xref: /dflybsd-src/sys/net/if.c (revision 31c068aaf635ad9fa72dbc4c65b32d890ff7544d)
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)if.c	8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet6.h"
35 #include "opt_inet.h"
36 #include "opt_ifpoll.h"
37 
38 #include <sys/param.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/socketops.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/mutex.h>
51 #include <sys/sockio.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/domain.h>
55 #include <sys/thread.h>
56 #include <sys/serialize.h>
57 #include <sys/bus.h>
58 
59 #include <sys/thread2.h>
60 #include <sys/msgport2.h>
61 #include <sys/mutex2.h>
62 
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 #include <net/if_var.h>
68 #include <net/ifq_var.h>
69 #include <net/radix.h>
70 #include <net/route.h>
71 #include <net/if_clone.h>
72 #include <net/netisr2.h>
73 #include <net/netmsg2.h>
74 
75 #include <machine/atomic.h>
76 #include <machine/stdarg.h>
77 #include <machine/smp.h>
78 
79 #if defined(INET) || defined(INET6)
80 /*XXX*/
81 #include <netinet/in.h>
82 #include <netinet/in_var.h>
83 #include <netinet/if_ether.h>
84 #ifdef INET6
85 #include <netinet6/in6_var.h>
86 #include <netinet6/in6_ifattach.h>
87 #endif
88 #endif
89 
90 #if defined(COMPAT_43)
91 #include <emulation/43bsd/43bsd_socket.h>
92 #endif /* COMPAT_43 */
93 
94 struct netmsg_ifaddr {
95 	struct netmsg_base base;
96 	struct ifaddr	*ifa;
97 	struct ifnet	*ifp;
98 	int		tail;
99 };
100 
101 struct ifsubq_stage_head {
102 	TAILQ_HEAD(, ifsubq_stage)	stg_head;
103 } __cachealign;
104 
105 /*
106  * System initialization
107  */
108 static void	if_attachdomain(void *);
109 static void	if_attachdomain1(struct ifnet *);
110 static int	ifconf(u_long, caddr_t, struct ucred *);
111 static void	ifinit(void *);
112 static void	ifnetinit(void *);
113 static void	if_slowtimo(void *);
114 static void	link_rtrequest(int, struct rtentry *);
115 static int	if_rtdel(struct radix_node *, void *);
116 static void	if_slowtimo_dispatch(netmsg_t);
117 
118 /* Helper functions */
119 static void	ifsq_watchdog_reset(struct ifsubq_watchdog *);
120 static int	if_delmulti_serialized(struct ifnet *, struct sockaddr *);
121 
122 #ifdef INET6
123 /*
124  * XXX: declare here to avoid to include many inet6 related files..
125  * should be more generalized?
126  */
127 extern void	nd6_setmtu(struct ifnet *);
128 #endif
129 
130 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
131 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
132 
133 static int ifsq_stage_cntmax = 4;
134 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
135 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
136     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
137 
138 static int if_stats_compat = 0;
139 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
140     &if_stats_compat, 0, "Compat the old ifnet stats");
141 
142 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
143 /* Must be after netisr_init */
144 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL)
145 
146 static  if_com_alloc_t *if_com_alloc[256];
147 static  if_com_free_t *if_com_free[256];
148 
149 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
150 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
151 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
152 
153 int			ifqmaxlen = IFQ_MAXLEN;
154 struct ifnethead	ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
155 
156 static struct callout		if_slowtimo_timer;
157 static struct netmsg_base	if_slowtimo_netmsg;
158 
159 int			if_index = 0;
160 struct ifnet		**ifindex2ifnet = NULL;
161 static struct thread	ifnet_threads[MAXCPU];
162 
163 static struct ifsubq_stage_head	ifsubq_stage_heads[MAXCPU];
164 
165 #ifdef notyet
166 #define IFQ_KTR_STRING		"ifq=%p"
167 #define IFQ_KTR_ARGS	struct ifaltq *ifq
168 #ifndef KTR_IFQ
169 #define KTR_IFQ			KTR_ALL
170 #endif
171 KTR_INFO_MASTER(ifq);
172 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
173 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
174 #define logifq(name, arg)	KTR_LOG(ifq_ ## name, arg)
175 
176 #define IF_START_KTR_STRING	"ifp=%p"
177 #define IF_START_KTR_ARGS	struct ifnet *ifp
178 #ifndef KTR_IF_START
179 #define KTR_IF_START		KTR_ALL
180 #endif
181 KTR_INFO_MASTER(if_start);
182 KTR_INFO(KTR_IF_START, if_start, run, 0,
183 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
184 KTR_INFO(KTR_IF_START, if_start, sched, 1,
185 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
186 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
187 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
188 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
189 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
190 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
191 	 IF_START_KTR_STRING, IF_START_KTR_ARGS);
192 #define logifstart(name, arg)	KTR_LOG(if_start_ ## name, arg)
193 #endif
194 
195 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
196 
197 /*
198  * Network interface utility routines.
199  *
200  * Routines with ifa_ifwith* names take sockaddr *'s as
201  * parameters.
202  */
203 /* ARGSUSED*/
204 void
205 ifinit(void *dummy)
206 {
207 	struct ifnet *ifp;
208 
209 	callout_init_mp(&if_slowtimo_timer);
210 	netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
211 	    MSGF_PRIORITY, if_slowtimo_dispatch);
212 
213 	crit_enter();
214 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
215 		if (ifp->if_snd.altq_maxlen == 0) {
216 			if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
217 			ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
218 		}
219 	}
220 	crit_exit();
221 
222 	/* Start if_slowtimo */
223 	lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
224 }
225 
226 static void
227 ifsq_ifstart_ipifunc(void *arg)
228 {
229 	struct ifaltq_subque *ifsq = arg;
230 	struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
231 
232 	crit_enter();
233 	if (lmsg->ms_flags & MSGF_DONE)
234 		lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
235 	crit_exit();
236 }
237 
238 static __inline void
239 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
240 {
241 	KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
242 	TAILQ_REMOVE(&head->stg_head, stage, stg_link);
243 	stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
244 	stage->stg_cnt = 0;
245 	stage->stg_len = 0;
246 }
247 
248 static __inline void
249 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
250 {
251 	KKASSERT((stage->stg_flags &
252 	    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
253 	stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
254 	TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
255 }
256 
257 /*
258  * Schedule ifnet.if_start on the subqueue owner CPU
259  */
260 static void
261 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
262 {
263 	int cpu;
264 
265 	if (!force && curthread->td_type == TD_TYPE_NETISR &&
266 	    ifsq_stage_cntmax > 0) {
267 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
268 
269 		stage->stg_cnt = 0;
270 		stage->stg_len = 0;
271 		if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
272 			ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
273 		stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
274 		return;
275 	}
276 
277 	cpu = ifsq_get_cpuid(ifsq);
278 	if (cpu != mycpuid)
279 		lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
280 	else
281 		ifsq_ifstart_ipifunc(ifsq);
282 }
283 
284 /*
285  * NOTE:
286  * This function will release ifnet.if_start subqueue interlock,
287  * if ifnet.if_start for the subqueue does not need to be scheduled
288  */
289 static __inline int
290 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
291 {
292 	if (!running || ifsq_is_empty(ifsq)
293 #ifdef ALTQ
294 	    || ifsq->ifsq_altq->altq_tbr != NULL
295 #endif
296 	) {
297 		ALTQ_SQ_LOCK(ifsq);
298 		/*
299 		 * ifnet.if_start subqueue interlock is released, if:
300 		 * 1) Hardware can not take any packets, due to
301 		 *    o  interface is marked down
302 		 *    o  hardware queue is full (ifsq_is_oactive)
303 		 *    Under the second situation, hardware interrupt
304 		 *    or polling(4) will call/schedule ifnet.if_start
305 		 *    on the subqueue when hardware queue is ready
306 		 * 2) There is no packet in the subqueue.
307 		 *    Further ifq_dispatch or ifq_handoff will call/
308 		 *    schedule ifnet.if_start on the subqueue.
309 		 * 3) TBR is used and it does not allow further
310 		 *    dequeueing.
311 		 *    TBR callout will call ifnet.if_start on the
312 		 *    subqueue.
313 		 */
314 		if (!running || !ifsq_data_ready(ifsq)) {
315 			ifsq_clr_started(ifsq);
316 			ALTQ_SQ_UNLOCK(ifsq);
317 			return 0;
318 		}
319 		ALTQ_SQ_UNLOCK(ifsq);
320 	}
321 	return 1;
322 }
323 
324 static void
325 ifsq_ifstart_dispatch(netmsg_t msg)
326 {
327 	struct lwkt_msg *lmsg = &msg->base.lmsg;
328 	struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
329 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
330 	struct globaldata *gd = mycpu;
331 	int running = 0, need_sched;
332 
333 	crit_enter_gd(gd);
334 
335 	lwkt_replymsg(lmsg, 0);	/* reply ASAP */
336 
337 	if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
338 		/*
339 		 * We need to chase the subqueue owner CPU change.
340 		 */
341 		ifsq_ifstart_schedule(ifsq, 1);
342 		crit_exit_gd(gd);
343 		return;
344 	}
345 
346 	ifsq_serialize_hw(ifsq);
347 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
348 		ifp->if_start(ifp, ifsq);
349 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
350 			running = 1;
351 	}
352 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
353 	ifsq_deserialize_hw(ifsq);
354 
355 	if (need_sched) {
356 		/*
357 		 * More data need to be transmitted, ifnet.if_start is
358 		 * scheduled on the subqueue owner CPU, and we keep going.
359 		 * NOTE: ifnet.if_start subqueue interlock is not released.
