1 /* 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)if.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $ 35 * $DragonFly: src/sys/net/if.c,v 1.84 2008/11/15 11:58:16 sephe Exp $ 36 */ 37 38 #include "opt_compat.h" 39 #include "opt_inet6.h" 40 #include "opt_inet.h" 41 #include "opt_polling.h" 42 #include "opt_ifpoll.h" 43 44 #include <sys/param.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/systm.h> 48 #include <sys/proc.h> 49 #include <sys/priv.h> 50 #include <sys/protosw.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/socketops.h> 54 #include <sys/protosw.h> 55 #include <sys/kernel.h> 56 #include <sys/ktr.h> 57 #include <sys/sockio.h> 58 #include <sys/syslog.h> 59 #include <sys/sysctl.h> 60 #include <sys/domain.h> 61 #include <sys/thread.h> 62 #include <sys/thread2.h> 63 #include <sys/serialize.h> 64 #include <sys/msgport2.h> 65 #include <sys/bus.h> 66 67 #include <net/if.h> 68 #include <net/if_arp.h> 69 #include <net/if_dl.h> 70 #include <net/if_types.h> 71 #include <net/if_var.h> 72 #include <net/ifq_var.h> 73 #include <net/radix.h> 74 #include <net/route.h> 75 #include <net/if_clone.h> 76 #include <net/netisr.h> 77 #include <net/netmsg2.h> 78 79 #include <machine/atomic.h> 80 #include <machine/stdarg.h> 81 #include <machine/smp.h> 82 83 #if defined(INET) || defined(INET6) 84 /*XXX*/ 85 #include <netinet/in.h> 86 #include <netinet/in_var.h> 87 #include <netinet/if_ether.h> 88 #ifdef INET6 89 #include <netinet6/in6_var.h> 90 #include <netinet6/in6_ifattach.h> 91 #endif 92 #endif 93 94 #if defined(COMPAT_43) 95 #include <emulation/43bsd/43bsd_socket.h> 96 #endif /* COMPAT_43 */ 97 98 struct netmsg_ifaddr { 99 struct netmsg netmsg; 100 struct ifaddr *ifa; 101 struct ifnet *ifp; 102 int tail; 103 }; 104 105 /* 106 * System initialization 107 */ 108 static void if_attachdomain(void *); 109 static void if_attachdomain1(struct ifnet *); 110 static int ifconf(u_long, caddr_t, struct ucred *); 111 static void ifinit(void *); 112 static void ifnetinit(void *); 113 static void if_slowtimo(void *); 114 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 115 static int if_rtdel(struct radix_node *, void *); 116 117 #ifdef INET6 118 /* 119 * XXX: declare here to avoid to include many inet6 related files.. 120 * should be more generalized? 121 */ 122 extern void nd6_setmtu(struct ifnet *); 123 #endif 124 125 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 126 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 127 128 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL) 129 /* Must be after netisr_init */ 130 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL) 131 132 static if_com_alloc_t *if_com_alloc[256]; 133 static if_com_free_t *if_com_free[256]; 134 135 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 136 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 137 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure"); 138 139 int ifqmaxlen = IFQ_MAXLEN; 140 struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet); 141 142 /* In ifq_dispatch(), try to do direct ifnet.if_start first */ 143 static int ifq_dispatch_schedonly = 0; 144 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schedonly, CTLFLAG_RW, 145 &ifq_dispatch_schedonly, 0, ""); 146 147 /* In ifq_dispatch(), schedule ifnet.if_start without checking ifnet.if_snd */ 148 static int ifq_dispatch_schednochk = 0; 149 SYSCTL_INT(_net_link_generic, OID_AUTO, ifq_dispatch_schednochk, CTLFLAG_RW, 150 &ifq_dispatch_schednochk, 0, ""); 151 152 /* In if_devstart(), try to do direct ifnet.if_start first */ 153 static int if_devstart_schedonly = 0; 154 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schedonly, CTLFLAG_RW, 155 &if_devstart_schedonly, 0, ""); 156 157 /* In if_devstart(), schedule ifnet.if_start without checking ifnet.if_snd */ 158 static int if_devstart_schednochk = 0; 159 SYSCTL_INT(_net_link_generic, OID_AUTO, if_devstart_schednochk, CTLFLAG_RW, 160 &if_devstart_schednochk, 0, ""); 161 162 #ifdef SMP 163 /* Schedule ifnet.if_start on the current CPU */ 164 static int if_start_oncpu_sched = 0; 165 SYSCTL_INT(_net_link_generic, OID_AUTO, if_start_oncpu_sched, CTLFLAG_RW, 166 &if_start_oncpu_sched, 0, ""); 167 #endif 168 169 struct callout if_slowtimo_timer; 170 171 int if_index = 0; 172 struct ifnet **ifindex2ifnet = NULL; 173 static struct thread ifnet_threads[MAXCPU]; 174 static int ifnet_mpsafe_thread = NETMSG_SERVICE_MPSAFE; 175 176 #define IFQ_KTR_STRING "ifq=%p" 177 #define IFQ_KTR_ARG_SIZE (sizeof(void *)) 178 #ifndef KTR_IFQ 179 #define KTR_IFQ KTR_ALL 180 #endif 181 KTR_INFO_MASTER(ifq); 182 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE); 183 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARG_SIZE); 184 #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg) 185 186 #define IF_START_KTR_STRING "ifp=%p" 187 #define IF_START_KTR_ARG_SIZE (sizeof(void *)) 188 #ifndef KTR_IF_START 189 #define KTR_IF_START KTR_ALL 190 #endif 191 KTR_INFO_MASTER(if_start); 192 KTR_INFO(KTR_IF_START, if_start, run, 0, 193 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE); 194 KTR_INFO(KTR_IF_START, if_start, sched, 1, 195 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE); 196 KTR_INFO(KTR_IF_START, if_start, avoid, 2, 197 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE); 198 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3, 199 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE); 200 #ifdef SMP 201 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4, 202 IF_START_KTR_STRING, IF_START_KTR_ARG_SIZE); 203 #endif 204 #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg) 205 206 /* 207 * Network interface utility routines. 208 * 209 * Routines with ifa_ifwith* names take sockaddr *'s as 210 * parameters. 211 */ 212 /* ARGSUSED*/ 213 void 214 ifinit(void *dummy) 215 { 216 struct ifnet *ifp; 217 218 callout_init(&if_slowtimo_timer); 219 220 crit_enter(); 221 TAILQ_FOREACH(ifp, &ifnet, if_link) { 222 if (ifp->if_snd.ifq_maxlen == 0) { 223 if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n"); 224 ifp->if_snd.ifq_maxlen = ifqmaxlen; 225 } 226 } 227 crit_exit(); 228 229 if_slowtimo(0); 230 } 231 232 static int 233 if_start_cpuid(struct ifnet *ifp) 234 { 235 return ifp->if_cpuid; 236 } 237 238 #ifdef DEVICE_POLLING 239 static int 240 if_start_cpuid_poll(struct ifnet *ifp) 241 { 242 int poll_cpuid = ifp->if_poll_cpuid; 243 244 if (poll_cpuid >= 0) 245 return poll_cpuid; 246 else 247 return ifp->if_cpuid; 248 } 249 #endif 250 251 static void 252 if_start_ipifunc(void *arg) 253 { 254 struct ifnet *ifp = arg; 255 struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].nm_lmsg; 256 257 crit_enter(); 258 if (lmsg->ms_flags & MSGF_DONE) 259 lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg); 260 crit_exit(); 261 } 262 263 /* 264 * Schedule ifnet.if_start on ifnet's CPU 265 */ 266 static void 267 if_start_schedule(struct ifnet *ifp) 268 { 269 #ifdef SMP 270 int cpu; 271 272 if (if_start_oncpu_sched) 273 cpu = mycpuid; 274 else 275 cpu = ifp->if_start_cpuid(ifp); 276 277 if (cpu != mycpuid) 278 lwkt_send_ipiq(globaldata_find(cpu), if_start_ipifunc, ifp); 279 else 280 #endif 281 if_start_ipifunc(ifp); 282 } 283 284 /* 285 * NOTE: 286 * This function will release ifnet.if_start interlock, 287 * if ifnet.if_start does not need to be scheduled 288 */ 289 static __inline int 290 if_start_need_schedule(struct ifaltq *ifq, int running) 291 { 292 if (!running || ifq_is_empty(ifq) 293 #ifdef ALTQ 294 || ifq->altq_tbr != NULL 295 #endif 296 ) { 297 ALTQ_LOCK(ifq); 298 /* 299 * ifnet.if_start interlock is released, if: 300 * 1) Hardware can not take any packets, due to 301 * o interface is marked down 302 * o hardware queue is full (IFF_OACTIVE) 303 * Under the second situation, hardware interrupt 304 * or polling(4) will call/schedule ifnet.if_start 305 * when hardware queue is ready 306 * 2) There is not packet in the ifnet.if_snd. 307 * Further ifq_dispatch or ifq_handoff will call/ 308 * schedule ifnet.if_start 309 * 3) TBR is used and it does not allow further 310 * dequeueing. 