xref: /dflybsd-src/sys/net/if.c (revision 37cbab4e1d236766bff1f9fd79c7ae9ca6d69ba9)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)if.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_inet.h"
40 #include "opt_ifpoll.h"
41 
42 #include <sys/param.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/priv.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/socketops.h>
52 #include <sys/protosw.h>
53 #include <sys/kernel.h>
54 #include <sys/ktr.h>
55 #include <sys/mutex.h>
56 #include <sys/sockio.h>
57 #include <sys/syslog.h>
58 #include <sys/sysctl.h>
59 #include <sys/domain.h>
60 #include <sys/thread.h>
61 #include <sys/serialize.h>
62 #include <sys/bus.h>
63 
64 #include <sys/thread2.h>
65 #include <sys/msgport2.h>
66 #include <sys/mutex2.h>
67 
68 #include <net/if.h>
69 #include <net/if_arp.h>
70 #include <net/if_dl.h>
71 #include <net/if_types.h>
72 #include <net/if_var.h>
73 #include <net/ifq_var.h>
74 #include <net/radix.h>
75 #include <net/route.h>
76 #include <net/if_clone.h>
77 #include <net/netisr.h>
78 #include <net/netmsg2.h>
79 
80 #include <machine/atomic.h>
81 #include <machine/stdarg.h>
82 #include <machine/smp.h>
83 
84 #if defined(INET) || defined(INET6)
85 /*XXX*/
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 #include <netinet/if_ether.h>
89 #ifdef INET6
90 #include <netinet6/in6_var.h>
91 #include <netinet6/in6_ifattach.h>
92 #endif
93 #endif
94 
95 #if defined(COMPAT_43)
96 #include <emulation/43bsd/43bsd_socket.h>
97 #endif /* COMPAT_43 */
98 
99 struct netmsg_ifaddr {
100 	struct netmsg_base base;
101 	struct ifaddr	*ifa;
102 	struct ifnet	*ifp;
103 	int		tail;
104 };
105 
106 struct ifsubq_stage_head {
107 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
108 } __cachealign;
109 
110 /*
111  * System initialization
112  */
113 static void	if_attachdomain(void *);
114 static void	if_attachdomain1(struct ifnet *);
115 static int	ifconf(u_long, caddr_t, struct ucred *);
116 static void	ifinit(void *);
117 static void	ifnetinit(void *);
118 static void	if_slowtimo(void *);
119 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
120 static int	if_rtdel(struct radix_node *, void *);
121 
122 /* Helper functions */
123 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
124 
125 #ifdef INET6
126 /*
127  * XXX: declare here to avoid to include many inet6 related files..
128  * should be more generalized?
129  */
130 extern void	nd6_setmtu(struct ifnet *);
131 #endif
132 
133 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
134 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
135 
136 static int ifsq_stage_cntmax = 4;
137 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
138 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
139     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
140 
141 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
142 /* Must be after netisr_init */
143 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
144 
145 static  if_com_alloc_t *if_com_alloc[256];
146 static  if_com_free_t *if_com_free[256];
147 
148 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
149 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
150 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
151 
152 int			ifqmaxlen = IFQ_MAXLEN;
153 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
154 
155 struct callout		if_slowtimo_timer;
156 
157 int			if_index = 0;
158 struct ifnet		**ifindex2ifnet = NULL;
159 static struct thread	ifnet_threads[MAXCPU];
160 
161 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
162 
163 #ifdef notyet
164 #define IFQ_KTR_STRING		"ifq=%p"
165 #define IFQ_KTR_ARGS	struct ifaltq *ifq
166 #ifndef KTR_IFQ
167 #define KTR_IFQ			KTR_ALL
168 #endif
169 KTR_INFO_MASTER(ifq);
170 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
171 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
172 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
173 
174 #define IF_START_KTR_STRING	"ifp=%p"
175 #define IF_START_KTR_ARGS	struct ifnet *ifp
176 #ifndef KTR_IF_START
177 #define KTR_IF_START		KTR_ALL
178 #endif
179 KTR_INFO_MASTER(if_start);
180 KTR_INFO(KTR_IF_START, if_start, run, 0,
181 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
182 KTR_INFO(KTR_IF_START, if_start, sched, 1,
183 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
184 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
185 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
186 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
187 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
188 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
189 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
190 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
191 #endif
192 
193 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
194 
195 /*
196  * Network interface utility routines.
197  *
198  * Routines with ifa_ifwith* names take sockaddr *'s as
199  * parameters.
200  */
201 /* ARGSUSED*/
202 void
203 ifinit(void *dummy)
204 {
205 	struct ifnet *ifp;
206 
207 	callout_init(&if_slowtimo_timer);
208 
209 	crit_enter();
210 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
211 		if (ifp->if_snd.altq_maxlen == 0) {
212 			if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n");
213 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
214 		}
215 	}
216 	crit_exit();
217 
218 	if_slowtimo(0);
219 }
220 
221 static void
222 ifsq_ifstart_ipifunc(void *arg)
223 {
224 	struct ifaltq_subque *ifsq = arg;
225 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
226 
227 	crit_enter();
228 	if (lmsg->ms_flags & MSGF_DONE)
229 		lwkt_sendmsg(netisr_portfn(mycpuid), lmsg);
230 	crit_exit();
231 }
232 
233 static __inline void
234 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
235 {
236 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
237 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
238 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
239 	stage->stg_cnt = 0;
240 	stage->stg_len = 0;
241 }
242 
243 static __inline void
244 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
245 {
246 	KKASSERT((stage->stg_flags &
247 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
248 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
249 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
250 }
251 
252 /*
253  * Schedule ifnet.if_start on ifnet's CPU
254  */
255 static void
256 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
257 {
258 	int cpu;
259 
260 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
261 	    ifsq_stage_cntmax > 0) {
262 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
263 
264 		stage->stg_cnt = 0;
265 		stage->stg_len = 0;
266 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
267 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
268 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
269 		return;
270 	}
271 
272 	cpu = ifsq_get_cpuid(ifsq);
273 	if (cpu != mycpuid)
274 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
275 	else
276 		ifsq_ifstart_ipifunc(ifsq);
277 }
278 
279 /*
280  * NOTE:
281  * This function will release ifnet.if_start interlock,
282  * if ifnet.if_start does not need to be scheduled
283  */
284 static __inline int
285 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
286 {
287 	if (!running || ifsq_is_empty(ifsq)
288 #ifdef ALTQ
289 	    || ifsq->ifsq_altq->altq_tbr != NULL
290 #endif
291 	) {
292 		ALTQ_SQ_LOCK(ifsq);
293 		/*
294 		 * ifnet.if_start interlock is released, if:
295 		 * 1) Hardware can not take any packets, due to
296 		 *    o  interface is marked down
297 		 *    o  hardware queue is full (ifq_is_oactive)
298 		 *    Under the second situation, hardware interrupt
299 		 *    or polling(4) will call/schedule ifnet.if_start
300 		 *    when hardware queue is ready
301 		 * 2) There is not packet in the ifnet.if_snd.
302 		 *    Further ifq_dispatch or ifq_handoff will call/
303 		 *    schedule ifnet.if_start
304 		 * 3) TBR is used and it does not allow further
305 		 *    dequeueing.
306 		 *    TBR callout will call ifnet.if_start
307 		 */
308 		if (!running || !ifsq_data_ready(ifsq)) {
309 			ifsq_clr_started(ifsq);
310 			ALTQ_SQ_UNLOCK(ifsq);
311 			return 0;
312 		}
313 		ALTQ_SQ_UNLOCK(ifsq);
314 	}
315 	return 1;
316 }
317 
318 static void
319 ifsq_ifstart_dispatch(netmsg_t msg)
320 {
321 	struct lwkt_msg *lmsg = &msg->base.lmsg;
322 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
323 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
324 	int running = 0, need_sched;
325 
326 	crit_enter();
327 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
328 	crit_exit();
329 
330 	if (mycpuid != ifsq_get_cpuid(ifsq)) {
331 		/*
332 		 * We need to chase the ifnet CPU change.
333 		 */
334 		ifsq_ifstart_schedule(ifsq, 1);
335 		return;
336 	}
337 
338 	ifnet_serialize_tx(ifp, ifsq);
339 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
340 		ifp->if_start(ifp, ifsq);
341 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
342 			running = 1;
343 	}
344 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
345 	ifnet_deserialize_tx(ifp, ifsq);
346 
347 	if (need_sched) {
348 		/*
349 		 * More data need to be transmitted, ifnet.if_start is
350 		 * scheduled on ifnet's CPU, and we keep going.
351 		 * NOTE: ifnet.if_start interlock is not released.
352 		 */
353 		ifsq_ifstart_schedule(ifsq, 0);
354 	}
355 }
356 
357 /* Device driver ifnet.if_start helper function */
358 void
359 ifsq_devstart(struct ifaltq_subque *ifsq)
360 {
361 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
362 	int running = 0;
363 
364 	ASSERT_IFNET_SERIALIZED_TX(ifp, ifsq);
365 
366 	ALTQ_SQ_LOCK(ifsq);
367 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
368 		ALTQ_SQ_UNLOCK(ifsq);
369 		return;
370 	}
371 	ifsq_set_started(ifsq);
372 	ALTQ_SQ_UNLOCK(ifsq);
373 
374 	ifp->if_start(ifp, ifsq);
375 
376 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
377 		running = 1;
378 
379 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
380 		/*
381 		 * More data need to be transmitted, ifnet.if_start is
382 		 * scheduled on ifnet's CPU, and we keep going.
383 		 * NOTE: ifnet.if_start interlock is not released.
384 		 */
385 		ifsq_ifstart_schedule(ifsq, 0);
386 	}
387 }
388 
389 void
390 if_devstart(struct ifnet *ifp)
391 {
392 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
393 }
394 
395 /* Device driver ifnet.if_start schedule helper function */
396 void
397 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
398 {
399 	ifsq_ifstart_schedule(ifsq, 1);
400 }
401 
402 void
403 if_devstart_sched(struct ifnet *ifp)
404 {
405 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
406 }
407 
408 static void
409 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
410 {
411 	lwkt_serialize_enter(ifp->if_serializer);
412 }
413 
414 static void
415 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
416 {
417 	lwkt_serialize_exit(ifp->if_serializer);
418 }
419 
420 static int
421 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
422 {
423 	return lwkt_serialize_try(ifp->if_serializer);
424 }
425 
426 #ifdef INVARIANTS
427 static void
428 if_default_serialize_assert(struct ifnet *ifp,
429 			    enum ifnet_serialize slz __unused,
430 			    boolean_t serialized)
431 {
432 	if (serialized)
433 		ASSERT_SERIALIZED(ifp->if_serializer);
434 	else
435 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
436 }
437 #endif
438 
439 /*
440  * Attach an interface to the list of "active" interfaces.
441  *
442  * The serializer is optional.  If non-NULL access to the interface
443  * may be MPSAFE.
444  */
445 void
446 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
447 {
448 	unsigned socksize, ifasize;
449 	int namelen, masklen;
450 	struct sockaddr_dl *sdl;
451 	struct ifaddr *ifa;
452 	struct ifaltq *ifq;
453 	int i, q;
454 
455 	static int if_indexlim = 8;
456 
457 	if (ifp->if_serialize != NULL) {
458 		KASSERT(ifp->if_deserialize != NULL &&
459 			ifp->if_tryserialize != NULL &&
460 			ifp->if_serialize_assert != NULL,
461 			("serialize functions are partially setup"));
462 
463 		/*
464 		 * If the device supplies serialize functions,
465 		 * then clear if_serializer to catch any invalid
466 		 * usage of this field.
