1 /* 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)if.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $ 35 */ 36 37 #include "opt_compat.h" 38 #include "opt_inet6.h" 39 #include "opt_inet.h" 40 #include "opt_ifpoll.h" 41 42 #include <sys/param.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/priv.h> 48 #include <sys/protosw.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/socketops.h> 52 #include <sys/protosw.h> 53 #include <sys/kernel.h> 54 #include <sys/ktr.h> 55 #include <sys/mutex.h> 56 #include <sys/sockio.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 #include <sys/domain.h> 60 #include <sys/thread.h> 61 #include <sys/serialize.h> 62 #include <sys/bus.h> 63 64 #include <sys/thread2.h> 65 #include <sys/msgport2.h> 66 #include <sys/mutex2.h> 67 68 #include <net/if.h> 69 #include <net/if_arp.h> 70 #include <net/if_dl.h> 71 #include <net/if_types.h> 72 #include <net/if_var.h> 73 #include <net/ifq_var.h> 74 #include <net/radix.h> 75 #include <net/route.h> 76 #include <net/if_clone.h> 77 #include <net/netisr.h> 78 #include <net/netmsg2.h> 79 80 #include <machine/atomic.h> 81 #include <machine/stdarg.h> 82 #include <machine/smp.h> 83 84 #if defined(INET) || defined(INET6) 85 /*XXX*/ 86 #include <netinet/in.h> 87 #include <netinet/in_var.h> 88 #include <netinet/if_ether.h> 89 #ifdef INET6 90 #include <netinet6/in6_var.h> 91 #include <netinet6/in6_ifattach.h> 92 #endif 93 #endif 94 95 #if defined(COMPAT_43) 96 #include <emulation/43bsd/43bsd_socket.h> 97 #endif /* COMPAT_43 */ 98 99 struct netmsg_ifaddr { 100 struct netmsg_base base; 101 struct ifaddr *ifa; 102 struct ifnet *ifp; 103 int tail; 104 }; 105 106 struct ifsubq_stage_head { 107 TAILQ_HEAD(, ifsubq_stage) stg_head; 108 } __cachealign; 109 110 /* 111 * System initialization 112 */ 113 static void if_attachdomain(void *); 114 static void if_attachdomain1(struct ifnet *); 115 static int ifconf(u_long, caddr_t, struct ucred *); 116 static void ifinit(void *); 117 static void ifnetinit(void *); 118 static void if_slowtimo(void *); 119 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 120 static int if_rtdel(struct radix_node *, void *); 121 122 /* Helper functions */ 123 static void ifsq_watchdog_reset(struct ifsubq_watchdog *); 124 125 #ifdef INET6 126 /* 127 * XXX: declare here to avoid to include many inet6 related files.. 128 * should be more generalized? 129 */ 130 extern void nd6_setmtu(struct ifnet *); 131 #endif 132 133 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 134 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 135 136 static int ifsq_stage_cntmax = 4; 137 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax); 138 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW, 139 &ifsq_stage_cntmax, 0, "ifq staging packet count max"); 140 141 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL) 142 /* Must be after netisr_init */ 143 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL) 144 145 static if_com_alloc_t *if_com_alloc[256]; 146 static if_com_free_t *if_com_free[256]; 147 148 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 149 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 150 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure"); 151 152 int ifqmaxlen = IFQ_MAXLEN; 153 struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet); 154 155 struct callout if_slowtimo_timer; 156 157 int if_index = 0; 158 struct ifnet **ifindex2ifnet = NULL; 159 static struct thread ifnet_threads[MAXCPU]; 160 161 static struct ifsubq_stage_head ifsubq_stage_heads[MAXCPU]; 162 163 #ifdef notyet 164 #define IFQ_KTR_STRING "ifq=%p" 165 #define IFQ_KTR_ARGS struct ifaltq *ifq 166 #ifndef KTR_IFQ 167 #define KTR_IFQ KTR_ALL 168 #endif 169 KTR_INFO_MASTER(ifq); 170 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS); 171 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS); 172 #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg) 173 174 #define IF_START_KTR_STRING "ifp=%p" 175 #define IF_START_KTR_ARGS struct ifnet *ifp 176 #ifndef KTR_IF_START 177 #define KTR_IF_START KTR_ALL 178 #endif 179 KTR_INFO_MASTER(if_start); 180 KTR_INFO(KTR_IF_START, if_start, run, 0, 181 IF_START_KTR_STRING, IF_START_KTR_ARGS); 182 KTR_INFO(KTR_IF_START, if_start, sched, 1, 183 IF_START_KTR_STRING, IF_START_KTR_ARGS); 184 KTR_INFO(KTR_IF_START, if_start, avoid, 2, 185 IF_START_KTR_STRING, IF_START_KTR_ARGS); 186 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3, 187 IF_START_KTR_STRING, IF_START_KTR_ARGS); 188 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4, 189 IF_START_KTR_STRING, IF_START_KTR_ARGS); 190 #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg) 191 #endif 192 193 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head); 194 195 /* 196 * Network interface utility routines. 197 * 198 * Routines with ifa_ifwith* names take sockaddr *'s as 199 * parameters. 200 */ 201 /* ARGSUSED*/ 202 void 203 ifinit(void *dummy) 204 { 205 struct ifnet *ifp; 206 207 callout_init(&if_slowtimo_timer); 208 209 crit_enter(); 210 TAILQ_FOREACH(ifp, &ifnet, if_link) { 211 if (ifp->if_snd.altq_maxlen == 0) { 212 if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n"); 213 ifq_set_maxlen(&ifp->if_snd, ifqmaxlen); 214 } 215 } 216 crit_exit(); 217 218 if_slowtimo(0); 219 } 220 221 static void 222 ifsq_ifstart_ipifunc(void *arg) 223 { 224 struct ifaltq_subque *ifsq = arg; 225 struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid); 226 227 crit_enter(); 228 if (lmsg->ms_flags & MSGF_DONE) 229 lwkt_sendmsg(netisr_portfn(mycpuid), lmsg); 230 crit_exit(); 231 } 232 233 static __inline void 234 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage) 235 { 236 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED); 237 TAILQ_REMOVE(&head->stg_head, stage, stg_link); 238 stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED); 239 stage->stg_cnt = 0; 240 stage->stg_len = 0; 241 } 242 243 static __inline void 244 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage) 245 { 246 KKASSERT((stage->stg_flags & 247 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0); 248 stage->stg_flags |= IFSQ_STAGE_FLAG_QUED; 249 TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link); 250 } 251 252 /* 253 * Schedule ifnet.if_start on ifnet's CPU 254 */ 255 static void 256 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force) 257 { 258 int cpu; 259 260 if (!force && curthread->td_type == TD_TYPE_NETISR && 261 ifsq_stage_cntmax > 0) { 262 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid); 263 264 stage->stg_cnt = 0; 265 stage->stg_len = 0; 266 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0) 267 ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage); 268 stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED; 269 return; 270 } 271 272 cpu = ifsq_get_cpuid(ifsq); 273 if (cpu != mycpuid) 274 lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq); 275 else 276 ifsq_ifstart_ipifunc(ifsq); 277 } 278 279 /* 280 * NOTE: 281 * This function will release ifnet.if_start interlock, 282 * if ifnet.if_start does not need to be scheduled 283 */ 284 static __inline int 285 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running) 286 { 287 if (!running || ifsq_is_empty(ifsq) 288 #ifdef ALTQ 289 || ifsq->ifsq_altq->altq_tbr != NULL 290 #endif 291 ) { 292 ALTQ_SQ_LOCK(ifsq); 293 /* 294 * ifnet.if_start interlock is released, if: 295 * 1) Hardware can not take any packets, due to 296 * o interface is marked down 297 * o hardware queue is full (ifq_is_oactive) 298 * Under the second situation, hardware interrupt 299 * or polling(4) will call/schedule ifnet.if_start 300 * when hardware queue is ready 301 * 2) There is not packet in the ifnet.if_snd. 302 * Further ifq_dispatch or ifq_handoff will call/ 303 * schedule ifnet.if_start 304 * 3) TBR is used and it does not allow further 305 * dequeueing. 306 * TBR callout will call ifnet.if_start 307 */ 308 if (!running || !ifsq_data_ready(ifsq)) { 309 ifsq_clr_started(ifsq); 310 ALTQ_SQ_UNLOCK(ifsq); 311 return 0; 312 } 313 ALTQ_SQ_UNLOCK(ifsq); 314 } 315 return 1; 316 } 317 318 static void 319 ifsq_ifstart_dispatch(netmsg_t msg) 320 { 321 struct lwkt_msg *lmsg = &msg->base.lmsg; 322 struct ifaltq_subque *ifsq = lmsg->u.ms_resultp; 323 struct ifnet *ifp = ifsq_get_ifp(ifsq); 324 int running = 0, need_sched; 325 326 crit_enter(); 327 lwkt_replymsg(lmsg, 0); /* reply ASAP */ 328 crit_exit(); 329 330 if (mycpuid != ifsq_get_cpuid(ifsq)) { 331 /* 332 * We need to chase the ifnet CPU change. 333 */ 334 ifsq_ifstart_schedule(ifsq, 1); 335 return; 336 } 337 338 ifnet_serialize_tx(ifp, ifsq); 339 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) { 340 ifp->if_start(ifp, ifsq); 341 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) 342 running = 1; 343 } 344 need_sched = ifsq_ifstart_need_schedule(ifsq, running); 345 ifnet_deserialize_tx(ifp, ifsq); 346 347 if (need_sched) { 348 /* 349 * More data need to be transmitted, ifnet.if_start is 350 * scheduled on ifnet's CPU, and we keep going. 351 * NOTE: ifnet.if_start interlock is not released. 352 */ 353 ifsq_ifstart_schedule(ifsq, 0); 354 } 355 } 356 357 /* Device driver ifnet.if_start helper function */ 358 void 359 ifsq_devstart(struct ifaltq_subque *ifsq) 360 { 361 struct ifnet *ifp = ifsq_get_ifp(ifsq); 362 int running = 0; 363 364 ASSERT_IFNET_SERIALIZED_TX(ifp, ifsq); 365 366 ALTQ_SQ_LOCK(ifsq); 367 if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) { 368 ALTQ_SQ_UNLOCK(ifsq); 369 return; 370 } 371 ifsq_set_started(ifsq); 372 ALTQ_SQ_UNLOCK(ifsq); 373 374 ifp->if_start(ifp, ifsq); 375 376 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) 377 running = 1; 378 379 if (ifsq_ifstart_need_schedule(ifsq, running)) { 380 /* 381 * More data need to be transmitted, ifnet.if_start is 382 * scheduled on ifnet's CPU, and we keep going. 383 * NOTE: ifnet.if_start interlock is not released. 