaddrs); 501 TAILQ_INIT(&ifp->if_groups); 502 getmicrotime(&ifp->if_lastchange); 503 if (ifindex2ifnet == NULL || if_index >= if_indexlim) { 504 unsigned int n; 505 struct ifnet **q; 506 507 if_indexlim <<= 1; 508 509 /* grow ifindex2ifnet */ 510 n = if_indexlim * sizeof(*q); 511 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO); 512 if (ifindex2ifnet) { 513 bcopy(ifindex2ifnet, q, n/2); 514 kfree(ifindex2ifnet, M_IFADDR); 515 } 516 ifindex2ifnet = q; 517 } 518 519 ifindex2ifnet[if_index] = ifp; 520 521 /* 522 * create a Link Level name for this device 523 */ 524 namelen = strlen(ifp->if_xname); 525 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; 526 socksize = masklen + ifp->if_addrlen; 527 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1))) 528 if (socksize < sizeof(*sdl)) 529 socksize = sizeof(*sdl); 530 socksize = ROUNDUP(socksize); 531 #undef ROUNDUP 532 ifasize = sizeof(struct ifaddr) + 2 * socksize; 533 ifa = ifa_create(ifasize, M_WAITOK); 534 sdl = (struct sockaddr_dl *)(ifa + 1); 535 sdl->sdl_len = socksize; 536 sdl->sdl_family = AF_LINK; 537 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 538 sdl->sdl_nlen = namelen; 539 sdl->sdl_index = ifp->if_index; 540 sdl->sdl_type = ifp->if_type; 541 ifp->if_lladdr = ifa; 542 ifa->ifa_ifp = ifp; 543 ifa->ifa_rtrequest = link_rtrequest; 544 ifa->ifa_addr = (struct sockaddr *)sdl; 545 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 546 ifa->ifa_netmask = (struct sockaddr *)sdl; 547 sdl->sdl_len = masklen; 548 while (namelen != 0) 549 sdl->sdl_data[--namelen] = 0xff; 550 ifa_iflink(ifa, ifp, 0 /* Insert head */); 551 552 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 553 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 554 555 ifq = &ifp->if_snd; 556 ifq->altq_type = 0; 557 ifq->altq_disc = NULL; 558 ifq->altq_flags &= ALTQF_CANTCHANGE; 559 ifq->altq_tbr = NULL; 560 ifq->altq_ifp = ifp; 561 ifq->altq_started = 0; 562 ifq->altq_prepended = NULL; 563 ALTQ_LOCK_INIT(ifq); 564 ifq_set_classic(ifq); 565 566 if (!SLIST_EMPTY(&domains)) 567 if_attachdomain1(ifp); 568 569 /* Announce the interface. */ 570 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 571 572 mtx_unlock(&ifp->if_ioctl_mtx); 573 } 574 575 static void 576 if_attachdomain(void *dummy) 577 { 578 struct ifnet *ifp; 579 580 crit_enter(); 581 TAILQ_FOREACH(ifp, &ifnet, if_list) 582 if_attachdomain1(ifp); 583 crit_exit(); 584 } 585 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, 586 if_attachdomain, NULL); 587 588 static void 589 if_attachdomain1(struct ifnet *ifp) 590 { 591 struct domain *dp; 592 593 crit_enter(); 594 595 /* address family dependent data region */ 596 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 597 SLIST_FOREACH(dp, &domains, dom_next) 598 if (dp->dom_ifattach) 599 ifp->if_afdata[dp->dom_family] = 600 (*dp->dom_ifattach)(ifp); 601 crit_exit(); 602 } 603 604 /* 605 * Purge all addresses whose type is _not_ AF_LINK 606 */ 607 void 608 if_purgeaddrs_nolink(struct ifnet *ifp) 609 { 610 struct ifaddr_container *ifac, *next; 611 612 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid], 613 ifa_link, next) { 614 struct ifaddr *ifa = ifac->ifa; 615 616 /* Leave link ifaddr as it is */ 617 if (ifa->ifa_addr->sa_family == AF_LINK) 618 continue; 619 #ifdef INET 620 /* XXX: Ugly!! ad hoc just for INET */ 621 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) { 622 struct ifaliasreq ifr; 623 #ifdef IFADDR_DEBUG_VERBOSE 624 int i; 625 626 kprintf("purge in4 addr %p: ", ifa); 627 for (i = 0; i < ncpus; ++i) 628 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 629 kprintf("\n"); 630 #endif 631 632 bzero(&ifr, sizeof ifr); 633 ifr.ifra_addr = *ifa->ifa_addr; 634 if (ifa->ifa_dstaddr) 635 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 636 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 637 NULL) == 0) 638 continue; 639 } 640 #endif /* INET */ 641 #ifdef INET6 642 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) { 643 #ifdef IFADDR_DEBUG_VERBOSE 644 int i; 645 646 kprintf("purge in6 addr %p: ", ifa); 647 for (i = 0; i < ncpus; ++i) 648 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 649 kprintf("\n"); 650 #endif 651 652 in6_purgeaddr(ifa); 653 /* ifp_addrhead is already updated */ 654 continue; 655 } 656 #endif /* INET6 */ 657 ifa_ifunlink(ifa, ifp); 658 ifa_destroy(ifa); 659 } 660 } 661 662 /* 663 * Detach an interface, removing it from the 664 * list of "active" interfaces. 665 */ 666 void 667 if_detach(struct ifnet *ifp) 668 { 669 struct radix_node_head *rnh; 670 int i; 671 int cpu, origcpu; 672 struct domain *dp; 673 674 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 675 676 /* 677 * Remove routes and flush queues. 678 */ 679 crit_enter(); 680 #ifdef IFPOLL_ENABLE 681 if (ifp->if_flags & IFF_NPOLLING) 682 ifpoll_deregister(ifp); 683 #endif 684 if_down(ifp); 685 686 #ifdef ALTQ 687 if (ifq_is_enabled(&ifp->if_snd)) 688 altq_disable(&ifp->if_snd); 689 if (ifq_is_attached(&ifp->if_snd)) 690 altq_detach(&ifp->if_snd); 691 #endif 692 693 /* 694 * Clean up all addresses. 695 */ 696 ifp->if_lladdr = NULL; 697 698 if_purgeaddrs_nolink(ifp); 699 if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) { 700 struct ifaddr *ifa; 701 702 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 703 KASSERT(ifa->ifa_addr->sa_family == AF_LINK, 704 ("non-link ifaddr is left on if_addrheads")); 705 706 ifa_ifunlink(ifa, ifp); 707 ifa_destroy(ifa); 708 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]), 709 ("there are still ifaddrs left on if_addrheads")); 710 } 711 712 #ifdef INET 713 /* 714 * Remove all IPv4 kernel structures related to ifp. 715 */ 716 in_ifdetach(ifp); 717 #endif 718 719 #ifdef INET6 720 /* 721 * Remove all IPv6 kernel structs related to ifp. This should be done 722 * before removing routing entries below, since IPv6 interface direct 723 * routes are expected to be removed by the IPv6-specific kernel API. 724 * Otherwise, the kernel will detect some inconsistency and bark it. 725 */ 726 in6_ifdetach(ifp); 727 #endif 728 729 /* 730 * Delete all remaining routes using this interface 731 * Unfortuneatly the only way to do this is to slog through 732 * the entire routing table looking for routes which point 733 * to this interface...oh well... 734 */ 735 origcpu = mycpuid; 736 for (cpu = 0; cpu < ncpus; cpu++) { 737 lwkt_migratecpu(cpu); 738 for (i = 1; i <= AF_MAX; i++) { 739 if ((rnh = rt_tables[cpu][i]) == NULL) 740 continue; 741 rnh->rnh_walktree(rnh, if_rtdel, ifp); 742 } 743 } 744 lwkt_migratecpu(origcpu); 745 746 /* Announce that the interface is gone. */ 747 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 748 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 749 750 SLIST_FOREACH(dp, &domains, dom_next) 751 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 752 (*dp->dom_ifdetach)(ifp, 753 ifp->if_afdata[dp->dom_family]); 754 755 /* 756 * Remove interface from ifindex2ifp[] and maybe decrement if_index. 