360 		 */
361 		ifsq_ifstart_schedule(ifsq, 0);
362 	}
363 
364 	crit_exit_gd(gd);
365 }
366 
367 /* Device driver ifnet.if_start helper function */
368 void
369 ifsq_devstart(struct ifaltq_subque *ifsq)
370 {
371 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
372 	int running = 0;
373 
374 	ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
375 
376 	ALTQ_SQ_LOCK(ifsq);
377 	if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
378 		ALTQ_SQ_UNLOCK(ifsq);
379 		return;
380 	}
381 	ifsq_set_started(ifsq);
382 	ALTQ_SQ_UNLOCK(ifsq);
383 
384 	ifp->if_start(ifp, ifsq);
385 
386 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
387 		running = 1;
388 
389 	if (ifsq_ifstart_need_schedule(ifsq, running)) {
390 		/*
391 		 * More data need to be transmitted, ifnet.if_start is
392 		 * scheduled on ifnet's CPU, and we keep going.
393 		 * NOTE: ifnet.if_start interlock is not released.
394 		 */
395 		ifsq_ifstart_schedule(ifsq, 0);
396 	}
397 }
398 
399 void
400 if_devstart(struct ifnet *ifp)
401 {
402 	ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
403 }
404 
405 /* Device driver ifnet.if_start schedule helper function */
406 void
407 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
408 {
409 	ifsq_ifstart_schedule(ifsq, 1);
410 }
411 
412 void
413 if_devstart_sched(struct ifnet *ifp)
414 {
415 	ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
416 }
417 
418 static void
419 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
420 {
421 	lwkt_serialize_enter(ifp->if_serializer);
422 }
423 
424 static void
425 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
426 {
427 	lwkt_serialize_exit(ifp->if_serializer);
428 }
429 
430 static int
431 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
432 {
433 	return lwkt_serialize_try(ifp->if_serializer);
434 }
435 
436 #ifdef INVARIANTS
437 static void
438 if_default_serialize_assert(struct ifnet *ifp,
439 			    enum ifnet_serialize slz __unused,
440 			    boolean_t serialized)
441 {
442 	if (serialized)
443 		ASSERT_SERIALIZED(ifp->if_serializer);
444 	else
445 		ASSERT_NOT_SERIALIZED(ifp->if_serializer);
446 }
447 #endif
448 
449 /*
450  * Attach an interface to the list of "active" interfaces.
451  *
452  * The serializer is optional.
453  */
454 void
455 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
456 {
457 	unsigned socksize, ifasize;
458 	int namelen, masklen;
459 	struct sockaddr_dl *sdl;
460 	struct ifaddr *ifa;
461 	struct ifaltq *ifq;
462 	int i, q;
463 
464 	static int if_indexlim = 8;
465 
466 	if (ifp->if_serialize != NULL) {
467 		KASSERT(ifp->if_deserialize != NULL &&
468 			ifp->if_tryserialize != NULL &&
469 			ifp->if_serialize_assert != NULL,
470 			("serialize functions are partially setup"));
471 
472 		/*
473 		 * If the device supplies serialize functions,
474 		 * then clear if_serializer to catch any invalid
475 		 * usage of this field.
476 		 */
477 		KASSERT(serializer == NULL,
478 			("both serialize functions and default serializer "
479 			 "are supplied"));
480 		ifp->if_serializer = NULL;
481 	} else {
482 		KASSERT(ifp->if_deserialize == NULL &&
483 			ifp->if_tryserialize == NULL &&
484 			ifp->if_serialize_assert == NULL,
485 			("serialize functions are partially setup"));
486 		ifp->if_serialize = if_default_serialize;
487 		ifp->if_deserialize = if_default_deserialize;
488 		ifp->if_tryserialize = if_default_tryserialize;
489 #ifdef INVARIANTS
490 		ifp->if_serialize_assert = if_default_serialize_assert;
491 #endif
492 
493 		/*
494 		 * The serializer can be passed in from the device,
495 		 * allowing the same serializer to be used for both
496 		 * the interrupt interlock and the device queue.
497 		 * If not specified, the netif structure will use an
498 		 * embedded serializer.
499 		 */
500 		if (serializer == NULL) {
501 			serializer = &ifp->if_default_serializer;
502 			lwkt_serialize_init(serializer);
503 		}
504 		ifp->if_serializer = serializer;
505 	}
506 
507 	mtx_init(&ifp->if_ioctl_mtx);
508 	mtx_lock(&ifp->if_ioctl_mtx);
509 
510 	lwkt_gettoken(&ifnet_token);	/* protect if_index and ifnet tailq */
511 	ifp->if_index = ++if_index;
512 
513 	/*
514 	 * XXX -
515 	 * The old code would work if the interface passed a pre-existing
516 	 * chain of ifaddrs to this code.  We don't trust our callers to
517 	 * properly initialize the tailq, however, so we no longer allow
518 	 * this unlikely case.
519 	 */
520 	ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
521 				    M_IFADDR, M_WAITOK | M_ZERO);
522 	for (i = 0; i < ncpus; ++i)
523 		TAILQ_INIT(&ifp->if_addrheads[i]);
524 
525 	TAILQ_INIT(&ifp->if_multiaddrs);
526 	TAILQ_INIT(&ifp->if_groups);
527 	getmicrotime(&ifp->if_lastchange);
528 	if (ifindex2ifnet == NULL || if_index >= if_indexlim) {
529 		unsigned int n;
530 		struct ifnet **q;
531 
532 		if_indexlim <<= 1;
533 
534 		/* grow ifindex2ifnet */
535 		n = if_indexlim * sizeof(*q);
536 		q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
537 		if (ifindex2ifnet) {
538 			bcopy(ifindex2ifnet, q, n/2);
539 			kfree(ifindex2ifnet, M_IFADDR);
540 		}
541 		ifindex2ifnet = q;
542 	}
543 
544 	ifindex2ifnet[if_index] = ifp;
545 
546 	/*
547 	 * create a Link Level name for this device
548 	 */
549 	namelen = strlen(ifp->if_xname);
550 	masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
551 	socksize = masklen + ifp->if_addrlen;
552 	if (socksize < sizeof(*sdl))
553 		socksize = sizeof(*sdl);
554 	socksize = RT_ROUNDUP(socksize);
555 	ifasize = sizeof(struct ifaddr) + 2 * socksize;
556 	ifa = ifa_create(ifasize, M_WAITOK);
557 	sdl = (struct sockaddr_dl *)(ifa + 1);
558 	sdl->sdl_len = socksize;
559 	sdl->sdl_family = AF_LINK;
560 	bcopy(ifp->if_xname, sdl->sdl_data, namelen);
561 	sdl->sdl_nlen = namelen;
562 	sdl->sdl_index = ifp->if_index;
563 	sdl->sdl_type = ifp->if_type;
564 	ifp->if_lladdr = ifa;
565 	ifa->ifa_ifp = ifp;
566 	ifa->ifa_rtrequest = link_rtrequest;
567 	ifa->ifa_addr = (struct sockaddr *)sdl;
568 	sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
569 	ifa->ifa_netmask = (struct sockaddr *)sdl;
570 	sdl->sdl_len = masklen;
571 	while (namelen != 0)
572 		sdl->sdl_data[--namelen] = 0xff;
573 	ifa_iflink(ifa, ifp, 0 /* Insert head */);
574 
575 	ifp->if_data_pcpu = kmalloc_cachealign(
576 	    ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
577 
578 	if (ifp->if_mapsubq == NULL)
579 		ifp->if_mapsubq = ifq_mapsubq_default;
580 
581 	ifq = &ifp->if_snd;
582 	ifq->altq_type = 0;
583 	ifq->altq_disc = NULL;
584 	ifq->altq_flags &= ALTQF_CANTCHANGE;
585 	ifq->altq_tbr = NULL;
586 	ifq->altq_ifp = ifp;
587 
588 	if (ifq->altq_subq_cnt <= 0)
589 		ifq->altq_subq_cnt = 1;
590 	ifq->altq_subq = kmalloc_cachealign(
591 	    ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
592 	    M_DEVBUF, M_WAITOK | M_ZERO);
593 
594 	if (ifq->altq_maxlen == 0) {
595 		if_printf(ifp, "driver didn't set altq_maxlen\n");
596 		ifq_set_maxlen(ifq, ifqmaxlen);
597 	}
598 
599 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
600 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
601 
602 		ALTQ_SQ_LOCK_INIT(ifsq);
603 		ifsq->ifsq_index = q;
604 
605 		ifsq->ifsq_altq = ifq;
606 		ifsq->ifsq_ifp = ifp;
607 
608 		ifsq->ifsq_maxlen = ifq->altq_maxlen;
609 		ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
610 		ifsq->ifsq_prepended = NULL;
611 		ifsq->ifsq_started = 0;
612 		ifsq->ifsq_hw_oactive = 0;
613 		ifsq_set_cpuid(ifsq, 0);
614 		if (ifp->if_serializer != NULL)
615 			ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
616 
617 		ifsq->ifsq_stage =
618 		    kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
619 		    M_DEVBUF, M_WAITOK | M_ZERO);
620 		for (i = 0; i < ncpus; ++i)
621 			ifsq->ifsq_stage[i].stg_subq = ifsq;
622 
623 		ifsq->ifsq_ifstart_nmsg =
624 		    kmalloc(ncpus * sizeof(struct netmsg_base),
625 		    M_LWKTMSG, M_WAITOK);
626 		for (i = 0; i < ncpus; ++i) {
627 			netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
628 			    &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
629 			ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
630 		}
631 	}
632 	ifq_set_classic(ifq);
633 
634 	if (!SLIST_EMPTY(&domains))
635 		if_attachdomain1(ifp);
636 
637 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
638 	lwkt_reltoken(&ifnet_token);
639 
640 	/* Announce the interface. */
641 	EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
642 	devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
643 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
644 
645 	mtx_unlock(&ifp->if_ioctl_mtx);
646 }
647 
648 static void
649 if_attachdomain(void *dummy)
650 {
651 	struct ifnet *ifp;
652 
653 	crit_enter();
654 	TAILQ_FOREACH(ifp, &ifnet, if_list)
655 		if_attachdomain1(ifp);
656 	crit_exit();
657 }
658 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
659 	if_attachdomain, NULL);
660 
661 static void
662 if_attachdomain1(struct ifnet *ifp)
663 {
664 	struct domain *dp;
665 
666 	crit_enter();
667 
668 	/* address family dependent data region */
669 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
670 	SLIST_FOREACH(dp, &domains, dom_next)
671 		if (dp->dom_ifattach)
672 			ifp->if_afdata[dp->dom_family] =
673 				(*dp->dom_ifattach)(ifp);
674 	crit_exit();
675 }
676 
677 /*
678  * Purge all addresses whose type is _not_ AF_LINK
679  */
680 void
681 if_purgeaddrs_nolink(struct ifnet *ifp)
682 {
683 	struct ifaddr_container *ifac, *next;
684 
685 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
686 			      ifa_link, next) {
687 		struct ifaddr *ifa = ifac->ifa;
688 
689 		/* Leave link ifaddr as it is */
690 		if (ifa->ifa_addr->sa_family == AF_LINK)
691 			continue;
692 #ifdef INET
693 		/* XXX: Ugly!! ad hoc just for INET */
694 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
695 			struct ifaliasreq ifr;
696 #ifdef IFADDR_DEBUG_VERBOSE
697 			int i;
698 
699 			kprintf("purge in4 addr %p: ", ifa);
700 			for (i = 0; i < ncpus; ++i)
701 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
702 			kprintf("\n");
703 #endif
704 
705 			bzero(&ifr, sizeof ifr);
706 			ifr.ifra_addr = *ifa->ifa_addr;
707 			if (ifa->ifa_dstaddr)
708 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
709 			if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
710 				       NULL) == 0)
711 				continue;
712 		}
713 #endif /* INET */
714 #ifdef INET6
715 		if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
716 #ifdef IFADDR_DEBUG_VERBOSE