384 */ 385 ifsq_ifstart_schedule(ifsq, 0); 386 } 387 } 388 389 void 390 if_devstart(struct ifnet *ifp) 391 { 392 ifsq_devstart(ifq_get_subq_default(&ifp->if_snd)); 393 } 394 395 /* Device driver ifnet.if_start schedule helper function */ 396 void 397 ifsq_devstart_sched(struct ifaltq_subque *ifsq) 398 { 399 ifsq_ifstart_schedule(ifsq, 1); 400 } 401 402 void 403 if_devstart_sched(struct ifnet *ifp) 404 { 405 ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd)); 406 } 407 408 static void 409 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 410 { 411 lwkt_serialize_enter(ifp->if_serializer); 412 } 413 414 static void 415 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 416 { 417 lwkt_serialize_exit(ifp->if_serializer); 418 } 419 420 static int 421 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 422 { 423 return lwkt_serialize_try(ifp->if_serializer); 424 } 425 426 #ifdef INVARIANTS 427 static void 428 if_default_serialize_assert(struct ifnet *ifp, 429 enum ifnet_serialize slz __unused, 430 boolean_t serialized) 431 { 432 if (serialized) 433 ASSERT_SERIALIZED(ifp->if_serializer); 434 else 435 ASSERT_NOT_SERIALIZED(ifp->if_serializer); 436 } 437 #endif 438 439 /* 440 * Attach an interface to the list of "active" interfaces. 441 * 442 * The serializer is optional. If non-NULL access to the interface 443 * may be MPSAFE. 444 */ 445 void 446 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer) 447 { 448 unsigned socksize, ifasize; 449 int namelen, masklen; 450 struct sockaddr_dl *sdl; 451 struct ifaddr *ifa; 452 struct ifaltq *ifq; 453 int i, q; 454 455 static int if_indexlim = 8; 456 457 if (ifp->if_serialize != NULL) { 458 KASSERT(ifp->if_deserialize != NULL && 459 ifp->if_tryserialize != NULL && 460 ifp->if_serialize_assert != NULL, 461 ("serialize functions are partially setup")); 462 463 /* 464 * If the device supplies serialize functions, 465 * then clear if_serializer to catch any invalid 466 * usage of this field. 467 */ 468 KASSERT(serializer == NULL, 469 ("both serialize functions and default serializer " 470 "are supplied")); 471 ifp->if_serializer = NULL; 472 } else { 473 KASSERT(ifp->if_deserialize == NULL && 474 ifp->if_tryserialize == NULL && 475 ifp->if_serialize_assert == NULL, 476 ("serialize functions are partially setup")); 477 ifp->if_serialize = if_default_serialize; 478 ifp->if_deserialize = if_default_deserialize; 479 ifp->if_tryserialize = if_default_tryserialize; 480 #ifdef INVARIANTS 481 ifp->if_serialize_assert = if_default_serialize_assert; 482 #endif 483 484 /* 485 * The serializer can be passed in from the device, 486 * allowing the same serializer to be used for both 487 * the interrupt interlock and the device queue. 488 * If not specified, the netif structure will use an 489 * embedded serializer. 490 */ 491 if (serializer == NULL) { 492 serializer = &ifp->if_default_serializer; 493 lwkt_serialize_init(serializer); 494 } 495 ifp->if_serializer = serializer; 496 } 497 498 mtx_init(&ifp->if_ioctl_mtx); 499 mtx_lock(&ifp->if_ioctl_mtx); 500 501 TAILQ_INSERT_TAIL(&ifnet, ifp, if_link); 502 ifp->if_index = ++if_index; 503 504 /* 505 * XXX - 506 * The old code would work if the interface passed a pre-existing 507 * chain of ifaddrs to this code. We don't trust our callers to 508 * properly initialize the tailq, however, so we no longer allow 509 * this unlikely case. 510 */ 511 ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead), 512 M_IFADDR, M_WAITOK | M_ZERO); 513 for (i = 0; i < ncpus; ++i) 514 TAILQ_INIT(&ifp->if_addrheads[i]); 515 516 TAILQ_INIT(&ifp->if_prefixhead); 517 TAILQ_INIT(&ifp->if_multiaddrs); 518 TAILQ_INIT(&ifp->if_groups); 519 getmicrotime(&ifp->if_lastchange); 520 if (ifindex2ifnet == NULL || if_index >= if_indexlim) { 521 unsigned int n; 522 struct ifnet **q; 523 524 if_indexlim <<= 1; 525 526 /* grow ifindex2ifnet */ 527 n = if_indexlim * sizeof(*q); 528 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO); 529 if (ifindex2ifnet) { 530 bcopy(ifindex2ifnet, q, n/2); 531 kfree(ifindex2ifnet, M_IFADDR); 532 } 533 ifindex2ifnet = q; 534 } 535 536 ifindex2ifnet[if_index] = ifp; 537 538 /* 539 * create a Link Level name for this device 540 */ 541 namelen = strlen(ifp->if_xname); 542 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; 543 socksize = masklen + ifp->if_addrlen; 544 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1))) 545 if (socksize < sizeof(*sdl)) 546 socksize = sizeof(*sdl); 547 socksize = ROUNDUP(socksize); 548 #undef ROUNDUP 549 ifasize = sizeof(struct ifaddr) + 2 * socksize; 550 ifa = ifa_create(ifasize, M_WAITOK); 551 sdl = (struct sockaddr_dl *)(ifa + 1); 552 sdl->sdl_len = socksize; 553 sdl->sdl_family = AF_LINK; 554 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 555 sdl->sdl_nlen = namelen; 556 sdl->sdl_index = ifp->if_index; 557 sdl->sdl_type = ifp->if_type; 558 ifp->if_lladdr = ifa; 559 ifa->ifa_ifp = ifp; 560 ifa->ifa_rtrequest = link_rtrequest; 561 ifa->ifa_addr = (struct sockaddr *)sdl; 562 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 563 ifa->ifa_netmask = (struct sockaddr *)sdl; 564 sdl->sdl_len = masklen; 565 while (namelen != 0) 566 sdl->sdl_data[--namelen] = 0xff; 567 ifa_iflink(ifa, ifp, 0 /* Insert head */); 568 569 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 570 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 571 572 if (ifp->if_mapsubq == NULL) 573 ifp->if_mapsubq = ifq_mapsubq_default; 574 575 ifq = &ifp->if_snd; 576 ifq->altq_type = 0; 577 ifq->altq_disc = NULL; 578 ifq->altq_flags &= ALTQF_CANTCHANGE; 579 ifq->altq_tbr = NULL; 580 ifq->altq_ifp = ifp; 581 582 if (ifq->altq_subq_cnt <= 0) 583 ifq->altq_subq_cnt = 1; 584 ifq->altq_subq = kmalloc_cachealign( 585 ifq->altq_subq_cnt * sizeof(struct ifaltq_subque), 586 M_DEVBUF, M_WAITOK | M_ZERO); 587 588 if (ifq->altq_maxlen == 0) { 589 if_printf(ifp, "driver didn't set ifq_maxlen\n"); 590 ifq_set_maxlen(ifq, ifqmaxlen); 591 } 592 593 for (q = 0; q < ifq->altq_subq_cnt; ++q) { 594 struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; 595 596 ALTQ_SQ_LOCK_INIT(ifsq); 597 ifsq->ifsq_index = q; 598 599 ifsq->ifsq_altq = ifq; 600 ifsq->ifsq_ifp = ifp; 601 602 ifsq->ifq_maxlen = ifq->altq_maxlen; 603 ifsq->ifsq_prepended = NULL; 604 ifsq->ifsq_started = 0; 605 ifsq->ifsq_hw_oactive = 0; 606 ifsq_set_cpuid(ifsq, 0); 607 608 ifsq->ifsq_stage = 609 kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage), 610 M_DEVBUF, M_WAITOK | M_ZERO); 611 for (i = 0; i < ncpus; ++i) 612 ifsq->ifsq_stage[i].stg_subq = ifsq; 613 614 ifsq->ifsq_ifstart_nmsg = 615 kmalloc(ncpus * sizeof(struct netmsg_base), 616 M_LWKTMSG, M_WAITOK); 617 for (i = 0; i < ncpus; ++i) { 618 netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL, 619 &netisr_adone_rport, 0, ifsq_ifstart_dispatch); 620 ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq; 621 } 622 } 623 ifq_set_classic(ifq); 624 625 if (!SLIST_EMPTY(&domains)) 626 if_attachdomain1(ifp); 627 628 /* Announce the interface. */ 629 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 630 631 mtx_unlock(&ifp->if_ioctl_mtx); 632 } 633 634 static void 635 if_attachdomain(void *dummy) 636 { 637 struct ifnet *ifp; 638 639 crit_enter(); 640 TAILQ_FOREACH(ifp, &ifnet, if_list) 641 if_attachdomain1(ifp); 642 crit_exit(); 643 } 644 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, 645 if_attachdomain, NULL); 646 647 static void 648 if_attachdomain1(struct ifnet *ifp) 649 { 650 struct domain *dp; 651 652 crit_enter(); 653 654 /* address family dependent data region */ 655 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 656 SLIST_FOREACH(dp, &domains, dom_next) 657 if (dp->dom_ifattach) 658 ifp->if_afdata[dp->dom_family] = 659 (*dp->dom_ifattach)(ifp); 660 crit_exit(); 661 } 662 663 /* 664 * Purge all addresses whose type is _not_ AF_LINK 665 */ 666 void 667 if_purgeaddrs_nolink(struct ifnet *ifp) 668 { 669 struct ifaddr_container *ifac, *next; 670 671 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid], 672 ifa_link, next) { 673 struct ifaddr *ifa = ifac->ifa; 674 675 /* Leave link ifaddr as it is */ 676 if (ifa->ifa_addr->sa_family == AF_LINK) 677 continue; 678 #ifdef INET 679 /* XXX: Ugly!! ad hoc just for INET */ 680 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) { 681 struct ifaliasreq ifr; 682 #ifdef IFADDR_DEBUG_VERBOSE 683 int i; 684 685 kprintf("purge in4 addr %p: ", ifa); 686 for (i = 0; i < ncpus; ++i) 687 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 688 kprintf("\n"); 689 #endif 690 691 bzero(&ifr, sizeof ifr); 692 ifr.ifra_addr = *ifa->ifa_addr; 693 if (ifa->ifa_dstaddr) 694 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 695 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 696 NULL) == 0) 697 continue; 698 } 699 #endif /* INET */ 700 #ifdef INET6 701 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) { 702 #ifdef IFADDR_DEBUG_VERBOSE 703 int i; 704 705 kprintf("purge in6 addr %p: ", ifa); 706 for (i = 0; i < ncpus; ++i) 707 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 708 kprintf("\n"); 709 #endif 710 711 in6_purgeaddr(ifa); 712 /* ifp_addrhead is already updated */ 713 continue; 714 } 715 #endif /* INET6 */ 716 ifa_ifunlink(ifa, ifp); 717 ifa_destroy(ifa); 718 } 719 } 720 721 static void 722 ifq_stage_detach_handler(netmsg_t nmsg) 723 { 724 struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp; 725 int q; 726 727 for (q = 0; q < ifq->altq_subq_cnt; ++q) { 728 struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; 729 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid); 730 731 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) 732 ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage); 733 } 734 lwkt_replymsg(&nmsg->lmsg, 0); 735 } 736 737 static void 738 ifq_stage_detach(struct ifaltq *ifq) 739 { 740 struct netmsg_base base; 741 int cpu; 742 743 netmsg_init(&base, NULL, &curthread->td_msgport, 0, 744 ifq_stage_detach_handler); 745 base.lmsg.u.ms_resultp = ifq; 746 747 for (cpu = 0; cpu < ncpus; ++cpu) 748 lwkt_domsg(netisr_portfn(cpu), &base.lmsg, 0); 749 } 750 751 /* 752 * Detach an interface, removing it from the 753 * list of "active" interfaces. 754 */ 755 void 756 if_detach(struct ifnet *ifp) 757 { 758 struct radix_node_head *rnh; 759 int i, q; 760 int cpu, origcpu; 761 struct domain *dp; 762 763 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 764 765 /* 766 * Remove routes and flush queues. 