311 * TBR callout will call ifnet.if_start 312 */ 313 if (!running || !ifq_data_ready(ifq)) { 314 ifq->altq_started = 0; 315 ALTQ_UNLOCK(ifq); 316 return 0; 317 } 318 ALTQ_UNLOCK(ifq); 319 } 320 return 1; 321 } 322 323 static void 324 if_start_dispatch(struct netmsg *nmsg) 325 { 326 struct lwkt_msg *lmsg = &nmsg->nm_lmsg; 327 struct ifnet *ifp = lmsg->u.ms_resultp; 328 struct ifaltq *ifq = &ifp->if_snd; 329 int running = 0; 330 331 crit_enter(); 332 lwkt_replymsg(lmsg, 0); /* reply ASAP */ 333 crit_exit(); 334 335 #ifdef SMP 336 if (!if_start_oncpu_sched && mycpuid != ifp->if_start_cpuid(ifp)) { 337 /* 338 * If the ifnet is still up, we need to 339 * chase its CPU change. 340 */ 341 if (ifp->if_flags & IFF_UP) { 342 logifstart(chase_sched, ifp); 343 if_start_schedule(ifp); 344 return; 345 } else { 346 goto check; 347 } 348 } 349 #endif 350 351 if (ifp->if_flags & IFF_UP) { 352 ifnet_serialize_tx(ifp); /* XXX try? */ 353 if ((ifp->if_flags & IFF_OACTIVE) == 0) { 354 logifstart(run, ifp); 355 ifp->if_start(ifp); 356 if ((ifp->if_flags & 357 (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING) 358 running = 1; 359 } 360 ifnet_deserialize_tx(ifp); 361 } 362 #ifdef SMP 363 check: 364 #endif 365 if (if_start_need_schedule(ifq, running)) { 366 crit_enter(); 367 if (lmsg->ms_flags & MSGF_DONE) { /* XXX necessary? */ 368 logifstart(sched, ifp); 369 lwkt_sendmsg(ifnet_portfn(mycpuid), lmsg); 370 } 371 crit_exit(); 372 } 373 } 374 375 /* Device driver ifnet.if_start helper function */ 376 void 377 if_devstart(struct ifnet *ifp) 378 { 379 struct ifaltq *ifq = &ifp->if_snd; 380 int running = 0; 381 382 ASSERT_IFNET_SERIALIZED_TX(ifp); 383 384 ALTQ_LOCK(ifq); 385 if (ifq->altq_started || !ifq_data_ready(ifq)) { 386 logifstart(avoid, ifp); 387 ALTQ_UNLOCK(ifq); 388 return; 389 } 390 ifq->altq_started = 1; 391 ALTQ_UNLOCK(ifq); 392 393 if (if_devstart_schedonly) { 394 /* 395 * Always schedule ifnet.if_start on ifnet's CPU, 396 * short circuit the rest of this function. 397 */ 398 logifstart(sched, ifp); 399 if_start_schedule(ifp); 400 return; 401 } 402 403 logifstart(run, ifp); 404 ifp->if_start(ifp); 405 406 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING) 407 running = 1; 408 409 if (if_devstart_schednochk || if_start_need_schedule(ifq, running)) { 410 /* 411 * More data need to be transmitted, ifnet.if_start is 412 * scheduled on ifnet's CPU, and we keep going. 413 * NOTE: ifnet.if_start interlock is not released. 414 */ 415 logifstart(sched, ifp); 416 if_start_schedule(ifp); 417 } 418 } 419 420 static void 421 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 422 { 423 lwkt_serialize_enter(ifp->if_serializer); 424 } 425 426 static void 427 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 428 { 429 lwkt_serialize_exit(ifp->if_serializer); 430 } 431 432 static int 433 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 434 { 435 return lwkt_serialize_try(ifp->if_serializer); 436 } 437 438 #ifdef INVARIANTS 439 static void 440 if_default_serialize_assert(struct ifnet *ifp, 441 enum ifnet_serialize slz __unused, 442 boolean_t serialized) 443 { 444 if (serialized) 445 ASSERT_SERIALIZED(ifp->if_serializer); 446 else 447 ASSERT_NOT_SERIALIZED(ifp->if_serializer); 448 } 449 #endif 450 451 /* 452 * Attach an interface to the list of "active" interfaces. 453 * 454 * The serializer is optional. If non-NULL access to the interface 455 * may be MPSAFE. 456 */ 457 void 458 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer) 459 { 460 unsigned socksize, ifasize; 461 int namelen, masklen; 462 struct sockaddr_dl *sdl; 463 struct ifaddr *ifa; 464 struct ifaltq *ifq; 465 int i; 466 467 static int if_indexlim = 8; 468 469 if (ifp->if_serialize != NULL) { 470 KASSERT(ifp->if_deserialize != NULL && 471 ifp->if_tryserialize != NULL && 472 ifp->if_serialize_assert != NULL, 473 ("serialize functions are partially setup\n")); 474 475 /* 476 * If the device supplies serialize functions, 477 * then clear if_serializer to catch any invalid 478 * usage of this field. 479 */ 480 KASSERT(serializer == NULL, 481 ("both serialize functions and default serializer " 482 "are supplied\n")); 483 ifp->if_serializer = NULL; 484 } else { 485 KASSERT(ifp->if_deserialize == NULL && 486 ifp->if_tryserialize == NULL && 487 ifp->if_serialize_assert == NULL, 488 ("serialize functions are partially setup\n")); 489 ifp->if_serialize = if_default_serialize; 490 ifp->if_deserialize = if_default_deserialize; 491 ifp->if_tryserialize = if_default_tryserialize; 492 #ifdef INVARIANTS 493 ifp->if_serialize_assert = if_default_serialize_assert; 494 #endif 495 496 /* 497 * The serializer can be passed in from the device, 498 * allowing the same serializer to be used for both 499 * the interrupt interlock and the device queue. 500 * If not specified, the netif structure will use an 501 * embedded serializer. 502 */ 503 if (serializer == NULL) { 504 serializer = &ifp->if_default_serializer; 505 lwkt_serialize_init(serializer); 506 } 507 ifp->if_serializer = serializer; 508 } 509 510 ifp->if_start_cpuid = if_start_cpuid; 511 ifp->if_cpuid = 0; 512 513 #ifdef DEVICE_POLLING 514 /* Device is not in polling mode by default */ 515 ifp->if_poll_cpuid = -1; 516 if (ifp->if_poll != NULL) 517 ifp->if_start_cpuid = if_start_cpuid_poll; 518 #endif 519 520 ifp->if_start_nmsg = kmalloc(ncpus * sizeof(struct netmsg), 521 M_LWKTMSG, M_WAITOK); 522 for (i = 0; i < ncpus; ++i) { 523 netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport, 524 0, if_start_dispatch); 525 ifp->if_start_nmsg[i].nm_lmsg.u.ms_resultp = ifp; 526 } 527 528 TAILQ_INSERT_TAIL(&ifnet, ifp, if_link); 529 ifp->if_index = ++if_index; 530 531 /* 532 * XXX - 533 * The old code would work if the interface passed a pre-existing 534 * chain of ifaddrs to this code. We don't trust our callers to 535 * properly initialize the tailq, however, so we no longer allow 536 * this unlikely case. 537 */ 538 ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead), 539 M_IFADDR, M_WAITOK | M_ZERO); 540 for (i = 0; i < ncpus; ++i) 541 TAILQ_INIT(&ifp->if_addrheads[i]); 542 543 TAILQ_INIT(&ifp->if_prefixhead); 544 TAILQ_INIT(&ifp->if_multiaddrs); 545 getmicrotime(&ifp->if_lastchange); 546 if (ifindex2ifnet == NULL || if_index >= if_indexlim) { 547 unsigned int n; 548 struct ifnet **q; 549 550 if_indexlim <<= 1; 551 552 /* grow ifindex2ifnet */ 553 n = if_indexlim * sizeof(*q); 554 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO); 555 if (ifindex2ifnet) { 556 bcopy(ifindex2ifnet, q, n/2); 557 kfree(ifindex2ifnet, M_IFADDR); 558 } 559 ifindex2ifnet = q; 560 } 561 562 ifindex2ifnet[if_index] = ifp; 563 564 /* 565 * create a Link Level name for this device 566 */ 567 namelen = strlen(ifp->if_xname); 568 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m)) 569 masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; 570 socksize = masklen + ifp->if_addrlen; 571 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1))) 572 if (socksize < sizeof(*sdl)) 573 socksize = sizeof(*sdl); 574 socksize = ROUNDUP(socksize); 575 ifasize = sizeof(struct ifaddr) + 2 * socksize; 576 ifa = ifa_create(ifasize, M_WAITOK); 577 sdl = (struct sockaddr_dl *)(ifa + 1); 578 sdl->sdl_len = socksize; 579 sdl->sdl_family = AF_LINK; 580 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 581 sdl->sdl_nlen = namelen; 582 sdl->sdl_index = ifp->if_index; 583 sdl->sdl_type = ifp->if_type; 584 ifp->if_lladdr = ifa; 585 ifa->ifa_ifp = ifp; 586 ifa->ifa_rtrequest = link_rtrequest; 587 ifa->ifa_addr = (struct sockaddr *)sdl; 588 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 589 ifa->ifa_netmask = (struct sockaddr *)sdl; 590 sdl->sdl_len = masklen; 591 while (namelen != 0) 592 sdl->sdl_data[--namelen] = 0xff; 593 ifa_iflink(ifa, ifp, 0 /* Insert head */); 594 595 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 596 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 597 598 ifq = &ifp->if_snd; 599 ifq->altq_type = 0; 600 ifq->altq_disc = NULL; 601 ifq->altq_flags &= ALTQF_CANTCHANGE; 602 ifq->altq_tbr = NULL; 603 ifq->altq_ifp = ifp; 604 ifq->altq_started = 0; 605 ifq->altq_prepended = NULL; 606 ALTQ_LOCK_INIT(ifq); 607 ifq_set_classic(ifq); 608 609 if (!SLIST_EMPTY(&domains)) 610 if_attachdomain1(ifp); 611 612 /* Announce the interface. */ 613 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 614 } 615 616 static void 617 if_attachdomain(void *dummy) 618 { 619 struct ifnet *ifp; 620 621 crit_enter(); 622 TAILQ_FOREACH(ifp, &ifnet, if_list) 623 if_attachdomain1(ifp); 624 crit_exit(); 625 } 626 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, 