717 			int i;
718 
719 			kprintf("purge in6 addr %p: ", ifa);
720 			for (i = 0; i < ncpus; ++i)
721 				kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
722 			kprintf("\n");
723 #endif
724 
725 			in6_purgeaddr(ifa);
726 			/* ifp_addrhead is already updated */
727 			continue;
728 		}
729 #endif /* INET6 */
730 		ifa_ifunlink(ifa, ifp);
731 		ifa_destroy(ifa);
732 	}
733 }
734 
735 static void
736 ifq_stage_detach_handler(netmsg_t nmsg)
737 {
738 	struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
739 	int q;
740 
741 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
742 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
743 		struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
744 
745 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
746 			ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
747 	}
748 	lwkt_replymsg(&nmsg->lmsg, 0);
749 }
750 
751 static void
752 ifq_stage_detach(struct ifaltq *ifq)
753 {
754 	struct netmsg_base base;
755 	int cpu;
756 
757 	netmsg_init(&base, NULL, &curthread->td_msgport, 0,
758 	    ifq_stage_detach_handler);
759 	base.lmsg.u.ms_resultp = ifq;
760 
761 	for (cpu = 0; cpu < ncpus; ++cpu)
762 		lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
763 }
764 
765 struct netmsg_if_rtdel {
766 	struct netmsg_base	base;
767 	struct ifnet		*ifp;
768 };
769 
770 static void
771 if_rtdel_dispatch(netmsg_t msg)
772 {
773 	struct netmsg_if_rtdel *rmsg = (void *)msg;
774 	int i, nextcpu, cpu;
775 
776 	cpu = mycpuid;
777 	for (i = 1; i <= AF_MAX; i++) {
778 		struct radix_node_head	*rnh;
779 
780 		if ((rnh = rt_tables[cpu][i]) == NULL)
781 			continue;
782 		rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
783 	}
784 
785 	nextcpu = cpu + 1;
786 	if (nextcpu < ncpus)
787 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
788 	else
789 		lwkt_replymsg(&rmsg->base.lmsg, 0);
790 }
791 
792 /*
793  * Detach an interface, removing it from the
794  * list of "active" interfaces.
795  */
796 void
797 if_detach(struct ifnet *ifp)
798 {
799 	struct netmsg_if_rtdel msg;
800 	struct domain *dp;
801 	int q;
802 
803 	EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
804 
805 	/*
806 	 * Remove routes and flush queues.
807 	 */
808 	crit_enter();
809 #ifdef IFPOLL_ENABLE
810 	if (ifp->if_flags & IFF_NPOLLING)
811 		ifpoll_deregister(ifp);
812 #endif
813 	if_down(ifp);
814 
815 #ifdef ALTQ
816 	if (ifq_is_enabled(&ifp->if_snd))
817 		altq_disable(&ifp->if_snd);
818 	if (ifq_is_attached(&ifp->if_snd))
819 		altq_detach(&ifp->if_snd);
820 #endif
821 
822 	/*
823 	 * Clean up all addresses.
824 	 */
825 	ifp->if_lladdr = NULL;
826 
827 	if_purgeaddrs_nolink(ifp);
828 	if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
829 		struct ifaddr *ifa;
830 
831 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
832 		KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
833 			("non-link ifaddr is left on if_addrheads"));
834 
835 		ifa_ifunlink(ifa, ifp);
836 		ifa_destroy(ifa);
837 		KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
838 			("there are still ifaddrs left on if_addrheads"));
839 	}
840 
841 #ifdef INET
842 	/*
843 	 * Remove all IPv4 kernel structures related to ifp.
844 	 */
845 	in_ifdetach(ifp);
846 #endif
847 
848 #ifdef INET6
849 	/*
850 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
851 	 * before removing routing entries below, since IPv6 interface direct
852 	 * routes are expected to be removed by the IPv6-specific kernel API.
853 	 * Otherwise, the kernel will detect some inconsistency and bark it.
854 	 */
855 	in6_ifdetach(ifp);
856 #endif
857 
858 	/*
859 	 * Delete all remaining routes using this interface
860 	 */
861 	netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
862 	    if_rtdel_dispatch);
863 	msg.ifp = ifp;
864 	rt_domsg_global(&msg.base);
865 
866 	/* Announce that the interface is gone. */
867 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
868 	devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
869 
870 	SLIST_FOREACH(dp, &domains, dom_next)
871 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
872 			(*dp->dom_ifdetach)(ifp,
873 				ifp->if_afdata[dp->dom_family]);
874 
875 	/*
876 	 * Remove interface from ifindex2ifp[] and maybe decrement if_index.
877 	 */
878 	lwkt_gettoken(&ifnet_token);
879 	ifindex2ifnet[ifp->if_index] = NULL;
880 	while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
881 		if_index--;
882 	TAILQ_REMOVE(&ifnet, ifp, if_link);
883 	lwkt_reltoken(&ifnet_token);
884 
885 	kfree(ifp->if_addrheads, M_IFADDR);
886 
887 	lwkt_synchronize_ipiqs("if_detach");
888 	ifq_stage_detach(&ifp->if_snd);
889 
890 	for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
891 		struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
892 
893 		kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
894 		kfree(ifsq->ifsq_stage, M_DEVBUF);
895 	}
896 	kfree(ifp->if_snd.altq_subq, M_DEVBUF);
897 
898 	kfree(ifp->if_data_pcpu, M_DEVBUF);
899 
900 	crit_exit();
901 }
902 
903 /*
904  * Create interface group without members
905  */
906 struct ifg_group *
907 if_creategroup(const char *groupname)
908 {
909         struct ifg_group        *ifg = NULL;
910 
911         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
912             M_TEMP, M_NOWAIT)) == NULL)
913                 return (NULL);
914 
915         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
916         ifg->ifg_refcnt = 0;
917         ifg->ifg_carp_demoted = 0;
918         TAILQ_INIT(&ifg->ifg_members);
919 #if NPF > 0
920         pfi_attach_ifgroup(ifg);
921 #endif
922         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
923 
924         return (ifg);
925 }
926 
927 /*
928  * Add a group to an interface
929  */
930 int
931 if_addgroup(struct ifnet *ifp, const char *groupname)
932 {
933 	struct ifg_list		*ifgl;
934 	struct ifg_group	*ifg = NULL;
935 	struct ifg_member	*ifgm;
936 
937 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
938 	    groupname[strlen(groupname) - 1] <= '9')
939 		return (EINVAL);
940 
941 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
942 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
943 			return (EEXIST);
944 
945 	if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
946 		return (ENOMEM);
947 
948 	if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
949 		kfree(ifgl, M_TEMP);
950 		return (ENOMEM);
951 	}
952 
953 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
954 		if (!strcmp(ifg->ifg_group, groupname))
955 			break;
956 
957 	if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
958 		kfree(ifgl, M_TEMP);
959 		kfree(ifgm, M_TEMP);
960 		return (ENOMEM);
961 	}
962 
963 	ifg->ifg_refcnt++;
964 	ifgl->ifgl_group = ifg;
965 	ifgm->ifgm_ifp = ifp;
966 
967 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
968 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
969 
970 #if NPF > 0
971 	pfi_group_change(groupname);
972 #endif
973 
974 	return (0);
975 }
976 
977 /*
978  * Remove a group from an interface
979  */
980 int
981 if_delgroup(struct ifnet *ifp, const char *groupname)
982 {
983 	struct ifg_list		*ifgl;
984 	struct ifg_member	*ifgm;
985 
986 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
987 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
988 			break;
989 	if (ifgl == NULL)
990 		return (ENOENT);
991 
992 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
993 
994 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
995 		if (ifgm->ifgm_ifp == ifp)
996 			break;
997 
998 	if (ifgm != NULL) {
999 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1000 		kfree(ifgm, M_TEMP);
1001 	}
1002 
1003 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1004 		TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1005 #if NPF > 0
1006 		pfi_detach_ifgroup(ifgl->ifgl_group);
1007 #endif
1008 		kfree(ifgl->ifgl_group, M_TEMP);
1009 	}
1010 
1011 	kfree(ifgl, M_TEMP);
1012 
1013 #if NPF > 0
1014 	pfi_group_change(groupname);
1015 #endif
1016 
1017 	return (0);
1018 }
1019 
1020 /*
1021  * Stores all groups from an interface in memory pointed
1022  * to by data
1023  */
1024 int
1025 if_getgroup(caddr_t data, struct ifnet *ifp)
1026 {
1027 	int			 len, error;
1028 	struct ifg_list		*ifgl;
1029 	struct ifg_req		 ifgrq, *ifgp;
1030 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1031 
1032 	if (ifgr->ifgr_len == 0) {
1033 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1034 			ifgr->ifgr_len += sizeof(struct ifg_req);
1035 		return (0);
1036 	}
1037 
1038 	len = ifgr->ifgr_len;
1039 	ifgp = ifgr->ifgr_groups;
1040 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1041 		if (len < sizeof(ifgrq))
1042 			return (EINVAL);
1043 		bzero(&ifgrq, sizeof ifgrq);
1044 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1045 		    sizeof(ifgrq.ifgrq_group));
1046 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1047 		    sizeof(struct ifg_req))))
1048 			return (error);
1049 		len -= sizeof(ifgrq);
1050 		ifgp++;
1051 	}
1052 
1053 	return (0);
1054 }
1055 
1056 /*
1057  * Stores all members of a group in memory pointed to by data
1058  */
1059 int
1060 if_getgroupmembers(caddr_t data)
1061 {
1062 	struct ifgroupreq	*ifgr = (struct ifgroupreq *)data;
1063 	struct ifg_group	*ifg;
1064 	struct ifg_member	*ifgm;
1065 	struct ifg_req		 ifgrq, *ifgp;
1066 	int			 len, error;
1067 
1068 	TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1069 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1070 			break;
1071 	if (ifg == NULL)
1072 		return (ENOENT);
1073 
1074 	if (ifgr->ifgr_len == 0) {
1075 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1076 			ifgr->ifgr_len += sizeof(ifgrq);
1077 		return (0);
1078 	}
1079 
1080 	len = ifgr->ifgr_len;
1081 	ifgp = ifgr->ifgr_groups;
1082 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1083 		if (len < sizeof(ifgrq))
1084 			return (EINVAL);
1085 		bzero(&ifgrq, sizeof ifgrq);
1086 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1087 		    sizeof(ifgrq.ifgrq_member));
1088 		if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1089 		    sizeof(struct ifg_req))))
1090 			return (error);
1091 		len -= sizeof(ifgrq);
1092 		ifgp++;
1093 	}
1094 
1095 	return (0);
1096 }
1097 
1098 /*
1099  * Delete Routes for a Network Interface
1100  *
1101  * Called for each routing entry via the rnh->rnh_walktree() call above
1102  * to delete all route entries referencing a detaching network interface.