757 */ 758 ifindex2ifnet[ifp->if_index] = NULL; 759 while (if_index > 0 && ifindex2ifnet[if_index] == NULL) 760 if_index--; 761 762 TAILQ_REMOVE(&ifnet, ifp, if_link); 763 kfree(ifp->if_addrheads, M_IFADDR); 764 kfree(ifp->if_start_nmsg, M_LWKTMSG); 765 crit_exit(); 766 } 767 768 /* 769 * Create interface group without members 770 */ 771 struct ifg_group * 772 if_creategroup(const char *groupname) 773 { 774 struct ifg_group *ifg = NULL; 775 776 if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group), 777 M_TEMP, M_NOWAIT)) == NULL) 778 return (NULL); 779 780 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 781 ifg->ifg_refcnt = 0; 782 ifg->ifg_carp_demoted = 0; 783 TAILQ_INIT(&ifg->ifg_members); 784 #if NPF > 0 785 pfi_attach_ifgroup(ifg); 786 #endif 787 TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next); 788 789 return (ifg); 790 } 791 792 /* 793 * Add a group to an interface 794 */ 795 int 796 if_addgroup(struct ifnet *ifp, const char *groupname) 797 { 798 struct ifg_list *ifgl; 799 struct ifg_group *ifg = NULL; 800 struct ifg_member *ifgm; 801 802 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 803 groupname[strlen(groupname) - 1] <= '9') 804 return (EINVAL); 805 806 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 807 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 808 return (EEXIST); 809 810 if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) 811 return (ENOMEM); 812 813 if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 814 kfree(ifgl, M_TEMP); 815 return (ENOMEM); 816 } 817 818 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 819 if (!strcmp(ifg->ifg_group, groupname)) 820 break; 821 822 if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) { 823 kfree(ifgl, M_TEMP); 824 kfree(ifgm, M_TEMP); 825 return (ENOMEM); 826 } 827 828 ifg->ifg_refcnt++; 829 ifgl->ifgl_group = ifg; 830 ifgm->ifgm_ifp = ifp; 831 832 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 833 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 834 835 #if NPF > 0 836 pfi_group_change(groupname); 837 #endif 838 839 return (0); 840 } 841 842 /* 843 * Remove a group from an interface 844 */ 845 int 846 if_delgroup(struct ifnet *ifp, const char *groupname) 847 { 848 struct ifg_list *ifgl; 849 struct ifg_member *ifgm; 850 851 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 852 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 853 break; 854 if (ifgl == NULL) 855 return (ENOENT); 856 857 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 858 859 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 860 if (ifgm->ifgm_ifp == ifp) 861 break; 862 863 if (ifgm != NULL) { 864 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 865 kfree(ifgm, M_TEMP); 866 } 867 868 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 869 TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next); 870 #if NPF > 0 871 pfi_detach_ifgroup(ifgl->ifgl_group); 872 #endif 873 kfree(ifgl->ifgl_group, M_TEMP); 874 } 875 876 kfree(ifgl, M_TEMP); 877 878 #if NPF > 0 879 pfi_group_change(groupname); 880 #endif 881 882 return (0); 883 } 884 885 /* 886 * Stores all groups from an interface in memory pointed 887 * to by data 888 */ 889 int 890 if_getgroup(caddr_t data, struct ifnet *ifp) 891 { 892 int len, error; 893 struct ifg_list *ifgl; 894 struct ifg_req ifgrq, *ifgp; 895 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 896 897 if (ifgr->ifgr_len == 0) { 898 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 899 ifgr->ifgr_len += sizeof(struct ifg_req); 900 return (0); 901 } 902 903 len = ifgr->ifgr_len; 904 ifgp = ifgr->ifgr_groups; 905 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 906 if (len < sizeof(ifgrq)) 907 return (EINVAL); 908 bzero(&ifgrq, sizeof ifgrq); 909 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 910 sizeof(ifgrq.ifgrq_group)); 911 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 912 sizeof(struct ifg_req)))) 913 return (error); 914 len -= sizeof(ifgrq); 915 ifgp++; 916 } 917 918 return (0); 919 } 920 921 /* 922 * Stores all members of a group in memory pointed to by data 923 */ 924 int 925 if_getgroupmembers(caddr_t data) 926 { 927 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 928 struct ifg_group *ifg; 929 struct ifg_member *ifgm; 930 struct ifg_req ifgrq, *ifgp; 931 int len, error; 932 933 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 934 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 935 break; 936 if (ifg == NULL) 937 return (ENOENT); 938 939 if (ifgr->ifgr_len == 0) { 940 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 941 ifgr->ifgr_len += sizeof(ifgrq); 942 return (0); 943 } 944 945 len = ifgr->ifgr_len; 946 ifgp = ifgr->ifgr_groups; 947 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 948 if (len < sizeof(ifgrq)) 949 return (EINVAL); 950 bzero(&ifgrq, sizeof ifgrq); 951 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 952 sizeof(ifgrq.ifgrq_member)); 953 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 954 sizeof(struct ifg_req)))) 955 return (error); 956 len -= sizeof(ifgrq); 957 ifgp++; 958 } 959 960 return (0); 961 } 962 963 /* 964 * Delete Routes for a Network Interface 965 * 966 * Called for each routing entry via the rnh->rnh_walktree() call above 967 * to delete all route entries referencing a detaching network interface. 968 * 969 * Arguments: 970 * rn pointer to node in the routing table 971 * arg argument passed to rnh->rnh_walktree() - detaching interface 972 * 973 * Returns: 974 * 0 successful 975 * errno failed - reason indicated 976 * 977 */ 978 static int 979 if_rtdel(struct radix_node *rn, void *arg) 980 { 981 struct rtentry *rt = (struct rtentry *)rn; 982 struct ifnet *ifp = arg; 983 int err; 984 985 if (rt->rt_ifp == ifp) { 986 987 /* 988 * Protect (sorta) against walktree recursion problems 989 * with cloned routes 990 */ 991 if (!(rt->rt_flags & RTF_UP)) 992 return (0); 993 994 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, 995 rt_mask(rt), rt->rt_flags, 996 NULL); 997 if (err) { 998 log(LOG_WARNING, "if_rtdel: error %d\n", err); 999 } 1000 } 1001 1002 return (0); 1003 } 1004 1005 /* 1006 * Locate an interface based on a complete address. 1007 */ 1008 struct ifaddr * 1009 ifa_ifwithaddr(struct sockaddr *addr) 1010 { 1011 struct ifnet *ifp; 1012 1013 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1014 struct ifaddr_container *ifac; 1015 1016 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1017 struct ifaddr *ifa = ifac->ifa; 1018 1019 if (ifa->ifa_addr->sa_family != addr->sa_family) 1020 continue; 1021 if (sa_equal(addr, ifa->ifa_addr)) 1022 return (ifa); 1023 if ((ifp->if_flags & IFF_BROADCAST) && 1024 ifa->ifa_broadaddr && 1025 /* IPv6 doesn't have broadcast */ 1026 ifa->ifa_broadaddr->sa_len != 0 && 1027 sa_equal(ifa->ifa_broadaddr, addr)) 1028 return (ifa); 1029 } 1030 } 1031 return (NULL); 1032 } 1033 /* 1034 * Locate the point to point interface with a given destination address. 1035 */ 1036 struct ifaddr * 1037 ifa_ifwithdstaddr(struct sockaddr *addr) 1038 { 1039 struct ifnet *ifp; 1040 1041 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1042 struct ifaddr_container *ifac; 1043 1044 if (!(ifp->if_flags & IFF_POINTOPOINT)) 1045 continue; 1046 1047 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1048 struct ifaddr *ifa = ifac->ifa; 1049 1050 if (ifa->ifa_addr->sa_family != addr->sa_family) 1051 continue; 1052 if (ifa->ifa_dstaddr && 1053 sa_equal(addr, ifa->ifa_dstaddr)) 1054 return (ifa); 1055 } 1056 } 1057 return (NULL); 1058 } 1059 1060 /* 1061 * Find an interface on a specific network. If many, choice 1062 * is most specific found. 