627 if_attachdomain, NULL); 628 629 static void 630 if_attachdomain1(struct ifnet *ifp) 631 { 632 struct domain *dp; 633 634 crit_enter(); 635 636 /* address family dependent data region */ 637 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 638 SLIST_FOREACH(dp, &domains, dom_next) 639 if (dp->dom_ifattach) 640 ifp->if_afdata[dp->dom_family] = 641 (*dp->dom_ifattach)(ifp); 642 crit_exit(); 643 } 644 645 /* 646 * Purge all addresses whose type is _not_ AF_LINK 647 */ 648 void 649 if_purgeaddrs_nolink(struct ifnet *ifp) 650 { 651 struct ifaddr_container *ifac, *next; 652 653 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid], 654 ifa_link, next) { 655 struct ifaddr *ifa = ifac->ifa; 656 657 /* Leave link ifaddr as it is */ 658 if (ifa->ifa_addr->sa_family == AF_LINK) 659 continue; 660 #ifdef INET 661 /* XXX: Ugly!! ad hoc just for INET */ 662 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) { 663 struct ifaliasreq ifr; 664 #ifdef IFADDR_DEBUG_VERBOSE 665 int i; 666 667 kprintf("purge in4 addr %p: ", ifa); 668 for (i = 0; i < ncpus; ++i) 669 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 670 kprintf("\n"); 671 #endif 672 673 bzero(&ifr, sizeof ifr); 674 ifr.ifra_addr = *ifa->ifa_addr; 675 if (ifa->ifa_dstaddr) 676 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 677 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 678 NULL) == 0) 679 continue; 680 } 681 #endif /* INET */ 682 #ifdef INET6 683 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) { 684 #ifdef IFADDR_DEBUG_VERBOSE 685 int i; 686 687 kprintf("purge in6 addr %p: ", ifa); 688 for (i = 0; i < ncpus; ++i) 689 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 690 kprintf("\n"); 691 #endif 692 693 in6_purgeaddr(ifa); 694 /* ifp_addrhead is already updated */ 695 continue; 696 } 697 #endif /* INET6 */ 698 ifa_ifunlink(ifa, ifp); 699 ifa_destroy(ifa); 700 } 701 } 702 703 /* 704 * Detach an interface, removing it from the 705 * list of "active" interfaces. 706 */ 707 void 708 if_detach(struct ifnet *ifp) 709 { 710 struct radix_node_head *rnh; 711 int i; 712 int cpu, origcpu; 713 struct domain *dp; 714 715 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 716 717 /* 718 * Remove routes and flush queues. 719 */ 720 crit_enter(); 721 #ifdef DEVICE_POLLING 722 if (ifp->if_flags & IFF_POLLING) 723 ether_poll_deregister(ifp); 724 #endif 725 #ifdef IFPOLL_ENABLE 726 if (ifp->if_flags & IFF_NPOLLING) 727 ifpoll_deregister(ifp); 728 #endif 729 if_down(ifp); 730 731 if (ifq_is_enabled(&ifp->if_snd)) 732 altq_disable(&ifp->if_snd); 733 if (ifq_is_attached(&ifp->if_snd)) 734 altq_detach(&ifp->if_snd); 735 736 /* 737 * Clean up all addresses. 738 */ 739 ifp->if_lladdr = NULL; 740 741 if_purgeaddrs_nolink(ifp); 742 if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) { 743 struct ifaddr *ifa; 744 745 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 746 KASSERT(ifa->ifa_addr->sa_family == AF_LINK, 747 ("non-link ifaddr is left on if_addrheads")); 748 749 ifa_ifunlink(ifa, ifp); 750 ifa_destroy(ifa); 751 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]), 752 ("there are still ifaddrs left on if_addrheads")); 753 } 754 755 #ifdef INET 756 /* 757 * Remove all IPv4 kernel structures related to ifp. 758 */ 759 in_ifdetach(ifp); 760 #endif 761 762 #ifdef INET6 763 /* 764 * Remove all IPv6 kernel structs related to ifp. This should be done 765 * before removing routing entries below, since IPv6 interface direct 766 * routes are expected to be removed by the IPv6-specific kernel API. 767 * Otherwise, the kernel will detect some inconsistency and bark it. 768 */ 769 in6_ifdetach(ifp); 770 #endif 771 772 /* 773 * Delete all remaining routes using this interface 774 * Unfortuneatly the only way to do this is to slog through 775 * the entire routing table looking for routes which point 776 * to this interface...oh well... 777 */ 778 origcpu = mycpuid; 779 for (cpu = 0; cpu < ncpus2; cpu++) { 780 lwkt_migratecpu(cpu); 781 for (i = 1; i <= AF_MAX; i++) { 782 if ((rnh = rt_tables[cpu][i]) == NULL) 783 continue; 784 rnh->rnh_walktree(rnh, if_rtdel, ifp); 785 } 786 } 787 lwkt_migratecpu(origcpu); 788 789 /* Announce that the interface is gone. */ 790 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 791 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 792 793 SLIST_FOREACH(dp, &domains, dom_next) 794 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 795 (*dp->dom_ifdetach)(ifp, 796 ifp->if_afdata[dp->dom_family]); 797 798 /* 799 * Remove interface from ifindex2ifp[] and maybe decrement if_index. 800 */ 801 ifindex2ifnet[ifp->if_index] = NULL; 802 while (if_index > 0 && ifindex2ifnet[if_index] == NULL) 803 if_index--; 804 805 TAILQ_REMOVE(&ifnet, ifp, if_link); 806 kfree(ifp->if_addrheads, M_IFADDR); 807 kfree(ifp->if_start_nmsg, M_LWKTMSG); 808 crit_exit(); 809 } 810 811 /* 812 * Delete Routes for a Network Interface 813 * 814 * Called for each routing entry via the rnh->rnh_walktree() call above 815 * to delete all route entries referencing a detaching network interface. 816 * 817 * Arguments: 818 * rn pointer to node in the routing table 819 * arg argument passed to rnh->rnh_walktree() - detaching interface 820 * 821 * Returns: 822 * 0 successful 823 * errno failed - reason indicated 824 * 825 */ 826 static int 827 if_rtdel(struct radix_node *rn, void *arg) 828 { 829 struct rtentry *rt = (struct rtentry *)rn; 830 struct ifnet *ifp = arg; 831 int err; 832 833 if (rt->rt_ifp == ifp) { 834 835 /* 836 * Protect (sorta) against walktree recursion problems 837 * with cloned routes 838 */ 839 if (!(rt->rt_flags & RTF_UP)) 840 return (0); 841 842 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, 843 rt_mask(rt), rt->rt_flags, 844 NULL); 845 if (err) { 846 log(LOG_WARNING, "if_rtdel: error %d\n", err); 847 } 848 } 849 850 return (0); 851 } 852 853 /* 854 * Locate an interface based on a complete address. 855 */ 856 struct ifaddr * 857 ifa_ifwithaddr(struct sockaddr *addr) 858 { 859 struct ifnet *ifp; 860 861 TAILQ_FOREACH(ifp, &ifnet, if_link) { 862 struct ifaddr_container *ifac; 863 864 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 865 struct ifaddr *ifa = ifac->ifa; 866 867 if (ifa->ifa_addr->sa_family != addr->sa_family) 868 continue; 869 if (sa_equal(addr, ifa->ifa_addr)) 870 return (ifa); 871 if ((ifp->if_flags & IFF_BROADCAST) && 872 ifa->ifa_broadaddr && 873 /* IPv6 doesn't have broadcast */ 874 ifa->ifa_broadaddr->sa_len != 0 && 875 sa_equal(ifa->ifa_broadaddr, addr)) 876 return (ifa); 877 } 878 } 879 return (NULL); 880 } 881 /* 882 * Locate the point to point interface with a given destination address. 883 */ 884 struct ifaddr * 885 ifa_ifwithdstaddr(struct sockaddr *addr) 886 { 887 struct ifnet *ifp; 888 889 TAILQ_FOREACH(ifp, &ifnet, if_link) { 890 struct ifaddr_container *ifac; 891 892 if (!(ifp->if_flags & IFF_POINTOPOINT)) 893 continue; 894 895 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 896 struct ifaddr *ifa = ifac->ifa; 897 898 if (ifa->ifa_addr->sa_family != addr->sa_family) 899 continue; 900 if (ifa->ifa_dstaddr && 901 sa_equal(addr, ifa->ifa_dstaddr)) 902 return (ifa); 903 } 904 } 905 return (NULL); 906 } 907 908 /* 909 * Find an interface on a specific network. If many, choice 910 * is most specific found. 911 */ 912 struct ifaddr * 913 ifa_ifwithnet(struct sockaddr *addr) 914 { 915 struct ifnet *ifp; 916 struct ifaddr *ifa_maybe = NULL; 917 u_int af = addr->sa_family; 918 char *addr_data = addr->sa_data, *cplim; 919 920 /* 921 * AF_LINK addresses can be looked up directly by their index number, 922 * so do that if we can. 923 */ 924 if (af == AF_LINK) { 925 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 926 927 if (sdl->sdl_index && sdl->sdl_index <= if_index) 928 return (ifindex2ifnet[sdl->sdl_index]->if_lladdr); 929 } 930 931 /* 932 * Scan though each interface, looking for ones that have 933 * addresses in this address family. 