1103  *
1104  * Arguments:
1105  *	rn	pointer to node in the routing table
1106  *	arg	argument passed to rnh->rnh_walktree() - detaching interface
1107  *
1108  * Returns:
1109  *	0	successful
1110  *	errno	failed - reason indicated
1111  *
1112  */
1113 static int
1114 if_rtdel(struct radix_node *rn, void *arg)
1115 {
1116 	struct rtentry	*rt = (struct rtentry *)rn;
1117 	struct ifnet	*ifp = arg;
1118 	int		err;
1119 
1120 	if (rt->rt_ifp == ifp) {
1121 
1122 		/*
1123 		 * Protect (sorta) against walktree recursion problems
1124 		 * with cloned routes
1125 		 */
1126 		if (!(rt->rt_flags & RTF_UP))
1127 			return (0);
1128 
1129 		err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1130 				rt_mask(rt), rt->rt_flags,
1131 				NULL);
1132 		if (err) {
1133 			log(LOG_WARNING, "if_rtdel: error %d\n", err);
1134 		}
1135 	}
1136 
1137 	return (0);
1138 }
1139 
1140 /*
1141  * Locate an interface based on a complete address.
1142  */
1143 struct ifaddr *
1144 ifa_ifwithaddr(struct sockaddr *addr)
1145 {
1146 	struct ifnet *ifp;
1147 
1148 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1149 		struct ifaddr_container *ifac;
1150 
1151 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1152 			struct ifaddr *ifa = ifac->ifa;
1153 
1154 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1155 				continue;
1156 			if (sa_equal(addr, ifa->ifa_addr))
1157 				return (ifa);
1158 			if ((ifp->if_flags & IFF_BROADCAST) &&
1159 			    ifa->ifa_broadaddr &&
1160 			    /* IPv6 doesn't have broadcast */
1161 			    ifa->ifa_broadaddr->sa_len != 0 &&
1162 			    sa_equal(ifa->ifa_broadaddr, addr))
1163 				return (ifa);
1164 		}
1165 	}
1166 	return (NULL);
1167 }
1168 /*
1169  * Locate the point to point interface with a given destination address.
1170  */
1171 struct ifaddr *
1172 ifa_ifwithdstaddr(struct sockaddr *addr)
1173 {
1174 	struct ifnet *ifp;
1175 
1176 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1177 		struct ifaddr_container *ifac;
1178 
1179 		if (!(ifp->if_flags & IFF_POINTOPOINT))
1180 			continue;
1181 
1182 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1183 			struct ifaddr *ifa = ifac->ifa;
1184 
1185 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1186 				continue;
1187 			if (ifa->ifa_dstaddr &&
1188 			    sa_equal(addr, ifa->ifa_dstaddr))
1189 				return (ifa);
1190 		}
1191 	}
1192 	return (NULL);
1193 }
1194 
1195 /*
1196  * Find an interface on a specific network.  If many, choice
1197  * is most specific found.
1198  */
1199 struct ifaddr *
1200 ifa_ifwithnet(struct sockaddr *addr)
1201 {
1202 	struct ifnet *ifp;
1203 	struct ifaddr *ifa_maybe = NULL;
1204 	u_int af = addr->sa_family;
1205 	char *addr_data = addr->sa_data, *cplim;
1206 
1207 	/*
1208 	 * AF_LINK addresses can be looked up directly by their index number,
1209 	 * so do that if we can.
1210 	 */
1211 	if (af == AF_LINK) {
1212 		struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1213 
1214 		if (sdl->sdl_index && sdl->sdl_index <= if_index)
1215 			return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1216 	}
1217 
1218 	/*
1219 	 * Scan though each interface, looking for ones that have
1220 	 * addresses in this address family.
1221 	 */
1222 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1223 		struct ifaddr_container *ifac;
1224 
1225 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1226 			struct ifaddr *ifa = ifac->ifa;
1227 			char *cp, *cp2, *cp3;
1228 
1229 			if (ifa->ifa_addr->sa_family != af)
1230 next:				continue;
1231 			if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1232 				/*
1233 				 * This is a bit broken as it doesn't
1234 				 * take into account that the remote end may
1235 				 * be a single node in the network we are
1236 				 * looking for.
1237 				 * The trouble is that we don't know the
1238 				 * netmask for the remote end.
1239 				 */
1240 				if (ifa->ifa_dstaddr != NULL &&
1241 				    sa_equal(addr, ifa->ifa_dstaddr))
1242 					return (ifa);
1243 			} else {
1244 				/*
1245 				 * if we have a special address handler,
1246 				 * then use it instead of the generic one.
1247 				 */
1248 				if (ifa->ifa_claim_addr) {
1249 					if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1250 						return (ifa);
1251 					} else {
1252 						continue;
1253 					}
1254 				}
1255 
1256 				/*
1257 				 * Scan all the bits in the ifa's address.
1258 				 * If a bit dissagrees with what we are
1259 				 * looking for, mask it with the netmask
1260 				 * to see if it really matters.
1261 				 * (A byte at a time)
1262 				 */
1263 				if (ifa->ifa_netmask == 0)
1264 					continue;
1265 				cp = addr_data;
1266 				cp2 = ifa->ifa_addr->sa_data;
1267 				cp3 = ifa->ifa_netmask->sa_data;
1268 				cplim = ifa->ifa_netmask->sa_len +
1269 					(char *)ifa->ifa_netmask;
1270 				while (cp3 < cplim)
1271 					if ((*cp++ ^ *cp2++) & *cp3++)
1272 						goto next; /* next address! */
1273 				/*
1274 				 * If the netmask of what we just found
1275 				 * is more specific than what we had before
1276 				 * (if we had one) then remember the new one
1277 				 * before continuing to search
1278 				 * for an even better one.
1279 				 */
1280 				if (ifa_maybe == NULL ||
1281 				    rn_refines((char *)ifa->ifa_netmask,
1282 					       (char *)ifa_maybe->ifa_netmask))
1283 					ifa_maybe = ifa;
1284 			}
1285 		}
1286 	}
1287 	return (ifa_maybe);
1288 }
1289 
1290 /*
1291  * Find an interface address specific to an interface best matching
1292  * a given address.
1293  */
1294 struct ifaddr *
1295 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1296 {
1297 	struct ifaddr_container *ifac;
1298 	char *cp, *cp2, *cp3;
1299 	char *cplim;
1300 	struct ifaddr *ifa_maybe = NULL;
1301 	u_int af = addr->sa_family;
1302 
1303 	if (af >= AF_MAX)
1304 		return (0);
1305 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1306 		struct ifaddr *ifa = ifac->ifa;
1307 
1308 		if (ifa->ifa_addr->sa_family != af)
1309 			continue;
1310 		if (ifa_maybe == NULL)
1311 			ifa_maybe = ifa;
1312 		if (ifa->ifa_netmask == NULL) {
1313 			if (sa_equal(addr, ifa->ifa_addr) ||
1314 			    (ifa->ifa_dstaddr != NULL &&
1315 			     sa_equal(addr, ifa->ifa_dstaddr)))
1316 				return (ifa);
1317 			continue;
1318 		}
1319 		if (ifp->if_flags & IFF_POINTOPOINT) {
1320 			if (sa_equal(addr, ifa->ifa_dstaddr))
1321 				return (ifa);
1322 		} else {
1323 			cp = addr->sa_data;
1324 			cp2 = ifa->ifa_addr->sa_data;
1325 			cp3 = ifa->ifa_netmask->sa_data;
1326 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1327 			for (; cp3 < cplim; cp3++)
1328 				if ((*cp++ ^ *cp2++) & *cp3)
1329 					break;
1330 			if (cp3 == cplim)
1331 				return (ifa);
1332 		}
1333 	}
1334 	return (ifa_maybe);
1335 }
1336 
1337 /*
1338  * Default action when installing a route with a Link Level gateway.