467 		 */
468 		KASSERT(serializer == NULL,
469 			("both serialize functions and default serializer "
470 			 "are supplied"));
471 		ifp->if_serializer = NULL;
472 	} else {
473 		KASSERT(ifp->if_deserialize == NULL &&
474 			ifp->if_tryserialize == NULL &&
475 			ifp->if_serialize_assert == NULL,
476 			("serialize functions are partially setup"));
477 		ifp->if_serialize = if_default_serialize;
478 		ifp->if_deserialize = if_default_deserialize;
479 		ifp->if_tryserialize = if_default_tryserialize;
480 #ifdef INVARIANTS
481 		ifp->if_serialize_assert = if_default_serialize_assert;
482 #endif
483 
484 		/*
485 		 * The serializer can be passed in from the device,
486 		 * allowing the same serializer to be used for both
487 		 * the interrupt interlock and the device queue.
488 		 * If not specified, the netif structure will use an
489 		 * embedded serializer.
490 		 */
491 		if (serializer == NULL) {
492 			serializer = &ifp->if_default_serializer;
493 			lwkt_serialize_init(serializer);
494 		}
495 		ifp->if_serializer = serializer;
496 	}
497 
498 	mtx_init(&ifp->if_ioctl_mtx);
499 	mtx_lock(&ifp->if_ioctl_mtx);
500 
501 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
502 	ifp->if_index = ++if_index;
503 
504 	/*
505 	 * XXX -
506 	 * The old code would work if the interface passed a pre-existing
507 	 * chain of ifaddrs to this code.  We don't trust our callers to
508 	 * properly initialize the tailq, however, so we no longer allow
509 	 * this unlikely case.
510 	 */
511 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
512 				    M_IFADDR, M_WAITOK | M_ZERO);
513 	for (i = 0; i < ncpus; ++i)
514 		TAILQ_INIT(&ifp->if_addrheads[i]);
515 
516 	TAILQ_INIT(&ifp->if_prefixhead);
517 	TAILQ_INIT(&ifp->if_multiaddrs);
518 	TAILQ_INIT(&ifp->if_groups);
519 	getmicrotime(&ifp->if_lastchange);
520 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
521 		unsigned int n;
522 		struct ifnet **q;
523 
524 		if_indexlim <<= 1;
525 
526 		/* grow ifindex2ifnet */
527 		n = if_indexlim * sizeof(*q);
528 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
529 		if (ifindex2ifnet) {
530 			bcopy(ifindex2ifnet, q, n/2);
531 			kfree(ifindex2ifnet, M_IFADDR);
532 		}
533 		ifindex2ifnet = q;
534 	}
535 
536 	ifindex2ifnet[if_index] = ifp;
537 
538 	/*
539 	 * create a Link Level name for this device
540 	 */
541 	namelen = strlen(ifp->if_xname);
542 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
543 	socksize = masklen + ifp->if_addrlen;
544 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
545 	if (socksize < sizeof(*sdl))
546 		socksize = sizeof(*sdl);
547 	socksize = ROUNDUP(socksize);
548 #undef ROUNDUP
549 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
550 	ifa = ifa_create(ifasize, M_WAITOK);
551 	sdl = (struct sockaddr_dl *)(ifa + 1);
552 	sdl->sdl_len = socksize;
553 	sdl->sdl_family = AF_LINK;
554 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
555 	sdl->sdl_nlen = namelen;
556 	sdl->sdl_index = ifp->if_index;
557 	sdl->sdl_type = ifp->if_type;
558 	ifp->if_lladdr = ifa;
559 	ifa->ifa_ifp = ifp;
560 	ifa->ifa_rtrequest = link_rtrequest;
561 	ifa->ifa_addr = (struct sockaddr *)sdl;
562 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
563 	ifa->ifa_netmask = (struct sockaddr *)sdl;
564 	sdl->sdl_len = masklen;
565 	while (namelen != 0)
566 		sdl->sdl_data[--namelen] = 0xff;
567 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
568 
569 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
570 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
571 
572 	if (ifp->if_mapsubq == NULL)
573 		ifp->if_mapsubq = ifq_mapsubq_default;
574 
575 	ifq = &ifp->if_snd;
576 	ifq->altq_type = 0;
577 	ifq->altq_disc = NULL;
578 	ifq->altq_flags &= ALTQF_CANTCHANGE;
579 	ifq->altq_tbr = NULL;
580 	ifq->altq_ifp = ifp;
581 
582 	if (ifq->altq_subq_cnt <= 0)
583 		ifq->altq_subq_cnt = 1;
584 	ifq->altq_subq = kmalloc_cachealign(
585 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
586 	    M_DEVBUF, M_WAITOK | M_ZERO);
587 
588 	if (ifq->altq_maxlen == 0) {
589 		if_printf(ifp, "driver didn't set ifq_maxlen\n");
590 		ifq_set_maxlen(ifq, ifqmaxlen);
591 	}
592 
593 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
594 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
595 
596 		ALTQ_SQ_LOCK_INIT(ifsq);
597 		ifsq->ifsq_index = q;
598 
599 		ifsq->ifsq_altq = ifq;
600 		ifsq->ifsq_ifp = ifp;
601 
602 		ifsq->ifq_maxlen = ifq->altq_maxlen;
603 		ifsq->ifsq_prepended = NULL;
604 		ifsq->ifsq_started = 0;
605 		ifsq->ifsq_hw_oactive = 0;
606 		ifsq_set_cpuid(ifsq, 0);
607 
608 		ifsq->ifsq_stage =
609 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
610 		    M_DEVBUF, M_WAITOK | M_ZERO);
611 		for (i = 0; i < ncpus; ++i)
612 			ifsq->ifsq_stage[i].stg_subq = ifsq;
613 
614 		ifsq->ifsq_ifstart_nmsg =
615 		    kmalloc(ncpus * sizeof(struct netmsg_base),
616 		    M_LWKTMSG, M_WAITOK);
617 		for (i = 0; i < ncpus; ++i) {
618 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
619 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
620 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
621 		}
622 	}
623 	ifq_set_classic(ifq);
624 
625 	if (!SLIST_EMPTY(&domains))
626 		if_attachdomain1(ifp);
627 
628 	/* Announce the interface. */
629 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
630 
631 	mtx_unlock(&ifp->if_ioctl_mtx);
632 }
633 
634 static void
635 if_attachdomain(void *dummy)
636 {
637 	struct ifnet *ifp;
638 
639 	crit_enter();
640 	TAILQ_FOREACH(ifp, &ifnet, if_list)
641 		if_attachdomain1(ifp);
642 	crit_exit();
643 }
644 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
645 	if_attachdomain, NULL);
646 
647 static void
648 if_attachdomain1(struct ifnet *ifp)
649 {
650 	struct domain *dp;
651 
652 	crit_enter();
653 
654 	/* address family dependent data region */
655 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
656 	SLIST_FOREACH(dp, &domains, dom_next)
657 		if (dp->dom_ifattach)
658 			ifp->if_afdata[dp->dom_family] =
659 				(*dp->dom_ifattach)(ifp);
660 	crit_exit();
661 }
662 
663 /*
664  * Purge all addresses whose type is _not_ AF_LINK
665  */
666 void
667 if_purgeaddrs_nolink(struct ifnet *ifp)
668 {
669 	struct ifaddr_container *ifac, *next;
670 
671 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
672 			      ifa_link, next) {
673 		struct ifaddr *ifa = ifac->ifa;
674 
675 		/* Leave link ifaddr as it is */
676 		if (ifa->ifa_addr->sa_family == AF_LINK)
677 			continue;
678 #ifdef INET
679 		/* XXX: Ugly!! ad hoc just for INET */
680 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
681 			struct ifaliasreq ifr;
682 #ifdef IFADDR_DEBUG_VERBOSE
683 			int i;
684 
685 			kprintf("purge in4 addr %p: ", ifa);
686 			for (i = 0; i < ncpus; ++i)
687 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
688 			kprintf("\n");
689 #endif
690 
691 			bzero(&ifr, sizeof ifr);
692 			ifr.ifra_addr = *ifa->ifa_addr;
693 			if (ifa->ifa_dstaddr)
694 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
695 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
696 				       NULL) == 0)
697 				continue;
698 		}
699 #endif /* INET */
700 #ifdef INET6
701 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
702 #ifdef IFADDR_DEBUG_VERBOSE
703 			int i;
704 
705 			kprintf("purge in6 addr %p: ", ifa);
706 			for (i = 0; i < ncpus; ++i)
707 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
708 			kprintf("\n");
709 #endif
710 
711 			in6_purgeaddr(ifa);
712 			/* ifp_addrhead is already updated */
713 			continue;
714 		}
715 #endif /* INET6 */
716 		ifa_ifunlink(ifa, ifp);
717 		ifa_destroy(ifa);
718 	}
719 }
720 
721 static void
722 ifq_stage_detach_handler(netmsg_t nmsg)
723 {
724 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
725 	int q;
726 
727 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
728 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
729 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
730 
731 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
732 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
733 	}
734 	lwkt_replymsg(&nmsg->lmsg, 0);
735 }
736 
737 static void
738 ifq_stage_detach(struct ifaltq *ifq)
739 {
740 	struct netmsg_base base;
741 	int cpu;
742 
743 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
744 	    ifq_stage_detach_handler);
745 	base.lmsg.u.ms_resultp = ifq;
746 
747 	for (cpu = 0; cpu < ncpus; ++cpu)
748 		lwkt_domsg(netisr_portfn(cpu), &base.lmsg, 0);
749 }
750 
751 /*
752  * Detach an interface, removing it from the
753  * list of "active" interfaces.
754  */
755 void
756 if_detach(struct ifnet *ifp)
757 {
758 	struct radix_node_head	*rnh;
759 	int i, q;
760 	int cpu, origcpu;
761 	struct domain *dp;
762 
763 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
764 
765 	/*
766 	 * Remove routes and flush queues.
767 	 */
768 	crit_enter();
769 #ifdef IFPOLL_ENABLE
770 	if (ifp->if_flags & IFF_NPOLLING)
771 		ifpoll_deregister(ifp);
772 #endif
773 	if_down(ifp);
774 
775 #ifdef ALTQ
776 	if (ifq_is_enabled(&ifp->if_snd))
777 		altq_disable(&ifp->if_snd);
778 	if (ifq_is_attached(&ifp->if_snd))
779 		altq_detach(&ifp->if_snd);
780 #endif
781 
782 	/*
783 	 * Clean up all addresses.
784 	 */
785 	ifp->if_lladdr = NULL;
786 
787 	if_purgeaddrs_nolink(ifp);
788 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
789 		struct ifaddr *ifa;
790 
791 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
792 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
793 			("non-link ifaddr is left on if_addrheads"));
794 
795 		ifa_ifunlink(ifa, ifp);
796 		ifa_destroy(ifa);
797 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
798 			("there are still ifaddrs left on if_addrheads"));
799 	}
800 
801 #ifdef INET
802 	/*
803 	 * Remove all IPv4 kernel structures related to ifp.
804 	 */
805 	in_ifdetach(ifp);
806 #endif
807 
808 #ifdef INET6
809 	/*
810 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
811 	 * before removing routing entries below, since IPv6 interface direct
812 	 * routes are expected to be removed by the IPv6-specific kernel API.
813 	 * Otherwise, the kernel will detect some inconsistency and bark it.