1063 */ 1064 struct ifaddr * 1065 ifa_ifwithnet(struct sockaddr *addr) 1066 { 1067 struct ifnet *ifp; 1068 struct ifaddr *ifa_maybe = NULL; 1069 u_int af = addr->sa_family; 1070 char *addr_data = addr->sa_data, *cplim; 1071 1072 /* 1073 * AF_LINK addresses can be looked up directly by their index number, 1074 * so do that if we can. 1075 */ 1076 if (af == AF_LINK) { 1077 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 1078 1079 if (sdl->sdl_index && sdl->sdl_index <= if_index) 1080 return (ifindex2ifnet[sdl->sdl_index]->if_lladdr); 1081 } 1082 1083 /* 1084 * Scan though each interface, looking for ones that have 1085 * addresses in this address family. 1086 */ 1087 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1088 struct ifaddr_container *ifac; 1089 1090 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1091 struct ifaddr *ifa = ifac->ifa; 1092 char *cp, *cp2, *cp3; 1093 1094 if (ifa->ifa_addr->sa_family != af) 1095 next: continue; 1096 if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) { 1097 /* 1098 * This is a bit broken as it doesn't 1099 * take into account that the remote end may 1100 * be a single node in the network we are 1101 * looking for. 1102 * The trouble is that we don't know the 1103 * netmask for the remote end. 1104 */ 1105 if (ifa->ifa_dstaddr != NULL && 1106 sa_equal(addr, ifa->ifa_dstaddr)) 1107 return (ifa); 1108 } else { 1109 /* 1110 * if we have a special address handler, 1111 * then use it instead of the generic one. 1112 */ 1113 if (ifa->ifa_claim_addr) { 1114 if ((*ifa->ifa_claim_addr)(ifa, addr)) { 1115 return (ifa); 1116 } else { 1117 continue; 1118 } 1119 } 1120 1121 /* 1122 * Scan all the bits in the ifa's address. 1123 * If a bit dissagrees with what we are 1124 * looking for, mask it with the netmask 1125 * to see if it really matters. 1126 * (A byte at a time) 1127 */ 1128 if (ifa->ifa_netmask == 0) 1129 continue; 1130 cp = addr_data; 1131 cp2 = ifa->ifa_addr->sa_data; 1132 cp3 = ifa->ifa_netmask->sa_data; 1133 cplim = ifa->ifa_netmask->sa_len + 1134 (char *)ifa->ifa_netmask; 1135 while (cp3 < cplim) 1136 if ((*cp++ ^ *cp2++) & *cp3++) 1137 goto next; /* next address! */ 1138 /* 1139 * If the netmask of what we just found 1140 * is more specific than what we had before 1141 * (if we had one) then remember the new one 1142 * before continuing to search 1143 * for an even better one. 1144 */ 1145 if (ifa_maybe == NULL || 1146 rn_refines((char *)ifa->ifa_netmask, 1147 (char *)ifa_maybe->ifa_netmask)) 1148 ifa_maybe = ifa; 1149 } 1150 } 1151 } 1152 return (ifa_maybe); 1153 } 1154 1155 /* 1156 * Find an interface address specific to an interface best matching 1157 * a given address. 1158 */ 1159 struct ifaddr * 1160 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1161 { 1162 struct ifaddr_container *ifac; 1163 char *cp, *cp2, *cp3; 1164 char *cplim; 1165 struct ifaddr *ifa_maybe = NULL; 1166 u_int af = addr->sa_family; 1167 1168 if (af >= AF_MAX) 1169 return (0); 1170 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1171 struct ifaddr *ifa = ifac->ifa; 1172 1173 if (ifa->ifa_addr->sa_family != af) 1174 continue; 1175 if (ifa_maybe == NULL) 1176 ifa_maybe = ifa; 1177 if (ifa->ifa_netmask == NULL) { 1178 if (sa_equal(addr, ifa->ifa_addr) || 1179 (ifa->ifa_dstaddr != NULL && 1180 sa_equal(addr, ifa->ifa_dstaddr))) 1181 return (ifa); 1182 continue; 1183 } 1184 if (ifp->if_flags & IFF_POINTOPOINT) { 1185 if (sa_equal(addr, ifa->ifa_dstaddr)) 1186 return (ifa); 1187 } else { 1188 cp = addr->sa_data; 1189 cp2 = ifa->ifa_addr->sa_data; 1190 cp3 = ifa->ifa_netmask->sa_data; 1191 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1192 for (; cp3 < cplim; cp3++) 1193 if ((*cp++ ^ *cp2++) & *cp3) 1194 break; 1195 if (cp3 == cplim) 1196 return (ifa); 1197 } 1198 } 1199 return (ifa_maybe); 1200 } 1201 1202 /* 1203 * Default action when installing a route with a Link Level gateway. 1204 * Lookup an appropriate real ifa to point to. 1205 * This should be moved to /sys/net/link.c eventually. 1206 */ 1207 static void 1208 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 1209 { 1210 struct ifaddr *ifa; 1211 struct sockaddr *dst; 1212 struct ifnet *ifp; 1213 1214 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1215 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL) 1216 return; 1217 ifa = ifaof_ifpforaddr(dst, ifp); 1218 if (ifa != NULL) { 1219 IFAFREE(rt->rt_ifa); 1220 IFAREF(ifa); 1221 rt->rt_ifa = ifa; 1222 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1223 ifa->ifa_rtrequest(cmd, rt, info); 1224 } 1225 } 1226 1227 /* 1228 * Mark an interface down and notify protocols of 1229 * the transition. 1230 * NOTE: must be called at splnet or eqivalent. 1231 */ 1232 void 1233 if_unroute(struct ifnet *ifp, int flag, int fam) 1234 { 1235 struct ifaddr_container *ifac; 1236 1237 ifp->if_flags &= ~flag; 1238 getmicrotime(&ifp->if_lastchange); 1239 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1240 struct ifaddr *ifa = ifac->ifa; 1241 1242 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1243 kpfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1244 } 1245 ifq_purge(&ifp->if_snd); 1246 rt_ifmsg(ifp); 1247 } 1248 1249 /* 1250 * Mark an interface up and notify protocols of 1251 * the transition. 1252 * NOTE: must be called at splnet or eqivalent. 1253 */ 1254 void 1255 if_route(struct ifnet *ifp, int flag, int fam) 1256 { 1257 struct ifaddr_container *ifac; 1258 1259 ifq_purge(&ifp->if_snd); 1260 ifp->if_flags |= flag; 1261 getmicrotime(&ifp->if_lastchange); 1262 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1263 struct ifaddr *ifa = ifac->ifa; 1264 1265 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1266 kpfctlinput(PRC_IFUP, ifa->ifa_addr); 1267 } 1268 rt_ifmsg(ifp); 1269 #ifdef INET6 1270 in6_if_up(ifp); 1271 #endif 1272 } 1273 1274 /* 1275 * Mark an interface down and notify protocols of the transition. An 1276 * interface going down is also considered to be a synchronizing event. 1277 * We must ensure that all packet processing related to the interface 1278 * has completed before we return so e.g. the caller can free the ifnet 1279 * structure that the mbufs may be referencing. 1280 * 1281 * NOTE: must be called at splnet or eqivalent. 1282 */ 1283 void 1284 if_down(struct ifnet *ifp) 1285 { 1286 if_unroute(ifp, IFF_UP, AF_UNSPEC); 1287 netmsg_service_sync(); 1288 } 1289 1290 /* 1291 * Mark an interface up and notify protocols of 1292 * the transition. 1293 * NOTE: must be called at splnet or eqivalent. 1294 */ 1295 void 1296 if_up(struct ifnet *ifp) 1297 { 1298 if_route(ifp, IFF_UP, AF_UNSPEC); 1299 } 1300 1301 /* 1302 * Process a link state change. 1303 * NOTE: must be called at splsoftnet or equivalent. 1304 */ 1305 void 1306 if_link_state_change(struct ifnet *ifp) 1307 { 1308 int link_state = ifp->if_link_state; 1309 1310 rt_ifmsg(ifp); 1311 devctl_notify("IFNET", ifp->if_xname, 1312 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); 1313 } 1314 1315 /* 1316 * Handle interface watchdog timer routines. Called 1317 * from softclock, we decrement timers (if set) and 1318 * call the appropriate interface routine on expiration. 