1339  * Lookup an appropriate real ifa to point to.
1340  * This should be moved to /sys/net/link.c eventually.
1341  */
1342 static void
1343 link_rtrequest(int cmd, struct rtentry *rt)
1344 {
1345 	struct ifaddr *ifa;
1346 	struct sockaddr *dst;
1347 	struct ifnet *ifp;
1348 
1349 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1350 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1351 		return;
1352 	ifa = ifaof_ifpforaddr(dst, ifp);
1353 	if (ifa != NULL) {
1354 		IFAFREE(rt->rt_ifa);
1355 		IFAREF(ifa);
1356 		rt->rt_ifa = ifa;
1357 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1358 			ifa->ifa_rtrequest(cmd, rt);
1359 	}
1360 }
1361 
1362 /*
1363  * Mark an interface down and notify protocols of
1364  * the transition.
1365  * NOTE: must be called at splnet or eqivalent.
1366  */
1367 void
1368 if_unroute(struct ifnet *ifp, int flag, int fam)
1369 {
1370 	struct ifaddr_container *ifac;
1371 
1372 	ifp->if_flags &= ~flag;
1373 	getmicrotime(&ifp->if_lastchange);
1374 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1375 		struct ifaddr *ifa = ifac->ifa;
1376 
1377 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1378 			kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1379 	}
1380 	ifq_purge_all(&ifp->if_snd);
1381 	rt_ifmsg(ifp);
1382 }
1383 
1384 /*
1385  * Mark an interface up and notify protocols of
1386  * the transition.
1387  * NOTE: must be called at splnet or eqivalent.
1388  */
1389 void
1390 if_route(struct ifnet *ifp, int flag, int fam)
1391 {
1392 	struct ifaddr_container *ifac;
1393 
1394 	ifq_purge_all(&ifp->if_snd);
1395 	ifp->if_flags |= flag;
1396 	getmicrotime(&ifp->if_lastchange);
1397 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1398 		struct ifaddr *ifa = ifac->ifa;
1399 
1400 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1401 			kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1402 	}
1403 	rt_ifmsg(ifp);
1404 #ifdef INET6
1405 	in6_if_up(ifp);
1406 #endif
1407 }
1408 
1409 /*
1410  * Mark an interface down and notify protocols of the transition.  An
1411  * interface going down is also considered to be a synchronizing event.
1412  * We must ensure that all packet processing related to the interface
1413  * has completed before we return so e.g. the caller can free the ifnet
1414  * structure that the mbufs may be referencing.
1415  *
1416  * NOTE: must be called at splnet or eqivalent.
1417  */
1418 void
1419 if_down(struct ifnet *ifp)
1420 {
1421 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
1422 	netmsg_service_sync();
1423 }
1424 
1425 /*
1426  * Mark an interface up and notify protocols of
1427  * the transition.
1428  * NOTE: must be called at splnet or eqivalent.
1429  */
1430 void
1431 if_up(struct ifnet *ifp)
1432 {
1433 	if_route(ifp, IFF_UP, AF_UNSPEC);
1434 }
1435 
1436 /*
1437  * Process a link state change.
1438  * NOTE: must be called at splsoftnet or equivalent.
1439  */
1440 void
1441 if_link_state_change(struct ifnet *ifp)
1442 {
1443 	int link_state = ifp->if_link_state;
1444 
1445 	rt_ifmsg(ifp);
1446 	devctl_notify("IFNET", ifp->if_xname,
1447 	    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1448 }
1449 
1450 /*
1451  * Handle interface watchdog timer routines.  Called
1452  * from softclock, we decrement timers (if set) and
1453  * call the appropriate interface routine on expiration.
1454  */
1455 static void
1456 if_slowtimo_dispatch(netmsg_t nmsg)
1457 {
1458 	struct globaldata *gd = mycpu;
1459 	struct ifnet *ifp;
1460 
1461 	KASSERT(&curthread->td_msgport == netisr_cpuport(0),
1462 	    ("not in netisr0"));
1463 
1464 	crit_enter_gd(gd);
1465 	lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1466 	crit_exit_gd(gd);
1467 
1468 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1469 		crit_enter_gd(gd);
1470 
1471 		if (if_stats_compat) {
1472 			IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1473 			IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1474 			IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1475 			IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1476 			IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1477 			IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1478 			IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1479 			IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1480 			IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1481 			IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1482 			IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1483 		}
1484 
1485 		if (ifp->if_timer == 0 || --ifp->if_timer) {
1486 			crit_exit_gd(gd);
1487 			continue;
1488 		}
1489 		if (ifp->if_watchdog) {
1490 			if (ifnet_tryserialize_all(ifp)) {
1491 				(*ifp->if_watchdog)(ifp);
1492 				ifnet_deserialize_all(ifp);
1493 			} else {
1494 				/* try again next timeout */
1495 				++ifp->if_timer;
1496 			}
1497 		}
1498 
1499 		crit_exit_gd(gd);
1500 	}
1501 
1502 	callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1503 }
1504 
1505 static void
1506 if_slowtimo(void *arg __unused)
1507 {
1508 	struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1509 
1510 	KASSERT(mycpuid == 0, ("not on cpu0"));
1511 	crit_enter();
1512 	if (lmsg->ms_flags & MSGF_DONE)
1513 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1514 	crit_exit();
1515 }
1516 
1517 /*
1518  * Map interface name to
1519  * interface structure pointer.
1520  */
1521 struct ifnet *
1522 ifunit(const char *name)
1523 {
1524 	struct ifnet *ifp;
1525 
1526 	/*
1527 	 * Search all the interfaces for this name/number
1528 	 */
1529 
1530 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
1531 		if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1532 			break;
1533 	}
1534 	return (ifp);
1535 }
1536 
1537 
1538 /*
1539  * Map interface name in a sockaddr_dl to
1540  * interface structure pointer.
1541  */
1542 struct ifnet *
1543 if_withname(struct sockaddr *sa)
1544 {
1545 	char ifname[IFNAMSIZ+1];
1546 	struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa;
1547 
1548 	if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) ||
1549 	     (sdl->sdl_nlen > IFNAMSIZ) )
1550 		return NULL;
1551 
1552 	/*
1553 	 * ifunit wants a null-terminated name.  It may not be null-terminated
1554 	 * in the sockaddr.  We don't want to change the caller's sockaddr,
1555 	 * and there might not be room to put the trailing null anyway, so we
1556 	 * make a local copy that we know we can null terminate safely.
1557 	 */
1558 
1559 	bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen);
1560 	ifname[sdl->sdl_nlen] = '\0';
1561 	return ifunit(ifname);
1562 }
1563 
1564 
1565 /*
1566  * Interface ioctls.
1567  */
1568 int
1569 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1570 {
1571 	struct ifnet *ifp;
1572 	struct ifreq *ifr;
1573 	struct ifstat *ifs;
1574 	int error;
1575 	short oif_flags;
1576 	int new_flags;
1577 #ifdef COMPAT_43
1578 	int ocmd;
1579 #endif
1580 	size_t namelen, onamelen;
1581 	char new_name[IFNAMSIZ];
1582 	struct ifaddr *ifa;
1583 	struct sockaddr_dl *sdl;
1584 
1585 	switch (cmd) {
1586 	case SIOCGIFCONF:
1587 	case OSIOCGIFCONF:
1588 		return (ifconf(cmd, data, cred));
1589 	default:
1590 		break;
1591 	}
1592 
1593 	ifr = (struct ifreq *)data;
1594 
1595 	switch (cmd) {
1596 	case SIOCIFCREATE:
1597 	case SIOCIFCREATE2:
1598 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1599 			return (error);
1600 		return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1601 		    	cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1602 	case SIOCIFDESTROY:
1603 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1604 			return (error);
1605 		return (if_clone_destroy(ifr->ifr_name));
1606 	case SIOCIFGCLONERS:
1607 		return (if_clone_list((struct if_clonereq *)data));
1608 	default:
1609 		break;
1610 	}
1611 
1612 	/*
1613 	 * Nominal ioctl through interface, lookup the ifp and obtain a
1614 	 * lock to serialize the ifconfig ioctl operation.