767 */ 768 crit_enter(); 769 #ifdef IFPOLL_ENABLE 770 if (ifp->if_flags & IFF_NPOLLING) 771 ifpoll_deregister(ifp); 772 #endif 773 if_down(ifp); 774 775 #ifdef ALTQ 776 if (ifq_is_enabled(&ifp->if_snd)) 777 altq_disable(&ifp->if_snd); 778 if (ifq_is_attached(&ifp->if_snd)) 779 altq_detach(&ifp->if_snd); 780 #endif 781 782 /* 783 * Clean up all addresses. 784 */ 785 ifp->if_lladdr = NULL; 786 787 if_purgeaddrs_nolink(ifp); 788 if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) { 789 struct ifaddr *ifa; 790 791 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 792 KASSERT(ifa->ifa_addr->sa_family == AF_LINK, 793 ("non-link ifaddr is left on if_addrheads")); 794 795 ifa_ifunlink(ifa, ifp); 796 ifa_destroy(ifa); 797 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]), 798 ("there are still ifaddrs left on if_addrheads")); 799 } 800 801 #ifdef INET 802 /* 803 * Remove all IPv4 kernel structures related to ifp. 804 */ 805 in_ifdetach(ifp); 806 #endif 807 808 #ifdef INET6 809 /* 810 * Remove all IPv6 kernel structs related to ifp. This should be done 811 * before removing routing entries below, since IPv6 interface direct 812 * routes are expected to be removed by the IPv6-specific kernel API. 813 * Otherwise, the kernel will detect some inconsistency and bark it. 814 */ 815 in6_ifdetach(ifp); 816 #endif 817 818 /* 819 * Delete all remaining routes using this interface 820 * Unfortuneatly the only way to do this is to slog through 821 * the entire routing table looking for routes which point 822 * to this interface...oh well... 823 */ 824 origcpu = mycpuid; 825 for (cpu = 0; cpu < ncpus; cpu++) { 826 lwkt_migratecpu(cpu); 827 for (i = 1; i <= AF_MAX; i++) { 828 if ((rnh = rt_tables[cpu][i]) == NULL) 829 continue; 830 rnh->rnh_walktree(rnh, if_rtdel, ifp); 831 } 832 } 833 lwkt_migratecpu(origcpu); 834 835 /* Announce that the interface is gone. */ 836 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 837 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 838 839 SLIST_FOREACH(dp, &domains, dom_next) 840 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 841 (*dp->dom_ifdetach)(ifp, 842 ifp->if_afdata[dp->dom_family]); 843 844 /* 845 * Remove interface from ifindex2ifp[] and maybe decrement if_index. 846 */ 847 ifindex2ifnet[ifp->if_index] = NULL; 848 while (if_index > 0 && ifindex2ifnet[if_index] == NULL) 849 if_index--; 850 851 TAILQ_REMOVE(&ifnet, ifp, if_link); 852 kfree(ifp->if_addrheads, M_IFADDR); 853 854 lwkt_synchronize_ipiqs("if_detach"); 855 ifq_stage_detach(&ifp->if_snd); 856 857 for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) { 858 struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q]; 859 860 kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG); 861 kfree(ifsq->ifsq_stage, M_DEVBUF); 862 } 863 kfree(ifp->if_snd.altq_subq, M_DEVBUF); 864 865 crit_exit(); 866 } 867 868 /* 869 * Create interface group without members 870 */ 871 struct ifg_group * 872 if_creategroup(const char *groupname) 873 { 874 struct ifg_group *ifg = NULL; 875 876 if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group), 877 M_TEMP, M_NOWAIT)) == NULL) 878 return (NULL); 879 880 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 881 ifg->ifg_refcnt = 0; 882 ifg->ifg_carp_demoted = 0; 883 TAILQ_INIT(&ifg->ifg_members); 884 #if NPF > 0 885 pfi_attach_ifgroup(ifg); 886 #endif 887 TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next); 888 889 return (ifg); 890 } 891 892 /* 893 * Add a group to an interface 894 */ 895 int 896 if_addgroup(struct ifnet *ifp, const char *groupname) 897 { 898 struct ifg_list *ifgl; 899 struct ifg_group *ifg = NULL; 900 struct ifg_member *ifgm; 901 902 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 903 groupname[strlen(groupname) - 1] <= '9') 904 return (EINVAL); 905 906 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 907 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 908 return (EEXIST); 909 910 if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) 911 return (ENOMEM); 912 913 if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 914 kfree(ifgl, M_TEMP); 915 return (ENOMEM); 916 } 917 918 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 919 if (!strcmp(ifg->ifg_group, groupname)) 920 break; 921 922 if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) { 923 kfree(ifgl, M_TEMP); 924 kfree(ifgm, M_TEMP); 925 return (ENOMEM); 926 } 927 928 ifg->ifg_refcnt++; 929 ifgl->ifgl_group = ifg; 930 ifgm->ifgm_ifp = ifp; 931 932 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 933 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 934 935 #if NPF > 0 936 pfi_group_change(groupname); 937 #endif 938 939 return (0); 940 } 941 942 /* 943 * Remove a group from an interface 944 */ 945 int 946 if_delgroup(struct ifnet *ifp, const char *groupname) 947 { 948 struct ifg_list *ifgl; 949 struct ifg_member *ifgm; 950 951 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 952 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 953 break; 954 if (ifgl == NULL) 955 return (ENOENT); 956 957 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 958 959 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 960 if (ifgm->ifgm_ifp == ifp) 961 break; 962 963 if (ifgm != NULL) { 964 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 965 kfree(ifgm, M_TEMP); 966 } 967 968 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 969 TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next); 970 #if NPF > 0 971 pfi_detach_ifgroup(ifgl->ifgl_group); 972 #endif 973 kfree(ifgl->ifgl_group, M_TEMP); 974 } 975 976 kfree(ifgl, M_TEMP); 977 978 #if NPF > 0 979 pfi_group_change(groupname); 980 #endif 981 982 return (0); 983 } 984 985 /* 986 * Stores all groups from an interface in memory pointed 987 * to by data 988 */ 989 int 990 if_getgroup(caddr_t data, struct ifnet *ifp) 991 { 992 int len, error; 993 struct ifg_list *ifgl; 994 struct ifg_req ifgrq, *ifgp; 995 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 996 997 if (ifgr->ifgr_len == 0) { 998 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 999 ifgr->ifgr_len += sizeof(struct ifg_req); 1000 return (0); 1001 } 1002 1003 len = ifgr->ifgr_len; 1004 ifgp = ifgr->ifgr_groups; 1005 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1006 if (len < sizeof(ifgrq)) 1007 return (EINVAL); 1008 bzero(&ifgrq, sizeof ifgrq); 1009 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1010 sizeof(ifgrq.ifgrq_group)); 1011 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 1012 sizeof(struct ifg_req)))) 1013 return (error); 1014 len -= sizeof(ifgrq); 1015 ifgp++; 1016 } 1017 1018 return (0); 1019 } 1020 1021 /* 1022 * Stores all members of a group in memory pointed to by data 1023 */ 1024 int 1025 if_getgroupmembers(caddr_t data) 1026 { 1027 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 1028 struct ifg_group *ifg; 1029 struct ifg_member *ifgm; 1030 struct ifg_req ifgrq, *ifgp; 1031 int len, error; 1032 1033 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 1034 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 1035 break; 1036 if (ifg == NULL) 1037 return (ENOENT); 1038 1039 if (ifgr->ifgr_len == 0) { 1040 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1041 ifgr->ifgr_len += sizeof(ifgrq); 1042 return (0); 1043 } 1044 1045 len = ifgr->ifgr_len; 1046 ifgp = ifgr->ifgr_groups; 1047 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1048 if (len < sizeof(ifgrq)) 1049 return (EINVAL); 1050 bzero(&ifgrq, sizeof ifgrq); 1051 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1052 sizeof(ifgrq.ifgrq_member)); 1053 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 1054 sizeof(struct ifg_req)))) 1055 return (error); 1056 len -= sizeof(ifgrq); 1057 ifgp++; 1058 } 1059 1060 return (0); 1061 } 1062 1063 /* 1064 * Delete Routes for a Network Interface 1065 * 1066 * Called for each routing entry via the rnh->rnh_walktree() call above 1067 * to delete all route entries referencing a detaching network interface. 1068 * 1069 * Arguments: 1070 * rn pointer to node in the routing table 1071 * arg argument passed to rnh->rnh_walktree() - detaching interface 1072 * 1073 * Returns: 1074 * 0 successful 1075 * errno failed - reason indicated 1076 * 1077 */ 1078 static int 1079 if_rtdel(struct radix_node *rn, void *arg) 1080 { 1081 struct rtentry *rt = (struct rtentry *)rn; 1082 struct ifnet *ifp = arg; 1083 int err; 1084 1085 if (rt->rt_ifp == ifp) { 1086 1087 /* 1088 * Protect (sorta) against walktree recursion problems 1089 * with cloned routes 1090 */ 1091 if (!(rt->rt_flags & RTF_UP)) 1092 return (0); 1093 1094 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, 1095 rt_mask(rt), rt->rt_flags, 1096 NULL); 1097 if (err) { 1098 log(LOG_WARNING, "if_rtdel: error %d\n", err); 1099 } 1100 } 1101 1102 return (0); 1103 } 1104 1105 /* 1106 * Locate an interface based on a complete address. 1107 */ 1108 struct ifaddr * 1109 ifa_ifwithaddr(struct sockaddr *addr) 1110 { 1111 struct ifnet *ifp; 1112 1113 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1114 struct ifaddr_container *ifac; 1115 1116 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1117 struct ifaddr *ifa = ifac->ifa; 1118 1119 if (ifa->ifa_addr->sa_family != addr->sa_family) 1120 continue; 1121 if (sa_equal(addr, ifa->ifa_addr)) 1122 return (ifa); 1123 if ((ifp->if_flags & IFF_BROADCAST) && 1124 ifa->ifa_broadaddr && 1125 /* IPv6 doesn't have broadcast */ 1126 ifa->ifa_broadaddr->sa_len != 0 && 1127 sa_equal(ifa->ifa_broadaddr, addr)) 1128 return (ifa); 1129 } 1130 } 1131 return (NULL); 1132 } 1133 /* 1134 * Locate the point to point interface with a given destination address. 1135 */ 1136 struct ifaddr * 1137 ifa_ifwithdstaddr(struct sockaddr *addr) 1138 { 1139 struct ifnet *ifp; 1140 1141 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1142 struct ifaddr_container *ifac; 1143 1144 if (!(ifp->if_flags & IFF_POINTOPOINT)) 1145 continue; 1146 1147 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1148 struct ifaddr *ifa = ifac->ifa; 1149 1150 if (ifa->ifa_addr->sa_family != addr->sa_family) 1151 continue; 1152 if (ifa->ifa_dstaddr && 1153 sa_equal(addr, ifa->ifa_dstaddr)) 1154 return (ifa); 1155 } 1156 } 1157 return (NULL); 1158 } 1159 1160 /* 1161 * Find an interface on a specific network. If many, choice 1162 * is most specific found. 