1319 */ 1320 static void 1321 if_slowtimo(void *arg) 1322 { 1323 struct ifnet *ifp; 1324 1325 crit_enter(); 1326 1327 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1328 if (ifp->if_timer == 0 || --ifp->if_timer) 1329 continue; 1330 if (ifp->if_watchdog) { 1331 if (ifnet_tryserialize_all(ifp)) { 1332 (*ifp->if_watchdog)(ifp); 1333 ifnet_deserialize_all(ifp); 1334 } else { 1335 /* try again next timeout */ 1336 ++ifp->if_timer; 1337 } 1338 } 1339 } 1340 1341 crit_exit(); 1342 1343 callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL); 1344 } 1345 1346 /* 1347 * Map interface name to 1348 * interface structure pointer. 1349 */ 1350 struct ifnet * 1351 ifunit(const char *name) 1352 { 1353 struct ifnet *ifp; 1354 1355 /* 1356 * Search all the interfaces for this name/number 1357 */ 1358 1359 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1360 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) 1361 break; 1362 } 1363 return (ifp); 1364 } 1365 1366 1367 /* 1368 * Map interface name in a sockaddr_dl to 1369 * interface structure pointer. 1370 */ 1371 struct ifnet * 1372 if_withname(struct sockaddr *sa) 1373 { 1374 char ifname[IFNAMSIZ+1]; 1375 struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa; 1376 1377 if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) || 1378 (sdl->sdl_nlen > IFNAMSIZ) ) 1379 return NULL; 1380 1381 /* 1382 * ifunit wants a null-terminated name. It may not be null-terminated 1383 * in the sockaddr. We don't want to change the caller's sockaddr, 1384 * and there might not be room to put the trailing null anyway, so we 1385 * make a local copy that we know we can null terminate safely. 1386 */ 1387 1388 bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen); 1389 ifname[sdl->sdl_nlen] = '\0'; 1390 return ifunit(ifname); 1391 } 1392 1393 1394 /* 1395 * Interface ioctls. 1396 */ 1397 int 1398 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred) 1399 { 1400 struct ifnet *ifp; 1401 struct ifreq *ifr; 1402 struct ifstat *ifs; 1403 int error; 1404 short oif_flags; 1405 int new_flags; 1406 #ifdef COMPAT_43 1407 int ocmd; 1408 #endif 1409 size_t namelen, onamelen; 1410 char new_name[IFNAMSIZ]; 1411 struct ifaddr *ifa; 1412 struct sockaddr_dl *sdl; 1413 1414 switch (cmd) { 1415 case SIOCGIFCONF: 1416 case OSIOCGIFCONF: 1417 return (ifconf(cmd, data, cred)); 1418 default: 1419 break; 1420 } 1421 1422 ifr = (struct ifreq *)data; 1423 1424 switch (cmd) { 1425 case SIOCIFCREATE: 1426 case SIOCIFCREATE2: 1427 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1428 return (error); 1429 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), 1430 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL)); 1431 case SIOCIFDESTROY: 1432 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1433 return (error); 1434 return (if_clone_destroy(ifr->ifr_name)); 1435 case SIOCIFGCLONERS: 1436 return (if_clone_list((struct if_clonereq *)data)); 1437 default: 1438 break; 1439 } 1440 1441 /* 1442 * Nominal ioctl through interface, lookup the ifp and obtain a 1443 * lock to serialize the ifconfig ioctl operation. 1444 */ 1445 ifp = ifunit(ifr->ifr_name); 1446 if (ifp == NULL) 1447 return (ENXIO); 1448 error = 0; 1449 mtx_lock(&ifp->if_ioctl_mtx); 1450 1451 switch (cmd) { 1452 case SIOCGIFINDEX: 1453 ifr->ifr_index = ifp->if_index; 1454 break; 1455 1456 case SIOCGIFFLAGS: 1457 ifr->ifr_flags = ifp->if_flags; 1458 ifr->ifr_flagshigh = ifp->if_flags >> 16; 1459 break; 1460 1461 case SIOCGIFCAP: 1462 ifr->ifr_reqcap = ifp->if_capabilities; 1463 ifr->ifr_curcap = ifp->if_capenable; 1464 break; 1465 1466 case SIOCGIFMETRIC: 1467 ifr->ifr_metric = ifp->if_metric; 1468 break; 1469 1470 case SIOCGIFMTU: 1471 ifr->ifr_mtu = ifp->if_mtu; 1472 break; 1473 1474 case SIOCGIFDATA: 1475 error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data, 1476 sizeof(ifp->if_data)); 1477 break; 1478 1479 case SIOCGIFPHYS: 1480 ifr->ifr_phys = ifp->if_physical; 1481 break; 1482 1483 case SIOCGIFPOLLCPU: 1484 ifr->ifr_pollcpu = -1; 1485 break; 1486 1487 case SIOCSIFPOLLCPU: 1488 break; 1489 1490 case SIOCSIFFLAGS: 1491 error = priv_check_cred(cred, PRIV_ROOT, 0); 1492 if (error) 1493 break; 1494 new_flags = (ifr->ifr_flags & 0xffff) | 1495 (ifr->ifr_flagshigh << 16); 1496 if (ifp->if_flags & IFF_SMART) { 1497 /* Smart drivers twiddle their own routes */ 1498 } else if (ifp->if_flags & IFF_UP && 1499 (new_flags & IFF_UP) == 0) { 1500 crit_enter(); 1501 if_down(ifp); 1502 crit_exit(); 1503 } else if (new_flags & IFF_UP && 1504 (ifp->if_flags & IFF_UP) == 0) { 1505 crit_enter(); 1506 if_up(ifp); 1507 crit_exit(); 1508 } 1509 1510 #ifdef IFPOLL_ENABLE 1511 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) { 1512 if (new_flags & IFF_NPOLLING) 1513 ifpoll_register(ifp); 1514 else 1515 ifpoll_deregister(ifp); 1516 } 1517 #endif 1518 1519 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 1520 (new_flags &~ IFF_CANTCHANGE); 1521 if (new_flags & IFF_PPROMISC) { 1522 /* Permanently promiscuous mode requested */ 1523 ifp->if_flags |= IFF_PROMISC; 1524 } else if (ifp->if_pcount == 0) { 1525 ifp->if_flags &= ~IFF_PROMISC; 1526 } 1527 if (ifp->if_ioctl) { 1528 ifnet_serialize_all(ifp); 1529 ifp->if_ioctl(ifp, cmd, data, cred); 1530 ifnet_deserialize_all(ifp); 1531 } 1532 getmicrotime(&ifp->if_lastchange); 1533 break; 1534 1535 case SIOCSIFCAP: 1536 error = priv_check_cred(cred, PRIV_ROOT, 0); 1537 if (error) 1538 break; 1539 if (ifr->ifr_reqcap & ~ifp->if_capabilities) { 1540 error = EINVAL; 1541 break; 1542 } 1543 ifnet_serialize_all(ifp); 1544 ifp->if_ioctl(ifp, cmd, data, cred); 1545 ifnet_deserialize_all(ifp); 1546 break; 1547 1548 case SIOCSIFNAME: 1549 error = priv_check_cred(cred, PRIV_ROOT, 0); 1550 if (error) 1551 break; 1552 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 1553 if (error) 1554 break; 1555 if (new_name[0] == '\0') { 1556 error = EINVAL; 1557 break; 1558 } 1559 if (ifunit(new_name) != NULL) { 1560 error = EEXIST; 1561 break; 1562 } 1563 1564 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 1565 1566 /* Announce the departure of the interface. */ 1567 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1568 1569 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 1570 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 1571 /* XXX IFA_LOCK(ifa); */ 1572 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1573 namelen = strlen(new_name); 1574 onamelen = sdl->sdl_nlen; 1575 /* 1576 * Move the address if needed. This is safe because we 1577 * allocate space for a name of length IFNAMSIZ when we 1578 * create this in if_attach(). 