1615 	 */
1616 	ifp = ifunit(ifr->ifr_name);
1617 	if (ifp == NULL)
1618 		return (ENXIO);
1619 	error = 0;
1620 	mtx_lock(&ifp->if_ioctl_mtx);
1621 
1622 	switch (cmd) {
1623 	case SIOCGIFINDEX:
1624 		ifr->ifr_index = ifp->if_index;
1625 		break;
1626 
1627 	case SIOCGIFFLAGS:
1628 		ifr->ifr_flags = ifp->if_flags;
1629 		ifr->ifr_flagshigh = ifp->if_flags >> 16;
1630 		break;
1631 
1632 	case SIOCGIFCAP:
1633 		ifr->ifr_reqcap = ifp->if_capabilities;
1634 		ifr->ifr_curcap = ifp->if_capenable;
1635 		break;
1636 
1637 	case SIOCGIFMETRIC:
1638 		ifr->ifr_metric = ifp->if_metric;
1639 		break;
1640 
1641 	case SIOCGIFMTU:
1642 		ifr->ifr_mtu = ifp->if_mtu;
1643 		break;
1644 
1645 	case SIOCGIFTSOLEN:
1646 		ifr->ifr_tsolen = ifp->if_tsolen;
1647 		break;
1648 
1649 	case SIOCGIFDATA:
1650 		error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1651 				sizeof(ifp->if_data));
1652 		break;
1653 
1654 	case SIOCGIFPHYS:
1655 		ifr->ifr_phys = ifp->if_physical;
1656 		break;
1657 
1658 	case SIOCGIFPOLLCPU:
1659 		ifr->ifr_pollcpu = -1;
1660 		break;
1661 
1662 	case SIOCSIFPOLLCPU:
1663 		break;
1664 
1665 	case SIOCSIFFLAGS:
1666 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1667 		if (error)
1668 			break;
1669 		new_flags = (ifr->ifr_flags & 0xffff) |
1670 		    (ifr->ifr_flagshigh << 16);
1671 		if (ifp->if_flags & IFF_SMART) {
1672 			/* Smart drivers twiddle their own routes */
1673 		} else if (ifp->if_flags & IFF_UP &&
1674 		    (new_flags & IFF_UP) == 0) {
1675 			crit_enter();
1676 			if_down(ifp);
1677 			crit_exit();
1678 		} else if (new_flags & IFF_UP &&
1679 		    (ifp->if_flags & IFF_UP) == 0) {
1680 			crit_enter();
1681 			if_up(ifp);
1682 			crit_exit();
1683 		}
1684 
1685 #ifdef IFPOLL_ENABLE
1686 		if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1687 			if (new_flags & IFF_NPOLLING)
1688 				ifpoll_register(ifp);
1689 			else
1690 				ifpoll_deregister(ifp);
1691 		}
1692 #endif
1693 
1694 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1695 			(new_flags &~ IFF_CANTCHANGE);
1696 		if (new_flags & IFF_PPROMISC) {
1697 			/* Permanently promiscuous mode requested */
1698 			ifp->if_flags |= IFF_PROMISC;
1699 		} else if (ifp->if_pcount == 0) {
1700 			ifp->if_flags &= ~IFF_PROMISC;
1701 		}
1702 		if (ifp->if_ioctl) {
1703 			ifnet_serialize_all(ifp);
1704 			ifp->if_ioctl(ifp, cmd, data, cred);
1705 			ifnet_deserialize_all(ifp);
1706 		}
1707 		getmicrotime(&ifp->if_lastchange);
1708 		break;
1709 
1710 	case SIOCSIFCAP:
1711 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1712 		if (error)
1713 			break;
1714 		if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1715 			error = EINVAL;
1716 			break;
1717 		}
1718 		ifnet_serialize_all(ifp);
1719 		ifp->if_ioctl(ifp, cmd, data, cred);
1720 		ifnet_deserialize_all(ifp);
1721 		break;
1722 
1723 	case SIOCSIFNAME:
1724 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1725 		if (error)
1726 			break;
1727 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1728 		if (error)
1729 			break;
1730 		if (new_name[0] == '\0') {
1731 			error = EINVAL;
1732 			break;
1733 		}
1734 		if (ifunit(new_name) != NULL) {
1735 			error = EEXIST;
1736 			break;
1737 		}
1738 
1739 		EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1740 
1741 		/* Announce the departure of the interface. */
1742 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1743 
1744 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1745 		ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1746 		/* XXX IFA_LOCK(ifa); */
1747 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1748 		namelen = strlen(new_name);
1749 		onamelen = sdl->sdl_nlen;
1750 		/*
1751 		 * Move the address if needed.  This is safe because we
1752 		 * allocate space for a name of length IFNAMSIZ when we
1753 		 * create this in if_attach().
1754 		 */
1755 		if (namelen != onamelen) {
1756 			bcopy(sdl->sdl_data + onamelen,
1757 			    sdl->sdl_data + namelen, sdl->sdl_alen);
1758 		}
1759 		bcopy(new_name, sdl->sdl_data, namelen);
1760 		sdl->sdl_nlen = namelen;
1761 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1762 		bzero(sdl->sdl_data, onamelen);
1763 		while (namelen != 0)
1764 			sdl->sdl_data[--namelen] = 0xff;
1765 		/* XXX IFA_UNLOCK(ifa) */
1766 
1767 		EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1768 
1769 		/* Announce the return of the interface. */
1770 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1771 		break;
1772 
1773 	case SIOCSIFMETRIC:
1774 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1775 		if (error)
1776 			break;
1777 		ifp->if_metric = ifr->ifr_metric;
1778 		getmicrotime(&ifp->if_lastchange);
1779 		break;
1780 
1781 	case SIOCSIFPHYS:
1782 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1783 		if (error)
1784 			break;
1785 		if (ifp->if_ioctl == NULL) {
1786 		        error = EOPNOTSUPP;
1787 			break;
1788 		}
1789 		ifnet_serialize_all(ifp);
1790 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1791 		ifnet_deserialize_all(ifp);
1792 		if (error == 0)
1793 			getmicrotime(&ifp->if_lastchange);
1794 		break;
1795 
1796 	case SIOCSIFMTU:
1797 	{
1798 		u_long oldmtu = ifp->if_mtu;
1799 
1800 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1801 		if (error)
1802 			break;
1803 		if (ifp->if_ioctl == NULL) {
1804 			error = EOPNOTSUPP;
1805 			break;
1806 		}
1807 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
1808 			error = EINVAL;
1809 			break;
1810 		}
1811 		ifnet_serialize_all(ifp);
1812 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1813 		ifnet_deserialize_all(ifp);
1814 		if (error == 0) {
1815 			getmicrotime(&ifp->if_lastchange);
1816 			rt_ifmsg(ifp);
1817 		}
1818 		/*
1819 		 * If the link MTU changed, do network layer specific procedure.
1820 		 */
1821 		if (ifp->if_mtu != oldmtu) {
1822 #ifdef INET6
1823 			nd6_setmtu(ifp);
1824 #endif
1825 		}
1826 		break;
1827 	}
1828 
1829 	case SIOCSIFTSOLEN:
1830 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1831 		if (error)
1832 			break;
1833 
1834 		/* XXX need driver supplied upper limit */
1835 		if (ifr->ifr_tsolen <= 0) {
1836 			error = EINVAL;
1837 			break;
1838 		}
1839 		ifp->if_tsolen = ifr->ifr_tsolen;
1840 		break;
1841 
1842 	case SIOCADDMULTI:
1843 	case SIOCDELMULTI:
1844 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1845 		if (error)
1846 			break;
1847 
1848 		/* Don't allow group membership on non-multicast interfaces. */
1849 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1850 			error = EOPNOTSUPP;
1851 			break;
1852 		}
1853 
1854 		/* Don't let users screw up protocols' entries. */
1855 		if (ifr->ifr_addr.sa_family != AF_LINK) {
1856 			error = EINVAL;
1857 			break;
1858 		}
1859 
1860 		if (cmd == SIOCADDMULTI) {
1861 			struct ifmultiaddr *ifma;
1862 			error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
1863 		} else {
1864 			error = if_delmulti(ifp, &ifr->ifr_addr);
1865 		}
1866 		if (error == 0)
1867 			getmicrotime(&ifp->if_lastchange);
1868 		break;
1869 
1870 	case SIOCSIFPHYADDR:
1871 	case SIOCDIFPHYADDR:
1872 #ifdef INET6
1873 	case SIOCSIFPHYADDR_IN6:
1874 #endif
1875 	case SIOCSLIFPHYADDR:
1876         case SIOCSIFMEDIA:
1877 	case SIOCSIFGENERIC:
1878 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1879 		if (error)
1880 			break;
1881 		if (ifp->if_ioctl == 0) {
1882 			error = EOPNOTSUPP;
1883 			break;
1884 		}
1885 		ifnet_serialize_all(ifp);
1886 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1887 		ifnet_deserialize_all(ifp);
1888 		if (error == 0)
1889 			getmicrotime(&ifp->if_lastchange);
1890 		break;
1891 
1892 	case SIOCGIFSTATUS:
1893 		ifs = (struct ifstat *)data;
1894 		ifs->ascii[0] = '\0';
1895 		/* fall through */
1896 	case SIOCGIFPSRCADDR:
1897 	case SIOCGIFPDSTADDR:
1898 	case SIOCGLIFPHYADDR:
1899 	case SIOCGIFMEDIA:
1900 	case SIOCGIFGENERIC:
1901 		if (ifp->if_ioctl == NULL) {
1902 			error = EOPNOTSUPP;
1903 			break;
1904 		}
1905 		ifnet_serialize_all(ifp);
1906 		error = ifp->if_ioctl(ifp, cmd, data, cred);
1907 		ifnet_deserialize_all(ifp);
1908 		break;
1909 
1910 	case SIOCSIFLLADDR:
1911 		error = priv_check_cred(cred, PRIV_ROOT, 0);
1912 		if (error)
1913 			break;
1914 		error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
1915 				     ifr->ifr_addr.sa_len);
1916 		EVENTHANDLER_INVOKE(iflladdr_event, ifp);
1917 		break;
1918 
1919 	default:
1920 		oif_flags = ifp->if_flags;
1921 		if (so->so_proto == 0) {
1922 			error = EOPNOTSUPP;
1923 			break;
1924 		}
1925 #ifndef COMPAT_43
1926 		error = so_pru_control_direct(so, cmd, data, ifp);
1927 #else
1928 		ocmd = cmd;
1929 
1930 		switch (cmd) {
1931 		case SIOCSIFDSTADDR:
1932 		case SIOCSIFADDR:
1933 		case SIOCSIFBRDADDR:
1934 		case SIOCSIFNETMASK:
1935 #if BYTE_ORDER != BIG_ENDIAN
1936 			if (ifr->ifr_addr.sa_family == 0 &&
1937 			    ifr->ifr_addr.sa_len < 16) {
1938 				ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
1939 				ifr->ifr_addr.sa_len = 16;
1940 			}
1941 #else
1942 			if (ifr->ifr_addr.sa_len == 0)
1943 				ifr->ifr_addr.sa_len = 16;
1944 #endif
1945 			break;
1946 		case OSIOCGIFADDR:
1947 			cmd = SIOCGIFADDR;
1948 			break;
1949 		case OSIOCGIFDSTADDR:
1950 			cmd = SIOCGIFDSTADDR;
1951 			break;
1952 		case OSIOCGIFBRDADDR:
1953 			cmd = SIOCGIFBRDADDR;
1954 			break;
1955 		case OSIOCGIFNETMASK:
1956 			cmd = SIOCGIFNETMASK;
1957 			break;
1958 		default:
1959 			break;
1960 		}
1961 
1962 		error = so_pru_control_direct(so, cmd, data, ifp);
1963 
1964 		switch (ocmd) {
1965 		case OSIOCGIFADDR:
1966 		case OSIOCGIFDSTADDR:
1967 		case OSIOCGIFBRDADDR:
1968 		case OSIOCGIFNETMASK:
1969 			*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
1970 			break;
1971 		}
1972 #endif /* COMPAT_43 */
1973 
1974 		if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
1975 #ifdef INET6
1976 			DELAY(100);/* XXX: temporary workaround for fxp issue*/
1977 			if (ifp->if_flags & IFF_UP) {
1978 				crit_enter();
1979 				in6_if_up(ifp);
1980 				crit_exit();
1981 			}
1982 #endif
1983 		}
1984 		break;
1985 	}
1986 
1987 	mtx_unlock(&ifp->if_ioctl_mtx);
1988 	return (error);
1989 }
1990 
1991 /*
1992  * Set/clear promiscuous mode on interface ifp based on the truth value
1993  * of pswitch.  The calls are reference counted so that only the first
1994  * "on" request actually has an effect, as does the final "off" request.