934 */ 935 TAILQ_FOREACH(ifp, &ifnet, if_link) { 936 struct ifaddr_container *ifac; 937 938 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 939 struct ifaddr *ifa = ifac->ifa; 940 char *cp, *cp2, *cp3; 941 942 if (ifa->ifa_addr->sa_family != af) 943 next: continue; 944 if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) { 945 /* 946 * This is a bit broken as it doesn't 947 * take into account that the remote end may 948 * be a single node in the network we are 949 * looking for. 950 * The trouble is that we don't know the 951 * netmask for the remote end. 952 */ 953 if (ifa->ifa_dstaddr != NULL && 954 sa_equal(addr, ifa->ifa_dstaddr)) 955 return (ifa); 956 } else { 957 /* 958 * if we have a special address handler, 959 * then use it instead of the generic one. 960 */ 961 if (ifa->ifa_claim_addr) { 962 if ((*ifa->ifa_claim_addr)(ifa, addr)) { 963 return (ifa); 964 } else { 965 continue; 966 } 967 } 968 969 /* 970 * Scan all the bits in the ifa's address. 971 * If a bit dissagrees with what we are 972 * looking for, mask it with the netmask 973 * to see if it really matters. 974 * (A byte at a time) 975 */ 976 if (ifa->ifa_netmask == 0) 977 continue; 978 cp = addr_data; 979 cp2 = ifa->ifa_addr->sa_data; 980 cp3 = ifa->ifa_netmask->sa_data; 981 cplim = ifa->ifa_netmask->sa_len + 982 (char *)ifa->ifa_netmask; 983 while (cp3 < cplim) 984 if ((*cp++ ^ *cp2++) & *cp3++) 985 goto next; /* next address! */ 986 /* 987 * If the netmask of what we just found 988 * is more specific than what we had before 989 * (if we had one) then remember the new one 990 * before continuing to search 991 * for an even better one. 992 */ 993 if (ifa_maybe == 0 || 994 rn_refines((char *)ifa->ifa_netmask, 995 (char *)ifa_maybe->ifa_netmask)) 996 ifa_maybe = ifa; 997 } 998 } 999 } 1000 return (ifa_maybe); 1001 } 1002 1003 /* 1004 * Find an interface address specific to an interface best matching 1005 * a given address. 1006 */ 1007 struct ifaddr * 1008 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1009 { 1010 struct ifaddr_container *ifac; 1011 char *cp, *cp2, *cp3; 1012 char *cplim; 1013 struct ifaddr *ifa_maybe = 0; 1014 u_int af = addr->sa_family; 1015 1016 if (af >= AF_MAX) 1017 return (0); 1018 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1019 struct ifaddr *ifa = ifac->ifa; 1020 1021 if (ifa->ifa_addr->sa_family != af) 1022 continue; 1023 if (ifa_maybe == 0) 1024 ifa_maybe = ifa; 1025 if (ifa->ifa_netmask == NULL) { 1026 if (sa_equal(addr, ifa->ifa_addr) || 1027 (ifa->ifa_dstaddr != NULL && 1028 sa_equal(addr, ifa->ifa_dstaddr))) 1029 return (ifa); 1030 continue; 1031 } 1032 if (ifp->if_flags & IFF_POINTOPOINT) { 1033 if (sa_equal(addr, ifa->ifa_dstaddr)) 1034 return (ifa); 1035 } else { 1036 cp = addr->sa_data; 1037 cp2 = ifa->ifa_addr->sa_data; 1038 cp3 = ifa->ifa_netmask->sa_data; 1039 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1040 for (; cp3 < cplim; cp3++) 1041 if ((*cp++ ^ *cp2++) & *cp3) 1042 break; 1043 if (cp3 == cplim) 1044 return (ifa); 1045 } 1046 } 1047 return (ifa_maybe); 1048 } 1049 1050 /* 1051 * Default action when installing a route with a Link Level gateway. 1052 * Lookup an appropriate real ifa to point to. 1053 * This should be moved to /sys/net/link.c eventually. 1054 */ 1055 static void 1056 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 1057 { 1058 struct ifaddr *ifa; 1059 struct sockaddr *dst; 1060 struct ifnet *ifp; 1061 1062 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1063 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL) 1064 return; 1065 ifa = ifaof_ifpforaddr(dst, ifp); 1066 if (ifa != NULL) { 1067 IFAFREE(rt->rt_ifa); 1068 IFAREF(ifa); 1069 rt->rt_ifa = ifa; 1070 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1071 ifa->ifa_rtrequest(cmd, rt, info); 1072 } 1073 } 1074 1075 /* 1076 * Mark an interface down and notify protocols of 1077 * the transition. 1078 * NOTE: must be called at splnet or eqivalent. 1079 */ 1080 void 1081 if_unroute(struct ifnet *ifp, int flag, int fam) 1082 { 1083 struct ifaddr_container *ifac; 1084 1085 ifp->if_flags &= ~flag; 1086 getmicrotime(&ifp->if_lastchange); 1087 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1088 struct ifaddr *ifa = ifac->ifa; 1089 1090 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1091 kpfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1092 } 1093 ifq_purge(&ifp->if_snd); 1094 rt_ifmsg(ifp); 1095 } 1096 1097 /* 1098 * Mark an interface up and notify protocols of 1099 * the transition. 1100 * NOTE: must be called at splnet or eqivalent. 1101 */ 1102 void 1103 if_route(struct ifnet *ifp, int flag, int fam) 1104 { 1105 struct ifaddr_container *ifac; 1106 1107 ifq_purge(&ifp->if_snd); 1108 ifp->if_flags |= flag; 1109 getmicrotime(&ifp->if_lastchange); 1110 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1111 struct ifaddr *ifa = ifac->ifa; 1112 1113 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1114 kpfctlinput(PRC_IFUP, ifa->ifa_addr); 1115 } 1116 rt_ifmsg(ifp); 1117 #ifdef INET6 1118 in6_if_up(ifp); 1119 #endif 1120 } 1121 1122 /* 1123 * Mark an interface down and notify protocols of the transition. An 1124 * interface going down is also considered to be a synchronizing event. 1125 * We must ensure that all packet processing related to the interface 1126 * has completed before we return so e.g. the caller can free the ifnet 1127 * structure that the mbufs may be referencing. 1128 * 1129 * NOTE: must be called at splnet or eqivalent. 1130 */ 1131 void 1132 if_down(struct ifnet *ifp) 1133 { 1134 if_unroute(ifp, IFF_UP, AF_UNSPEC); 1135 netmsg_service_sync(); 1136 } 1137 1138 /* 1139 * Mark an interface up and notify protocols of 1140 * the transition. 1141 * NOTE: must be called at splnet or eqivalent. 1142 */ 1143 void 1144 if_up(struct ifnet *ifp) 1145 { 1146 if_route(ifp, IFF_UP, AF_UNSPEC); 1147 } 1148 1149 /* 1150 * Process a link state change. 1151 * NOTE: must be called at splsoftnet or equivalent. 1152 */ 1153 void 1154 if_link_state_change(struct ifnet *ifp) 1155 { 1156 int link_state = ifp->if_link_state; 1157 1158 rt_ifmsg(ifp); 1159 devctl_notify("IFNET", ifp->if_xname, 1160 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); 1161 } 1162 1163 /* 1164 * Handle interface watchdog timer routines. Called 1165 * from softclock, we decrement timers (if set) and 1166 * call the appropriate interface routine on expiration. 1167 */ 1168 static void 1169 if_slowtimo(void *arg) 1170 { 1171 struct ifnet *ifp; 1172 1173 crit_enter(); 1174 1175 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1176 if (ifp->if_timer == 0 || --ifp->if_timer) 1177 continue; 1178 if (ifp->if_watchdog) { 1179 if (ifnet_tryserialize_all(ifp)) { 1180 (*ifp->if_watchdog)(ifp); 1181 ifnet_deserialize_all(ifp); 1182 } else { 1183 /* try again next timeout */ 1184 ++ifp->if_timer; 1185 } 1186 } 1187 } 1188 1189 crit_exit(); 1190 1191 callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL); 1192 } 1193 1194 /* 1195 * Map interface name to 1196 * interface structure pointer. 1197 */ 1198 struct ifnet * 1199 ifunit(const char *name) 1200 { 1201 struct ifnet *ifp; 1202 1203 /* 1204 * Search all the interfaces for this name/number 1205 */ 1206 1207 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1208 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) 1209 break; 1210 } 1211 return (ifp); 1212 } 1213 1214 1215 /* 1216 * Map interface name in a sockaddr_dl to 1217 * interface structure pointer. 1218 */ 1219 struct ifnet * 1220 if_withname(struct sockaddr *sa) 1221 { 1222 char ifname[IFNAMSIZ+1]; 1223 struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa; 1224 1225 if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) || 1226 (sdl->sdl_nlen > IFNAMSIZ) ) 1227 return NULL; 1228 1229 /* 1230 * ifunit wants a null-terminated name. It may not be null-terminated 1231 * in the sockaddr. We don't want to change the caller's sockaddr, 1232 * and there might not be room to put the trailing null anyway, so we 1233 * make a local copy that we know we can null terminate safely. 1234 */ 1235 1236 bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen); 1237 ifname[sdl->sdl_nlen] = '\0'; 1238 return ifunit(ifname); 1239 } 1240 1241 1242 /* 1243 * Interface ioctls. 