1579 */ 1580 if (namelen != onamelen) { 1581 bcopy(sdl->sdl_data + onamelen, 1582 sdl->sdl_data + namelen, sdl->sdl_alen); 1583 } 1584 bcopy(new_name, sdl->sdl_data, namelen); 1585 sdl->sdl_nlen = namelen; 1586 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 1587 bzero(sdl->sdl_data, onamelen); 1588 while (namelen != 0) 1589 sdl->sdl_data[--namelen] = 0xff; 1590 /* XXX IFA_UNLOCK(ifa) */ 1591 1592 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 1593 1594 /* Announce the return of the interface. */ 1595 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 1596 break; 1597 1598 case SIOCSIFMETRIC: 1599 error = priv_check_cred(cred, PRIV_ROOT, 0); 1600 if (error) 1601 break; 1602 ifp->if_metric = ifr->ifr_metric; 1603 getmicrotime(&ifp->if_lastchange); 1604 break; 1605 1606 case SIOCSIFPHYS: 1607 error = priv_check_cred(cred, PRIV_ROOT, 0); 1608 if (error) 1609 break; 1610 if (ifp->if_ioctl == NULL) { 1611 error = EOPNOTSUPP; 1612 break; 1613 } 1614 ifnet_serialize_all(ifp); 1615 error = ifp->if_ioctl(ifp, cmd, data, cred); 1616 ifnet_deserialize_all(ifp); 1617 if (error == 0) 1618 getmicrotime(&ifp->if_lastchange); 1619 break; 1620 1621 case SIOCSIFMTU: 1622 { 1623 u_long oldmtu = ifp->if_mtu; 1624 1625 error = priv_check_cred(cred, PRIV_ROOT, 0); 1626 if (error) 1627 break; 1628 if (ifp->if_ioctl == NULL) { 1629 error = EOPNOTSUPP; 1630 break; 1631 } 1632 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) { 1633 error = EINVAL; 1634 break; 1635 } 1636 ifnet_serialize_all(ifp); 1637 error = ifp->if_ioctl(ifp, cmd, data, cred); 1638 ifnet_deserialize_all(ifp); 1639 if (error == 0) { 1640 getmicrotime(&ifp->if_lastchange); 1641 rt_ifmsg(ifp); 1642 } 1643 /* 1644 * If the link MTU changed, do network layer specific procedure. 1645 */ 1646 if (ifp->if_mtu != oldmtu) { 1647 #ifdef INET6 1648 nd6_setmtu(ifp); 1649 #endif 1650 } 1651 break; 1652 } 1653 1654 case SIOCADDMULTI: 1655 case SIOCDELMULTI: 1656 error = priv_check_cred(cred, PRIV_ROOT, 0); 1657 if (error) 1658 break; 1659 1660 /* Don't allow group membership on non-multicast interfaces. */ 1661 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 1662 error = EOPNOTSUPP; 1663 break; 1664 } 1665 1666 /* Don't let users screw up protocols' entries. */ 1667 if (ifr->ifr_addr.sa_family != AF_LINK) { 1668 error = EINVAL; 1669 break; 1670 } 1671 1672 if (cmd == SIOCADDMULTI) { 1673 struct ifmultiaddr *ifma; 1674 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 1675 } else { 1676 error = if_delmulti(ifp, &ifr->ifr_addr); 1677 } 1678 if (error == 0) 1679 getmicrotime(&ifp->if_lastchange); 1680 break; 1681 1682 case SIOCSIFPHYADDR: 1683 case SIOCDIFPHYADDR: 1684 #ifdef INET6 1685 case SIOCSIFPHYADDR_IN6: 1686 #endif 1687 case SIOCSLIFPHYADDR: 1688 case SIOCSIFMEDIA: 1689 case SIOCSIFGENERIC: 1690 error = priv_check_cred(cred, PRIV_ROOT, 0); 1691 if (error) 1692 break; 1693 if (ifp->if_ioctl == 0) { 1694 error = EOPNOTSUPP; 1695 break; 1696 } 1697 ifnet_serialize_all(ifp); 1698 error = ifp->if_ioctl(ifp, cmd, data, cred); 1699 ifnet_deserialize_all(ifp); 1700 if (error == 0) 1701 getmicrotime(&ifp->if_lastchange); 1702 break; 1703 1704 case SIOCGIFSTATUS: 1705 ifs = (struct ifstat *)data; 1706 ifs->ascii[0] = '\0'; 1707 /* fall through */ 1708 case SIOCGIFPSRCADDR: 1709 case SIOCGIFPDSTADDR: 1710 case SIOCGLIFPHYADDR: 1711 case SIOCGIFMEDIA: 1712 case SIOCGIFGENERIC: 1713 if (ifp->if_ioctl == NULL) { 1714 error = EOPNOTSUPP; 1715 break; 1716 } 1717 ifnet_serialize_all(ifp); 1718 error = ifp->if_ioctl(ifp, cmd, data, cred); 1719 ifnet_deserialize_all(ifp); 1720 break; 1721 1722 case SIOCSIFLLADDR: 1723 error = priv_check_cred(cred, PRIV_ROOT, 0); 1724 if (error) 1725 break; 1726 error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, 1727 ifr->ifr_addr.sa_len); 1728 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 1729 break; 1730 1731 default: 1732 oif_flags = ifp->if_flags; 1733 if (so->so_proto == 0) { 1734 error = EOPNOTSUPP; 1735 break; 1736 } 1737 #ifndef COMPAT_43 1738 error = so_pru_control_direct(so, cmd, data, ifp); 1739 #else 1740 ocmd = cmd; 1741 1742 switch (cmd) { 1743 case SIOCSIFDSTADDR: 1744 case SIOCSIFADDR: 1745 case SIOCSIFBRDADDR: 1746 case SIOCSIFNETMASK: 1747 #if BYTE_ORDER != BIG_ENDIAN 1748 if (ifr->ifr_addr.sa_family == 0 && 1749 ifr->ifr_addr.sa_len < 16) { 1750 ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len; 1751 ifr->ifr_addr.sa_len = 16; 1752 } 1753 #else 1754 if (ifr->ifr_addr.sa_len == 0) 1755 ifr->ifr_addr.sa_len = 16; 1756 #endif 1757 break; 1758 case OSIOCGIFADDR: 1759 cmd = SIOCGIFADDR; 1760 break; 1761 case OSIOCGIFDSTADDR: 1762 cmd = SIOCGIFDSTADDR; 1763 break; 1764 case OSIOCGIFBRDADDR: 1765 cmd = SIOCGIFBRDADDR; 1766 break; 1767 case OSIOCGIFNETMASK: 1768 cmd = SIOCGIFNETMASK; 1769 break; 1770 default: 1771 break; 1772 } 1773 1774 error = so_pru_control_direct(so, cmd, data, ifp); 1775 1776 switch (ocmd) { 1777 case OSIOCGIFADDR: 1778 case OSIOCGIFDSTADDR: 1779 case OSIOCGIFBRDADDR: 1780 case OSIOCGIFNETMASK: 1781 *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family; 1782 break; 1783 } 1784 #endif /* COMPAT_43 */ 1785 1786 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 1787 #ifdef INET6 1788 DELAY(100);/* XXX: temporary workaround for fxp issue*/ 1789 if (ifp->if_flags & IFF_UP) { 1790 crit_enter(); 1791 in6_if_up(ifp); 1792 crit_exit(); 1793 } 1794 #endif 1795 } 1796 break; 1797 } 1798 1799 mtx_unlock(&ifp->if_ioctl_mtx); 1800 return (error); 1801 } 1802 1803 /* 1804 * Set/clear promiscuous mode on interface ifp based on the truth value 1805 * of pswitch. The calls are reference counted so that only the first 1806 * "on" request actually has an effect, as does the final "off" request. 1807 * Results are undefined if the "off" and "on" requests are not matched. 1808 */ 1809 int 1810 ifpromisc(struct ifnet *ifp, int pswitch) 1811 { 1812 struct ifreq ifr; 1813 int error; 1814 int oldflags; 1815 1816 oldflags = ifp->if_flags; 1817 if (ifp->if_flags & IFF_PPROMISC) { 1818 /* Do nothing if device is in permanently promiscuous mode */ 1819 ifp->if_pcount += pswitch ? 1 : -1; 1820 return (0); 1821 } 1822 if (pswitch) { 1823 /* 1824 * If the device is not configured up, we cannot put it in 1825 * promiscuous mode. 1826 */ 1827 if ((ifp->if_flags & IFF_UP) == 0) 1828 return (ENETDOWN); 1829 if (ifp->if_pcount++ != 0) 1830 return (0); 1831 ifp->if_flags |= IFF_PROMISC; 1832 log(LOG_INFO, "%s: promiscuous mode enabled\n", 1833 ifp->if_xname); 1834 } else { 1835 if (--ifp->if_pcount > 0) 1836 return (0); 1837 ifp->if_flags &= ~IFF_PROMISC; 1838 log(LOG_INFO, "%s: promiscuous mode disabled\n", 1839 ifp->if_xname); 1840 } 1841 ifr.ifr_flags = ifp->if_flags; 1842 ifr.ifr_flagshigh = ifp->if_flags >> 16; 1843 ifnet_serialize_all(ifp); 1844 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); 1845 ifnet_deserialize_all(ifp); 1846 if (error == 0) 1847 rt_ifmsg(ifp); 1848 else 1849 ifp->if_flags = oldflags; 1850 return error; 1851 } 1852 1853 /* 1854 * Return interface configuration 1855 * of system. List may be used 1856 * in later ioctl's (above) to get 1857 * other information. 1858 */ 1859 static int 1860 ifconf(u_long cmd, caddr_t data, struct ucred *cred) 1861 { 1862 struct ifconf *ifc = (struct ifconf *)data; 1863 struct ifnet *ifp; 1864 struct sockaddr *sa; 1865 struct ifreq ifr, *ifrp; 1866 int space = ifc->ifc_len, error = 0; 1867 1868 ifrp = ifc->ifc_req; 1869 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1870 struct ifaddr_container *ifac; 1871 int addrs; 1872 1873 if (space <= sizeof ifr) 1874 break; 1875 1876 /* 1877 * Zero the stack declared structure first to prevent 1878 * memory disclosure. 