814 	 */
815 	in6_ifdetach(ifp);
816 #endif
817 
818 	/*
819 	 * Delete all remaining routes using this interface
820 	 * Unfortuneatly the only way to do this is to slog through
821 	 * the entire routing table looking for routes which point
822 	 * to this interface...oh well...
823 	 */
824 	origcpu = mycpuid;
825 	for (cpu = 0; cpu < ncpus; cpu++) {
826 		lwkt_migratecpu(cpu);
827 		for (i = 1; i <= AF_MAX; i++) {
828 			if ((rnh = rt_tables[cpu][i]) == NULL)
829 				continue;
830 			rnh->rnh_walktree(rnh, if_rtdel, ifp);
831 		}
832 	}
833 	lwkt_migratecpu(origcpu);
834 
835 	/* Announce that the interface is gone. */
836 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
837 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
838 
839 	SLIST_FOREACH(dp, &domains, dom_next)
840 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
841 			(*dp->dom_ifdetach)(ifp,
842 				ifp->if_afdata[dp->dom_family]);
843 
844 	/*
845 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
846 	 */
847 	ifindex2ifnet[ifp->if_index] = NULL;
848 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
849 		if_index--;
850 
851 	TAILQ_REMOVE(&ifnet, ifp, if_link);
852 	kfree(ifp->if_addrheads, M_IFADDR);
853 
854 	lwkt_synchronize_ipiqs("if_detach");
855 	ifq_stage_detach(&ifp->if_snd);
856 
857 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
858 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
859 
860 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
861 		kfree(ifsq->ifsq_stage, M_DEVBUF);
862 	}
863 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
864 
865 	crit_exit();
866 }
867 
868 /*
869  * Create interface group without members
870  */
871 struct ifg_group *
872 if_creategroup(const char *groupname)
873 {
874         struct ifg_group        *ifg = NULL;
875 
876         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
877             M_TEMP, M_NOWAIT)) == NULL)
878                 return (NULL);
879 
880         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
881         ifg->ifg_refcnt = 0;
882         ifg->ifg_carp_demoted = 0;
883         TAILQ_INIT(&ifg->ifg_members);
884 #if NPF > 0
885         pfi_attach_ifgroup(ifg);
886 #endif
887         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
888 
889         return (ifg);
890 }
891 
892 /*
893  * Add a group to an interface
894  */
895 int
896 if_addgroup(struct ifnet *ifp, const char *groupname)
897 {
898 	struct ifg_list		*ifgl;
899 	struct ifg_group	*ifg = NULL;
900 	struct ifg_member	*ifgm;
901 
902 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
903 	    groupname[strlen(groupname) - 1] <= '9')
904 		return (EINVAL);
905 
906 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
907 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
908 			return (EEXIST);
909 
910 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
911 		return (ENOMEM);
912 
913 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
914 		kfree(ifgl, M_TEMP);
915 		return (ENOMEM);
916 	}
917 
918 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
919 		if (!strcmp(ifg->ifg_group, groupname))
920 			break;
921 
922 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
923 		kfree(ifgl, M_TEMP);
924 		kfree(ifgm, M_TEMP);
925 		return (ENOMEM);
926 	}
927 
928 	ifg->ifg_refcnt++;
929 	ifgl->ifgl_group = ifg;
930 	ifgm->ifgm_ifp = ifp;
931 
932 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
933 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
934 
935 #if NPF > 0
936 	pfi_group_change(groupname);
937 #endif
938 
939 	return (0);
940 }
941 
942 /*
943  * Remove a group from an interface
944  */
945 int
946 if_delgroup(struct ifnet *ifp, const char *groupname)
947 {
948 	struct ifg_list		*ifgl;
949 	struct ifg_member	*ifgm;
950 
951 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
952 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
953 			break;
954 	if (ifgl == NULL)
955 		return (ENOENT);
956 
957 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
958 
959 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
960 		if (ifgm->ifgm_ifp == ifp)
961 			break;
962 
963 	if (ifgm != NULL) {
964 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
965 		kfree(ifgm, M_TEMP);
966 	}
967 
968 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
969 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
970 #if NPF > 0
971 		pfi_detach_ifgroup(ifgl->ifgl_group);
972 #endif
973 		kfree(ifgl->ifgl_group, M_TEMP);
974 	}
975 
976 	kfree(ifgl, M_TEMP);
977 
978 #if NPF > 0
979 	pfi_group_change(groupname);
980 #endif
981 
982 	return (0);
983 }
984 
985 /*
986  * Stores all groups from an interface in memory pointed
987  * to by data
988  */
989 int
990 if_getgroup(caddr_t data, struct ifnet *ifp)
991 {
992 	int			 len, error;
993 	struct ifg_list		*ifgl;
994 	struct ifg_req		 ifgrq, *ifgp;
995 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
996 
997 	if (ifgr->ifgr_len == 0) {
998 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
999 			ifgr->ifgr_len += sizeof(struct ifg_req);
1000 		return (0);
1001 	}
1002 
1003 	len = ifgr->ifgr_len;
1004 	ifgp = ifgr->ifgr_groups;
1005 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1006 		if (len < sizeof(ifgrq))
1007 			return (EINVAL);
1008 		bzero(&ifgrq, sizeof ifgrq);
1009 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1010 		    sizeof(ifgrq.ifgrq_group));
1011 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1012 		    sizeof(struct ifg_req))))
1013 			return (error);
1014 		len -= sizeof(ifgrq);
1015 		ifgp++;
1016 	}
1017 
1018 	return (0);
1019 }
1020 
1021 /*
1022  * Stores all members of a group in memory pointed to by data
1023  */
1024 int
1025 if_getgroupmembers(caddr_t data)
1026 {
1027 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1028 	struct ifg_group	*ifg;
1029 	struct ifg_member	*ifgm;
1030 	struct ifg_req		 ifgrq, *ifgp;
1031 	int			 len, error;
1032 
1033 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1034 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1035 			break;
1036 	if (ifg == NULL)
1037 		return (ENOENT);
1038 
1039 	if (ifgr->ifgr_len == 0) {
1040 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1041 			ifgr->ifgr_len += sizeof(ifgrq);
1042 		return (0);
1043 	}
1044 
1045 	len = ifgr->ifgr_len;
1046 	ifgp = ifgr->ifgr_groups;
1047 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1048 		if (len < sizeof(ifgrq))
1049 			return (EINVAL);
1050 		bzero(&ifgrq, sizeof ifgrq);
1051 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1052 		    sizeof(ifgrq.ifgrq_member));
1053 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1054 		    sizeof(struct ifg_req))))
1055 			return (error);
1056 		len -= sizeof(ifgrq);
1057 		ifgp++;
1058 	}
1059 
1060 	return (0);
1061 }
1062 
1063 /*
1064  * Delete Routes for a Network Interface
1065  *
1066  * Called for each routing entry via the rnh->rnh_walktree() call above
1067  * to delete all route entries referencing a detaching network interface.
1068  *
1069  * Arguments:
1070  *	rn	pointer to node in the routing table
1071  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1072  *
1073  * Returns:
1074  *	0	successful
1075  *	errno	failed - reason indicated
1076  *
1077  */
1078 static int
1079 if_rtdel(struct radix_node *rn, void *arg)
1080 {
1081 	struct rtentry	*rt = (struct rtentry *)rn;
1082 	struct ifnet	*ifp = arg;
1083 	int		err;
1084 
1085 	if (rt->rt_ifp == ifp) {
1086 
1087 		/*
1088 		 * Protect (sorta) against walktree recursion problems
1089 		 * with cloned routes
1090 		 */
1091 		if (!(rt->rt_flags & RTF_UP))
1092 			return (0);
1093 
1094 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1095 				rt_mask(rt), rt->rt_flags,
1096 				NULL);
1097 		if (err) {
1098 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1099 		}
1100 	}
1101 
1102 	return (0);
1103 }
1104 
1105 /*
1106  * Locate an interface based on a complete address.
1107  */
1108 struct ifaddr *
1109 ifa_ifwithaddr(struct sockaddr *addr)
1110 {
1111 	struct ifnet *ifp;
1112 
1113 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1114 		struct ifaddr_container *ifac;
1115 
1116 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1117 			struct ifaddr *ifa = ifac->ifa;
1118 
1119 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1120 				continue;
1121 			if (sa_equal(addr, ifa->ifa_addr))
1122 				return (ifa);
1123 			if ((ifp->if_flags & IFF_BROADCAST) &&
1124 			    ifa->ifa_broadaddr &&
1125 			    /* IPv6 doesn't have broadcast */
1126 			    ifa->ifa_broadaddr->sa_len != 0 &&
1127 			    sa_equal(ifa->ifa_broadaddr, addr))
1128 				return (ifa);
1129 		}
1130 	}
1131 	return (NULL);
1132 }
1133 /*
1134  * Locate the point to point interface with a given destination address.
1135  */
1136 struct ifaddr *
1137 ifa_ifwithdstaddr(struct sockaddr *addr)
1138 {
1139 	struct ifnet *ifp;
1140 
1141 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1142 		struct ifaddr_container *ifac;
1143 
1144 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1145 			continue;
1146 
1147 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1148 			struct ifaddr *ifa = ifac->ifa;
1149 
1150 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1151 				continue;
1152 			if (ifa->ifa_dstaddr &&
1153 			    sa_equal(addr, ifa->ifa_dstaddr))
1154 				return (ifa);
1155 		}
1156 	}
1157 	return (NULL);
1158 }
1159 
1160 /*
1161  * Find an interface on a specific network.  If many, choice
1162  * is most specific found.
1163  */
1164 struct ifaddr *
1165 ifa_ifwithnet(struct sockaddr *addr)
1166 {
1167 	struct ifnet *ifp;
1168 	struct ifaddr *ifa_maybe = NULL;
1169 	u_int af = addr->sa_family;
1170 	char *addr_data = addr->sa_data, *cplim;
1171 
1172 	/*
1173 	 * AF_LINK addresses can be looked up directly by their index number,
1174 	 * so do that if we can.
1175 	 */
1176 	if (af == AF_LINK) {
1177 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1178 
1179 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1180 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1181 	}
1182 
1183 	/*
1184 	 * Scan though each interface, looking for ones that have
1185 	 * addresses in this address family.
1186 	 */
1187 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1188 		struct ifaddr_container *ifac;
1189 
1190 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1191 			struct ifaddr *ifa = ifac->ifa;
1192 			char *cp, *cp2, *cp3;
1193 
1194 			if (ifa->ifa_addr->sa_family != af)
1195 next:				continue;
1196 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1197 				/*
1198 				 * This is a bit broken as it doesn't
1199 				 * take into account that the remote end may
1200 				 * be a single node in the network we are
1201 				 * looking for.
1202 				 * The trouble is that we don't know the
1203 				 * netmask for the remote end.
1204 				 */
1205 				if (ifa->ifa_dstaddr != NULL &&
1206 				    sa_equal(addr, ifa->ifa_dstaddr))
1207 					return (ifa);
1208 			} else {
1209 				/*
1210 				 * if we have a special address handler,
1211 				 * then use it instead of the generic one.
1212 				 */
1213 				if (ifa->ifa_claim_addr) {
1214 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1215 						return (ifa);
1216 					} else {
1217 						continue;
1218 					}
1219 				}
1220 
1221 				/*
1222 				 * Scan all the bits in the ifa's address.
1223 				 * If a bit dissagrees with what we are
1224 				 * looking for, mask it with the netmask
1225 				 * to see if it really matters.