1244 */ 1245 int 1246 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred) 1247 { 1248 struct ifnet *ifp; 1249 struct ifreq *ifr; 1250 struct ifstat *ifs; 1251 int error; 1252 short oif_flags; 1253 int new_flags; 1254 size_t namelen, onamelen; 1255 char new_name[IFNAMSIZ]; 1256 struct ifaddr *ifa; 1257 struct sockaddr_dl *sdl; 1258 1259 switch (cmd) { 1260 1261 case SIOCGIFCONF: 1262 case OSIOCGIFCONF: 1263 return (ifconf(cmd, data, cred)); 1264 } 1265 ifr = (struct ifreq *)data; 1266 1267 switch (cmd) { 1268 case SIOCIFCREATE: 1269 case SIOCIFCREATE2: 1270 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1271 return (error); 1272 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), 1273 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL)); 1274 case SIOCIFDESTROY: 1275 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1276 return (error); 1277 return (if_clone_destroy(ifr->ifr_name)); 1278 1279 case SIOCIFGCLONERS: 1280 return (if_clone_list((struct if_clonereq *)data)); 1281 } 1282 1283 ifp = ifunit(ifr->ifr_name); 1284 if (ifp == 0) 1285 return (ENXIO); 1286 switch (cmd) { 1287 1288 case SIOCGIFINDEX: 1289 ifr->ifr_index = ifp->if_index; 1290 break; 1291 1292 case SIOCGIFFLAGS: 1293 ifr->ifr_flags = ifp->if_flags; 1294 ifr->ifr_flagshigh = ifp->if_flags >> 16; 1295 break; 1296 1297 case SIOCGIFCAP: 1298 ifr->ifr_reqcap = ifp->if_capabilities; 1299 ifr->ifr_curcap = ifp->if_capenable; 1300 break; 1301 1302 case SIOCGIFMETRIC: 1303 ifr->ifr_metric = ifp->if_metric; 1304 break; 1305 1306 case SIOCGIFMTU: 1307 ifr->ifr_mtu = ifp->if_mtu; 1308 break; 1309 1310 case SIOCGIFPHYS: 1311 ifr->ifr_phys = ifp->if_physical; 1312 break; 1313 1314 case SIOCGIFPOLLCPU: 1315 #ifdef DEVICE_POLLING 1316 ifr->ifr_pollcpu = ifp->if_poll_cpuid; 1317 #else 1318 ifr->ifr_pollcpu = -1; 1319 #endif 1320 break; 1321 1322 case SIOCSIFPOLLCPU: 1323 #ifdef DEVICE_POLLING 1324 if ((ifp->if_flags & IFF_POLLING) == 0) 1325 ether_pollcpu_register(ifp, ifr->ifr_pollcpu); 1326 #endif 1327 break; 1328 1329 case SIOCSIFFLAGS: 1330 error = priv_check_cred(cred, PRIV_ROOT, 0); 1331 if (error) 1332 return (error); 1333 new_flags = (ifr->ifr_flags & 0xffff) | 1334 (ifr->ifr_flagshigh << 16); 1335 if (ifp->if_flags & IFF_SMART) { 1336 /* Smart drivers twiddle their own routes */ 1337 } else if (ifp->if_flags & IFF_UP && 1338 (new_flags & IFF_UP) == 0) { 1339 crit_enter(); 1340 if_down(ifp); 1341 crit_exit(); 1342 } else if (new_flags & IFF_UP && 1343 (ifp->if_flags & IFF_UP) == 0) { 1344 crit_enter(); 1345 if_up(ifp); 1346 crit_exit(); 1347 } 1348 1349 #ifdef DEVICE_POLLING 1350 if ((new_flags ^ ifp->if_flags) & IFF_POLLING) { 1351 if (new_flags & IFF_POLLING) { 1352 ether_poll_register(ifp); 1353 } else { 1354 ether_poll_deregister(ifp); 1355 } 1356 } 1357 #endif 1358 #ifdef IFPOLL_ENABLE 1359 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) { 1360 if (new_flags & IFF_NPOLLING) 1361 ifpoll_register(ifp); 1362 else 1363 ifpoll_deregister(ifp); 1364 } 1365 #endif 1366 1367 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 1368 (new_flags &~ IFF_CANTCHANGE); 1369 if (new_flags & IFF_PPROMISC) { 1370 /* Permanently promiscuous mode requested */ 1371 ifp->if_flags |= IFF_PROMISC; 1372 } else if (ifp->if_pcount == 0) { 1373 ifp->if_flags &= ~IFF_PROMISC; 1374 } 1375 if (ifp->if_ioctl) { 1376 ifnet_serialize_all(ifp); 1377 ifp->if_ioctl(ifp, cmd, data, cred); 1378 ifnet_deserialize_all(ifp); 1379 } 1380 getmicrotime(&ifp->if_lastchange); 1381 break; 1382 1383 case SIOCSIFCAP: 1384 error = priv_check_cred(cred, PRIV_ROOT, 0); 1385 if (error) 1386 return (error); 1387 if (ifr->ifr_reqcap & ~ifp->if_capabilities) 1388 return (EINVAL); 1389 ifnet_serialize_all(ifp); 1390 ifp->if_ioctl(ifp, cmd, data, cred); 1391 ifnet_deserialize_all(ifp); 1392 break; 1393 1394 case SIOCSIFNAME: 1395 error = priv_check_cred(cred, PRIV_ROOT, 0); 1396 if (error != 0) 1397 return (error); 1398 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 1399 if (error != 0) 1400 return (error); 1401 if (new_name[0] == '\0') 1402 return (EINVAL); 1403 if (ifunit(new_name) != NULL) 1404 return (EEXIST); 1405 1406 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 1407 1408 /* Announce the departure of the interface. */ 1409 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1410 1411 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 1412 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 1413 /* XXX IFA_LOCK(ifa); */ 1414 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1415 namelen = strlen(new_name); 1416 onamelen = sdl->sdl_nlen; 1417 /* 1418 * Move the address if needed. This is safe because we 1419 * allocate space for a name of length IFNAMSIZ when we 1420 * create this in if_attach(). 1421 */ 1422 if (namelen != onamelen) { 1423 bcopy(sdl->sdl_data + onamelen, 1424 sdl->sdl_data + namelen, sdl->sdl_alen); 1425 } 1426 bcopy(new_name, sdl->sdl_data, namelen); 1427 sdl->sdl_nlen = namelen; 1428 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 1429 bzero(sdl->sdl_data, onamelen); 1430 while (namelen != 0) 1431 sdl->sdl_data[--namelen] = 0xff; 1432 /* XXX IFA_UNLOCK(ifa) */ 1433 1434 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 1435 1436 /* Announce the return of the interface. */ 1437 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 1438 break; 1439 1440 case SIOCSIFMETRIC: 1441 error = priv_check_cred(cred, PRIV_ROOT, 0); 1442 if (error) 1443 return (error); 1444 ifp->if_metric = ifr->ifr_metric; 1445 getmicrotime(&ifp->if_lastchange); 1446 break; 1447 1448 case SIOCSIFPHYS: 1449 error = priv_check_cred(cred, PRIV_ROOT, 0); 1450 if (error) 1451 return error; 1452 if (!ifp->if_ioctl) 1453 return EOPNOTSUPP; 1454 ifnet_serialize_all(ifp); 1455 error = ifp->if_ioctl(ifp, cmd, data, cred); 1456 ifnet_deserialize_all(ifp); 1457 if (error == 0) 1458 getmicrotime(&ifp->if_lastchange); 1459 return (error); 1460 1461 case SIOCSIFMTU: 1462 { 1463 u_long oldmtu = ifp->if_mtu; 1464 1465 error = priv_check_cred(cred, PRIV_ROOT, 0); 1466 if (error) 1467 return (error); 1468 if (ifp->if_ioctl == NULL) 1469 return (EOPNOTSUPP); 1470 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) 1471 return (EINVAL); 1472 ifnet_serialize_all(ifp); 1473 error = ifp->if_ioctl(ifp, cmd, data, cred); 1474 ifnet_deserialize_all(ifp); 1475 if (error == 0) { 1476 getmicrotime(&ifp->if_lastchange); 1477 rt_ifmsg(ifp); 1478 } 1479 /* 1480 * If the link MTU changed, do network layer specific procedure. 1481 */ 1482 if (ifp->if_mtu != oldmtu) { 1483 #ifdef INET6 1484 nd6_setmtu(ifp); 1485 #endif 1486 } 1487 return (error); 1488 } 1489 1490 case SIOCADDMULTI: 1491 case SIOCDELMULTI: 1492 error = priv_check_cred(cred, PRIV_ROOT, 0); 1493 if (error) 1494 return (error); 1495 1496 /* Don't allow group membership on non-multicast interfaces. */ 1497 if ((ifp->if_flags & IFF_MULTICAST) == 0) 1498 return EOPNOTSUPP; 1499 1500 /* Don't let users screw up protocols' entries. */ 1501 if (ifr->ifr_addr.sa_family != AF_LINK) 1502 return EINVAL; 1503 1504 if (cmd == SIOCADDMULTI) { 1505 struct ifmultiaddr *ifma; 1506 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 1507 } else { 1508 error = if_delmulti(ifp, &ifr->ifr_addr); 1509 } 1510 if (error == 0) 1511 getmicrotime(&ifp->if_lastchange); 1512 return error; 1513 1514 case SIOCSIFPHYADDR: 1515 case SIOCDIFPHYADDR: 1516 #ifdef INET6 1517 case SIOCSIFPHYADDR_IN6: 1518 #endif 1519 case SIOCSLIFPHYADDR: 1520 case SIOCSIFMEDIA: 1521 case SIOCSIFGENERIC: 1522 error = priv_check_cred(cred, PRIV_ROOT, 0); 1523 if (error) 1524 return (error); 1525 if (ifp->if_ioctl == 0) 1526 return (EOPNOTSUPP); 1527 ifnet_serialize_all(ifp); 1528 error = ifp->if_ioctl(ifp, cmd, data, cred); 1529 ifnet_deserialize_all(ifp); 1530 if (error == 0) 1531 getmicrotime(&ifp->if_lastchange); 1532 return error; 1533 1534 case SIOCGIFSTATUS: 1535 ifs = (struct ifstat *)data; 1536 ifs->ascii[0] = '\0'; 1537 1538 case SIOCGIFPSRCADDR: 1539 case SIOCGIFPDSTADDR: 1540 case SIOCGLIFPHYADDR: 1541 case SIOCGIFMEDIA: 1542 case SIOCGIFGENERIC: 1543 if (ifp->if_ioctl == NULL) 1544 return (EOPNOTSUPP); 1545 ifnet_serialize_all(ifp); 1546 error = ifp->if_ioctl(ifp, cmd, data, cred); 1547 ifnet_deserialize_all(ifp); 1548 return (error); 1549 1550 case SIOCSIFLLADDR: 1551 error = priv_check_cred(cred, PRIV_ROOT, 0); 1552 if (error) 1553 return (error); 1554 error = if_setlladdr(ifp, 1555 ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); 1556 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 1557 return (error); 1558 1559 default: 1560 oif_flags = ifp->if_flags; 1561 if (so->so_proto == 0) 1562 return (EOPNOTSUPP); 1563 #ifndef COMPAT_43 1564 error = so_pru_control(so, cmd, data, ifp); 1565 #else 1566 { 1567 int ocmd = cmd; 1568 1569 switch (cmd) { 1570 1571 