1879 */ 1880 bzero(&ifr, sizeof(ifr)); 1881 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 1882 >= sizeof(ifr.ifr_name)) { 1883 error = ENAMETOOLONG; 1884 break; 1885 } 1886 1887 addrs = 0; 1888 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1889 struct ifaddr *ifa = ifac->ifa; 1890 1891 if (space <= sizeof ifr) 1892 break; 1893 sa = ifa->ifa_addr; 1894 if (cred->cr_prison && 1895 prison_if(cred, sa)) 1896 continue; 1897 addrs++; 1898 #ifdef COMPAT_43 1899 if (cmd == OSIOCGIFCONF) { 1900 struct osockaddr *osa = 1901 (struct osockaddr *)&ifr.ifr_addr; 1902 ifr.ifr_addr = *sa; 1903 osa->sa_family = sa->sa_family; 1904 error = copyout(&ifr, ifrp, sizeof ifr); 1905 ifrp++; 1906 } else 1907 #endif 1908 if (sa->sa_len <= sizeof(*sa)) { 1909 ifr.ifr_addr = *sa; 1910 error = copyout(&ifr, ifrp, sizeof ifr); 1911 ifrp++; 1912 } else { 1913 if (space < (sizeof ifr) + sa->sa_len - 1914 sizeof(*sa)) 1915 break; 1916 space -= sa->sa_len - sizeof(*sa); 1917 error = copyout(&ifr, ifrp, 1918 sizeof ifr.ifr_name); 1919 if (error == 0) 1920 error = copyout(sa, &ifrp->ifr_addr, 1921 sa->sa_len); 1922 ifrp = (struct ifreq *) 1923 (sa->sa_len + (caddr_t)&ifrp->ifr_addr); 1924 } 1925 if (error) 1926 break; 1927 space -= sizeof ifr; 1928 } 1929 if (error) 1930 break; 1931 if (!addrs) { 1932 bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr); 1933 error = copyout(&ifr, ifrp, sizeof ifr); 1934 if (error) 1935 break; 1936 space -= sizeof ifr; 1937 ifrp++; 1938 } 1939 } 1940 ifc->ifc_len -= space; 1941 return (error); 1942 } 1943 1944 /* 1945 * Just like if_promisc(), but for all-multicast-reception mode. 1946 */ 1947 int 1948 if_allmulti(struct ifnet *ifp, int onswitch) 1949 { 1950 int error = 0; 1951 struct ifreq ifr; 1952 1953 crit_enter(); 1954 1955 if (onswitch) { 1956 if (ifp->if_amcount++ == 0) { 1957 ifp->if_flags |= IFF_ALLMULTI; 1958 ifr.ifr_flags = ifp->if_flags; 1959 ifr.ifr_flagshigh = ifp->if_flags >> 16; 1960 ifnet_serialize_all(ifp); 1961 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 1962 NULL); 1963 ifnet_deserialize_all(ifp); 1964 } 1965 } else { 1966 if (ifp->if_amcount > 1) { 1967 ifp->if_amcount--; 1968 } else { 1969 ifp->if_amcount = 0; 1970 ifp->if_flags &= ~IFF_ALLMULTI; 1971 ifr.ifr_flags = ifp->if_flags; 1972 ifr.ifr_flagshigh = ifp->if_flags >> 16; 1973 ifnet_serialize_all(ifp); 1974 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 1975 NULL); 1976 ifnet_deserialize_all(ifp); 1977 } 1978 } 1979 1980 crit_exit(); 1981 1982 if (error == 0) 1983 rt_ifmsg(ifp); 1984 return error; 1985 } 1986 1987 /* 1988 * Add a multicast listenership to the interface in question. 1989 * The link layer provides a routine which converts 1990 */ 1991 int 1992 if_addmulti( 1993 struct ifnet *ifp, /* interface to manipulate */ 1994 struct sockaddr *sa, /* address to add */ 1995 struct ifmultiaddr **retifma) 1996 { 1997 struct sockaddr *llsa, *dupsa; 1998 int error; 1999 struct ifmultiaddr *ifma; 2000 2001 /* 2002 * If the matching multicast address already exists 2003 * then don't add a new one, just add a reference 2004 */ 2005 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2006 if (sa_equal(sa, ifma->ifma_addr)) { 2007 ifma->ifma_refcount++; 2008 if (retifma) 2009 *retifma = ifma; 2010 return 0; 2011 } 2012 } 2013 2014 /* 2015 * Give the link layer a chance to accept/reject it, and also 2016 * find out which AF_LINK address this maps to, if it isn't one 2017 * already. 2018 */ 2019 if (ifp->if_resolvemulti) { 2020 ifnet_serialize_all(ifp); 2021 error = ifp->if_resolvemulti(ifp, &llsa, sa); 2022 ifnet_deserialize_all(ifp); 2023 if (error) 2024 return error; 2025 } else { 2026 llsa = NULL; 2027 } 2028 2029 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK); 2030 dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK); 2031 bcopy(sa, dupsa, sa->sa_len); 2032 2033 ifma->ifma_addr = dupsa; 2034 ifma->ifma_lladdr = llsa; 2035 ifma->ifma_ifp = ifp; 2036 ifma->ifma_refcount = 1; 2037 ifma->ifma_protospec = 0; 2038 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 2039 2040 /* 2041 * Some network interfaces can scan the address list at 2042 * interrupt time; lock them out. 2043 */ 2044 crit_enter(); 2045 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2046 crit_exit(); 2047 if (retifma) 2048 *retifma = ifma; 2049 2050 if (llsa != NULL) { 2051 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2052 if (sa_equal(ifma->ifma_addr, llsa)) 2053 break; 2054 } 2055 if (ifma) { 2056 ifma->ifma_refcount++; 2057 } else { 2058 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK); 2059 dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK); 2060 bcopy(llsa, dupsa, llsa->sa_len); 2061 ifma->ifma_addr = dupsa; 2062 ifma->ifma_ifp = ifp; 2063 ifma->ifma_refcount = 1; 2064 crit_enter(); 2065 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2066 crit_exit(); 2067 } 2068 } 2069 /* 2070 * We are certain we have added something, so call down to the 2071 * interface to let them know about it. 2072 */ 2073 crit_enter(); 2074 ifnet_serialize_all(ifp); 2075 if (ifp->if_ioctl) 2076 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL); 2077 ifnet_deserialize_all(ifp); 2078 crit_exit(); 2079 2080 return 0; 2081 } 2082 2083 /* 2084 * Remove a reference to a multicast address on this interface. Yell 2085 * if the request does not match an existing membership. 2086 */ 2087 int 2088 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 2089 { 2090 struct ifmultiaddr *ifma; 2091 2092 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2093 if (sa_equal(sa, ifma->ifma_addr)) 2094 break; 2095 if (ifma == NULL) 2096 return ENOENT; 2097 2098 if (ifma->ifma_refcount > 1) { 2099 ifma->ifma_refcount--; 2100 return 0; 2101 } 2102 2103 rt_newmaddrmsg(RTM_DELMADDR, ifma); 2104 sa = ifma->ifma_lladdr; 2105 crit_enter(); 2106 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2107 /* 2108 * Make sure the interface driver is notified 2109 * in the case of a link layer mcast group being left. 2110 */ 2111 if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) { 2112 ifnet_serialize_all(ifp); 2113 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2114 ifnet_deserialize_all(ifp); 2115 } 2116 crit_exit(); 2117 kfree(ifma->ifma_addr, M_IFMADDR); 2118 kfree(ifma, M_IFMADDR); 2119 if (sa == NULL) 2120 return 0; 2121 2122 /* 2123 * Now look for the link-layer address which corresponds to 2124 * this network address. It had been squirreled away in 2125 * ifma->ifma_lladdr for this purpose (so we don't have 2126 * to call ifp->if_resolvemulti() again), and we saved that 2127 * value in sa above. If some nasty deleted the 2128 * link-layer address out from underneath us, we can deal because 2129 * the address we stored was is not the same as the one which was 2130 * in the record for the link-layer address. (So we don't complain 2131 * in that case.) 2132 */ 2133 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2134 if (sa_equal(sa, ifma->ifma_addr)) 2135 break; 2136 if (ifma == NULL) 2137 return 0; 2138 2139 if (ifma->ifma_refcount > 1) { 2140 ifma->ifma_refcount--; 2141 return 0; 2142 } 2143 2144 crit_enter(); 2145 ifnet_serialize_all(ifp); 2146 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2147 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2148 ifnet_deserialize_all(ifp); 2149 crit_exit(); 2150 kfree(ifma->ifma_addr, M_IFMADDR); 2151 kfree(sa, M_IFMADDR); 2152 kfree(ifma, M_IFMADDR); 2153 2154 return 0; 2155 } 2156 2157 /* 2158 * Delete all multicast group membership for an interface. 2159 * Should be used to quickly flush all multicast filters. 2160 */ 2161 void 2162 if_delallmulti(struct ifnet *ifp) 2163 { 2164 struct ifmultiaddr *ifma; 2165 struct ifmultiaddr *next; 2166 2167 TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next) 2168 if_delmulti(ifp, ifma->ifma_addr); 2169 } 2170 2171 2172 /* 2173 * Set the link layer address on an interface. 