1995  * Results are undefined if the "off" and "on" requests are not matched.
1996  */
1997 int
1998 ifpromisc(struct ifnet *ifp, int pswitch)
1999 {
2000 	struct ifreq ifr;
2001 	int error;
2002 	int oldflags;
2003 
2004 	oldflags = ifp->if_flags;
2005 	if (ifp->if_flags & IFF_PPROMISC) {
2006 		/* Do nothing if device is in permanently promiscuous mode */
2007 		ifp->if_pcount += pswitch ? 1 : -1;
2008 		return (0);
2009 	}
2010 	if (pswitch) {
2011 		/*
2012 		 * If the device is not configured up, we cannot put it in
2013 		 * promiscuous mode.
2014 		 */
2015 		if ((ifp->if_flags & IFF_UP) == 0)
2016 			return (ENETDOWN);
2017 		if (ifp->if_pcount++ != 0)
2018 			return (0);
2019 		ifp->if_flags |= IFF_PROMISC;
2020 		log(LOG_INFO, "%s: promiscuous mode enabled\n",
2021 		    ifp->if_xname);
2022 	} else {
2023 		if (--ifp->if_pcount > 0)
2024 			return (0);
2025 		ifp->if_flags &= ~IFF_PROMISC;
2026 		log(LOG_INFO, "%s: promiscuous mode disabled\n",
2027 		    ifp->if_xname);
2028 	}
2029 	ifr.ifr_flags = ifp->if_flags;
2030 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
2031 	ifnet_serialize_all(ifp);
2032 	error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2033 	ifnet_deserialize_all(ifp);
2034 	if (error == 0)
2035 		rt_ifmsg(ifp);
2036 	else
2037 		ifp->if_flags = oldflags;
2038 	return error;
2039 }
2040 
2041 /*
2042  * Return interface configuration
2043  * of system.  List may be used
2044  * in later ioctl's (above) to get
2045  * other information.
2046  */
2047 static int
2048 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2049 {
2050 	struct ifconf *ifc = (struct ifconf *)data;
2051 	struct ifnet *ifp;
2052 	struct sockaddr *sa;
2053 	struct ifreq ifr, *ifrp;
2054 	int space = ifc->ifc_len, error = 0;
2055 
2056 	ifrp = ifc->ifc_req;
2057 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2058 		struct ifaddr_container *ifac;
2059 		int addrs;
2060 
2061 		if (space <= sizeof ifr)
2062 			break;
2063 
2064 		/*
2065 		 * Zero the stack declared structure first to prevent
2066 		 * memory disclosure.
2067 		 */
2068 		bzero(&ifr, sizeof(ifr));
2069 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2070 		    >= sizeof(ifr.ifr_name)) {
2071 			error = ENAMETOOLONG;
2072 			break;
2073 		}
2074 
2075 		addrs = 0;
2076 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2077 			struct ifaddr *ifa = ifac->ifa;
2078 
2079 			if (space <= sizeof ifr)
2080 				break;
2081 			sa = ifa->ifa_addr;
2082 			if (cred->cr_prison &&
2083 			    prison_if(cred, sa))
2084 				continue;
2085 			addrs++;
2086 #ifdef COMPAT_43
2087 			if (cmd == OSIOCGIFCONF) {
2088 				struct osockaddr *osa =
2089 					 (struct osockaddr *)&ifr.ifr_addr;
2090 				ifr.ifr_addr = *sa;
2091 				osa->sa_family = sa->sa_family;
2092 				error = copyout(&ifr, ifrp, sizeof ifr);
2093 				ifrp++;
2094 			} else
2095 #endif
2096 			if (sa->sa_len <= sizeof(*sa)) {
2097 				ifr.ifr_addr = *sa;
2098 				error = copyout(&ifr, ifrp, sizeof ifr);
2099 				ifrp++;
2100 			} else {
2101 				if (space < (sizeof ifr) + sa->sa_len -
2102 					    sizeof(*sa))
2103 					break;
2104 				space -= sa->sa_len - sizeof(*sa);
2105 				error = copyout(&ifr, ifrp,
2106 						sizeof ifr.ifr_name);
2107 				if (error == 0)
2108 					error = copyout(sa, &ifrp->ifr_addr,
2109 							sa->sa_len);
2110 				ifrp = (struct ifreq *)
2111 					(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2112 			}
2113 			if (error)
2114 				break;
2115 			space -= sizeof ifr;
2116 		}
2117 		if (error)
2118 			break;
2119 		if (!addrs) {
2120 			bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2121 			error = copyout(&ifr, ifrp, sizeof ifr);
2122 			if (error)
2123 				break;
2124 			space -= sizeof ifr;
2125 			ifrp++;
2126 		}
2127 	}
2128 	ifc->ifc_len -= space;
2129 	return (error);
2130 }
2131 
2132 /*
2133  * Just like if_promisc(), but for all-multicast-reception mode.
2134  */
2135 int
2136 if_allmulti(struct ifnet *ifp, int onswitch)
2137 {
2138 	int error = 0;
2139 	struct ifreq ifr;
2140 
2141 	crit_enter();
2142 
2143 	if (onswitch) {
2144 		if (ifp->if_amcount++ == 0) {
2145 			ifp->if_flags |= IFF_ALLMULTI;
2146 			ifr.ifr_flags = ifp->if_flags;
2147 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2148 			ifnet_serialize_all(ifp);
2149 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2150 					      NULL);
2151 			ifnet_deserialize_all(ifp);
2152 		}
2153 	} else {
2154 		if (ifp->if_amcount > 1) {
2155 			ifp->if_amcount--;
2156 		} else {
2157 			ifp->if_amcount = 0;
2158 			ifp->if_flags &= ~IFF_ALLMULTI;
2159 			ifr.ifr_flags = ifp->if_flags;
2160 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
2161 			ifnet_serialize_all(ifp);
2162 			error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2163 					      NULL);
2164 			ifnet_deserialize_all(ifp);
2165 		}
2166 	}
2167 
2168 	crit_exit();
2169 
2170 	if (error == 0)
2171 		rt_ifmsg(ifp);
2172 	return error;
2173 }
2174 
2175 /*
2176  * Add a multicast listenership to the interface in question.
2177  * The link layer provides a routine which converts
2178  */
2179 int
2180 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2181     struct ifmultiaddr **retifma)
2182 {
2183 	struct sockaddr *llsa, *dupsa;
2184 	int error;
2185 	struct ifmultiaddr *ifma;
2186 
2187 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2188 
2189 	/*
2190 	 * If the matching multicast address already exists
2191 	 * then don't add a new one, just add a reference
2192 	 */
2193 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2194 		if (sa_equal(sa, ifma->ifma_addr)) {
2195 			ifma->ifma_refcount++;
2196 			if (retifma)
2197 				*retifma = ifma;
2198 			return 0;
2199 		}
2200 	}
2201 
2202 	/*
2203 	 * Give the link layer a chance to accept/reject it, and also
2204 	 * find out which AF_LINK address this maps to, if it isn't one
2205 	 * already.
2206 	 */
2207 	if (ifp->if_resolvemulti) {
2208 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
2209 		if (error)
2210 			return error;
2211 	} else {
2212 		llsa = NULL;
2213 	}
2214 
2215 	ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2216 	dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK);
2217 	bcopy(sa, dupsa, sa->sa_len);
2218 
2219 	ifma->ifma_addr = dupsa;
2220 	ifma->ifma_lladdr = llsa;
2221 	ifma->ifma_ifp = ifp;
2222 	ifma->ifma_refcount = 1;
2223 	ifma->ifma_protospec = NULL;
2224 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2225 
2226 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2227 	if (retifma)
2228 		*retifma = ifma;
2229 
2230 	if (llsa != NULL) {
2231 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2232 			if (sa_equal(ifma->ifma_addr, llsa))
2233 				break;
2234 		}
2235 		if (ifma) {
2236 			ifma->ifma_refcount++;
2237 		} else {
2238 			ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK);
2239 			dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK);
2240 			bcopy(llsa, dupsa, llsa->sa_len);
2241 			ifma->ifma_addr = dupsa;
2242 			ifma->ifma_ifp = ifp;
2243 			ifma->ifma_refcount = 1;
2244 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2245 		}
2246 	}
2247 	/*
2248 	 * We are certain we have added something, so call down to the
2249 	 * interface to let them know about it.
2250 	 */
2251 	if (ifp->if_ioctl)
2252 		ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2253 
2254 	return 0;
2255 }
2256 
2257 int
2258 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2259     struct ifmultiaddr **retifma)
2260 {
2261 	int error;
2262 
2263 	ifnet_serialize_all(ifp);
2264 	error = if_addmulti_serialized(ifp, sa, retifma);
2265 	ifnet_deserialize_all(ifp);
2266 
2267 	return error;
2268 }
2269 
2270 /*
2271  * Remove a reference to a multicast address on this interface.  Yell
2272  * if the request does not match an existing membership.