1226 				 * (A byte at a time)
1227 				 */
1228 				if (ifa->ifa_netmask == 0)
1229 					continue;
1230 				cp = addr_data;
1231 				cp2 = ifa->ifa_addr->sa_data;
1232 				cp3 = ifa->ifa_netmask->sa_data;
1233 				cplim = ifa->ifa_netmask->sa_len +
1234 					(char *)ifa->ifa_netmask;
1235 				while (cp3 < cplim)
1236 					if ((*cp++ ^ *cp2++) & *cp3++)
1237 						goto next; /* next address! */
1238 				/*
1239 				 * If the netmask of what we just found
1240 				 * is more specific than what we had before
1241 				 * (if we had one) then remember the new one
1242 				 * before continuing to search
1243 				 * for an even better one.
1244 				 */
1245 				if (ifa_maybe == NULL ||
1246 				    rn_refines((char *)ifa->ifa_netmask,
1247 					       (char *)ifa_maybe->ifa_netmask))
1248 					ifa_maybe = ifa;
1249 			}
1250 		}
1251 	}
1252 	return (ifa_maybe);
1253 }
1254 
1255 /*
1256  * Find an interface address specific to an interface best matching
1257  * a given address.
1258  */
1259 struct ifaddr *
1260 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1261 {
1262 	struct ifaddr_container *ifac;
1263 	char *cp, *cp2, *cp3;
1264 	char *cplim;
1265 	struct ifaddr *ifa_maybe = NULL;
1266 	u_int af = addr->sa_family;
1267 
1268 	if (af >= AF_MAX)
1269 		return (0);
1270 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1271 		struct ifaddr *ifa = ifac->ifa;
1272 
1273 		if (ifa->ifa_addr->sa_family != af)
1274 			continue;
1275 		if (ifa_maybe == NULL)
1276 			ifa_maybe = ifa;
1277 		if (ifa->ifa_netmask == NULL) {
1278 			if (sa_equal(addr, ifa->ifa_addr) ||
1279 			    (ifa->ifa_dstaddr != NULL &&
1280 			     sa_equal(addr, ifa->ifa_dstaddr)))
1281 				return (ifa);
1282 			continue;
1283 		}
1284 		if (ifp->if_flags & IFF_POINTOPOINT) {
1285 			if (sa_equal(addr, ifa->ifa_dstaddr))
1286 				return (ifa);
1287 		} else {
1288 			cp = addr->sa_data;
1289 			cp2 = ifa->ifa_addr->sa_data;
1290 			cp3 = ifa->ifa_netmask->sa_data;
1291 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1292 			for (; cp3 < cplim; cp3++)
1293 				if ((*cp++ ^ *cp2++) & *cp3)
1294 					break;
1295 			if (cp3 == cplim)
1296 				return (ifa);
1297 		}
1298 	}
1299 	return (ifa_maybe);
1300 }
1301 
1302 /*
1303  * Default action when installing a route with a Link Level gateway.
1304  * Lookup an appropriate real ifa to point to.
1305  * This should be moved to /sys/net/link.c eventually.
1306  */
1307 static void
1308 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
1309 {
1310 	struct ifaddr *ifa;
1311 	struct sockaddr *dst;
1312 	struct ifnet *ifp;
1313 
1314 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1315 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1316 		return;
1317 	ifa = ifaof_ifpforaddr(dst, ifp);
1318 	if (ifa != NULL) {
1319 		IFAFREE(rt->rt_ifa);
1320 		IFAREF(ifa);
1321 		rt->rt_ifa = ifa;
1322 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1323 			ifa->ifa_rtrequest(cmd, rt, info);
1324 	}
1325 }
1326 
1327 /*
1328  * Mark an interface down and notify protocols of
1329  * the transition.
1330  * NOTE: must be called at splnet or eqivalent.
1331  */
1332 void
1333 if_unroute(struct ifnet *ifp, int flag, int fam)
1334 {
1335 	struct ifaddr_container *ifac;
1336 
1337 	ifp->if_flags &= ~flag;
1338 	getmicrotime(&ifp->if_lastchange);
1339 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1340 		struct ifaddr *ifa = ifac->ifa;
1341 
1342 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1343 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1344 	}
1345 	ifq_purge_all(&ifp->if_snd);
1346 	rt_ifmsg(ifp);
1347 }
1348 
1349 /*
1350  * Mark an interface up and notify protocols of
1351  * the transition.
1352  * NOTE: must be called at splnet or eqivalent.
1353  */
1354 void
1355 if_route(struct ifnet *ifp, int flag, int fam)
1356 {
1357 	struct ifaddr_container *ifac;
1358 
1359 	ifq_purge_all(&ifp->if_snd);
1360 	ifp->if_flags |= flag;
1361 	getmicrotime(&ifp->if_lastchange);
1362 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1363 		struct ifaddr *ifa = ifac->ifa;
1364 
1365 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1366 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1367 	}
1368 	rt_ifmsg(ifp);
1369 #ifdef INET6
1370 	in6_if_up(ifp);
1371 #endif
1372 }
1373 
1374 /*
1375  * Mark an interface down and notify protocols of the transition.  An
1376  * interface going down is also considered to be a synchronizing event.
1377  * We must ensure that all packet processing related to the interface
1378  * has completed before we return so e.g. the caller can free the ifnet
1379  * structure that the mbufs may be referencing.
1380  *
1381  * NOTE: must be called at splnet or eqivalent.
1382  */
1383 void
1384 if_down(struct ifnet *ifp)
1385 {
1386 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1387 	netmsg_service_sync();
1388 }
1389 
1390 /*
1391  * Mark an interface up and notify protocols of
1392  * the transition.
1393  * NOTE: must be called at splnet or eqivalent.
1394  */
1395 void
1396 if_up(struct ifnet *ifp)
1397 {
1398 	if_route(ifp, IFF_UP, AF_UNSPEC);
1399 }
1400 
1401 /*
1402  * Process a link state change.
1403  * NOTE: must be called at splsoftnet or equivalent.
1404  */
1405 void
1406 if_link_state_change(struct ifnet *ifp)
1407 {
1408 	int link_state = ifp->if_link_state;
1409 
1410 	rt_ifmsg(ifp);
1411 	devctl_notify("IFNET", ifp->if_xname,
1412 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1413 }
1414 
1415 /*
1416  * Handle interface watchdog timer routines.  Called
1417  * from softclock, we decrement timers (if set) and
1418  * call the appropriate interface routine on expiration.
1419  */
1420 static void
1421 if_slowtimo(void *arg)
1422 {
1423 	struct ifnet *ifp;
1424 
1425 	crit_enter();
1426 
1427 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1428 		if (ifp->if_timer == 0 || --ifp->if_timer)
1429 			continue;
1430 		if (ifp->if_watchdog) {
1431 			if (ifnet_tryserialize_all(ifp)) {
1432 				(*ifp->if_watchdog)(ifp);
1433 				ifnet_deserialize_all(ifp);
1434 			} else {
1435 				/* try again next timeout */
1436 				++ifp->if_timer;
1437 			}
1438 		}
1439 	}
1440 
1441 	crit_exit();
1442 
1443 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1444 }
1445 
1446 /*
1447  * Map interface name to
1448  * interface structure pointer.
1449  */
1450 struct ifnet *
1451 ifunit(const char *name)
1452 {
1453 	struct ifnet *ifp;
1454 
1455 	/*
1456 	 * Search all the interfaces for this name/number
1457 	 */
1458 
1459 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1460 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1461 			break;
1462 	}
1463 	return (ifp);
1464 }
1465 
1466 
1467 /*
1468  * Map interface name in a sockaddr_dl to
1469  * interface structure pointer.
1470  */
1471 struct ifnet *
1472 if_withname(struct sockaddr *sa)
1473 {
1474 	char ifname[IFNAMSIZ+1];
1475 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1476 
1477 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1478 	     (sdl->sdl_nlen > IFNAMSIZ) )
1479 		return NULL;
1480 
1481 	/*
1482 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1483 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1484 	 * and there might not be room to put the trailing null anyway, so we
1485 	 * make a local copy that we know we can null terminate safely.
1486 	 */
1487 
1488 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1489 	ifname[sdl->sdl_nlen] = '\0';
1490 	return ifunit(ifname);
1491 }
1492 
1493 
1494 /*
1495  * Interface ioctls.
1496  */
1497 int
1498 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1499 {
1500 	struct ifnet *ifp;
1501 	struct ifreq *ifr;
1502 	struct ifstat *ifs;
1503 	int error;
1504 	short oif_flags;
1505 	int new_flags;
1506 #ifdef COMPAT_43
1507 	int ocmd;
1508 #endif
1509 	size_t namelen, onamelen;
1510 	char new_name[IFNAMSIZ];
1511 	struct ifaddr *ifa;
1512 	struct sockaddr_dl *sdl;
1513 
1514 	switch (cmd) {
1515 	case SIOCGIFCONF:
1516 	case OSIOCGIFCONF:
1517 		return (ifconf(cmd, data, cred));
1518 	default:
1519 		break;
1520 	}
1521 
1522 	ifr = (struct ifreq *)data;
1523 
1524 	switch (cmd) {
1525 	case SIOCIFCREATE:
1526 	case SIOCIFCREATE2:
1527 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1528 			return (error);
1529 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1530 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1531 	case SIOCIFDESTROY:
1532 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1533 			return (error);
1534 		return (if_clone_destroy(ifr->ifr_name));
1535 	case SIOCIFGCLONERS:
1536 		return (if_clone_list((struct if_clonereq *)data));
1537 	default:
1538 		break;
1539 	}
1540 
1541 	/*
1542 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1543 	 * lock to serialize the ifconfig ioctl operation.