case SIOCSIFDSTADDR: 1572 case SIOCSIFADDR: 1573 case SIOCSIFBRDADDR: 1574 case SIOCSIFNETMASK: 1575 #if BYTE_ORDER != BIG_ENDIAN 1576 if (ifr->ifr_addr.sa_family == 0 && 1577 ifr->ifr_addr.sa_len < 16) { 1578 ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len; 1579 ifr->ifr_addr.sa_len = 16; 1580 } 1581 #else 1582 if (ifr->ifr_addr.sa_len == 0) 1583 ifr->ifr_addr.sa_len = 16; 1584 #endif 1585 break; 1586 1587 case OSIOCGIFADDR: 1588 cmd = SIOCGIFADDR; 1589 break; 1590 1591 case OSIOCGIFDSTADDR: 1592 cmd = SIOCGIFDSTADDR; 1593 break; 1594 1595 case OSIOCGIFBRDADDR: 1596 cmd = SIOCGIFBRDADDR; 1597 break; 1598 1599 case OSIOCGIFNETMASK: 1600 cmd = SIOCGIFNETMASK; 1601 } 1602 error = so_pru_control(so, cmd, data, ifp); 1603 switch (ocmd) { 1604 1605 case OSIOCGIFADDR: 1606 case OSIOCGIFDSTADDR: 1607 case OSIOCGIFBRDADDR: 1608 case OSIOCGIFNETMASK: 1609 *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family; 1610 1611 } 1612 } 1613 #endif /* COMPAT_43 */ 1614 1615 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 1616 #ifdef INET6 1617 DELAY(100);/* XXX: temporary workaround for fxp issue*/ 1618 if (ifp->if_flags & IFF_UP) { 1619 crit_enter(); 1620 in6_if_up(ifp); 1621 crit_exit(); 1622 } 1623 #endif 1624 } 1625 return (error); 1626 1627 } 1628 return (0); 1629 } 1630 1631 /* 1632 * Set/clear promiscuous mode on interface ifp based on the truth value 1633 * of pswitch. The calls are reference counted so that only the first 1634 * "on" request actually has an effect, as does the final "off" request. 1635 * Results are undefined if the "off" and "on" requests are not matched. 1636 */ 1637 int 1638 ifpromisc(struct ifnet *ifp, int pswitch) 1639 { 1640 struct ifreq ifr; 1641 int error; 1642 int oldflags; 1643 1644 oldflags = ifp->if_flags; 1645 if (ifp->if_flags & IFF_PPROMISC) { 1646 /* Do nothing if device is in permanently promiscuous mode */ 1647 ifp->if_pcount += pswitch ? 1 : -1; 1648 return (0); 1649 } 1650 if (pswitch) { 1651 /* 1652 * If the device is not configured up, we cannot put it in 1653 * promiscuous mode. 1654 */ 1655 if ((ifp->if_flags & IFF_UP) == 0) 1656 return (ENETDOWN); 1657 if (ifp->if_pcount++ != 0) 1658 return (0); 1659 ifp->if_flags |= IFF_PROMISC; 1660 log(LOG_INFO, "%s: promiscuous mode enabled\n", 1661 ifp->if_xname); 1662 } else { 1663 if (--ifp->if_pcount > 0) 1664 return (0); 1665 ifp->if_flags &= ~IFF_PROMISC; 1666 log(LOG_INFO, "%s: promiscuous mode disabled\n", 1667 ifp->if_xname); 1668 } 1669 ifr.ifr_flags = ifp->if_flags; 1670 ifr.ifr_flagshigh = ifp->if_flags >> 16; 1671 ifnet_serialize_all(ifp); 1672 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); 1673 ifnet_deserialize_all(ifp); 1674 if (error == 0) 1675 rt_ifmsg(ifp); 1676 else 1677 ifp->if_flags = oldflags; 1678 return error; 1679 } 1680 1681 /* 1682 * Return interface configuration 1683 * of system. List may be used 1684 * in later ioctl's (above) to get 1685 * other information. 1686 */ 1687 static int 1688 ifconf(u_long cmd, caddr_t data, struct ucred *cred) 1689 { 1690 struct ifconf *ifc = (struct ifconf *)data; 1691 struct ifnet *ifp; 1692 struct sockaddr *sa; 1693 struct ifreq ifr, *ifrp; 1694 int space = ifc->ifc_len, error = 0; 1695 1696 ifrp = ifc->ifc_req; 1697 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1698 struct ifaddr_container *ifac; 1699 int addrs; 1700 1701 if (space <= sizeof ifr) 1702 break; 1703 1704 /* 1705 * Zero the stack declared structure first to prevent 1706 * memory disclosure. 1707 */ 1708 bzero(&ifr, sizeof(ifr)); 1709 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 1710 >= sizeof(ifr.ifr_name)) { 1711 error = ENAMETOOLONG; 1712 break; 1713 } 1714 1715 addrs = 0; 1716 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1717 struct ifaddr *ifa = ifac->ifa; 1718 1719 if (space <= sizeof ifr) 1720 break; 1721 sa = ifa->ifa_addr; 1722 if (cred->cr_prison && 1723 prison_if(cred, sa)) 1724 continue; 1725 addrs++; 1726 #ifdef COMPAT_43 1727 if (cmd == OSIOCGIFCONF) { 1728 struct osockaddr *osa = 1729 (struct osockaddr *)&ifr.ifr_addr; 1730 ifr.ifr_addr = *sa; 1731 osa->sa_family = sa->sa_family; 1732 error = copyout(&ifr, ifrp, sizeof ifr); 1733 ifrp++; 1734 } else 1735 #endif 1736 if (sa->sa_len <= sizeof(*sa)) { 1737 ifr.ifr_addr = *sa; 1738 error = copyout(&ifr, ifrp, sizeof ifr); 1739 ifrp++; 1740 } else { 1741 if (space < (sizeof ifr) + sa->sa_len - 1742 sizeof(*sa)) 1743 break; 1744 space -= sa->sa_len - sizeof(*sa); 1745 error = copyout(&ifr, ifrp, 1746 sizeof ifr.ifr_name); 1747 if (error == 0) 1748 error = copyout(sa, &ifrp->ifr_addr, 1749 sa->sa_len); 1750 ifrp = (struct ifreq *) 1751 (sa->sa_len + (caddr_t)&ifrp->ifr_addr); 1752 } 1753 if (error) 1754 break; 1755 space -= sizeof ifr; 1756 } 1757 if (error) 1758 break; 1759 if (!addrs) { 1760 bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr); 1761 error = copyout(&ifr, ifrp, sizeof ifr); 1762 if (error) 1763 break; 1764 space -= sizeof ifr; 1765 ifrp++; 1766 } 1767 } 1768 ifc->ifc_len -= space; 1769 return (error); 1770 } 1771 1772 /* 1773 * Just like if_promisc(), but for all-multicast-reception mode. 1774 */ 1775 int 1776 if_allmulti(struct ifnet *ifp, int onswitch) 1777 { 1778 int error = 0; 1779 struct ifreq ifr; 1780 1781 crit_enter(); 1782 1783 if (onswitch) { 1784 if (ifp->if_amcount++ == 0) { 1785 ifp->if_flags |= IFF_ALLMULTI; 1786 ifr.ifr_flags = ifp->if_flags; 1787 ifr.ifr_flagshigh = ifp->if_flags >> 16; 1788 ifnet_serialize_all(ifp); 1789 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 1790 NULL); 1791 ifnet_deserialize_all(ifp); 1792 } 1793 } else { 1794 if (ifp->if_amcount > 1) { 1795 ifp->if_amcount--; 1796 } else { 1797 ifp->if_amcount = 0; 1798 ifp->if_flags &= ~IFF_ALLMULTI; 1799 ifr.ifr_flags = ifp->if_flags; 1800 ifr.ifr_flagshigh = ifp->if_flags >> 16; 1801 ifnet_serialize_all(ifp); 1802 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 1803 NULL); 1804 ifnet_deserialize_all(ifp); 1805 } 1806 } 1807 1808 crit_exit(); 1809 1810 if (error == 0) 1811 rt_ifmsg(ifp); 1812 return error; 1813 } 1814 1815 /* 1816 * Add a multicast listenership to the interface in question. 1817 * The link layer provides a routine which converts 1818 */ 1819 int 1820 if_addmulti( 1821 struct ifnet *ifp, /* interface to manipulate */ 1822 struct sockaddr *sa, /* address to add */ 1823 struct ifmultiaddr **retifma) 1824 { 1825 struct sockaddr *llsa, *dupsa; 1826 int error; 1827 struct ifmultiaddr *ifma; 1828 1829 /* 1830 * If the matching multicast address already exists 1831 * then don't add a new one, just add a reference 1832 */ 1833 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1834 if (sa_equal(sa, ifma->ifma_addr)) { 1835 ifma->ifma_refcount++; 1836 if (retifma) 1837 *retifma = ifma; 1838 return 0; 1839 } 1840 } 1841 1842 /* 1843 * Give the link layer a chance to accept/reject it, and also 1844 * find out which AF_LINK address this maps to, if it isn't one 1845 * already. 1846 */ 1847 if (ifp->if_resolvemulti) { 1848 ifnet_serialize_all(ifp); 1849 error = ifp->if_resolvemulti(ifp, &llsa, sa); 1850 ifnet_deserialize_all(ifp); 1851 if (error) 1852 return error; 1853 } else { 1854 llsa = 0; 1855 } 1856 1857 MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK); 1858 MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK); 1859 bcopy(sa, dupsa, sa->sa_len); 1860 1861 ifma->ifma_addr = dupsa; 1862 ifma->ifma_lladdr = llsa; 1863 ifma->ifma_ifp = ifp; 1864 ifma->ifma_refcount = 1; 1865 ifma->ifma_protospec = 0; 1866 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 1867 1868 /* 1869 * Some network interfaces can scan the address list at 1870 * interrupt time; lock them out. 1871 */ 1872 crit_enter(); 1873 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 1874 crit_exit(); 1875 if (retifma) 1876 *retifma = ifma; 1877 1878 if (llsa != 0) { 1879 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1880 if (sa_equal(ifma->ifma_addr, llsa)) 1881 break; 1882 } 1883 if (ifma) { 1884 ifma->ifma_refcount++; 1885 } else { 1886 MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, 1887 M_IFMADDR, M_WAITOK); 1888 MALLOC(dupsa, struct sockaddr *, llsa->sa_len, 1889 M_IFMADDR, M_WAITOK); 1890 bcopy(llsa, dupsa, llsa->sa_len); 1891 ifma->ifma_addr = dupsa; 1892 ifma->ifma_ifp = ifp; 1893 ifma->ifma_refcount = 1; 1894 crit_enter(); 1895 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 1896 crit_exit(); 1897 } 1898 } 1899 /* 1900 * We are certain we have added something, so call down to the 1901 * interface to let them know about it. 1902 */ 1903 crit_enter(); 1904 ifnet_serialize_all(ifp); 1905 if (ifp->if_ioctl) 1906 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL); 1907 ifnet_deserialize_all(ifp); 1908 crit_exit(); 1909 1910 return 0; 1911 } 1912 1913 /* 1914 * Remove a reference to a multicast address on this interface. Yell 1915 * if the request does not match an existing membership. 