1163 */ 1164 struct ifaddr * 1165 ifa_ifwithnet(struct sockaddr *addr) 1166 { 1167 struct ifnet *ifp; 1168 struct ifaddr *ifa_maybe = NULL; 1169 u_int af = addr->sa_family; 1170 char *addr_data = addr->sa_data, *cplim; 1171 1172 /* 1173 * AF_LINK addresses can be looked up directly by their index number, 1174 * so do that if we can. 1175 */ 1176 if (af == AF_LINK) { 1177 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 1178 1179 if (sdl->sdl_index && sdl->sdl_index <= if_index) 1180 return (ifindex2ifnet[sdl->sdl_index]->if_lladdr); 1181 } 1182 1183 /* 1184 * Scan though each interface, looking for ones that have 1185 * addresses in this address family. 1186 */ 1187 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1188 struct ifaddr_container *ifac; 1189 1190 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1191 struct ifaddr *ifa = ifac->ifa; 1192 char *cp, *cp2, *cp3; 1193 1194 if (ifa->ifa_addr->sa_family != af) 1195 next: continue; 1196 if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) { 1197 /* 1198 * This is a bit broken as it doesn't 1199 * take into account that the remote end may 1200 * be a single node in the network we are 1201 * looking for. 1202 * The trouble is that we don't know the 1203 * netmask for the remote end. 1204 */ 1205 if (ifa->ifa_dstaddr != NULL && 1206 sa_equal(addr, ifa->ifa_dstaddr)) 1207 return (ifa); 1208 } else { 1209 /* 1210 * if we have a special address handler, 1211 * then use it instead of the generic one. 1212 */ 1213 if (ifa->ifa_claim_addr) { 1214 if ((*ifa->ifa_claim_addr)(ifa, addr)) { 1215 return (ifa); 1216 } else { 1217 continue; 1218 } 1219 } 1220 1221 /* 1222 * Scan all the bits in the ifa's address. 1223 * If a bit dissagrees with what we are 1224 * looking for, mask it with the netmask 1225 * to see if it really matters. 1226 * (A byte at a time) 1227 */ 1228 if (ifa->ifa_netmask == 0) 1229 continue; 1230 cp = addr_data; 1231 cp2 = ifa->ifa_addr->sa_data; 1232 cp3 = ifa->ifa_netmask->sa_data; 1233 cplim = ifa->ifa_netmask->sa_len + 1234 (char *)ifa->ifa_netmask; 1235 while (cp3 < cplim) 1236 if ((*cp++ ^ *cp2++) & *cp3++) 1237 goto next; /* next address! */ 1238 /* 1239 * If the netmask of what we just found 1240 * is more specific than what we had before 1241 * (if we had one) then remember the new one 1242 * before continuing to search 1243 * for an even better one. 1244 */ 1245 if (ifa_maybe == NULL || 1246 rn_refines((char *)ifa->ifa_netmask, 1247 (char *)ifa_maybe->ifa_netmask)) 1248 ifa_maybe = ifa; 1249 } 1250 } 1251 } 1252 return (ifa_maybe); 1253 } 1254 1255 /* 1256 * Find an interface address specific to an interface best matching 1257 * a given address. 1258 */ 1259 struct ifaddr * 1260 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1261 { 1262 struct ifaddr_container *ifac; 1263 char *cp, *cp2, *cp3; 1264 char *cplim; 1265 struct ifaddr *ifa_maybe = NULL; 1266 u_int af = addr->sa_family; 1267 1268 if (af >= AF_MAX) 1269 return (0); 1270 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1271 struct ifaddr *ifa = ifac->ifa; 1272 1273 if (ifa->ifa_addr->sa_family != af) 1274 continue; 1275 if (ifa_maybe == NULL) 1276 ifa_maybe = ifa; 1277 if (ifa->ifa_netmask == NULL) { 1278 if (sa_equal(addr, ifa->ifa_addr) || 1279 (ifa->ifa_dstaddr != NULL && 1280 sa_equal(addr, ifa->ifa_dstaddr))) 1281 return (ifa); 1282 continue; 1283 } 1284 if (ifp->if_flags & IFF_POINTOPOINT) { 1285 if (sa_equal(addr, ifa->ifa_dstaddr)) 1286 return (ifa); 1287 } else { 1288 cp = addr->sa_data; 1289 cp2 = ifa->ifa_addr->sa_data; 1290 cp3 = ifa->ifa_netmask->sa_data; 1291 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1292 for (; cp3 < cplim; cp3++) 1293 if ((*cp++ ^ *cp2++) & *cp3) 1294 break; 1295 if (cp3 == cplim) 1296 return (ifa); 1297 } 1298 } 1299 return (ifa_maybe); 1300 } 1301 1302 /* 1303 * Default action when installing a route with a Link Level gateway. 1304 * Lookup an appropriate real ifa to point to. 1305 * This should be moved to /sys/net/link.c eventually. 1306 */ 1307 static void 1308 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 1309 { 1310 struct ifaddr *ifa; 1311 struct sockaddr *dst; 1312 struct ifnet *ifp; 1313 1314 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1315 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL) 1316 return; 1317 ifa = ifaof_ifpforaddr(dst, ifp); 1318 if (ifa != NULL) { 1319 IFAFREE(rt->rt_ifa); 1320 IFAREF(ifa); 1321 rt->rt_ifa = ifa; 1322 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1323 ifa->ifa_rtrequest(cmd, rt, info); 1324 } 1325 } 1326 1327 /* 1328 * Mark an interface down and notify protocols of 1329 * the transition. 1330 * NOTE: must be called at splnet or eqivalent. 1331 */ 1332 void 1333 if_unroute(struct ifnet *ifp, int flag, int fam) 1334 { 1335 struct ifaddr_container *ifac; 1336 1337 ifp->if_flags &= ~flag; 1338 getmicrotime(&ifp->if_lastchange); 1339 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1340 struct ifaddr *ifa = ifac->ifa; 1341 1342 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1343 kpfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1344 } 1345 ifq_purge_all(&ifp->if_snd); 1346 rt_ifmsg(ifp); 1347 } 1348 1349 /* 1350 * Mark an interface up and notify protocols of 1351 * the transition. 1352 * NOTE: must be called at splnet or eqivalent. 1353 */ 1354 void 1355 if_route(struct ifnet *ifp, int flag, int fam) 1356 { 1357 struct ifaddr_container *ifac; 1358 1359 ifq_purge_all(&ifp->if_snd); 1360 ifp->if_flags |= flag; 1361 getmicrotime(&ifp->if_lastchange); 1362 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1363 struct ifaddr *ifa = ifac->ifa; 1364 1365 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1366 kpfctlinput(PRC_IFUP, ifa->ifa_addr); 1367 } 1368 rt_ifmsg(ifp); 1369 #ifdef INET6 1370 in6_if_up(ifp); 1371 #endif 1372 } 1373 1374 /* 1375 * Mark an interface down and notify protocols of the transition. An 1376 * interface going down is also considered to be a synchronizing event. 1377 * We must ensure that all packet processing related to the interface 1378 * has completed before we return so e.g. the caller can free the ifnet 1379 * structure that the mbufs may be referencing. 1380 * 1381 * NOTE: must be called at splnet or eqivalent. 1382 */ 1383 void 1384 if_down(struct ifnet *ifp) 1385 { 1386 if_unroute(ifp, IFF_UP, AF_UNSPEC); 1387 netmsg_service_sync(); 1388 } 1389 1390 /* 1391 * Mark an interface up and notify protocols of 1392 * the transition. 1393 * NOTE: must be called at splnet or eqivalent. 1394 */ 1395 void 1396 if_up(struct ifnet *ifp) 1397 { 1398 if_route(ifp, IFF_UP, AF_UNSPEC); 1399 } 1400 1401 /* 1402 * Process a link state change. 1403 * NOTE: must be called at splsoftnet or equivalent. 1404 */ 1405 void 1406 if_link_state_change(struct ifnet *ifp) 1407 { 1408 int link_state = ifp->if_link_state; 1409 1410 rt_ifmsg(ifp); 1411 devctl_notify("IFNET", ifp->if_xname, 1412 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); 1413 } 1414 1415 /* 1416 * Handle interface watchdog timer routines. Called 1417 * from softclock, we decrement timers (if set) and 1418 * call the appropriate interface routine on expiration. 1419 */ 1420 static void 1421 if_slowtimo(void *arg) 1422 { 1423 struct ifnet *ifp; 1424 1425 crit_enter(); 1426 1427 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1428 if (ifp->if_timer == 0 || --ifp->if_timer) 1429 continue; 1430 if (ifp->if_watchdog) { 1431 if (ifnet_tryserialize_all(ifp)) { 1432 (*ifp->if_watchdog)(ifp); 1433 ifnet_deserialize_all(ifp); 1434 } else { 1435 /* try again next timeout */ 1436 ++ifp->if_timer; 1437 } 1438 } 1439 } 1440 1441 crit_exit(); 1442 1443 callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL); 1444 } 1445 1446 /* 1447 * Map interface name to 1448 * interface structure pointer. 1449 */ 1450 struct ifnet * 1451 ifunit(const char *name) 1452 { 1453 struct ifnet *ifp; 1454 1455 /* 1456 * Search all the interfaces for this name/number 1457 */ 1458 1459 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1460 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) 1461 break; 1462 } 1463 return (ifp); 1464 } 1465 1466 1467 /* 1468 * Map interface name in a sockaddr_dl to 1469 * interface structure pointer. 1470 */ 1471 struct ifnet * 1472 if_withname(struct sockaddr *sa) 1473 { 1474 char ifname[IFNAMSIZ+1]; 1475 struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa; 1476 1477 if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) || 1478 (sdl->sdl_nlen > IFNAMSIZ) ) 1479 return NULL; 1480 1481 /* 1482 * ifunit wants a null-terminated name. It may not be null-terminated 1483 * in the sockaddr. We don't want to change the caller's sockaddr, 1484 * and there might not be room to put the trailing null anyway, so we 1485 * make a local copy that we know we can null terminate safely. 1486 */ 1487 1488 bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen); 1489 ifname[sdl->sdl_nlen] = '\0'; 1490 return ifunit(ifname); 1491 } 1492 1493 1494 /* 1495 * Interface ioctls. 1496 */ 1497 int 1498 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred) 1499 { 1500 struct ifnet *ifp; 1501 struct ifreq *ifr; 1502 struct ifstat *ifs; 1503 int error; 1504 short oif_flags; 1505 int new_flags; 1506 #ifdef COMPAT_43 1507 int ocmd; 1508 #endif 1509 size_t namelen, onamelen; 1510 char new_name[IFNAMSIZ]; 1511 struct ifaddr *ifa; 1512 struct sockaddr_dl *sdl; 1513 1514 switch (cmd) { 1515 case SIOCGIFCONF: 1516 case OSIOCGIFCONF: 1517 return (ifconf(cmd, data, cred)); 1518 default: 1519 break; 1520 } 1521 1522 ifr = (struct ifreq *)data; 1523 1524 switch (cmd) { 1525 case SIOCIFCREATE: 1526 case SIOCIFCREATE2: 1527 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1528 return (error); 1529 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), 1530 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL)); 1531 case SIOCIFDESTROY: 1532 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1533 return (error); 1534 return (if_clone_destroy(ifr->ifr_name)); 1535 case SIOCIFGCLONERS: 1536 return (if_clone_list((struct if_clonereq *)data)); 1537 default: 1538 break; 1539 } 1540 1541 /* 1542 * Nominal ioctl through interface, lookup the ifp and obtain a 1543 * lock to serialize the ifconfig ioctl operation. 