1544 	 */
1545 	ifp = ifunit(ifr->ifr_name);
1546 	if (ifp == NULL)
1547 		return (ENXIO);
1548 	error = 0;
1549 	mtx_lock(&ifp->if_ioctl_mtx);
1550 
1551 	switch (cmd) {
1552 	case SIOCGIFINDEX:
1553 		ifr->ifr_index = ifp->if_index;
1554 		break;
1555 
1556 	case SIOCGIFFLAGS:
1557 		ifr->ifr_flags = ifp->if_flags;
1558 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1559 		break;
1560 
1561 	case SIOCGIFCAP:
1562 		ifr->ifr_reqcap = ifp->if_capabilities;
1563 		ifr->ifr_curcap = ifp->if_capenable;
1564 		break;
1565 
1566 	case SIOCGIFMETRIC:
1567 		ifr->ifr_metric = ifp->if_metric;
1568 		break;
1569 
1570 	case SIOCGIFMTU:
1571 		ifr->ifr_mtu = ifp->if_mtu;
1572 		break;
1573 
1574 	case SIOCGIFTSOLEN:
1575 		ifr->ifr_tsolen = ifp->if_tsolen;
1576 		break;
1577 
1578 	case SIOCGIFDATA:
1579 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1580 				sizeof(ifp->if_data));
1581 		break;
1582 
1583 	case SIOCGIFPHYS:
1584 		ifr->ifr_phys = ifp->if_physical;
1585 		break;
1586 
1587 	case SIOCGIFPOLLCPU:
1588 		ifr->ifr_pollcpu = -1;
1589 		break;
1590 
1591 	case SIOCSIFPOLLCPU:
1592 		break;
1593 
1594 	case SIOCSIFFLAGS:
1595 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1596 		if (error)
1597 			break;
1598 		new_flags = (ifr->ifr_flags & 0xffff) |
1599 		    (ifr->ifr_flagshigh << 16);
1600 		if (ifp->if_flags & IFF_SMART) {
1601 			/* Smart drivers twiddle their own routes */
1602 		} else if (ifp->if_flags & IFF_UP &&
1603 		    (new_flags & IFF_UP) == 0) {
1604 			crit_enter();
1605 			if_down(ifp);
1606 			crit_exit();
1607 		} else if (new_flags & IFF_UP &&
1608 		    (ifp->if_flags & IFF_UP) == 0) {
1609 			crit_enter();
1610 			if_up(ifp);
1611 			crit_exit();
1612 		}
1613 
1614 #ifdef IFPOLL_ENABLE
1615 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1616 			if (new_flags & IFF_NPOLLING)
1617 				ifpoll_register(ifp);
1618 			else
1619 				ifpoll_deregister(ifp);
1620 		}
1621 #endif
1622 
1623 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1624 			(new_flags &~ IFF_CANTCHANGE);
1625 		if (new_flags & IFF_PPROMISC) {
1626 			/* Permanently promiscuous mode requested */
1627 			ifp->if_flags |= IFF_PROMISC;
1628 		} else if (ifp->if_pcount == 0) {
1629 			ifp->if_flags &= ~IFF_PROMISC;
1630 		}
1631 		if (ifp->if_ioctl) {
1632 			ifnet_serialize_all(ifp);
1633 			ifp->if_ioctl(ifp, cmd, data, cred);
1634 			ifnet_deserialize_all(ifp);
1635 		}
1636 		getmicrotime(&ifp->if_lastchange);
1637 		break;
1638 
1639 	case SIOCSIFCAP:
1640 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1641 		if (error)
1642 			break;
1643 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1644 			error = EINVAL;
1645 			break;
1646 		}
1647 		ifnet_serialize_all(ifp);
1648 		ifp->if_ioctl(ifp, cmd, data, cred);
1649 		ifnet_deserialize_all(ifp);
1650 		break;
1651 
1652 	case SIOCSIFNAME:
1653 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1654 		if (error)
1655 			break;
1656 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1657 		if (error)
1658 			break;
1659 		if (new_name[0] == '\0') {
1660 			error = EINVAL;
1661 			break;
1662 		}
1663 		if (ifunit(new_name) != NULL) {
1664 			error = EEXIST;
1665 			break;
1666 		}
1667 
1668 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1669 
1670 		/* Announce the departure of the interface. */
1671 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1672 
1673 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1674 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1675 		/* XXX IFA_LOCK(ifa); */
1676 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1677 		namelen = strlen(new_name);
1678 		onamelen = sdl->sdl_nlen;
1679 		/*
1680 		 * Move the address if needed.  This is safe because we
1681 		 * allocate space for a name of length IFNAMSIZ when we
1682 		 * create this in if_attach().
1683 		 */
1684 		if (namelen != onamelen) {
1685 			bcopy(sdl->sdl_data + onamelen,
1686 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1687 		}
1688 		bcopy(new_name, sdl->sdl_data, namelen);
1689 		sdl->sdl_nlen = namelen;
1690 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1691 		bzero(sdl->sdl_data, onamelen);
1692 		while (namelen != 0)
1693 			sdl->sdl_data[--namelen] = 0xff;
1694 		/* XXX IFA_UNLOCK(ifa) */
1695 
1696 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1697 
1698 		/* Announce the return of the interface. */
1699 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1700 		break;
1701 
1702 	case SIOCSIFMETRIC:
1703 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1704 		if (error)
1705 			break;
1706 		ifp->if_metric = ifr->ifr_metric;
1707 		getmicrotime(&ifp->if_lastchange);
1708 		break;
1709 
1710 	case SIOCSIFPHYS:
1711 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1712 		if (error)
1713 			break;
1714 		if (ifp->if_ioctl == NULL) {
1715 		        error = EOPNOTSUPP;
1716 			break;
1717 		}
1718 		ifnet_serialize_all(ifp);
1719 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1720 		ifnet_deserialize_all(ifp);
1721 		if (error == 0)
1722 			getmicrotime(&ifp->if_lastchange);
1723 		break;
1724 
1725 	case SIOCSIFMTU:
1726 	{
1727 		u_long oldmtu = ifp->if_mtu;
1728 
1729 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1730 		if (error)
1731 			break;
1732 		if (ifp->if_ioctl == NULL) {
1733 			error = EOPNOTSUPP;
1734 			break;
1735 		}
1736 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1737 			error = EINVAL;
1738 			break;
1739 		}
1740 		ifnet_serialize_all(ifp);
1741 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1742 		ifnet_deserialize_all(ifp);
1743 		if (error == 0) {
1744 			getmicrotime(&ifp->if_lastchange);
1745 			rt_ifmsg(ifp);
1746 		}
1747 		/*
1748 		 * If the link MTU changed, do network layer specific procedure.
1749 		 */
1750 		if (ifp->if_mtu != oldmtu) {
1751 #ifdef INET6
1752 			nd6_setmtu(ifp);
1753 #endif
1754 		}
1755 		break;
1756 	}
1757 
1758 	case SIOCSIFTSOLEN:
1759 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1760 		if (error)
1761 			break;
1762 
1763 		/* XXX need driver supplied upper limit */
1764 		if (ifr->ifr_tsolen <= 0) {
1765 			error = EINVAL;
1766 			break;
1767 		}
1768 		ifp->if_tsolen = ifr->ifr_tsolen;
1769 		break;
1770 
1771 	case SIOCADDMULTI:
1772 	case SIOCDELMULTI:
1773 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1774 		if (error)
1775 			break;
1776 
1777 		/* Don't allow group membership on non-multicast interfaces. */
1778 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1779 			error = EOPNOTSUPP;
1780 			break;
1781 		}
1782 
1783 		/* Don't let users screw up protocols' entries. */
1784 		if (ifr->ifr_addr.sa_family != AF_LINK) {
1785 			error = EINVAL;
1786 			break;
1787 		}
1788 
1789 		if (cmd == SIOCADDMULTI) {
1790 			struct ifmultiaddr *ifma;
1791 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1792 		} else {
1793 			error = if_delmulti(ifp, &ifr->ifr_addr);
1794 		}
1795 		if (error == 0)
1796 			getmicrotime(&ifp->if_lastchange);
1797 		break;
1798 
1799 	case SIOCSIFPHYADDR:
1800 	case SIOCDIFPHYADDR:
1801 #ifdef INET6
1802 	case SIOCSIFPHYADDR_IN6:
1803 #endif
1804 	case SIOCSLIFPHYADDR:
1805         case SIOCSIFMEDIA:
1806 	case SIOCSIFGENERIC:
1807 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1808 		if (error)
1809 			break;
1810 		if (ifp->if_ioctl == 0) {
1811 			error = EOPNOTSUPP;
1812 			break;
1813 		}
1814 		ifnet_serialize_all(ifp);
1815 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1816 		ifnet_deserialize_all(ifp);
1817 		if (error == 0)
1818 			getmicrotime(&ifp->if_lastchange);
1819 		break;
1820 
1821 	case SIOCGIFSTATUS:
1822 		ifs = (struct ifstat *)data;
1823 		ifs->ascii[0] = '\0';
1824 		/* fall through */
1825 	case SIOCGIFPSRCADDR:
1826 	case SIOCGIFPDSTADDR:
1827 	case SIOCGLIFPHYADDR:
1828 	case SIOCGIFMEDIA:
1829 	case SIOCGIFGENERIC:
1830 		if (ifp->if_ioctl == NULL) {
1831 			error = EOPNOTSUPP;
1832 			break;
1833 		}
1834 		ifnet_serialize_all(ifp);
1835 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1836 		ifnet_deserialize_all(ifp);
1837 		break;
1838 
1839 	case SIOCSIFLLADDR:
1840 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1841 		if (error)
1842 			break;
1843 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
1844 				     ifr->ifr_addr.sa_len);
1845 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1846 		break;
1847 
1848 	default:
1849 		oif_flags = ifp->if_flags;
1850 		if (so->so_proto == 0) {
1851 			error = EOPNOTSUPP;
1852 			break;
1853 		}
1854 #ifndef COMPAT_43
1855 		error = so_pru_control_direct(so, cmd, data, ifp);
1856 #else
1857 		ocmd = cmd;
1858 
1859 		switch (cmd) {
1860 		case SIOCSIFDSTADDR:
1861 		case SIOCSIFADDR:
1862 		case SIOCSIFBRDADDR:
1863 		case SIOCSIFNETMASK:
1864 #if BYTE_ORDER != BIG_ENDIAN
1865 			if (ifr->ifr_addr.sa_family == 0 &&
1866 			    ifr->ifr_addr.sa_len < 16) {
1867 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1868 				ifr->ifr_addr.sa_len = 16;
1869 			}
1870 #else
1871 			if (ifr->ifr_addr.sa_len == 0)
1872 				ifr->ifr_addr.sa_len = 16;
1873 #endif
1874 			break;
1875 		case OSIOCGIFADDR:
1876 			cmd = SIOCGIFADDR;
1877 			break;
1878 		case OSIOCGIFDSTADDR:
1879 			cmd = SIOCGIFDSTADDR;
1880 			break;
1881 		case OSIOCGIFBRDADDR:
1882 			cmd = SIOCGIFBRDADDR;
1883 			break;
1884 		case OSIOCGIFNETMASK:
1885 			cmd = SIOCGIFNETMASK;
1886 			break;
1887 		default:
1888 			break;
1889 		}
1890 
1891 		error = so_pru_control_direct(so, cmd, data, ifp);
1892 
1893 		switch (ocmd) {
1894 		case OSIOCGIFADDR:
1895 		case OSIOCGIFDSTADDR:
1896 		case OSIOCGIFBRDADDR:
1897 		case OSIOCGIFNETMASK:
1898 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1899 			break;
1900 		}
1901 #endif /* COMPAT_43 */
1902 
1903 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1904 #ifdef INET6
1905 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1906 			if (ifp->if_flags & IFF_UP) {
1907 				crit_enter();
1908 				in6_if_up(ifp);
1909 				crit_exit();
1910 			}
1911 #endif
1912 		}
1913 		break;
1914 	}
1915 
1916 	mtx_unlock(&ifp->if_ioctl_mtx);
1917 	return (error);
1918 }
1919 
1920 /*
1921  * Set/clear promiscuous mode on interface ifp based on the truth value
1922  * of pswitch.  The calls are reference counted so that only the first
1923  * "on" request actually has an effect, as does the final "off" request.
1924  * Results are undefined if the "off" and "on" requests are not matched.
1925  */
1926 int
1927 ifpromisc(struct ifnet *ifp, int pswitch)
1928 {
1929 	struct ifreq ifr;
1930 	int error;
1931 	int oldflags;
1932 
1933 	oldflags = ifp->if_flags;
1934 	if (ifp->if_flags & IFF_PPROMISC) {
1935 		/* Do nothing if device is in permanently promiscuous mode */
1936 		ifp->if_pcount += pswitch ? 1 : -1;
1937 		return (0);
1938 	}
1939 	if (pswitch) {
1940 		/*
1941 		 * If the device is not configured up, we cannot put it in
1942 		 * promiscuous mode.