1916 */ 1917 int 1918 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 1919 { 1920 struct ifmultiaddr *ifma; 1921 1922 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 1923 if (sa_equal(sa, ifma->ifma_addr)) 1924 break; 1925 if (ifma == 0) 1926 return ENOENT; 1927 1928 if (ifma->ifma_refcount > 1) { 1929 ifma->ifma_refcount--; 1930 return 0; 1931 } 1932 1933 rt_newmaddrmsg(RTM_DELMADDR, ifma); 1934 sa = ifma->ifma_lladdr; 1935 crit_enter(); 1936 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 1937 /* 1938 * Make sure the interface driver is notified 1939 * in the case of a link layer mcast group being left. 1940 */ 1941 if (ifma->ifma_addr->sa_family == AF_LINK && sa == 0) { 1942 ifnet_serialize_all(ifp); 1943 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 1944 ifnet_deserialize_all(ifp); 1945 } 1946 crit_exit(); 1947 kfree(ifma->ifma_addr, M_IFMADDR); 1948 kfree(ifma, M_IFMADDR); 1949 if (sa == 0) 1950 return 0; 1951 1952 /* 1953 * Now look for the link-layer address which corresponds to 1954 * this network address. It had been squirreled away in 1955 * ifma->ifma_lladdr for this purpose (so we don't have 1956 * to call ifp->if_resolvemulti() again), and we saved that 1957 * value in sa above. If some nasty deleted the 1958 * link-layer address out from underneath us, we can deal because 1959 * the address we stored was is not the same as the one which was 1960 * in the record for the link-layer address. (So we don't complain 1961 * in that case.) 1962 */ 1963 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 1964 if (sa_equal(sa, ifma->ifma_addr)) 1965 break; 1966 if (ifma == 0) 1967 return 0; 1968 1969 if (ifma->ifma_refcount > 1) { 1970 ifma->ifma_refcount--; 1971 return 0; 1972 } 1973 1974 crit_enter(); 1975 ifnet_serialize_all(ifp); 1976 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 1977 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 1978 ifnet_deserialize_all(ifp); 1979 crit_exit(); 1980 kfree(ifma->ifma_addr, M_IFMADDR); 1981 kfree(sa, M_IFMADDR); 1982 kfree(ifma, M_IFMADDR); 1983 1984 return 0; 1985 } 1986 1987 /* 1988 * Delete all multicast group membership for an interface. 1989 * Should be used to quickly flush all multicast filters. 1990 */ 1991 void 1992 if_delallmulti(struct ifnet *ifp) 1993 { 1994 struct ifmultiaddr *ifma; 1995 struct ifmultiaddr *next; 1996 1997 TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next) 1998 if_delmulti(ifp, ifma->ifma_addr); 1999 } 2000 2001 2002 /* 2003 * Set the link layer address on an interface. 2004 * 2005 * At this time we only support certain types of interfaces, 2006 * and we don't allow the length of the address to change. 2007 */ 2008 int 2009 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 2010 { 2011 struct sockaddr_dl *sdl; 2012 struct ifreq ifr; 2013 2014 sdl = IF_LLSOCKADDR(ifp); 2015 if (sdl == NULL) 2016 return (EINVAL); 2017 if (len != sdl->sdl_alen) /* don't allow length to change */ 2018 return (EINVAL); 2019 switch (ifp->if_type) { 2020 case IFT_ETHER: /* these types use struct arpcom */ 2021 case IFT_XETHER: 2022 case IFT_L2VLAN: 2023 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len); 2024 bcopy(lladdr, LLADDR(sdl), len); 2025 break; 2026 default: 2027 return (ENODEV); 2028 } 2029 /* 2030 * If the interface is already up, we need 2031 * to re-init it in order to reprogram its 2032 * address filter. 2033 */ 2034 ifnet_serialize_all(ifp); 2035 if ((ifp->if_flags & IFF_UP) != 0) { 2036 struct ifaddr_container *ifac; 2037 2038 ifp->if_flags &= ~IFF_UP; 2039 ifr.ifr_flags = ifp->if_flags; 2040 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2041 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2042 NULL); 2043 ifp->if_flags |= IFF_UP; 2044 ifr.ifr_flags = ifp->if_flags; 2045 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2046 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2047 NULL); 2048 #ifdef INET 2049 /* 2050 * Also send gratuitous ARPs to notify other nodes about 2051 * the address change. 2052 */ 2053 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2054 struct ifaddr *ifa = ifac->ifa; 2055 2056 if (ifa->ifa_addr != NULL && 2057 ifa->ifa_addr->sa_family == AF_INET) 2058 arp_ifinit(ifp, ifa); 2059 } 2060 #endif 2061 } 2062 ifnet_deserialize_all(ifp); 2063 return (0); 2064 } 2065 2066 struct ifmultiaddr * 2067 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp) 2068 { 2069 struct ifmultiaddr *ifma; 2070 2071 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2072 if (sa_equal(ifma->ifma_addr, sa)) 2073 break; 2074 2075 return ifma; 2076 } 2077 2078 /* 2079 * This function locates the first real ethernet MAC from a network 2080 * card and loads it into node, returning 0 on success or ENOENT if 2081 * no suitable interfaces were found. It is used by the uuid code to 2082 * generate a unique 6-byte number. 2083 */ 2084 int 2085 if_getanyethermac(uint16_t *node, int minlen) 2086 { 2087 struct ifnet *ifp; 2088 struct sockaddr_dl *sdl; 2089 2090 TAILQ_FOREACH(ifp, &ifnet, if_link) { 2091 if (ifp->if_type != IFT_ETHER) 2092 continue; 2093 sdl = IF_LLSOCKADDR(ifp); 2094 if (sdl->sdl_alen < minlen) 2095 continue; 2096 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node, 2097 minlen); 2098 return(0); 2099 } 2100 return (ENOENT); 2101 } 2102 2103 /* 2104 * The name argument must be a pointer to storage which will last as 2105 * long as the interface does. For physical devices, the result of 2106 * device_get_name(dev) is a good choice and for pseudo-devices a 2107 * static string works well. 2108 */ 2109 void 2110 if_initname(struct ifnet *ifp, const char *name, int unit) 2111 { 2112 ifp->if_dname = name; 2113 ifp->if_dunit = unit; 2114 if (unit != IF_DUNIT_NONE) 2115 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 2116 else 2117 strlcpy(ifp->if_xname, name, IFNAMSIZ); 2118 } 2119 2120 int 2121 if_printf(struct ifnet *ifp, const char *fmt, ...) 2122 { 2123 __va_list ap; 2124 int retval; 2125 2126 retval = kprintf("%s: ", ifp->if_xname); 2127 __va_start(ap, fmt); 2128 retval += kvprintf(fmt, ap); 2129 __va_end(ap); 2130 return (retval); 2131 } 2132 2133 struct ifnet * 2134 if_alloc(uint8_t type) 2135 { 2136 struct ifnet *ifp; 2137 2138 ifp = kmalloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO); 2139 2140 ifp->if_type = type; 2141 2142 if (if_com_alloc[type] != NULL) { 2143 ifp->if_l2com = if_com_alloc[type](type, ifp); 2144 if (ifp->if_l2com == NULL) { 2145 kfree(ifp, M_IFNET); 2146 return (NULL); 2147 } 2148 } 2149 return (ifp); 2150 } 2151 2152 void 2153 if_free(struct ifnet *ifp) 2154 { 2155 kfree(ifp, M_IFNET); 2156 } 2157 2158 void 2159 ifq_set_classic(struct ifaltq *ifq) 2160 { 2161 ifq->altq_enqueue = ifq_classic_enqueue; 2162 ifq->altq_dequeue = ifq_classic_dequeue; 2163 ifq->altq_request = ifq_classic_request; 2164 } 2165 2166 int 2167 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m, 2168 struct altq_pktattr *pa __unused) 2169 { 2170 logifq(enqueue, ifq); 2171 if (IF_QFULL(ifq)) { 2172 m_freem(m); 2173 return(ENOBUFS); 2174 } else { 2175 IF_ENQUEUE(ifq, m); 2176 return(0); 2177 } 2178 } 2179 2180 struct mbuf * 2181 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op) 2182 { 2183 struct mbuf *m; 2184 2185 switch (op) { 2186 case ALTDQ_POLL: 2187 IF_POLL(ifq, m); 2188 break; 2189 case ALTDQ_REMOVE: 2190 logifq(dequeue, ifq); 2191 IF_DEQUEUE(ifq, m); 2192 break; 2193 default: 2194 panic("unsupported ALTQ dequeue op: %d", op); 2195 } 2196 KKASSERT(mpolled == NULL || mpolled == m); 2197 return(m); 2198 } 2199 2200 int 2201 ifq_classic_request(struct ifaltq *ifq, int req, void *arg) 2202 { 2203 switch (req) { 2204 case ALTRQ_PURGE: 2205 IF_DRAIN(ifq); 2206 break; 2207 default: 2208 panic("unsupported ALTQ request: %d", req); 2209 } 2210 return(0); 2211 } 2212 2213 int 2214 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa) 2215 { 2216 struct ifaltq *ifq = &ifp->if_snd; 2217 int running = 0, error, start = 0; 2218 2219 ASSERT_IFNET_NOT_SERIALIZED_TX(ifp); 2220 2221 ALTQ_LOCK(ifq); 2222 error = ifq_enqueue_locked(ifq, m, pa); 2223 if (error) { 2224 ALTQ_UNLOCK(ifq); 2225 return error; 2226 } 2227 if (!ifq->altq_started) { 2228 /* 2229 * Hold the interlock of ifnet.if_start 2230 */ 2231 ifq->altq_started = 1; 2232 start = 1; 2233 } 2234 ALTQ_UNLOCK(ifq); 2235 2236 ifp->if_obytes += m->m_pkthdr.len; 2237 if (m->m_flags & M_MCAST) 2238 ifp->if_omcasts++; 2239 2240 if (!start) { 2241 logifstart(avoid, ifp); 2242 return 0; 2243 } 2244 2245 if (ifq_dispatch_schedonly) { 2246 /* 2247 * Always schedule ifnet.if_start on ifnet's CPU, 2248 * short circuit the rest of this function. 