1544 */ 1545 ifp = ifunit(ifr->ifr_name); 1546 if (ifp == NULL) 1547 return (ENXIO); 1548 error = 0; 1549 mtx_lock(&ifp->if_ioctl_mtx); 1550 1551 switch (cmd) { 1552 case SIOCGIFINDEX: 1553 ifr->ifr_index = ifp->if_index; 1554 break; 1555 1556 case SIOCGIFFLAGS: 1557 ifr->ifr_flags = ifp->if_flags; 1558 ifr->ifr_flagshigh = ifp->if_flags >> 16; 1559 break; 1560 1561 case SIOCGIFCAP: 1562 ifr->ifr_reqcap = ifp->if_capabilities; 1563 ifr->ifr_curcap = ifp->if_capenable; 1564 break; 1565 1566 case SIOCGIFMETRIC: 1567 ifr->ifr_metric = ifp->if_metric; 1568 break; 1569 1570 case SIOCGIFMTU: 1571 ifr->ifr_mtu = ifp->if_mtu; 1572 break; 1573 1574 case SIOCGIFTSOLEN: 1575 ifr->ifr_tsolen = ifp->if_tsolen; 1576 break; 1577 1578 case SIOCGIFDATA: 1579 error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data, 1580 sizeof(ifp->if_data)); 1581 break; 1582 1583 case SIOCGIFPHYS: 1584 ifr->ifr_phys = ifp->if_physical; 1585 break; 1586 1587 case SIOCGIFPOLLCPU: 1588 ifr->ifr_pollcpu = -1; 1589 break; 1590 1591 case SIOCSIFPOLLCPU: 1592 break; 1593 1594 case SIOCSIFFLAGS: 1595 error = priv_check_cred(cred, PRIV_ROOT, 0); 1596 if (error) 1597 break; 1598 new_flags = (ifr->ifr_flags & 0xffff) | 1599 (ifr->ifr_flagshigh << 16); 1600 if (ifp->if_flags & IFF_SMART) { 1601 /* Smart drivers twiddle their own routes */ 1602 } else if (ifp->if_flags & IFF_UP && 1603 (new_flags & IFF_UP) == 0) { 1604 crit_enter(); 1605 if_down(ifp); 1606 crit_exit(); 1607 } else if (new_flags & IFF_UP && 1608 (ifp->if_flags & IFF_UP) == 0) { 1609 crit_enter(); 1610 if_up(ifp); 1611 crit_exit(); 1612 } 1613 1614 #ifdef IFPOLL_ENABLE 1615 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) { 1616 if (new_flags & IFF_NPOLLING) 1617 ifpoll_register(ifp); 1618 else 1619 ifpoll_deregister(ifp); 1620 } 1621 #endif 1622 1623 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 1624 (new_flags &~ IFF_CANTCHANGE); 1625 if (new_flags & IFF_PPROMISC) { 1626 /* Permanently promiscuous mode requested */ 1627 ifp->if_flags |= IFF_PROMISC; 1628 } else if (ifp->if_pcount == 0) { 1629 ifp->if_flags &= ~IFF_PROMISC; 1630 } 1631 if (ifp->if_ioctl) { 1632 ifnet_serialize_all(ifp); 1633 ifp->if_ioctl(ifp, cmd, data, cred); 1634 ifnet_deserialize_all(ifp); 1635 } 1636 getmicrotime(&ifp->if_lastchange); 1637 break; 1638 1639 case SIOCSIFCAP: 1640 error = priv_check_cred(cred, PRIV_ROOT, 0); 1641 if (error) 1642 break; 1643 if (ifr->ifr_reqcap & ~ifp->if_capabilities) { 1644 error = EINVAL; 1645 break; 1646 } 1647 ifnet_serialize_all(ifp); 1648 ifp->if_ioctl(ifp, cmd, data, cred); 1649 ifnet_deserialize_all(ifp); 1650 break; 1651 1652 case SIOCSIFNAME: 1653 error = priv_check_cred(cred, PRIV_ROOT, 0); 1654 if (error) 1655 break; 1656 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 1657 if (error) 1658 break; 1659 if (new_name[0] == '\0') { 1660 error = EINVAL; 1661 break; 1662 } 1663 if (ifunit(new_name) != NULL) { 1664 error = EEXIST; 1665 break; 1666 } 1667 1668 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 1669 1670 /* Announce the departure of the interface. */ 1671 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1672 1673 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 1674 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 1675 /* XXX IFA_LOCK(ifa); */ 1676 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1677 namelen = strlen(new_name); 1678 onamelen = sdl->sdl_nlen; 1679 /* 1680 * Move the address if needed. This is safe because we 1681 * allocate space for a name of length IFNAMSIZ when we 1682 * create this in if_attach(). 1683 */ 1684 if (namelen != onamelen) { 1685 bcopy(sdl->sdl_data + onamelen, 1686 sdl->sdl_data + namelen, sdl->sdl_alen); 1687 } 1688 bcopy(new_name, sdl->sdl_data, namelen); 1689 sdl->sdl_nlen = namelen; 1690 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 1691 bzero(sdl->sdl_data, onamelen); 1692 while (namelen != 0) 1693 sdl->sdl_data[--namelen] = 0xff; 1694 /* XXX IFA_UNLOCK(ifa) */ 1695 1696 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 1697 1698 /* Announce the return of the interface. */ 1699 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 1700 break; 1701 1702 case SIOCSIFMETRIC: 1703 error = priv_check_cred(cred, PRIV_ROOT, 0); 1704 if (error) 1705 break; 1706 ifp->if_metric = ifr->ifr_metric; 1707 getmicrotime(&ifp->if_lastchange); 1708 break; 1709 1710 case SIOCSIFPHYS: 1711 error = priv_check_cred(cred, PRIV_ROOT, 0); 1712 if (error) 1713 break; 1714 if (ifp->if_ioctl == NULL) { 1715 error = EOPNOTSUPP; 1716 break; 1717 } 1718 ifnet_serialize_all(ifp); 1719 error = ifp->if_ioctl(ifp, cmd, data, cred); 1720 ifnet_deserialize_all(ifp); 1721 if (error == 0) 1722 getmicrotime(&ifp->if_lastchange); 1723 break; 1724 1725 case SIOCSIFMTU: 1726 { 1727 u_long oldmtu = ifp->if_mtu; 1728 1729 error = priv_check_cred(cred, PRIV_ROOT, 0); 1730 if (error) 1731 break; 1732 if (ifp->if_ioctl == NULL) { 1733 error = EOPNOTSUPP; 1734 break; 1735 } 1736 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) { 1737 error = EINVAL; 1738 break; 1739 } 1740 ifnet_serialize_all(ifp); 1741 error = ifp->if_ioctl(ifp, cmd, data, cred); 1742 ifnet_deserialize_all(ifp); 1743 if (error == 0) { 1744 getmicrotime(&ifp->if_lastchange); 1745 rt_ifmsg(ifp); 1746 } 1747 /* 1748 * If the link MTU changed, do network layer specific procedure. 1749 */ 1750 if (ifp->if_mtu != oldmtu) { 1751 #ifdef INET6 1752 nd6_setmtu(ifp); 1753 #endif 1754 } 1755 break; 1756 } 1757 1758 case SIOCSIFTSOLEN: 1759 error = priv_check_cred(cred, PRIV_ROOT, 0); 1760 if (error) 1761 break; 1762 1763 /* XXX need driver supplied upper limit */ 1764 if (ifr->ifr_tsolen <= 0) { 1765 error = EINVAL; 1766 break; 1767 } 1768 ifp->if_tsolen = ifr->ifr_tsolen; 1769 break; 1770 1771 case SIOCADDMULTI: 1772 case SIOCDELMULTI: 1773 error = priv_check_cred(cred, PRIV_ROOT, 0); 1774 if (error) 1775 break; 1776 1777 /* Don't allow group membership on non-multicast interfaces. */ 1778 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 1779 error = EOPNOTSUPP; 1780 break; 1781 } 1782 1783 /* Don't let users screw up protocols' entries. */ 1784 if (ifr->ifr_addr.sa_family != AF_LINK) { 1785 error = EINVAL; 1786 break; 1787 } 1788 1789 if (cmd == SIOCADDMULTI) { 1790 struct ifmultiaddr *ifma; 1791 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 1792 } else { 1793 error = if_delmulti(ifp, &ifr->ifr_addr); 1794 } 1795 if (error == 0) 1796 getmicrotime(&ifp->if_lastchange); 1797 break; 1798 1799 case SIOCSIFPHYADDR: 1800 case SIOCDIFPHYADDR: 1801 #ifdef INET6 1802 case SIOCSIFPHYADDR_IN6: 1803 #endif 1804 case SIOCSLIFPHYADDR: 1805 case SIOCSIFMEDIA: 1806 case SIOCSIFGENERIC: 1807 error = priv_check_cred(cred, PRIV_ROOT, 0); 1808 if (error) 1809 break; 1810 if (ifp->if_ioctl == 0) { 1811 error = EOPNOTSUPP; 1812 break; 1813 } 1814 ifnet_serialize_all(ifp); 1815 error = ifp->if_ioctl(ifp, cmd, data, cred); 1816 ifnet_deserialize_all(ifp); 1817 if (error == 0) 1818 getmicrotime(&ifp->if_lastchange); 1819 break; 1820 1821 case SIOCGIFSTATUS: 1822 ifs = (struct ifstat *)data; 1823 ifs->ascii[0] = '\0'; 1824 /* fall through */ 1825 case SIOCGIFPSRCADDR: 1826 case SIOCGIFPDSTADDR: 1827 case SIOCGLIFPHYADDR: 1828 case SIOCGIFMEDIA: 1829 case SIOCGIFGENERIC: 1830 if (ifp->if_ioctl == NULL) { 1831 error = EOPNOTSUPP; 1832 break; 1833 } 1834 ifnet_serialize_all(ifp); 1835 error = ifp->if_ioctl(ifp, cmd, data, cred); 1836 ifnet_deserialize_all(ifp); 1837 break; 1838 1839 case SIOCSIFLLADDR: 1840 error = priv_check_cred(cred, PRIV_ROOT, 0); 1841 if (error) 1842 break; 1843 error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, 1844 ifr->ifr_addr.sa_len); 1845 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 1846 break; 1847 1848 default: 1849 oif_flags = ifp->if_flags; 1850 if (so->so_proto == 0) { 1851 error = EOPNOTSUPP; 1852 break; 1853 } 1854 #ifndef COMPAT_43 1855 error = so_pru_control_direct(so, cmd, data, ifp); 1856 #else 1857 ocmd = cmd; 1858 1859 switch (cmd) { 1860 case SIOCSIFDSTADDR: 1861 case SIOCSIFADDR: 1862 case SIOCSIFBRDADDR: 1863 case SIOCSIFNETMASK: 1864 #if BYTE_ORDER != BIG_ENDIAN 1865 if (ifr->ifr_addr.sa_family == 0 && 1866 ifr->ifr_addr.sa_len < 16) { 1867 ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len; 1868 ifr->ifr_addr.sa_len = 16; 1869 } 1870 #else 1871 if (ifr->ifr_addr.sa_len == 0) 1872 ifr->ifr_addr.sa_len = 16; 1873 #endif 1874 break; 1875 case OSIOCGIFADDR: 1876 cmd = SIOCGIFADDR; 1877 break; 1878 case OSIOCGIFDSTADDR: 1879 cmd = SIOCGIFDSTADDR; 1880 break; 1881 case OSIOCGIFBRDADDR: 1882 cmd = SIOCGIFBRDADDR; 1883 break; 1884 case OSIOCGIFNETMASK: 1885 cmd = SIOCGIFNETMASK; 1886 break; 1887 default: 1888 break; 1889 } 1890 1891 error = so_pru_control_direct(so, cmd, data, ifp); 1892 1893 switch (ocmd) { 1894 case OSIOCGIFADDR: 1895 case OSIOCGIFDSTADDR: 1896 case OSIOCGIFBRDADDR: 1897 case OSIOCGIFNETMASK: 1898 *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family; 1899 break; 1900 } 1901 #endif /* COMPAT_43 */ 1902 1903 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 1904 #ifdef INET6 1905 DELAY(100);/* XXX: temporary workaround for fxp issue*/ 1906 if (ifp->if_flags & IFF_UP) { 1907 crit_enter(); 1908 in6_if_up(ifp); 1909 crit_exit(); 1910 } 1911 #endif 1912 } 1913 break; 1914 } 1915 1916 mtx_unlock(&ifp->if_ioctl_mtx); 1917 return (error); 1918 } 1919 1920 /* 1921 * Set/clear promiscuous mode on interface ifp based on the truth value 1922 * of pswitch. The calls are reference counted so that only the first 1923 * "on" request actually has an effect, as does the final "off" request. 1924 * Results are undefined if the "off" and "on" requests are not matched. 1925 */ 1926 int 1927 ifpromisc(struct ifnet *ifp, int pswitch) 1928 { 1929 struct ifreq ifr; 1930 int error; 1931 int oldflags; 1932 1933 oldflags = ifp->if_flags; 1934 if (ifp->if_flags & IFF_PPROMISC) { 1935 /* Do nothing if device is in permanently promiscuous mode */ 1936 ifp->if_pcount += pswitch ? 