1943 		 */
1944 		if ((ifp->if_flags & IFF_UP) == 0)
1945 			return (ENETDOWN);
1946 		if (ifp->if_pcount++ != 0)
1947 			return (0);
1948 		ifp->if_flags |= IFF_PROMISC;
1949 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
1950 		    ifp->if_xname);
1951 	} else {
1952 		if (--ifp->if_pcount > 0)
1953 			return (0);
1954 		ifp->if_flags &= ~IFF_PROMISC;
1955 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
1956 		    ifp->if_xname);
1957 	}
1958 	ifr.ifr_flags = ifp->if_flags;
1959 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
1960 	ifnet_serialize_all(ifp);
1961 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
1962 	ifnet_deserialize_all(ifp);
1963 	if (error == 0)
1964 		rt_ifmsg(ifp);
1965 	else
1966 		ifp->if_flags = oldflags;
1967 	return error;
1968 }
1969 
1970 /*
1971  * Return interface configuration
1972  * of system.  List may be used
1973  * in later ioctl's (above) to get
1974  * other information.
1975  */
1976 static int
1977 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
1978 {
1979 	struct ifconf *ifc = (struct ifconf *)data;
1980 	struct ifnet *ifp;
1981 	struct sockaddr *sa;
1982 	struct ifreq ifr, *ifrp;
1983 	int space = ifc->ifc_len, error = 0;
1984 
1985 	ifrp = ifc->ifc_req;
1986 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1987 		struct ifaddr_container *ifac;
1988 		int addrs;
1989 
1990 		if (space <= sizeof ifr)
1991 			break;
1992 
1993 		/*
1994 		 * Zero the stack declared structure first to prevent
1995 		 * memory disclosure.
1996 		 */
1997 		bzero(&ifr, sizeof(ifr));
1998 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
1999 		    >= sizeof(ifr.ifr_name)) {
2000 			error = ENAMETOOLONG;
2001 			break;
2002 		}
2003 
2004 		addrs = 0;
2005 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2006 			struct ifaddr *ifa = ifac->ifa;
2007 
2008 			if (space <= sizeof ifr)
2009 				break;
2010 			sa = ifa->ifa_addr;
2011 			if (cred->cr_prison &&
2012 			    prison_if(cred, sa))
2013 				continue;
2014 			addrs++;
2015 #ifdef COMPAT_43
2016 			if (cmd == OSIOCGIFCONF) {
2017 				struct osockaddr *osa =
2018 					 (struct osockaddr *)&ifr.ifr_addr;
2019 				ifr.ifr_addr = *sa;
2020 				osa->sa_family = sa->sa_family;
2021 				error = copyout(&ifr, ifrp, sizeof ifr);
2022 				ifrp++;
2023 			} else
2024 #endif
2025 			if (sa->sa_len <= sizeof(*sa)) {
2026 				ifr.ifr_addr = *sa;
2027 				error = copyout(&ifr, ifrp, sizeof ifr);
2028 				ifrp++;
2029 			} else {
2030 				if (space < (sizeof ifr) + sa->sa_len -
2031 					    sizeof(*sa))
2032 					break;
2033 				space -= sa->sa_len - sizeof(*sa);
2034 				error = copyout(&ifr, ifrp,
2035 						sizeof ifr.ifr_name);
2036 				if (error == 0)
2037 					error = copyout(sa, &ifrp->ifr_addr,
2038 							sa->sa_len);
2039 				ifrp = (struct ifreq *)
2040 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2041 			}
2042 			if (error)
2043 				break;
2044 			space -= sizeof ifr;
2045 		}
2046 		if (error)
2047 			break;
2048 		if (!addrs) {
2049 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2050 			error = copyout(&ifr, ifrp, sizeof ifr);
2051 			if (error)
2052 				break;
2053 			space -= sizeof ifr;
2054 			ifrp++;
2055 		}
2056 	}
2057 	ifc->ifc_len -= space;
2058 	return (error);
2059 }
2060 
2061 /*
2062  * Just like if_promisc(), but for all-multicast-reception mode.
2063  */
2064 int
2065 if_allmulti(struct ifnet *ifp, int onswitch)
2066 {
2067 	int error = 0;
2068 	struct ifreq ifr;
2069 
2070 	crit_enter();
2071 
2072 	if (onswitch) {
2073 		if (ifp->if_amcount++ == 0) {
2074 			ifp->if_flags |= IFF_ALLMULTI;
2075 			ifr.ifr_flags = ifp->if_flags;
2076 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2077 			ifnet_serialize_all(ifp);
2078 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2079 					      NULL);
2080 			ifnet_deserialize_all(ifp);
2081 		}
2082 	} else {
2083 		if (ifp->if_amcount > 1) {
2084 			ifp->if_amcount--;
2085 		} else {
2086 			ifp->if_amcount = 0;
2087 			ifp->if_flags &= ~IFF_ALLMULTI;
2088 			ifr.ifr_flags = ifp->if_flags;
2089 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2090 			ifnet_serialize_all(ifp);
2091 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2092 					      NULL);
2093 			ifnet_deserialize_all(ifp);
2094 		}
2095 	}
2096 
2097 	crit_exit();
2098 
2099 	if (error == 0)
2100 		rt_ifmsg(ifp);
2101 	return error;
2102 }
2103 
2104 /*
2105  * Add a multicast listenership to the interface in question.
2106  * The link layer provides a routine which converts
2107  */
2108 int
2109 if_addmulti(
2110 	struct ifnet *ifp,	/* interface to manipulate */
2111 	struct sockaddr *sa,	/* address to add */
2112 	struct ifmultiaddr **retifma)
2113 {
2114 	struct sockaddr *llsa, *dupsa;
2115 	int error;
2116 	struct ifmultiaddr *ifma;
2117 
2118 	/*
2119 	 * If the matching multicast address already exists
2120 	 * then don't add a new one, just add a reference
2121 	 */
2122 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2123 		if (sa_equal(sa, ifma->ifma_addr)) {
2124 			ifma->ifma_refcount++;
2125 			if (retifma)
2126 				*retifma = ifma;
2127 			return 0;
2128 		}
2129 	}
2130 
2131 	/*
2132 	 * Give the link layer a chance to accept/reject it, and also
2133 	 * find out which AF_LINK address this maps to, if it isn't one
2134 	 * already.
2135 	 */
2136 	if (ifp->if_resolvemulti) {
2137 		ifnet_serialize_all(ifp);
2138 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2139 		ifnet_deserialize_all(ifp);
2140 		if (error)
2141 			return error;
2142 	} else {
2143 		llsa = NULL;
2144 	}
2145 
2146 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2147 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK);
2148 	bcopy(sa, dupsa, sa->sa_len);
2149 
2150 	ifma->ifma_addr = dupsa;
2151 	ifma->ifma_lladdr = llsa;
2152 	ifma->ifma_ifp = ifp;
2153 	ifma->ifma_refcount = 1;
2154 	ifma->ifma_protospec = 0;
2155 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2156 
2157 	/*
2158 	 * Some network interfaces can scan the address list at
2159 	 * interrupt time; lock them out.
2160 	 */
2161 	crit_enter();
2162 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2163 	crit_exit();
2164 	if (retifma)
2165 		*retifma = ifma;
2166 
2167 	if (llsa != NULL) {
2168 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2169 			if (sa_equal(ifma->ifma_addr, llsa))
2170 				break;
2171 		}
2172 		if (ifma) {
2173 			ifma->ifma_refcount++;
2174 		} else {
2175 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2176 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK);
2177 			bcopy(llsa, dupsa, llsa->sa_len);
2178 			ifma->ifma_addr = dupsa;
2179 			ifma->ifma_ifp = ifp;
2180 			ifma->ifma_refcount = 1;
2181 			crit_enter();
2182 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2183 			crit_exit();
2184 		}
2185 	}
2186 	/*
2187 	 * We are certain we have added something, so call down to the
2188 	 * interface to let them know about it.
2189 	 */
2190 	crit_enter();
2191 	ifnet_serialize_all(ifp);
2192 	if (ifp->if_ioctl)
2193 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2194 	ifnet_deserialize_all(ifp);
2195 	crit_exit();
2196 
2197 	return 0;
2198 }
2199 
2200 /*
2201  * Remove a reference to a multicast address on this interface.  Yell
2202  * if the request does not match an existing membership.
2203  */
2204 int
2205 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2206 {
2207 	struct ifmultiaddr *ifma;
2208 
2209 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2210 		if (sa_equal(sa, ifma->ifma_addr))
2211 			break;
2212 	if (ifma == NULL)
2213 		return ENOENT;
2214 
2215 	if (ifma->ifma_refcount > 1) {
2216 		ifma->ifma_refcount--;
2217 		return 0;
2218 	}
2219 
2220 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2221 	sa = ifma->ifma_lladdr;
2222 	crit_enter();
2223 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2224 	/*
2225 	 * Make sure the interface driver is notified
2226 	 * in the case of a link layer mcast group being left.
2227 	 */
2228 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) {
2229 		ifnet_serialize_all(ifp);
2230 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2231 		ifnet_deserialize_all(ifp);
2232 	}
2233 	crit_exit();
2234 	kfree(ifma->ifma_addr, M_IFMADDR);
2235 	kfree(ifma, M_IFMADDR);
2236 	if (sa == NULL)
2237 		return 0;
2238 
2239 	/*
2240 	 * Now look for the link-layer address which corresponds to
2241 	 * this network address.  It had been squirreled away in
2242 	 * ifma->ifma_lladdr for this purpose (so we don't have
2243 	 * to call ifp->if_resolvemulti() again), and we saved that
2244 	 * value in sa above.  If some nasty deleted the
2245 	 * link-layer address out from underneath us, we can deal because
2246 	 * the address we stored was is not the same as the one which was
2247 	 * in the record for the link-layer address.  (So we don't complain
2248 	 * in that case.)
2249 	 */
2250 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2251 		if (sa_equal(sa, ifma->ifma_addr))
2252 			break;
2253 	if (ifma == NULL)
2254 		return 0;
2255 
2256 	if (ifma->ifma_refcount > 1) {
2257 		ifma->ifma_refcount--;
2258 		return 0;
2259 	}
2260 
2261 	crit_enter();
2262 	ifnet_serialize_all(ifp);
2263 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2264 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2265 	ifnet_deserialize_all(ifp);
2266 	crit_exit();
2267 	kfree(ifma->ifma_addr, M_IFMADDR);
2268 	kfree(sa, M_IFMADDR);
2269 	kfree(ifma, M_IFMADDR);
2270 
2271 	return 0;
2272 }
2273 
2274 /*
2275  * Delete all multicast group membership for an interface.
2276  * Should be used to quickly flush all multicast filters.
2277  */
2278 void
2279 if_delallmulti(struct ifnet *ifp)
2280 {
2281 	struct ifmultiaddr *ifma;
2282 	struct ifmultiaddr *next;
2283 
2284 	TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next)
2285 		if_delmulti(ifp, ifma->ifma_addr);
2286 }
2287 
2288 
2289 /*
2290  * Set the link layer address on an interface.
2291  *
2292  * At this time we only support certain types of interfaces,
2293  * and we don't allow the length of the address to change.
2294  */
2295 int
2296 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2297 {
2298 	struct sockaddr_dl *sdl;
2299 	struct ifreq ifr;
2300 
2301 	sdl = IF_LLSOCKADDR(ifp);
2302 	if (sdl == NULL)
2303 		return (EINVAL);
2304 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2305 		return (EINVAL);
2306 	switch (ifp->if_type) {
2307 	case IFT_ETHER:			/* these types use struct arpcom */
2308 	case IFT_XETHER:
2309 	case IFT_L2VLAN:
2310 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2311 		bcopy(lladdr, LLADDR(sdl), len);
2312 		break;
2313 	default:
2314 		return (ENODEV);
2315 	}
2316 	/*
2317 	 * If the interface is already up, we need
2318 	 * to re-init it in order to reprogram its
2319 	 * address filter.