2249 */ 2250 logifstart(sched, ifp); 2251 if_start_schedule(ifp); 2252 return 0; 2253 } 2254 2255 /* 2256 * Try to do direct ifnet.if_start first, if there is 2257 * contention on ifnet's serializer, ifnet.if_start will 2258 * be scheduled on ifnet's CPU. 2259 */ 2260 if (!ifnet_tryserialize_tx(ifp)) { 2261 /* 2262 * ifnet serializer contention happened, 2263 * ifnet.if_start is scheduled on ifnet's 2264 * CPU, and we keep going. 2265 */ 2266 logifstart(contend_sched, ifp); 2267 if_start_schedule(ifp); 2268 return 0; 2269 } 2270 2271 if ((ifp->if_flags & IFF_OACTIVE) == 0) { 2272 logifstart(run, ifp); 2273 ifp->if_start(ifp); 2274 if ((ifp->if_flags & 2275 (IFF_OACTIVE | IFF_RUNNING)) == IFF_RUNNING) 2276 running = 1; 2277 } 2278 2279 ifnet_deserialize_tx(ifp); 2280 2281 if (ifq_dispatch_schednochk || if_start_need_schedule(ifq, running)) { 2282 /* 2283 * More data need to be transmitted, ifnet.if_start is 2284 * scheduled on ifnet's CPU, and we keep going. 2285 * NOTE: ifnet.if_start interlock is not released. 2286 */ 2287 logifstart(sched, ifp); 2288 if_start_schedule(ifp); 2289 } 2290 return 0; 2291 } 2292 2293 void * 2294 ifa_create(int size, int flags) 2295 { 2296 struct ifaddr *ifa; 2297 int i; 2298 2299 KASSERT(size >= sizeof(*ifa), ("ifaddr size too small\n")); 2300 2301 ifa = kmalloc(size, M_IFADDR, flags | M_ZERO); 2302 if (ifa == NULL) 2303 return NULL; 2304 2305 ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container), 2306 M_IFADDR, M_WAITOK | M_ZERO); 2307 ifa->ifa_ncnt = ncpus; 2308 for (i = 0; i < ncpus; ++i) { 2309 struct ifaddr_container *ifac = &ifa->ifa_containers[i]; 2310 2311 ifac->ifa_magic = IFA_CONTAINER_MAGIC; 2312 ifac->ifa = ifa; 2313 ifac->ifa_refcnt = 1; 2314 } 2315 #ifdef IFADDR_DEBUG 2316 kprintf("alloc ifa %p %d\n", ifa, size); 2317 #endif 2318 return ifa; 2319 } 2320 2321 void 2322 ifac_free(struct ifaddr_container *ifac, int cpu_id) 2323 { 2324 struct ifaddr *ifa = ifac->ifa; 2325 2326 KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC); 2327 KKASSERT(ifac->ifa_refcnt == 0); 2328 KASSERT(ifac->ifa_listmask == 0, 2329 ("ifa is still on %#x lists\n", ifac->ifa_listmask)); 2330 2331 ifac->ifa_magic = IFA_CONTAINER_DEAD; 2332 2333 #ifdef IFADDR_DEBUG_VERBOSE 2334 kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id); 2335 #endif 2336 2337 KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus, 2338 ("invalid # of ifac, %d\n", ifa->ifa_ncnt)); 2339 if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) { 2340 #ifdef IFADDR_DEBUG 2341 kprintf("free ifa %p\n", ifa); 2342 #endif 2343 kfree(ifa->ifa_containers, M_IFADDR); 2344 kfree(ifa, M_IFADDR); 2345 } 2346 } 2347 2348 static void 2349 ifa_iflink_dispatch(struct netmsg *nmsg) 2350 { 2351 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2352 struct ifaddr *ifa = msg->ifa; 2353 struct ifnet *ifp = msg->ifp; 2354 int cpu = mycpuid; 2355 struct ifaddr_container *ifac; 2356 2357 crit_enter(); 2358 2359 ifac = &ifa->ifa_containers[cpu]; 2360 ASSERT_IFAC_VALID(ifac); 2361 KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0, 2362 ("ifaddr is on if_addrheads\n")); 2363 2364 ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD; 2365 if (msg->tail) 2366 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link); 2367 else 2368 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link); 2369 2370 crit_exit(); 2371 2372 ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1); 2373 } 2374 2375 void 2376 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail) 2377 { 2378 struct netmsg_ifaddr msg; 2379 2380 netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport, 2381 0, ifa_iflink_dispatch); 2382 msg.ifa = ifa; 2383 msg.ifp = ifp; 2384 msg.tail = tail; 2385 2386 ifa_domsg(&msg.netmsg.nm_lmsg, 0); 2387 } 2388 2389 static void 2390 ifa_ifunlink_dispatch(struct netmsg *nmsg) 2391 { 2392 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2393 struct ifaddr *ifa = msg->ifa; 2394 struct ifnet *ifp = msg->ifp; 2395 int cpu = mycpuid; 2396 struct ifaddr_container *ifac; 2397 2398 crit_enter(); 2399 2400 ifac = &ifa->ifa_containers[cpu]; 2401 ASSERT_IFAC_VALID(ifac); 2402 KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD, 2403 ("ifaddr is not on if_addrhead\n")); 2404 2405 TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link); 2406 ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD; 2407 2408 crit_exit(); 2409 2410 ifa_forwardmsg(&nmsg->nm_lmsg, cpu + 1); 2411 } 2412 2413 void 2414 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp) 2415 { 2416 struct netmsg_ifaddr msg; 2417 2418 netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport, 2419 0, ifa_ifunlink_dispatch); 2420 msg.ifa = ifa; 2421 msg.ifp = ifp; 2422 2423 ifa_domsg(&msg.netmsg.nm_lmsg, 0); 2424 } 2425 2426 static void 2427 ifa_destroy_dispatch(struct netmsg *nmsg) 2428 { 2429 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2430 2431 IFAFREE(msg->ifa); 2432 ifa_forwardmsg(&nmsg->nm_lmsg, mycpuid + 1); 2433 } 2434 2435 void 2436 ifa_destroy(struct ifaddr *ifa) 2437 { 2438 struct netmsg_ifaddr msg; 2439 2440 netmsg_init(&msg.netmsg, NULL, &curthread->td_msgport, 2441 0, ifa_destroy_dispatch); 2442 msg.ifa = ifa; 2443 2444 ifa_domsg(&msg.netmsg.nm_lmsg, 0); 2445 } 2446 2447 struct lwkt_port * 2448 ifnet_portfn(int cpu) 2449 { 2450 return &ifnet_threads[cpu].td_msgport; 2451 } 2452 2453 void 2454 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu) 2455 { 2456 KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus); 2457 2458 if (next_cpu < ncpus) 2459 lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg); 2460 else 2461 lwkt_replymsg(lmsg, 0); 2462 } 2463 2464 int 2465 ifnet_domsg(struct lwkt_msg *lmsg, int cpu) 2466 { 2467 KKASSERT(cpu < ncpus); 2468 return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0); 2469 } 2470 2471 void 2472 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu) 2473 { 2474 KKASSERT(cpu < ncpus); 2475 lwkt_sendmsg(ifnet_portfn(cpu), lmsg); 2476 } 2477 2478 static void 2479 ifnetinit(void *dummy __unused) 2480 { 2481 int i; 2482 2483 for (i = 0; i < ncpus; ++i) { 2484 struct thread *thr = &ifnet_threads[i]; 2485 2486 lwkt_create(netmsg_service_loop, &ifnet_mpsafe_thread, NULL, 2487 thr, TDF_NETWORK | TDF_MPSAFE, i, "ifnet %d", i); 2488 netmsg_service_port_init(&thr->td_msgport); 2489 } 2490 } 2491 2492 struct ifnet * 2493 ifnet_byindex(unsigned short idx) 2494 { 2495 if (idx > if_index) 2496 return NULL; 2497 return ifindex2ifnet[idx]; 2498 } 2499 2500 struct ifaddr * 2501 ifaddr_byindex(unsigned short idx) 2502 { 2503 struct ifnet *ifp; 2504 2505 ifp = ifnet_byindex(idx); 2506 if (!ifp) 2507 return NULL; 2508 return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 2509 } 2510 2511 void 2512 if_register_com_alloc(u_char type, 2513 if_com_alloc_t *a, if_com_free_t *f) 2514 { 2515 2516 KASSERT(if_com_alloc[type] == NULL, 2517 ("if_register_com_alloc: %d already registered", type)); 2518 KASSERT(if_com_free[type] == NULL, 2519 ("if_register_com_alloc: %d free already registered", type)); 2520 2521 if_com_alloc[type] = a; 2522 if_com_free[type] = f; 2523 } 2524 2525 void 2526 if_deregister_com_alloc(u_char type) 2527 { 2528 2529 KASSERT(if_com_alloc[type] != NULL, 2530 ("if_deregister_com_alloc: %d not registered", type)); 2531 KASSERT(if_com_free[type] != NULL, 2532 ("if_deregister_com_alloc: %d free not registered", type)); 2533 if_com_alloc[type] = NULL; 2534 if_com_free[type] = NULL; 2535 } 2536