2174 * 2175 * At this time we only support certain types of interfaces, 2176 * and we don't allow the length of the address to change. 2177 */ 2178 int 2179 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 2180 { 2181 struct sockaddr_dl *sdl; 2182 struct ifreq ifr; 2183 2184 sdl = IF_LLSOCKADDR(ifp); 2185 if (sdl == NULL) 2186 return (EINVAL); 2187 if (len != sdl->sdl_alen) /* don't allow length to change */ 2188 return (EINVAL); 2189 switch (ifp->if_type) { 2190 case IFT_ETHER: /* these types use struct arpcom */ 2191 case IFT_XETHER: 2192 case IFT_L2VLAN: 2193 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len); 2194 bcopy(lladdr, LLADDR(sdl), len); 2195 break; 2196 default: 2197 return (ENODEV); 2198 } 2199 /* 2200 * If the interface is already up, we need 2201 * to re-init it in order to reprogram its 2202 * address filter. 2203 */ 2204 ifnet_serialize_all(ifp); 2205 if ((ifp->if_flags & IFF_UP) != 0) { 2206 #ifdef INET 2207 struct ifaddr_container *ifac; 2208 #endif 2209 2210 ifp->if_flags &= ~IFF_UP; 2211 ifr.ifr_flags = ifp->if_flags; 2212 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2213 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2214 NULL); 2215 ifp->if_flags |= IFF_UP; 2216 ifr.ifr_flags = ifp->if_flags; 2217 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2218 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2219 NULL); 2220 #ifdef INET 2221 /* 2222 * Also send gratuitous ARPs to notify other nodes about 2223 * the address change. 2224 */ 2225 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2226 struct ifaddr *ifa = ifac->ifa; 2227 2228 if (ifa->ifa_addr != NULL && 2229 ifa->ifa_addr->sa_family == AF_INET) 2230 arp_gratuitous(ifp, ifa); 2231 } 2232 #endif 2233 } 2234 ifnet_deserialize_all(ifp); 2235 return (0); 2236 } 2237 2238 struct ifmultiaddr * 2239 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp) 2240 { 2241 struct ifmultiaddr *ifma; 2242 2243 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2244 if (sa_equal(ifma->ifma_addr, sa)) 2245 break; 2246 2247 return ifma; 2248 } 2249 2250 /* 2251 * This function locates the first real ethernet MAC from a network 2252 * card and loads it into node, returning 0 on success or ENOENT if 2253 * no suitable interfaces were found. It is used by the uuid code to 2254 * generate a unique 6-byte number. 2255 */ 2256 int 2257 if_getanyethermac(uint16_t *node, int minlen) 2258 { 2259 struct ifnet *ifp; 2260 struct sockaddr_dl *sdl; 2261 2262 TAILQ_FOREACH(ifp, &ifnet, if_link) { 2263 if (ifp->if_type != IFT_ETHER) 2264 continue; 2265 sdl = IF_LLSOCKADDR(ifp); 2266 if (sdl->sdl_alen < minlen) 2267 continue; 2268 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node, 2269 minlen); 2270 return(0); 2271 } 2272 return (ENOENT); 2273 } 2274 2275 /* 2276 * The name argument must be a pointer to storage which will last as 2277 * long as the interface does. For physical devices, the result of 2278 * device_get_name(dev) is a good choice and for pseudo-devices a 2279 * static string works well. 2280 */ 2281 void 2282 if_initname(struct ifnet *ifp, const char *name, int unit) 2283 { 2284 ifp->if_dname = name; 2285 ifp->if_dunit = unit; 2286 if (unit != IF_DUNIT_NONE) 2287 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 2288 else 2289 strlcpy(ifp->if_xname, name, IFNAMSIZ); 2290 } 2291 2292 int 2293 if_printf(struct ifnet *ifp, const char *fmt, ...) 2294 { 2295 __va_list ap; 2296 int retval; 2297 2298 retval = kprintf("%s: ", ifp->if_xname); 2299 __va_start(ap, fmt); 2300 retval += kvprintf(fmt, ap); 2301 __va_end(ap); 2302 return (retval); 2303 } 2304 2305 struct ifnet * 2306 if_alloc(uint8_t type) 2307 { 2308 struct ifnet *ifp; 2309 size_t size; 2310 2311 /* 2312 * XXX temporary hack until arpcom is setup in if_l2com 2313 */ 2314 if (type == IFT_ETHER) 2315 size = sizeof(struct arpcom); 2316 else 2317 size = sizeof(struct ifnet); 2318 2319 ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO); 2320 2321 ifp->if_type = type; 2322 2323 if (if_com_alloc[type] != NULL) { 2324 ifp->if_l2com = if_com_alloc[type](type, ifp); 2325 if (ifp->if_l2com == NULL) { 2326 kfree(ifp, M_IFNET); 2327 return (NULL); 2328 } 2329 } 2330 return (ifp); 2331 } 2332 2333 void 2334 if_free(struct ifnet *ifp) 2335 { 2336 kfree(ifp, M_IFNET); 2337 } 2338 2339 void 2340 ifq_set_classic(struct ifaltq *ifq) 2341 { 2342 ifq->altq_enqueue = ifq_classic_enqueue; 2343 ifq->altq_dequeue = ifq_classic_dequeue; 2344 ifq->altq_request = ifq_classic_request; 2345 } 2346 2347 int 2348 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m, 2349 struct altq_pktattr *pa __unused) 2350 { 2351 logifq(enqueue, ifq); 2352 if (IF_QFULL(ifq)) { 2353 m_freem(m); 2354 return(ENOBUFS); 2355 } else { 2356 IF_ENQUEUE(ifq, m); 2357 return(0); 2358 } 2359 } 2360 2361 struct mbuf * 2362 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op) 2363 { 2364 struct mbuf *m; 2365 2366 switch (op) { 2367 case ALTDQ_POLL: 2368 IF_POLL(ifq, m); 2369 break; 2370 case ALTDQ_REMOVE: 2371 logifq(dequeue, ifq); 2372 IF_DEQUEUE(ifq, m); 2373 break; 2374 default: 2375 panic("unsupported ALTQ dequeue op: %d", op); 2376 } 2377 KKASSERT(mpolled == NULL || mpolled == m); 2378 return(m); 2379 } 2380 2381 int 2382 ifq_classic_request(struct ifaltq *ifq, int req, void *arg) 2383 { 2384 switch (req) { 2385 case ALTRQ_PURGE: 2386 IF_DRAIN(ifq); 2387 break; 2388 default: 2389 panic("unsupported ALTQ request: %d", req); 2390 } 2391 return(0); 2392 } 2393 2394 int 2395 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa) 2396 { 2397 struct ifaltq *ifq = &ifp->if_snd; 2398 int running = 0, error, start = 0; 2399 2400 ASSERT_IFNET_NOT_SERIALIZED_TX(ifp); 2401 2402 ALTQ_LOCK(ifq); 2403 error = ifq_enqueue_locked(ifq, m, pa); 2404 if (error) { 2405 ALTQ_UNLOCK(ifq); 2406 return error; 2407 } 2408 if (!ifq->altq_started) { 2409 /* 2410 * Hold the interlock of ifnet.if_start 2411 */ 2412 ifq->altq_started = 1; 2413 start = 1; 2414 } 2415 ALTQ_UNLOCK(ifq); 2416 2417 ifp->if_obytes += m->m_pkthdr.len; 2418 if (m->m_flags & M_MCAST) 2419 ifp->if_omcasts++; 2420 2421 if (!start) { 2422 logifstart(avoid, ifp); 2423 return 0; 2424 } 2425 2426 /* 2427 * Try to do direct ifnet.if_start first, if there is 2428 * contention on ifnet's serializer, ifnet.if_start will 2429 * be scheduled on ifnet's CPU. 2430 */ 2431 if (!ifnet_tryserialize_tx(ifp)) { 2432 /* 2433 * ifnet serializer contention happened, 2434 * ifnet.if_start is scheduled on ifnet's 2435 * CPU, and we keep going. 2436 */ 2437 logifstart(contend_sched, ifp); 2438 if_start_schedule(ifp); 2439 return 0; 2440 } 2441 2442 if ((ifp->if_flags & IFF_OACTIVE) == 0) { 2443 logifstart(run, ifp); 2444 ifp->if_start(ifp); 2445 if ((ifp->if_flags & 2446 (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING) 2447 running = 1; 2448 } 2449 2450 ifnet_deserialize_tx(ifp); 2451 2452 if (if_start_need_schedule(ifq, running)) { 2453 /* 2454 * More data need to be transmitted, ifnet.if_start is 2455 * scheduled on ifnet's CPU, and we keep going. 2456 * NOTE: ifnet.if_start interlock is not released. 