2320 	 */
2321 	ifnet_serialize_all(ifp);
2322 	if ((ifp->if_flags & IFF_UP) != 0) {
2323 #ifdef INET
2324 		struct ifaddr_container *ifac;
2325 #endif
2326 
2327 		ifp->if_flags &= ~IFF_UP;
2328 		ifr.ifr_flags = ifp->if_flags;
2329 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2330 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2331 			      NULL);
2332 		ifp->if_flags |= IFF_UP;
2333 		ifr.ifr_flags = ifp->if_flags;
2334 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2335 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2336 				 NULL);
2337 #ifdef INET
2338 		/*
2339 		 * Also send gratuitous ARPs to notify other nodes about
2340 		 * the address change.
2341 		 */
2342 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2343 			struct ifaddr *ifa = ifac->ifa;
2344 
2345 			if (ifa->ifa_addr != NULL &&
2346 			    ifa->ifa_addr->sa_family == AF_INET)
2347 				arp_gratuitous(ifp, ifa);
2348 		}
2349 #endif
2350 	}
2351 	ifnet_deserialize_all(ifp);
2352 	return (0);
2353 }
2354 
2355 struct ifmultiaddr *
2356 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2357 {
2358 	struct ifmultiaddr *ifma;
2359 
2360 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2361 		if (sa_equal(ifma->ifma_addr, sa))
2362 			break;
2363 
2364 	return ifma;
2365 }
2366 
2367 /*
2368  * This function locates the first real ethernet MAC from a network
2369  * card and loads it into node, returning 0 on success or ENOENT if
2370  * no suitable interfaces were found.  It is used by the uuid code to
2371  * generate a unique 6-byte number.
2372  */
2373 int
2374 if_getanyethermac(uint16_t *node, int minlen)
2375 {
2376 	struct ifnet *ifp;
2377 	struct sockaddr_dl *sdl;
2378 
2379 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2380 		if (ifp->if_type != IFT_ETHER)
2381 			continue;
2382 		sdl = IF_LLSOCKADDR(ifp);
2383 		if (sdl->sdl_alen < minlen)
2384 			continue;
2385 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2386 		      minlen);
2387 		return(0);
2388 	}
2389 	return (ENOENT);
2390 }
2391 
2392 /*
2393  * The name argument must be a pointer to storage which will last as
2394  * long as the interface does.  For physical devices, the result of
2395  * device_get_name(dev) is a good choice and for pseudo-devices a
2396  * static string works well.
2397  */
2398 void
2399 if_initname(struct ifnet *ifp, const char *name, int unit)
2400 {
2401 	ifp->if_dname = name;
2402 	ifp->if_dunit = unit;
2403 	if (unit != IF_DUNIT_NONE)
2404 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2405 	else
2406 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2407 }
2408 
2409 int
2410 if_printf(struct ifnet *ifp, const char *fmt, ...)
2411 {
2412 	__va_list ap;
2413 	int retval;
2414 
2415 	retval = kprintf("%s: ", ifp->if_xname);
2416 	__va_start(ap, fmt);
2417 	retval += kvprintf(fmt, ap);
2418 	__va_end(ap);
2419 	return (retval);
2420 }
2421 
2422 struct ifnet *
2423 if_alloc(uint8_t type)
2424 {
2425         struct ifnet *ifp;
2426 	size_t size;
2427 
2428 	/*
2429 	 * XXX temporary hack until arpcom is setup in if_l2com
2430 	 */
2431 	if (type == IFT_ETHER)
2432 		size = sizeof(struct arpcom);
2433 	else
2434 		size = sizeof(struct ifnet);
2435 
2436 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2437 
2438 	ifp->if_type = type;
2439 
2440 	if (if_com_alloc[type] != NULL) {
2441 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2442 		if (ifp->if_l2com == NULL) {
2443 			kfree(ifp, M_IFNET);
2444 			return (NULL);
2445 		}
2446 	}
2447 	return (ifp);
2448 }
2449 
2450 void
2451 if_free(struct ifnet *ifp)
2452 {
2453 	kfree(ifp, M_IFNET);
2454 }
2455 
2456 void
2457 ifq_set_classic(struct ifaltq *ifq)
2458 {
2459 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2460 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2461 }
2462 
2463 void
2464 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2465     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2466 {
2467 	int q;
2468 
2469 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2470 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2471 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2472 	KASSERT(request != NULL, ("request is not specified"));
2473 
2474 	ifq->altq_mapsubq = mapsubq;
2475 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2476 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2477 
2478 		ifsq->ifsq_enqueue = enqueue;
2479 		ifsq->ifsq_dequeue = dequeue;
2480 		ifsq->ifsq_request = request;
2481 	}
2482 }
2483 
2484 int
2485 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2486     struct altq_pktattr *pa __unused)
2487 {
2488 	if (IF_QFULL(ifsq)) {
2489 		m_freem(m);
2490 		return(ENOBUFS);
2491 	} else {
2492 		IF_ENQUEUE(ifsq, m);
2493 		return(0);
2494 	}
2495 }
2496 
2497 struct mbuf *
2498 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, struct mbuf *mpolled, int op)
2499 {
2500 	struct mbuf *m;
2501 
2502 	switch (op) {
2503 	case ALTDQ_POLL:
2504 		IF_POLL(ifsq, m);
2505 		break;
2506 	case ALTDQ_REMOVE:
2507 		IF_DEQUEUE(ifsq, m);
2508 		break;
2509 	default:
2510 		panic("unsupported ALTQ dequeue op: %d", op);
2511 	}
2512 	KKASSERT(mpolled == NULL || mpolled == m);
2513 	return(m);
2514 }
2515 
2516 int
2517 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2518 {
2519 	switch (req) {
2520 	case ALTRQ_PURGE:
2521 		IF_DRAIN(ifsq);
2522 		break;
2523 	default:
2524 		panic("unsupported ALTQ request: %d", req);
2525 	}
2526 	return(0);
2527 }
2528 
2529 static void
2530 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2531 {
2532 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2533 	int running = 0, need_sched;
2534 
2535 	/*
2536 	 * Try to do direct ifnet.if_start first, if there is
2537 	 * contention on ifnet's serializer, ifnet.if_start will
2538 	 * be scheduled on ifnet's CPU.
2539 	 */
2540 	if (!ifnet_tryserialize_tx(ifp, ifsq)) {
2541 		/*
2542 		 * ifnet serializer contention happened,
2543 		 * ifnet.if_start is scheduled on ifnet's
2544 		 * CPU, and we keep going.
2545 		 */
2546 		ifsq_ifstart_schedule(ifsq, 1);
2547 		return;
2548 	}
2549 
2550 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2551 		ifp->if_start(ifp, ifsq);
2552 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2553 			running = 1;
2554 	}
2555 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2556 
2557 	ifnet_deserialize_tx(ifp, ifsq);
2558 
2559 	if (need_sched) {
2560 		/*
2561 		 * More data need to be transmitted, ifnet.if_start is
2562 		 * scheduled on ifnet's CPU, and we keep going.
2563 		 * NOTE: ifnet.if_start interlock is not released.
2564 		 */
2565 		ifsq_ifstart_schedule(ifsq, force_sched);
2566 	}
2567 }
2568 
2569 /*
2570  * IFSUBQ packets staging mechanism:
2571  *
2572  * The packets enqueued into IFSUBQ are staged to a certain amount before the
2573  * ifnet's if_start is called.  In this way, the driver could avoid writing
2574  * to hardware registers upon every packet, instead, hardware registers
2575  * could be written when certain amount of packets are put onto hardware
2576  * TX ring.  The measurement on several modern NICs (emx(4), igb(4), bnx(4),
2577  * bge(4), jme(4)) shows that the hardware registers writing aggregation
2578  * could save ~20% CPU time when 18bytes UDP datagrams are transmitted at
2579  * 1.48Mpps.  The performance improvement by hardware registers writing
2580  * aggeregation is also mentioned by Luigi Rizzo's netmap paper
2581  * (http://info.iet.unipi.it/~luigi/netmap/).
2582  *
2583  * IFSUBQ packets staging is performed for two entry points into drivers's
2584  * transmission function:
2585  * - Direct ifnet's if_start calling, i.e. ifsq_ifstart_try()
2586  * - ifnet's if_start scheduling, i.e. ifsq_ifstart_schedule()
2587  *
2588  * IFSUBQ packets staging will be stopped upon any of the following conditions:
2589  * - If the count of packets enqueued on the current CPU is great than or
2590  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2591  * - If the total length of packets enqueued on the current CPU is great
2592  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2593  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2594  *   is usually less than hardware's MTU.
2595  * - ifsq_ifstart_schedule() is not pending on the current CPU and if_start
2596  *   interlock (if_snd.altq_started) is not released.
2597  * - The if_start_rollup(), which is registered as low priority netisr
2598  *   rollup function, is called; probably because no more work is pending
2599  *   for netisr.
2600  *
2601  * NOTE:
2602  * Currently IFSUBQ packet staging is only performed in netisr threads.