1 : -1; 1937 return (0); 1938 } 1939 if (pswitch) { 1940 /* 1941 * If the device is not configured up, we cannot put it in 1942 * promiscuous mode. 1943 */ 1944 if ((ifp->if_flags & IFF_UP) == 0) 1945 return (ENETDOWN); 1946 if (ifp->if_pcount++ != 0) 1947 return (0); 1948 ifp->if_flags |= IFF_PROMISC; 1949 log(LOG_INFO, "%s: promiscuous mode enabled\n", 1950 ifp->if_xname); 1951 } else { 1952 if (--ifp->if_pcount > 0) 1953 return (0); 1954 ifp->if_flags &= ~IFF_PROMISC; 1955 log(LOG_INFO, "%s: promiscuous mode disabled\n", 1956 ifp->if_xname); 1957 } 1958 ifr.ifr_flags = ifp->if_flags; 1959 ifr.ifr_flagshigh = ifp->if_flags >> 16; 1960 ifnet_serialize_all(ifp); 1961 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); 1962 ifnet_deserialize_all(ifp); 1963 if (error == 0) 1964 rt_ifmsg(ifp); 1965 else 1966 ifp->if_flags = oldflags; 1967 return error; 1968 } 1969 1970 /* 1971 * Return interface configuration 1972 * of system. List may be used 1973 * in later ioctl's (above) to get 1974 * other information. 1975 */ 1976 static int 1977 ifconf(u_long cmd, caddr_t data, struct ucred *cred) 1978 { 1979 struct ifconf *ifc = (struct ifconf *)data; 1980 struct ifnet *ifp; 1981 struct sockaddr *sa; 1982 struct ifreq ifr, *ifrp; 1983 int space = ifc->ifc_len, error = 0; 1984 1985 ifrp = ifc->ifc_req; 1986 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1987 struct ifaddr_container *ifac; 1988 int addrs; 1989 1990 if (space <= sizeof ifr) 1991 break; 1992 1993 /* 1994 * Zero the stack declared structure first to prevent 1995 * memory disclosure. 1996 */ 1997 bzero(&ifr, sizeof(ifr)); 1998 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 1999 >= sizeof(ifr.ifr_name)) { 2000 error = ENAMETOOLONG; 2001 break; 2002 } 2003 2004 addrs = 0; 2005 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2006 struct ifaddr *ifa = ifac->ifa; 2007 2008 if (space <= sizeof ifr) 2009 break; 2010 sa = ifa->ifa_addr; 2011 if (cred->cr_prison && 2012 prison_if(cred, sa)) 2013 continue; 2014 addrs++; 2015 #ifdef COMPAT_43 2016 if (cmd == OSIOCGIFCONF) { 2017 struct osockaddr *osa = 2018 (struct osockaddr *)&ifr.ifr_addr; 2019 ifr.ifr_addr = *sa; 2020 osa->sa_family = sa->sa_family; 2021 error = copyout(&ifr, ifrp, sizeof ifr); 2022 ifrp++; 2023 } else 2024 #endif 2025 if (sa->sa_len <= sizeof(*sa)) { 2026 ifr.ifr_addr = *sa; 2027 error = copyout(&ifr, ifrp, sizeof ifr); 2028 ifrp++; 2029 } else { 2030 if (space < (sizeof ifr) + sa->sa_len - 2031 sizeof(*sa)) 2032 break; 2033 space -= sa->sa_len - sizeof(*sa); 2034 error = copyout(&ifr, ifrp, 2035 sizeof ifr.ifr_name); 2036 if (error == 0) 2037 error = copyout(sa, &ifrp->ifr_addr, 2038 sa->sa_len); 2039 ifrp = (struct ifreq *) 2040 (sa->sa_len + (caddr_t)&ifrp->ifr_addr); 2041 } 2042 if (error) 2043 break; 2044 space -= sizeof ifr; 2045 } 2046 if (error) 2047 break; 2048 if (!addrs) { 2049 bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr); 2050 error = copyout(&ifr, ifrp, sizeof ifr); 2051 if (error) 2052 break; 2053 space -= sizeof ifr; 2054 ifrp++; 2055 } 2056 } 2057 ifc->ifc_len -= space; 2058 return (error); 2059 } 2060 2061 /* 2062 * Just like if_promisc(), but for all-multicast-reception mode. 2063 */ 2064 int 2065 if_allmulti(struct ifnet *ifp, int onswitch) 2066 { 2067 int error = 0; 2068 struct ifreq ifr; 2069 2070 crit_enter(); 2071 2072 if (onswitch) { 2073 if (ifp->if_amcount++ == 0) { 2074 ifp->if_flags |= IFF_ALLMULTI; 2075 ifr.ifr_flags = ifp->if_flags; 2076 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2077 ifnet_serialize_all(ifp); 2078 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2079 NULL); 2080 ifnet_deserialize_all(ifp); 2081 } 2082 } else { 2083 if (ifp->if_amcount > 1) { 2084 ifp->if_amcount--; 2085 } else { 2086 ifp->if_amcount = 0; 2087 ifp->if_flags &= ~IFF_ALLMULTI; 2088 ifr.ifr_flags = ifp->if_flags; 2089 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2090 ifnet_serialize_all(ifp); 2091 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2092 NULL); 2093 ifnet_deserialize_all(ifp); 2094 } 2095 } 2096 2097 crit_exit(); 2098 2099 if (error == 0) 2100 rt_ifmsg(ifp); 2101 return error; 2102 } 2103 2104 /* 2105 * Add a multicast listenership to the interface in question. 2106 * The link layer provides a routine which converts 2107 */ 2108 int 2109 if_addmulti( 2110 struct ifnet *ifp, /* interface to manipulate */ 2111 struct sockaddr *sa, /* address to add */ 2112 struct ifmultiaddr **retifma) 2113 { 2114 struct sockaddr *llsa, *dupsa; 2115 int error; 2116 struct ifmultiaddr *ifma; 2117 2118 /* 2119 * If the matching multicast address already exists 2120 * then don't add a new one, just add a reference 2121 */ 2122 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2123 if (sa_equal(sa, ifma->ifma_addr)) { 2124 ifma->ifma_refcount++; 2125 if (retifma) 2126 *retifma = ifma; 2127 return 0; 2128 } 2129 } 2130 2131 /* 2132 * Give the link layer a chance to accept/reject it, and also 2133 * find out which AF_LINK address this maps to, if it isn't one 2134 * already. 2135 */ 2136 if (ifp->if_resolvemulti) { 2137 ifnet_serialize_all(ifp); 2138 error = ifp->if_resolvemulti(ifp, &llsa, sa); 2139 ifnet_deserialize_all(ifp); 2140 if (error) 2141 return error; 2142 } else { 2143 llsa = NULL; 2144 } 2145 2146 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK); 2147 dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK); 2148 bcopy(sa, dupsa, sa->sa_len); 2149 2150 ifma->ifma_addr = dupsa; 2151 ifma->ifma_lladdr = llsa; 2152 ifma->ifma_ifp = ifp; 2153 ifma->ifma_refcount = 1; 2154 ifma->ifma_protospec = 0; 2155 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 2156 2157 /* 2158 * Some network interfaces can scan the address list at 2159 * interrupt time; lock them out. 2160 */ 2161 crit_enter(); 2162 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2163 crit_exit(); 2164 if (retifma) 2165 *retifma = ifma; 2166 2167 if (llsa != NULL) { 2168 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2169 if (sa_equal(ifma->ifma_addr, llsa)) 2170 break; 2171 } 2172 if (ifma) { 2173 ifma->ifma_refcount++; 2174 } else { 2175 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK); 2176 dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK); 2177 bcopy(llsa, dupsa, llsa->sa_len); 2178 ifma->ifma_addr = dupsa; 2179 ifma->ifma_ifp = ifp; 2180 ifma->ifma_refcount = 1; 2181 crit_enter(); 2182 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2183 crit_exit(); 2184 } 2185 } 2186 /* 2187 * We are certain we have added something, so call down to the 2188 * interface to let them know about it. 2189 */ 2190 crit_enter(); 2191 ifnet_serialize_all(ifp); 2192 if (ifp->if_ioctl) 2193 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL); 2194 ifnet_deserialize_all(ifp); 2195 crit_exit(); 2196 2197 return 0; 2198 } 2199 2200 /* 2201 * Remove a reference to a multicast address on this interface. Yell 2202 * if the request does not match an existing membership. 2203 */ 2204 int 2205 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 2206 { 2207 struct ifmultiaddr *ifma; 2208 2209 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2210 if (sa_equal(sa, ifma->ifma_addr)) 2211 break; 2212 if (ifma == NULL) 2213 return ENOENT; 2214 2215 if (ifma->ifma_refcount > 1) { 2216 ifma->ifma_refcount--; 2217 return 0; 2218 } 2219 2220 rt_newmaddrmsg(RTM_DELMADDR, ifma); 2221 sa = ifma->ifma_lladdr; 2222 crit_enter(); 2223 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2224 /* 2225 * Make sure the interface driver is notified 2226 * in the case of a link layer mcast group being left. 2227 */ 2228 if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) { 2229 ifnet_serialize_all(ifp); 2230 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2231 ifnet_deserialize_all(ifp); 2232 } 2233 crit_exit(); 2234 kfree(ifma->ifma_addr, M_IFMADDR); 2235 kfree(ifma, M_IFMADDR); 2236 if (sa == NULL) 2237 return 0; 2238 2239 /* 2240 * Now look for the link-layer address which corresponds to 2241 * this network address. It had been squirreled away in 2242 * ifma->ifma_lladdr for this purpose (so we don't have 2243 * to call ifp->if_resolvemulti() again), and we saved that 2244 * value in sa above. If some nasty deleted the 2245 * link-layer address out from underneath us, we can deal because 2246 * the address we stored was is not the same as the one which was 2247 * in the record for the link-layer address. (So we don't complain 2248 * in that case.) 2249 */ 2250 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2251 if (sa_equal(sa, ifma->ifma_addr)) 2252 break; 2253 if (ifma == NULL) 2254 return 0; 2255 2256 if (ifma->ifma_refcount > 1) { 2257 ifma->ifma_refcount--; 2258 return 0; 2259 } 2260 2261 crit_enter(); 2262 ifnet_serialize_all(ifp); 2263 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2264 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2265 ifnet_deserialize_all(ifp); 2266 crit_exit(); 2267 kfree(ifma->ifma_addr, M_IFMADDR); 2268 kfree(sa, M_IFMADDR); 2269 kfree(ifma, M_IFMADDR); 2270 2271 return 0; 2272 } 2273 2274 /* 2275 * Delete all multicast group membership for an interface. 2276 * Should be used to quickly flush all multicast filters. 2277 */ 2278 void 2279 if_delallmulti(struct ifnet *ifp) 2280 { 2281 struct ifmultiaddr *ifma; 2282 struct ifmultiaddr *next; 2283 2284 TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next) 2285 if_delmulti(ifp, ifma->ifma_addr); 2286 } 2287 2288 2289 /* 2290 * Set the link layer address on an interface. 2291 * 2292 * At this time we only support certain types of interfaces, 2293 * and we don't allow the length of the address to change. 2294 */ 2295 int 2296 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 2297 { 2298 struct sockaddr_dl *sdl; 2299 struct ifreq ifr; 2300 2301 sdl = IF_LLSOCKADDR(ifp); 2302 if (sdl == NULL) 2303 return (EINVAL); 2304 if (len != sdl->sdl_alen) /* don't allow length to change */ 2305 return (EINVAL); 2306 switch (ifp->if_type) { 2307 case IFT_ETHER: /* these types use struct arpcom */ 2308 case IFT_XETHER: 2309 case IFT_L2VLAN: 2310 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len); 2311 bcopy(lladdr, LLADDR(sdl), len); 2312 break; 2313 default: 2314 return (ENODEV); 2315 } 2316 /* 2317 * If the interface is already up, we need 2318 * to re-init it in order to reprogram its 2319 * address filter. 