2457 */ 2458 logifstart(sched, ifp); 2459 if_start_schedule(ifp); 2460 } 2461 return 0; 2462 } 2463 2464 void * 2465 ifa_create(int size, int flags) 2466 { 2467 struct ifaddr *ifa; 2468 int i; 2469 2470 KASSERT(size >= sizeof(*ifa), ("ifaddr size too small")); 2471 2472 ifa = kmalloc(size, M_IFADDR, flags | M_ZERO); 2473 if (ifa == NULL) 2474 return NULL; 2475 2476 ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container), 2477 M_IFADDR, M_WAITOK | M_ZERO); 2478 ifa->ifa_ncnt = ncpus; 2479 for (i = 0; i < ncpus; ++i) { 2480 struct ifaddr_container *ifac = &ifa->ifa_containers[i]; 2481 2482 ifac->ifa_magic = IFA_CONTAINER_MAGIC; 2483 ifac->ifa = ifa; 2484 ifac->ifa_refcnt = 1; 2485 } 2486 #ifdef IFADDR_DEBUG 2487 kprintf("alloc ifa %p %d\n", ifa, size); 2488 #endif 2489 return ifa; 2490 } 2491 2492 void 2493 ifac_free(struct ifaddr_container *ifac, int cpu_id) 2494 { 2495 struct ifaddr *ifa = ifac->ifa; 2496 2497 KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC); 2498 KKASSERT(ifac->ifa_refcnt == 0); 2499 KASSERT(ifac->ifa_listmask == 0, 2500 ("ifa is still on %#x lists", ifac->ifa_listmask)); 2501 2502 ifac->ifa_magic = IFA_CONTAINER_DEAD; 2503 2504 #ifdef IFADDR_DEBUG_VERBOSE 2505 kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id); 2506 #endif 2507 2508 KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus, 2509 ("invalid # of ifac, %d", ifa->ifa_ncnt)); 2510 if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) { 2511 #ifdef IFADDR_DEBUG 2512 kprintf("free ifa %p\n", ifa); 2513 #endif 2514 kfree(ifa->ifa_containers, M_IFADDR); 2515 kfree(ifa, M_IFADDR); 2516 } 2517 } 2518 2519 static void 2520 ifa_iflink_dispatch(netmsg_t nmsg) 2521 { 2522 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2523 struct ifaddr *ifa = msg->ifa; 2524 struct ifnet *ifp = msg->ifp; 2525 int cpu = mycpuid; 2526 struct ifaddr_container *ifac; 2527 2528 crit_enter(); 2529 2530 ifac = &ifa->ifa_containers[cpu]; 2531 ASSERT_IFAC_VALID(ifac); 2532 KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0, 2533 ("ifaddr is on if_addrheads")); 2534 2535 ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD; 2536 if (msg->tail) 2537 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link); 2538 else 2539 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link); 2540 2541 crit_exit(); 2542 2543 ifa_forwardmsg(&nmsg->lmsg, cpu + 1); 2544 } 2545 2546 void 2547 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail) 2548 { 2549 struct netmsg_ifaddr msg; 2550 2551 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2552 0, ifa_iflink_dispatch); 2553 msg.ifa = ifa; 2554 msg.ifp = ifp; 2555 msg.tail = tail; 2556 2557 ifa_domsg(&msg.base.lmsg, 0); 2558 } 2559 2560 static void 2561 ifa_ifunlink_dispatch(netmsg_t nmsg) 2562 { 2563 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2564 struct ifaddr *ifa = msg->ifa; 2565 struct ifnet *ifp = msg->ifp; 2566 int cpu = mycpuid; 2567 struct ifaddr_container *ifac; 2568 2569 crit_enter(); 2570 2571 ifac = &ifa->ifa_containers[cpu]; 2572 ASSERT_IFAC_VALID(ifac); 2573 KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD, 2574 ("ifaddr is not on if_addrhead")); 2575 2576 TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link); 2577 ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD; 2578 2579 crit_exit(); 2580 2581 ifa_forwardmsg(&nmsg->lmsg, cpu + 1); 2582 } 2583 2584 void 2585 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp) 2586 { 2587 struct netmsg_ifaddr msg; 2588 2589 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2590 0, ifa_ifunlink_dispatch); 2591 msg.ifa = ifa; 2592 msg.ifp = ifp; 2593 2594 ifa_domsg(&msg.base.lmsg, 0); 2595 } 2596 2597 static void 2598 ifa_destroy_dispatch(netmsg_t nmsg) 2599 { 2600 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2601 2602 IFAFREE(msg->ifa); 2603 ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1); 2604 } 2605 2606 void 2607 ifa_destroy(struct ifaddr *ifa) 2608 { 2609 struct netmsg_ifaddr msg; 2610 2611 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2612 0, ifa_destroy_dispatch); 2613 msg.ifa = ifa; 2614 2615 ifa_domsg(&msg.base.lmsg, 0); 2616 } 2617 2618 struct lwkt_port * 2619 ifnet_portfn(int cpu) 2620 { 2621 return &ifnet_threads[cpu].td_msgport; 2622 } 2623 2624 void 2625 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu) 2626 { 2627 KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus); 2628 2629 if (next_cpu < ncpus) 2630 lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg); 2631 else 2632 lwkt_replymsg(lmsg, 0); 2633 } 2634 2635 int 2636 ifnet_domsg(struct lwkt_msg *lmsg, int cpu) 2637 { 2638 KKASSERT(cpu < ncpus); 2639 return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0); 2640 } 2641 2642 void 2643 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu) 2644 { 2645 KKASSERT(cpu < ncpus); 2646 lwkt_sendmsg(ifnet_portfn(cpu), lmsg); 2647 } 2648 2649 /* 2650 * Generic netmsg service loop. Some protocols may roll their own but all 2651 * must do the basic command dispatch function call done here. 2652 */ 2653 static void 2654 ifnet_service_loop(void *arg __unused) 2655 { 2656 netmsg_t msg; 2657 2658 while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) { 2659 KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg")); 2660 msg->base.nm_dispatch(msg); 2661 } 2662 } 2663 2664 static void 2665 ifnetinit(void *dummy __unused) 2666 { 2667 int i; 2668 2669 for (i = 0; i < ncpus; ++i) { 2670 struct thread *thr = &ifnet_threads[i]; 2671 2672 lwkt_create(ifnet_service_loop, NULL, NULL, 2673 thr, TDF_NOSTART|TDF_FORCE_SPINPORT, 2674 i, "ifnet %d", i); 2675 netmsg_service_port_init(&thr->td_msgport); 2676 lwkt_schedule(thr); 2677 } 2678 } 2679 2680 struct ifnet * 2681 ifnet_byindex(unsigned short idx) 2682 { 2683 if (idx > if_index) 2684 return NULL; 2685 return ifindex2ifnet[idx]; 2686 } 2687 2688 struct ifaddr * 2689 ifaddr_byindex(unsigned short idx) 2690 { 2691 struct ifnet *ifp; 2692 2693 ifp = ifnet_byindex(idx); 2694 if (!ifp) 2695 return NULL; 2696 return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 2697 } 2698 2699 void 2700 if_register_com_alloc(u_char type, 2701 if_com_alloc_t *a, if_com_free_t *f) 2702 { 2703 2704 KASSERT(if_com_alloc[type] == NULL, 2705 ("if_register_com_alloc: %d already registered", type)); 2706 KASSERT(if_com_free[type] == NULL, 2707 ("if_register_com_alloc: %d free already registered", type)); 2708 2709 if_com_alloc[type] = a; 2710 if_com_free[type] = f; 2711 } 2712 2713 void 2714 if_deregister_com_alloc(u_char type) 2715 { 2716 2717 KASSERT(if_com_alloc[type] != NULL, 2718 ("if_deregister_com_alloc: %d not registered", type)); 2719 KASSERT(if_com_free[type] != NULL, 2720 ("if_deregister_com_alloc: %d free not registered", type)); 2721 if_com_alloc[type] = NULL; 2722 if_com_free[type] = NULL; 2723 } 2724 2725 int 2726 if_ring_count2(int cnt, int cnt_max) 2727 { 2728 int shift = 0; 2729 2730 KASSERT(cnt_max >= 1 && powerof2(cnt_max), 2731 ("invalid ring count max %d", cnt_max)); 2732 2733 if (cnt <= 0) 2734 cnt = cnt_max; 2735 if (cnt > ncpus2) 2736 cnt = ncpus2; 2737 if (cnt > cnt_max) 2738 cnt = cnt_max; 2739 2740 while ((1 << (shift + 1)) <= cnt) 2741 ++shift; 2742 cnt = 1 << shift; 2743 2744 KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max, 2745 ("calculate cnt %d, ncpus2 %d, cnt max %d", 2746 cnt, ncpus2, cnt_max)); 2747 return cnt; 2748 } 2749