2603  */
2604 int
2605 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2606 {
2607 	struct ifaltq *ifq = &ifp->if_snd;
2608 	struct ifaltq_subque *ifsq;
2609 	int error, start = 0, len, mcast = 0, avoid_start = 0;
2610 	struct ifsubq_stage_head *head = NULL;
2611 	struct ifsubq_stage *stage = NULL;
2612 
2613 	ifsq = ifq_map_subq(ifq, mycpuid);
2614 	ASSERT_IFNET_NOT_SERIALIZED_TX(ifp, ifsq);
2615 
2616 	len = m->m_pkthdr.len;
2617 	if (m->m_flags & M_MCAST)
2618 		mcast = 1;
2619 
2620 	if (curthread->td_type == TD_TYPE_NETISR) {
2621 		head = &ifsubq_stage_heads[mycpuid];
2622 		stage = ifsq_get_stage(ifsq, mycpuid);
2623 
2624 		stage->stg_cnt++;
2625 		stage->stg_len += len;
2626 		if (stage->stg_cnt < ifsq_stage_cntmax &&
2627 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
2628 			avoid_start = 1;
2629 	}
2630 
2631 	ALTQ_SQ_LOCK(ifsq);
2632 	error = ifsq_enqueue_locked(ifsq, m, pa);
2633 	if (error) {
2634 		if (!ifsq_data_ready(ifsq)) {
2635 			ALTQ_SQ_UNLOCK(ifsq);
2636 			return error;
2637 		}
2638 		avoid_start = 0;
2639 	}
2640 	if (!ifsq_is_started(ifsq)) {
2641 		if (avoid_start) {
2642 			ALTQ_SQ_UNLOCK(ifsq);
2643 
2644 			KKASSERT(!error);
2645 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
2646 				ifsq_stage_insert(head, stage);
2647 
2648 			ifp->if_obytes += len;
2649 			if (mcast)
2650 				ifp->if_omcasts++;
2651 			return error;
2652 		}
2653 
2654 		/*
2655 		 * Hold the interlock of ifnet.if_start
2656 		 */
2657 		ifsq_set_started(ifsq);
2658 		start = 1;
2659 	}
2660 	ALTQ_SQ_UNLOCK(ifsq);
2661 
2662 	if (!error) {
2663 		ifp->if_obytes += len;
2664 		if (mcast)
2665 			ifp->if_omcasts++;
2666 	}
2667 
2668 	if (stage != NULL) {
2669 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
2670 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
2671 			if (!avoid_start) {
2672 				ifsq_stage_remove(head, stage);
2673 				ifsq_ifstart_schedule(ifsq, 1);
2674 			}
2675 			return error;
2676 		}
2677 
2678 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
2679 			ifsq_stage_remove(head, stage);
2680 		} else {
2681 			stage->stg_cnt = 0;
2682 			stage->stg_len = 0;
2683 		}
2684 	}
2685 
2686 	if (!start)
2687 		return error;
2688 
2689 	ifsq_ifstart_try(ifsq, 0);
2690 	return error;
2691 }
2692 
2693 void *
2694 ifa_create(int size, int flags)
2695 {
2696 	struct ifaddr *ifa;
2697 	int i;
2698 
2699 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
2700 
2701 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2702 	if (ifa == NULL)
2703 		return NULL;
2704 
2705 	ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container),
2706 				      M_IFADDR, M_WAITOK | M_ZERO);
2707 	ifa->ifa_ncnt = ncpus;
2708 	for (i = 0; i < ncpus; ++i) {
2709 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2710 
2711 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2712 		ifac->ifa = ifa;
2713 		ifac->ifa_refcnt = 1;
2714 	}
2715 #ifdef IFADDR_DEBUG
2716 	kprintf("alloc ifa %p %d\n", ifa, size);
2717 #endif
2718 	return ifa;
2719 }
2720 
2721 void
2722 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2723 {
2724 	struct ifaddr *ifa = ifac->ifa;
2725 
2726 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2727 	KKASSERT(ifac->ifa_refcnt == 0);
2728 	KASSERT(ifac->ifa_listmask == 0,
2729 		("ifa is still on %#x lists", ifac->ifa_listmask));
2730 
2731 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2732 
2733 #ifdef IFADDR_DEBUG_VERBOSE
2734 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2735 #endif
2736 
2737 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2738 		("invalid # of ifac, %d", ifa->ifa_ncnt));
2739 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2740 #ifdef IFADDR_DEBUG
2741 		kprintf("free ifa %p\n", ifa);
2742 #endif
2743 		kfree(ifa->ifa_containers, M_IFADDR);
2744 		kfree(ifa, M_IFADDR);
2745 	}
2746 }
2747 
2748 static void
2749 ifa_iflink_dispatch(netmsg_t nmsg)
2750 {
2751 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2752 	struct ifaddr *ifa = msg->ifa;
2753 	struct ifnet *ifp = msg->ifp;
2754 	int cpu = mycpuid;
2755 	struct ifaddr_container *ifac;
2756 
2757 	crit_enter();
2758 
2759 	ifac = &ifa->ifa_containers[cpu];
2760 	ASSERT_IFAC_VALID(ifac);
2761 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2762 		("ifaddr is on if_addrheads"));
2763 
2764 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2765 	if (msg->tail)
2766 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2767 	else
2768 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2769 
2770 	crit_exit();
2771 
2772 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2773 }
2774 
2775 void
2776 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2777 {
2778 	struct netmsg_ifaddr msg;
2779 
2780 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2781 		    0, ifa_iflink_dispatch);
2782 	msg.ifa = ifa;
2783 	msg.ifp = ifp;
2784 	msg.tail = tail;
2785 
2786 	ifa_domsg(&msg.base.lmsg, 0);
2787 }
2788 
2789 static void
2790 ifa_ifunlink_dispatch(netmsg_t nmsg)
2791 {
2792 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2793 	struct ifaddr *ifa = msg->ifa;
2794 	struct ifnet *ifp = msg->ifp;
2795 	int cpu = mycpuid;
2796 	struct ifaddr_container *ifac;
2797 
2798 	crit_enter();
2799 
2800 	ifac = &ifa->ifa_containers[cpu];
2801 	ASSERT_IFAC_VALID(ifac);
2802 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
2803 		("ifaddr is not on if_addrhead"));
2804 
2805 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
2806 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
2807 
2808 	crit_exit();
2809 
2810 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2811 }
2812 
2813 void
2814 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
2815 {
2816 	struct netmsg_ifaddr msg;
2817 
2818 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2819 		    0, ifa_ifunlink_dispatch);
2820 	msg.ifa = ifa;
2821 	msg.ifp = ifp;
2822 
2823 	ifa_domsg(&msg.base.lmsg, 0);
2824 }
2825 
2826 static void
2827 ifa_destroy_dispatch(netmsg_t nmsg)
2828 {
2829 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2830 
2831 	IFAFREE(msg->ifa);
2832 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
2833 }
2834 
2835 void
2836 ifa_destroy(struct ifaddr *ifa)
2837 {
2838 	struct netmsg_ifaddr msg;
2839 
2840 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2841 		    0, ifa_destroy_dispatch);
2842 	msg.ifa = ifa;
2843 
2844 	ifa_domsg(&msg.base.lmsg, 0);
2845 }
2846 
2847 struct lwkt_port *
2848 ifnet_portfn(int cpu)
2849 {
2850 	return &ifnet_threads[cpu].td_msgport;
2851 }
2852 
2853 void
2854 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
2855 {
2856 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
2857 
2858 	if (next_cpu < ncpus)
2859 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
2860 	else
2861 		lwkt_replymsg(lmsg, 0);
2862 }
2863 
2864 int
2865 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
2866 {
2867 	KKASSERT(cpu < ncpus);
2868 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
2869 }
2870 
2871 void
2872 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
2873 {
2874 	KKASSERT(cpu < ncpus);
2875 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
2876 }
2877 
2878 /*
2879  * Generic netmsg service loop.  Some protocols may roll their own but all
2880  * must do the basic command dispatch function call done here.
2881  */
2882 static void
2883 ifnet_service_loop(void *arg __unused)
2884 {
2885 	netmsg_t msg;
2886 
2887 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
2888 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
2889 		msg->base.nm_dispatch(msg);
2890 	}
2891 }
2892 
2893 static void
2894 if_start_rollup(void)
2895 {
2896 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
2897 	struct ifsubq_stage *stage;
2898 
2899 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
2900 		struct ifaltq_subque *ifsq = stage->stg_subq;
2901 		int is_sched = 0;
2902 
2903 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
2904 			is_sched = 1;
2905 		ifsq_stage_remove(head, stage);
2906 
2907 		if (is_sched) {
2908 			ifsq_ifstart_schedule(ifsq, 1);
2909 		} else {
2910 			int start = 0;
2911 
2912 			ALTQ_SQ_LOCK(ifsq);
2913 			if (!ifsq_is_started(ifsq)) {
2914 				/*
2915 				 * Hold the interlock of ifnet.if_start
2916 				 */
2917 				ifsq_set_started(ifsq);
2918 				start = 1;
2919 			}
2920 			ALTQ_SQ_UNLOCK(ifsq);
2921 
2922 			if (start)
2923 				ifsq_ifstart_try(ifsq, 1);
2924 		}
2925 		KKASSERT((stage->stg_flags &
2926 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
2927 	}
2928 }
2929 
2930 static void
2931 ifnetinit(void *dummy __unused)
2932 {
2933 	int i;
2934 
2935 	for (i = 0; i < ncpus; ++i) {
2936 		struct thread *thr = &ifnet_threads[i];
2937 
2938 		lwkt_create(ifnet_service_loop, NULL, NULL,
2939 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT,
2940 			    i, "ifnet %d", i);
2941 		netmsg_service_port_init(&thr->td_msgport);
2942 		lwkt_schedule(thr);
2943 	}
2944 
2945 	for (i = 0; i < ncpus; ++i)
2946 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
2947 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
2948 }
2949 
2950 struct ifnet *
2951 ifnet_byindex(unsigned short idx)
2952 {
2953 	if (idx > if_index)
2954 		return NULL;
2955 	return ifindex2ifnet[idx];
2956 }
2957 
2958 struct ifaddr *
2959 ifaddr_byindex(unsigned short idx)
2960 {
2961 	struct ifnet *ifp;
2962 
2963 	ifp = ifnet_byindex(idx);
2964 	if (!ifp)
2965 		return NULL;
2966 	return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
2967 }
2968 
2969 void
2970 if_register_com_alloc(u_char type,
2971     if_com_alloc_t *a, if_com_free_t *f)
2972 {
2973 
2974         KASSERT(if_com_alloc[type] == NULL,
2975             ("if_register_com_alloc: %d already registered", type));
2976         KASSERT(if_com_free[type] == NULL,
2977             ("if_register_com_alloc: %d free already registered", type));
2978 
2979         if_com_alloc[type] = a;
2980         if_com_free[type] = f;
2981 }
2982 
2983 void
2984 if_deregister_com_alloc(u_char type)
2985 {
2986 
2987         KASSERT(if_com_alloc[type] != NULL,
2988             ("if_deregister_com_alloc: %d not registered", type));
2989         KASSERT(if_com_free[type] != NULL,
2990             ("if_deregister_com_alloc: %d free not registered", type));
2991         if_com_alloc[type] = NULL;
2992         if_com_free[type] = NULL;
2993 }
2994 
2995 int
2996 if_ring_count2(int cnt, int cnt_max)
2997 {
2998 	int shift = 0;
2999 
3000 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3001 	    ("invalid ring count max %d", cnt_max));
3002 
3003 	if (cnt <= 0)
3004 		cnt = cnt_max;
3005 	if (cnt > ncpus2)
3006 		cnt = ncpus2;
3007 	if (cnt > cnt_max)
3008 		cnt = cnt_max;
3009 
3010 	while ((1 << (shift + 1)) <= cnt)
3011 		++shift;
3012 	cnt = 1 << shift;
3013 
3014 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3015 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3016 	     cnt, ncpus2, cnt_max));
3017 	return cnt;
3018 }
3019 
3020 void
3021 ifq_set_maxlen(struct ifaltq *ifq, int len)
3022 {
3023 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3024 }
3025 
3026 int
3027 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3028 {
3029 	return ALTQ_SUBQ_INDEX_DEFAULT;
3030 }
3031 
3032 int
3033 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3034 {
3035 	return (cpuid & ifq->altq_subq_mask);
3036 }
3037 
3038 static void
3039 ifsq_watchdog(void *arg)
3040 {
3041 	struct ifsubq_watchdog *wd = arg;
3042 	struct ifnet *ifp;
3043 
3044 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3045 		goto done;
3046 
3047 	ifp = ifsq_get_ifp(wd->wd_subq);
3048 	if (ifnet_tryserialize_all(ifp)) {
3049 		wd->wd_watchdog(wd->wd_subq);
3050 		ifnet_deserialize_all(ifp);
3051 	} else {
3052 		/* try again next timeout */
3053 		wd->wd_timer = 1;
3054 	}
3055 done:
3056 	ifsq_watchdog_reset(wd);
3057 }
3058 
3059 static void
3060 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3061 {
3062 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3063 	    ifsq_get_cpuid(wd->wd_subq));
3064 }
3065 
3066 void
3067 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3068     ifsq_watchdog_t watchdog)
3069 {
3070 	callout_init_mp(&wd->wd_callout);
3071 	wd->wd_timer = 0;
3072 	wd->wd_subq = ifsq;
3073 	wd->wd_watchdog = watchdog;
3074 }
3075 
3076 void
3077 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3078 {
3079 	wd->wd_timer = 0;
3080 	ifsq_watchdog_reset(wd);
3081 }
3082 
3083 void
3084 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3085 {
3086 	wd->wd_timer = 0;
3087 	callout_stop(&wd->wd_callout);
3088 }
3089