2320 */ 2321 ifnet_serialize_all(ifp); 2322 if ((ifp->if_flags & IFF_UP) != 0) { 2323 #ifdef INET 2324 struct ifaddr_container *ifac; 2325 #endif 2326 2327 ifp->if_flags &= ~IFF_UP; 2328 ifr.ifr_flags = ifp->if_flags; 2329 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2330 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2331 NULL); 2332 ifp->if_flags |= IFF_UP; 2333 ifr.ifr_flags = ifp->if_flags; 2334 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2335 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2336 NULL); 2337 #ifdef INET 2338 /* 2339 * Also send gratuitous ARPs to notify other nodes about 2340 * the address change. 2341 */ 2342 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2343 struct ifaddr *ifa = ifac->ifa; 2344 2345 if (ifa->ifa_addr != NULL && 2346 ifa->ifa_addr->sa_family == AF_INET) 2347 arp_gratuitous(ifp, ifa); 2348 } 2349 #endif 2350 } 2351 ifnet_deserialize_all(ifp); 2352 return (0); 2353 } 2354 2355 struct ifmultiaddr * 2356 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp) 2357 { 2358 struct ifmultiaddr *ifma; 2359 2360 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2361 if (sa_equal(ifma->ifma_addr, sa)) 2362 break; 2363 2364 return ifma; 2365 } 2366 2367 /* 2368 * This function locates the first real ethernet MAC from a network 2369 * card and loads it into node, returning 0 on success or ENOENT if 2370 * no suitable interfaces were found. It is used by the uuid code to 2371 * generate a unique 6-byte number. 2372 */ 2373 int 2374 if_getanyethermac(uint16_t *node, int minlen) 2375 { 2376 struct ifnet *ifp; 2377 struct sockaddr_dl *sdl; 2378 2379 TAILQ_FOREACH(ifp, &ifnet, if_link) { 2380 if (ifp->if_type != IFT_ETHER) 2381 continue; 2382 sdl = IF_LLSOCKADDR(ifp); 2383 if (sdl->sdl_alen < minlen) 2384 continue; 2385 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node, 2386 minlen); 2387 return(0); 2388 } 2389 return (ENOENT); 2390 } 2391 2392 /* 2393 * The name argument must be a pointer to storage which will last as 2394 * long as the interface does. For physical devices, the result of 2395 * device_get_name(dev) is a good choice and for pseudo-devices a 2396 * static string works well. 2397 */ 2398 void 2399 if_initname(struct ifnet *ifp, const char *name, int unit) 2400 { 2401 ifp->if_dname = name; 2402 ifp->if_dunit = unit; 2403 if (unit != IF_DUNIT_NONE) 2404 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 2405 else 2406 strlcpy(ifp->if_xname, name, IFNAMSIZ); 2407 } 2408 2409 int 2410 if_printf(struct ifnet *ifp, const char *fmt, ...) 2411 { 2412 __va_list ap; 2413 int retval; 2414 2415 retval = kprintf("%s: ", ifp->if_xname); 2416 __va_start(ap, fmt); 2417 retval += kvprintf(fmt, ap); 2418 __va_end(ap); 2419 return (retval); 2420 } 2421 2422 struct ifnet * 2423 if_alloc(uint8_t type) 2424 { 2425 struct ifnet *ifp; 2426 size_t size; 2427 2428 /* 2429 * XXX temporary hack until arpcom is setup in if_l2com 2430 */ 2431 if (type == IFT_ETHER) 2432 size = sizeof(struct arpcom); 2433 else 2434 size = sizeof(struct ifnet); 2435 2436 ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO); 2437 2438 ifp->if_type = type; 2439 2440 if (if_com_alloc[type] != NULL) { 2441 ifp->if_l2com = if_com_alloc[type](type, ifp); 2442 if (ifp->if_l2com == NULL) { 2443 kfree(ifp, M_IFNET); 2444 return (NULL); 2445 } 2446 } 2447 return (ifp); 2448 } 2449 2450 void 2451 if_free(struct ifnet *ifp) 2452 { 2453 kfree(ifp, M_IFNET); 2454 } 2455 2456 void 2457 ifq_set_classic(struct ifaltq *ifq) 2458 { 2459 ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq, 2460 ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request); 2461 } 2462 2463 void 2464 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq, 2465 ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request) 2466 { 2467 int q; 2468 2469 KASSERT(mapsubq != NULL, ("mapsubq is not specified")); 2470 KASSERT(enqueue != NULL, ("enqueue is not specified")); 2471 KASSERT(dequeue != NULL, ("dequeue is not specified")); 2472 KASSERT(request != NULL, ("request is not specified")); 2473 2474 ifq->altq_mapsubq = mapsubq; 2475 for (q = 0; q < ifq->altq_subq_cnt; ++q) { 2476 struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; 2477 2478 ifsq->ifsq_enqueue = enqueue; 2479 ifsq->ifsq_dequeue = dequeue; 2480 ifsq->ifsq_request = request; 2481 } 2482 } 2483 2484 int 2485 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m, 2486 struct altq_pktattr *pa __unused) 2487 { 2488 if (IF_QFULL(ifsq)) { 2489 m_freem(m); 2490 return(ENOBUFS); 2491 } else { 2492 IF_ENQUEUE(ifsq, m); 2493 return(0); 2494 } 2495 } 2496 2497 struct mbuf * 2498 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, struct mbuf *mpolled, int op) 2499 { 2500 struct mbuf *m; 2501 2502 switch (op) { 2503 case ALTDQ_POLL: 2504 IF_POLL(ifsq, m); 2505 break; 2506 case ALTDQ_REMOVE: 2507 IF_DEQUEUE(ifsq, m); 2508 break; 2509 default: 2510 panic("unsupported ALTQ dequeue op: %d", op); 2511 } 2512 KKASSERT(mpolled == NULL || mpolled == m); 2513 return(m); 2514 } 2515 2516 int 2517 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg) 2518 { 2519 switch (req) { 2520 case ALTRQ_PURGE: 2521 IF_DRAIN(ifsq); 2522 break; 2523 default: 2524 panic("unsupported ALTQ request: %d", req); 2525 } 2526 return(0); 2527 } 2528 2529 static void 2530 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched) 2531 { 2532 struct ifnet *ifp = ifsq_get_ifp(ifsq); 2533 int running = 0, need_sched; 2534 2535 /* 2536 * Try to do direct ifnet.if_start first, if there is 2537 * contention on ifnet's serializer, ifnet.if_start will 2538 * be scheduled on ifnet's CPU. 2539 */ 2540 if (!ifnet_tryserialize_tx(ifp, ifsq)) { 2541 /* 2542 * ifnet serializer contention happened, 2543 * ifnet.if_start is scheduled on ifnet's 2544 * CPU, and we keep going. 2545 */ 2546 ifsq_ifstart_schedule(ifsq, 1); 2547 return; 2548 } 2549 2550 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) { 2551 ifp->if_start(ifp, ifsq); 2552 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) 2553 running = 1; 2554 } 2555 need_sched = ifsq_ifstart_need_schedule(ifsq, running); 2556 2557 ifnet_deserialize_tx(ifp, ifsq); 2558 2559 if (need_sched) { 2560 /* 2561 * More data need to be transmitted, ifnet.if_start is 2562 * scheduled on ifnet's CPU, and we keep going. 2563 * NOTE: ifnet.if_start interlock is not released. 2564 */ 2565 ifsq_ifstart_schedule(ifsq, force_sched); 2566 } 2567 } 2568 2569 /* 2570 * IFSUBQ packets staging mechanism: 2571 * 2572 * The packets enqueued into IFSUBQ are staged to a certain amount before the 2573 * ifnet's if_start is called. In this way, the driver could avoid writing 2574 * to hardware registers upon every packet, instead, hardware registers 2575 * could be written when certain amount of packets are put onto hardware 2576 * TX ring. The measurement on several modern NICs (emx(4), igb(4), bnx(4), 2577 * bge(4), jme(4)) shows that the hardware registers writing aggregation 2578 * could save ~20% CPU time when 18bytes UDP datagrams are transmitted at 2579 * 1.48Mpps. The performance improvement by hardware registers writing 2580 * aggeregation is also mentioned by Luigi Rizzo's netmap paper 2581 * (http://info.iet.unipi.it/~luigi/netmap/). 2582 * 2583 * IFSUBQ packets staging is performed for two entry points into drivers's 2584 * transmission function: 2585 * - Direct ifnet's if_start calling, i.e. ifsq_ifstart_try() 2586 * - ifnet's if_start scheduling, i.e. ifsq_ifstart_schedule() 2587 * 2588 * IFSUBQ packets staging will be stopped upon any of the following conditions: 2589 * - If the count of packets enqueued on the current CPU is great than or 2590 * equal to ifsq_stage_cntmax. (XXX this should be per-interface) 2591 * - If the total length of packets enqueued on the current CPU is great 2592 * than or equal to the hardware's MTU - max_protohdr. max_protohdr is 2593 * cut from the hardware's MTU mainly bacause a full TCP segment's size 2594 * is usually less than hardware's MTU. 2595 * - ifsq_ifstart_schedule() is not pending on the current CPU and if_start 2596 * interlock (if_snd.altq_started) is not released. 2597 * - The if_start_rollup(), which is registered as low priority netisr 2598 * rollup function, is called; probably because no more work is pending 2599 * for netisr. 2600 * 2601 * NOTE: 2602 * Currently IFSUBQ packet staging is only performed in netisr threads. 2603 */ 2604 int 2605 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa) 2606 { 2607 struct ifaltq *ifq = &ifp->if_snd; 2608 struct ifaltq_subque *ifsq; 2609 int error, start = 0, len, mcast = 0, avoid_start = 0; 2610 struct ifsubq_stage_head *head = NULL; 2611 struct ifsubq_stage *stage = NULL; 2612 2613 ifsq = ifq_map_subq(ifq, mycpuid); 2614 ASSERT_IFNET_NOT_SERIALIZED_TX(ifp, ifsq); 2615 2616 len = m->m_pkthdr.len; 2617 if (m->m_flags & M_MCAST) 2618 mcast = 1; 2619 2620 if (curthread->td_type == TD_TYPE_NETISR) { 2621 head = &ifsubq_stage_heads[mycpuid]; 2622 stage = ifsq_get_stage(ifsq, mycpuid); 2623 2624 stage->stg_cnt++; 2625 stage->stg_len += len; 2626 if (stage->stg_cnt < ifsq_stage_cntmax && 2627 stage->stg_len < (ifp->if_mtu - max_protohdr)) 2628 avoid_start = 1; 2629 } 2630 2631 ALTQ_SQ_LOCK(ifsq); 2632 error = ifsq_enqueue_locked(ifsq, m, pa); 2633 if (error) { 2634 if (!ifsq_data_ready(ifsq)) { 2635 ALTQ_SQ_UNLOCK(ifsq); 2636 return error; 2637 } 2638 avoid_start = 0; 2639 } 2640 if (!ifsq_is_started(ifsq)) { 2641 if (avoid_start) { 2642 ALTQ_SQ_UNLOCK(ifsq); 2643 2644 KKASSERT(!error); 2645 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0) 2646 ifsq_stage_insert(head, stage); 2647 2648 ifp->if_obytes += len; 2649 if (mcast) 2650 ifp->if_omcasts++; 2651 return error; 2652 } 2653 2654 /* 2655 * Hold the interlock of ifnet.if_start 2656 */ 2657 ifsq_set_started(ifsq); 2658 start = 1; 2659 } 2660 ALTQ_SQ_UNLOCK(ifsq); 2661 2662 if (!error) { 2663 ifp->if_obytes += len; 2664 if (mcast) 2665 ifp->if_omcasts++; 2666 } 2667 2668 if (stage != NULL) { 2669 if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) { 2670 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED); 2671 if (!avoid_start) { 2672 ifsq_stage_remove(head, stage); 2673 ifsq_ifstart_schedule(ifsq, 1); 2674 } 2675 return error; 2676 } 2677 2678 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) { 2679 ifsq_stage_remove(head, stage); 2680 } else { 2681 stage->stg_cnt = 0; 2682 stage->stg_len = 0; 2683 } 2684 } 2685 2686 if (!start) 2687 return error; 2688 2689 ifsq_ifstart_try(ifsq, 0); 2690 return error; 2691 } 2692 2693 void * 2694 ifa_create(int size, int flags) 2695 { 2696 struct ifaddr *ifa; 2697 int i; 2698 2699 KASSERT(size >= sizeof(*ifa), ("ifaddr size too small")); 2700 2701 ifa = kmalloc(size, M_IFADDR, flags | M_ZERO); 2702 if (ifa == NULL) 2703 return NULL; 2704 2705 ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container), 2706 M_IFADDR, M_WAITOK | M_ZERO); 2707 ifa->ifa_ncnt = ncpus; 2708 for (i = 0; i < ncpus; ++i) { 2709 struct ifaddr_container *ifac = &ifa->ifa_containers[i]; 2710 2711 ifac->ifa_magic = IFA_CONTAINER_MAGIC; 2712 ifac->ifa = ifa; 2713 ifac->ifa_refcnt = 1; 2714 } 2715 #ifdef IFADDR_DEBUG 2716 kprintf("alloc ifa %p %d\n", ifa, size); 2717 #endif 2718 return ifa; 2719 } 2720 2721 void 2722 ifac_free(struct ifaddr_container *ifac, int cpu_id) 2723 { 2724 struct ifaddr *ifa = ifac->ifa; 2725 2726 KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC); 2727 KKASSERT(ifac->ifa_refcnt == 0); 2728 KASSERT(ifac->ifa_listmask == 0, 2729 ("ifa is still on %#x lists", ifac->ifa_listmask)); 2730 2731 ifac->ifa_magic = IFA_CONTAINER_DEAD; 2732 2733 #ifdef IFADDR_DEBUG_VERBOSE 2734 kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id); 2735 #endif 2736 2737 KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus, 2738 ("invalid # of ifac, %d", ifa->ifa_ncnt)); 2739 if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) { 2740 #ifdef IFADDR_DEBUG 2741 kprintf("free ifa %p\n", ifa); 2742 #endif 2743 kfree(ifa->ifa_containers, M_IFADDR); 2744 kfree(ifa, M_IFADDR); 2745 } 2746 } 2747 2748 static void 2749 ifa_iflink_dispatch(netmsg_t nmsg) 2750 { 2751 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2752 struct ifaddr *ifa = msg->ifa; 2753 struct ifnet *ifp = msg->ifp; 2754 int cpu = mycpuid; 2755 struct ifaddr_container *ifac; 2756 2757 crit_enter(); 2758 2759 ifac = &ifa->ifa_containers[cpu]; 2760 ASSERT_IFAC_VALID(ifac); 2761 KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0, 2762 ("ifaddr is on if_addrheads")); 2763 2764 ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD; 2765 if (msg->tail) 2766 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link); 2767 else 2768 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link); 2769 2770 crit_exit(); 2771 2772 ifa_forwardmsg(&nmsg->lmsg, cpu + 1); 2773 } 2774 2775 void 2776 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail) 2777 { 2778 struct netmsg_ifaddr msg; 2779 2780 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2781 0, ifa_iflink_dispatch); 2782 msg.ifa = ifa; 2783 msg.ifp = ifp; 2784 msg.tail = tail; 2785 2786 ifa_domsg(&msg.base.lmsg, 0); 2787 } 2788 2789 static void 2790 ifa_ifunlink_dispatch(netmsg_t nmsg) 2791 { 2792 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2793 struct ifaddr *ifa = msg->ifa; 2794 struct ifnet *ifp = msg->ifp; 2795 int cpu = mycpuid; 2796 struct ifaddr_container *ifac; 2797 2798 crit_enter(); 2799 2800 ifac = &ifa->ifa_containers[cpu]; 2801 ASSERT_IFAC_VALID(ifac); 2802 KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD, 2803 ("ifaddr is not on if_addrhead")); 2804 2805 TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link); 2806 ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD; 2807 2808 crit_exit(); 2809 2810 ifa_forwardmsg(&nmsg->lmsg, cpu + 1); 2811 } 2812 2813 void 2814 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp) 2815 { 2816 struct netmsg_ifaddr msg; 2817 2818 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2819 0, ifa_ifunlink_dispatch); 2820 msg.ifa = ifa; 2821 msg.ifp = ifp; 2822 2823 ifa_domsg(&msg.base.lmsg, 0); 2824 } 2825 2826 static void 2827 ifa_destroy_dispatch(netmsg_t nmsg) 2828 { 2829 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2830 2831 IFAFREE(msg->ifa); 2832 ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1); 2833 } 2834 2835 void 2836 ifa_destroy(struct ifaddr *ifa) 2837 { 2838 struct netmsg_ifaddr msg; 2839 2840 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2841 0, ifa_destroy_dispatch); 2842 msg.ifa = ifa; 2843 2844 ifa_domsg(&msg.base.lmsg, 0); 2845 } 2846 2847 struct lwkt_port * 2848 ifnet_portfn(int cpu) 2849 { 2850 return &ifnet_threads[cpu].td_msgport; 2851 } 2852 2853 void 2854 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu) 2855 { 2856 KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus); 2857 2858 if (next_cpu < ncpus) 2859 lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg); 2860 else 2861 lwkt_replymsg(lmsg, 0); 2862 } 2863 2864 int 2865 ifnet_domsg(struct lwkt_msg *lmsg, int cpu) 2866 { 2867 KKASSERT(cpu < ncpus); 2868 return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0); 2869 } 2870 2871 void 2872 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu) 2873 { 2874 KKASSERT(cpu < ncpus); 2875 lwkt_sendmsg(ifnet_portfn(cpu), lmsg); 2876 } 2877 2878 /* 2879 * Generic netmsg service loop. Some protocols may roll their own but all 2880 * must do the basic command dispatch function call done here. 2881 */ 2882 static void 2883 ifnet_service_loop(void *arg __unused) 2884 { 2885 netmsg_t msg; 2886 2887 while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) { 2888 KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg")); 2889 msg->base.nm_dispatch(msg); 2890 } 2891 } 2892 2893 static void 2894 if_start_rollup(void) 2895 { 2896 struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid]; 2897 struct ifsubq_stage *stage; 2898 2899 while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) { 2900 struct ifaltq_subque *ifsq = stage->stg_subq; 2901 int is_sched = 0; 2902 2903 if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED) 2904 is_sched = 1; 2905 ifsq_stage_remove(head, stage); 2906 2907 if (is_sched) { 2908 ifsq_ifstart_schedule(ifsq, 1); 2909 } else { 2910 int start = 0; 2911 2912 ALTQ_SQ_LOCK(ifsq); 2913 if (!ifsq_is_started(ifsq)) { 2914 /* 2915 * Hold the interlock of ifnet.if_start 2916 */ 2917 ifsq_set_started(ifsq); 2918 start = 1; 2919 } 2920 ALTQ_SQ_UNLOCK(ifsq); 2921 2922 if (start) 2923 ifsq_ifstart_try(ifsq, 1); 2924 } 2925 KKASSERT((stage->stg_flags & 2926 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0); 2927 } 2928 } 2929 2930 static void 2931 ifnetinit(void *dummy __unused) 2932 { 2933 int i; 2934 2935 for (i = 0; i < ncpus; ++i) { 2936 struct thread *thr = &ifnet_threads[i]; 2937 2938 lwkt_create(ifnet_service_loop, NULL, NULL, 2939 thr, TDF_NOSTART|TDF_FORCE_SPINPORT, 2940 i, "ifnet %d", i); 2941 netmsg_service_port_init(&thr->td_msgport); 2942 lwkt_schedule(thr); 2943 } 2944 2945 for (i = 0; i < ncpus; ++i) 2946 TAILQ_INIT(&ifsubq_stage_heads[i].stg_head); 2947 netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART); 2948 } 2949 2950 struct ifnet * 2951 ifnet_byindex(unsigned short idx) 2952 { 2953 if (idx > if_index) 2954 return NULL; 2955 return ifindex2ifnet[idx]; 2956 } 2957 2958 struct ifaddr * 2959 ifaddr_byindex(unsigned short idx) 2960 { 2961 struct ifnet *ifp; 2962 2963 ifp = ifnet_byindex(idx); 2964 if (!ifp) 2965 return NULL; 2966 return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 2967 } 2968 2969 void 2970 if_register_com_alloc(u_char type, 2971 if_com_alloc_t *a, if_com_free_t *f) 2972 { 2973 2974 KASSERT(if_com_alloc[type] == NULL, 2975 ("if_register_com_alloc: %d already registered", type)); 2976 KASSERT(if_com_free[type] == NULL, 2977 ("if_register_com_alloc: %d free already registered", type)); 2978 2979 if_com_alloc[type] = a; 2980 if_com_free[type] = f; 2981 } 2982 2983 void 2984 if_deregister_com_alloc(u_char type) 2985 { 2986 2987 KASSERT(if_com_alloc[type] != NULL, 2988 ("if_deregister_com_alloc: %d not registered", type)); 2989 KASSERT(if_com_free[type] != NULL, 2990 ("if_deregister_com_alloc: %d free not registered", type)); 2991 if_com_alloc[type] = NULL; 2992 if_com_free[type] = NULL; 2993 } 2994 2995 int 2996 if_ring_count2(int cnt, int cnt_max) 2997 { 2998 int shift = 0; 2999 3000 KASSERT(cnt_max >= 1 && powerof2(cnt_max), 3001 ("invalid ring count max %d", cnt_max)); 3002 3003 if (cnt <= 0) 3004 cnt = cnt_max; 3005 if (cnt > ncpus2) 3006 cnt = ncpus2; 3007 if (cnt > cnt_max) 3008 cnt = cnt_max; 3009 3010 while ((1 << (shift + 1)) <= cnt) 3011 ++shift; 3012 cnt = 1 << shift; 3013 3014 KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max, 3015 ("calculate cnt %d, ncpus2 %d, cnt max %d", 3016 cnt, ncpus2, cnt_max)); 3017 return cnt; 3018 } 3019 3020 void 3021 ifq_set_maxlen(struct ifaltq *ifq, int len) 3022 { 3023 ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax); 3024 } 3025 3026 int 3027 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused) 3028 { 3029 return ALTQ_SUBQ_INDEX_DEFAULT; 3030 } 3031 3032 int 3033 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid) 3034 { 3035 return (cpuid & ifq->altq_subq_mask); 3036 } 3037 3038 static void 3039 ifsq_watchdog(void *arg) 3040 { 3041 struct ifsubq_watchdog *wd = arg; 3042 struct ifnet *ifp; 3043 3044 if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer)) 3045 goto done; 3046 3047 ifp = ifsq_get_ifp(wd->wd_subq); 3048 if (ifnet_tryserialize_all(ifp)) { 3049 wd->wd_watchdog(wd->wd_subq); 3050 ifnet_deserialize_all(ifp); 3051 } else { 3052 /* try again next timeout */ 3053 wd->wd_timer = 1; 3054 } 3055 done: 3056 ifsq_watchdog_reset(wd); 3057 } 3058 3059 static void 3060 ifsq_watchdog_reset(struct ifsubq_watchdog *wd) 3061 { 3062 callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd, 3063 ifsq_get_cpuid(wd->wd_subq)); 3064 } 3065 3066 void 3067 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq, 3068 ifsq_watchdog_t watchdog) 3069 { 3070 callout_init_mp(&wd->wd_callout); 3071 wd->wd_timer = 0; 3072 wd->wd_subq = ifsq; 3073 wd->wd_watchdog = watchdog; 3074 } 3075 3076 void 3077 ifsq_watchdog_start(struct ifsubq_watchdog *wd) 3078 { 3079 wd->wd_timer = 0; 3080 ifsq_watchdog_reset(wd); 3081 } 3082 3083 void 3084 ifsq_watchdog_stop(struct ifsubq_watchdog *wd) 3085 { 3086 wd->wd_timer = 0; 3087 callout_stop(&wd->wd_callout); 3088 } 3089