2273  */
2274 static int
2275 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2276 {
2277 	struct ifmultiaddr *ifma;
2278 
2279 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2280 
2281 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2282 		if (sa_equal(sa, ifma->ifma_addr))
2283 			break;
2284 	if (ifma == NULL)
2285 		return ENOENT;
2286 
2287 	if (ifma->ifma_refcount > 1) {
2288 		ifma->ifma_refcount--;
2289 		return 0;
2290 	}
2291 
2292 	rt_newmaddrmsg(RTM_DELMADDR, ifma);
2293 	sa = ifma->ifma_lladdr;
2294 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2295 	/*
2296 	 * Make sure the interface driver is notified
2297 	 * in the case of a link layer mcast group being left.
2298 	 */
2299 	if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2300 		ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2301 	kfree(ifma->ifma_addr, M_IFMADDR);
2302 	kfree(ifma, M_IFMADDR);
2303 	if (sa == NULL)
2304 		return 0;
2305 
2306 	/*
2307 	 * Now look for the link-layer address which corresponds to
2308 	 * this network address.  It had been squirreled away in
2309 	 * ifma->ifma_lladdr for this purpose (so we don't have
2310 	 * to call ifp->if_resolvemulti() again), and we saved that
2311 	 * value in sa above.  If some nasty deleted the
2312 	 * link-layer address out from underneath us, we can deal because
2313 	 * the address we stored was is not the same as the one which was
2314 	 * in the record for the link-layer address.  (So we don't complain
2315 	 * in that case.)
2316 	 */
2317 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2318 		if (sa_equal(sa, ifma->ifma_addr))
2319 			break;
2320 	if (ifma == NULL)
2321 		return 0;
2322 
2323 	if (ifma->ifma_refcount > 1) {
2324 		ifma->ifma_refcount--;
2325 		return 0;
2326 	}
2327 
2328 	TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2329 	ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2330 	kfree(ifma->ifma_addr, M_IFMADDR);
2331 	kfree(sa, M_IFMADDR);
2332 	kfree(ifma, M_IFMADDR);
2333 
2334 	return 0;
2335 }
2336 
2337 int
2338 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2339 {
2340 	int error;
2341 
2342 	ifnet_serialize_all(ifp);
2343 	error = if_delmulti_serialized(ifp, sa);
2344 	ifnet_deserialize_all(ifp);
2345 
2346 	return error;
2347 }
2348 
2349 /*
2350  * Delete all multicast group membership for an interface.
2351  * Should be used to quickly flush all multicast filters.
2352  */
2353 void
2354 if_delallmulti_serialized(struct ifnet *ifp)
2355 {
2356 	struct ifmultiaddr *ifma, mark;
2357 	struct sockaddr sa;
2358 
2359 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2360 
2361 	bzero(&sa, sizeof(sa));
2362 	sa.sa_family = AF_UNSPEC;
2363 	sa.sa_len = sizeof(sa);
2364 
2365 	bzero(&mark, sizeof(mark));
2366 	mark.ifma_addr = &sa;
2367 
2368 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2369 	while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2370 		TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2371 		TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2372 		    ifma_link);
2373 
2374 		if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2375 			continue;
2376 
2377 		if_delmulti_serialized(ifp, ifma->ifma_addr);
2378 	}
2379 	TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2380 }
2381 
2382 
2383 /*
2384  * Set the link layer address on an interface.
2385  *
2386  * At this time we only support certain types of interfaces,
2387  * and we don't allow the length of the address to change.
2388  */
2389 int
2390 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2391 {
2392 	struct sockaddr_dl *sdl;
2393 	struct ifreq ifr;
2394 
2395 	sdl = IF_LLSOCKADDR(ifp);
2396 	if (sdl == NULL)
2397 		return (EINVAL);
2398 	if (len != sdl->sdl_alen)	/* don't allow length to change */
2399 		return (EINVAL);
2400 	switch (ifp->if_type) {
2401 	case IFT_ETHER:			/* these types use struct arpcom */
2402 	case IFT_XETHER:
2403 	case IFT_L2VLAN:
2404 	case IFT_IEEE8023ADLAG:
2405 		bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2406 		bcopy(lladdr, LLADDR(sdl), len);
2407 		break;
2408 	default:
2409 		return (ENODEV);
2410 	}
2411 	/*
2412 	 * If the interface is already up, we need
2413 	 * to re-init it in order to reprogram its
2414 	 * address filter.
2415 	 */
2416 	ifnet_serialize_all(ifp);
2417 	if ((ifp->if_flags & IFF_UP) != 0) {
2418 #ifdef INET
2419 		struct ifaddr_container *ifac;
2420 #endif
2421 
2422 		ifp->if_flags &= ~IFF_UP;
2423 		ifr.ifr_flags = ifp->if_flags;
2424 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2425 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2426 			      NULL);
2427 		ifp->if_flags |= IFF_UP;
2428 		ifr.ifr_flags = ifp->if_flags;
2429 		ifr.ifr_flagshigh = ifp->if_flags >> 16;
2430 		ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2431 				 NULL);
2432 #ifdef INET
2433 		/*
2434 		 * Also send gratuitous ARPs to notify other nodes about
2435 		 * the address change.
2436 		 */
2437 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2438 			struct ifaddr *ifa = ifac->ifa;
2439 
2440 			if (ifa->ifa_addr != NULL &&
2441 			    ifa->ifa_addr->sa_family == AF_INET)
2442 				arp_gratuitous(ifp, ifa);
2443 		}
2444 #endif
2445 	}
2446 	ifnet_deserialize_all(ifp);
2447 	return (0);
2448 }
2449 
2450 struct ifmultiaddr *
2451 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2452 {
2453 	struct ifmultiaddr *ifma;
2454 
2455 	/* TODO: need ifnet_serialize_main */
2456 	ifnet_serialize_all(ifp);
2457 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2458 		if (sa_equal(ifma->ifma_addr, sa))
2459 			break;
2460 	ifnet_deserialize_all(ifp);
2461 
2462 	return ifma;
2463 }
2464 
2465 /*
2466  * This function locates the first real ethernet MAC from a network
2467  * card and loads it into node, returning 0 on success or ENOENT if
2468  * no suitable interfaces were found.  It is used by the uuid code to
2469  * generate a unique 6-byte number.
2470  */
2471 int
2472 if_getanyethermac(uint16_t *node, int minlen)
2473 {
2474 	struct ifnet *ifp;
2475 	struct sockaddr_dl *sdl;
2476 
2477 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
2478 		if (ifp->if_type != IFT_ETHER)
2479 			continue;
2480 		sdl = IF_LLSOCKADDR(ifp);
2481 		if (sdl->sdl_alen < minlen)
2482 			continue;
2483 		bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2484 		      minlen);
2485 		return(0);
2486 	}
2487 	return (ENOENT);
2488 }
2489 
2490 /*
2491  * The name argument must be a pointer to storage which will last as
2492  * long as the interface does.  For physical devices, the result of
2493  * device_get_name(dev) is a good choice and for pseudo-devices a
2494  * static string works well.
2495  */
2496 void
2497 if_initname(struct ifnet *ifp, const char *name, int unit)
2498 {
2499 	ifp->if_dname = name;
2500 	ifp->if_dunit = unit;
2501 	if (unit != IF_DUNIT_NONE)
2502 		ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2503 	else
2504 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
2505 }
2506 
2507 int
2508 if_printf(struct ifnet *ifp, const char *fmt, ...)
2509 {
2510 	__va_list ap;
2511 	int retval;
2512 
2513 	retval = kprintf("%s: ", ifp->if_xname);
2514 	__va_start(ap, fmt);
2515 	retval += kvprintf(fmt, ap);
2516 	__va_end(ap);
2517 	return (retval);
2518 }
2519 
2520 struct ifnet *
2521 if_alloc(uint8_t type)
2522 {
2523         struct ifnet *ifp;
2524 	size_t size;
2525 
2526 	/*
2527 	 * XXX temporary hack until arpcom is setup in if_l2com
2528 	 */
2529 	if (type == IFT_ETHER)
2530 		size = sizeof(struct arpcom);
2531 	else
2532 		size = sizeof(struct ifnet);
2533 
2534 	ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2535 
2536 	ifp->if_type = type;
2537 
2538 	if (if_com_alloc[type] != NULL) {
2539 		ifp->if_l2com = if_com_alloc[type](type, ifp);
2540 		if (ifp->if_l2com == NULL) {
2541 			kfree(ifp, M_IFNET);
2542 			return (NULL);
2543 		}
2544 	}
2545 	return (ifp);
2546 }
2547 
2548 void
2549 if_free(struct ifnet *ifp)
2550 {
2551 	kfree(ifp, M_IFNET);
2552 }
2553 
2554 void
2555 ifq_set_classic(struct ifaltq *ifq)
2556 {
2557 	ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2558 	    ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2559 }
2560 
2561 void
2562 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2563     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2564 {
2565 	int q;
2566 
2567 	KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2568 	KASSERT(enqueue != NULL, ("enqueue is not specified"));
2569 	KASSERT(dequeue != NULL, ("dequeue is not specified"));
2570 	KASSERT(request != NULL, ("request is not specified"));
2571 
2572 	ifq->altq_mapsubq = mapsubq;
2573 	for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2574 		struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2575 
2576 		ifsq->ifsq_enqueue = enqueue;
2577 		ifsq->ifsq_dequeue = dequeue;
2578 		ifsq->ifsq_request = request;
2579 	}
2580 }
2581 
2582 static void
2583 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2584 {
2585 	m->m_nextpkt = NULL;
2586 	if (ifsq->ifsq_norm_tail == NULL)
2587 		ifsq->ifsq_norm_head = m;
2588 	else
2589 		ifsq->ifsq_norm_tail->m_nextpkt = m;
2590 	ifsq->ifsq_norm_tail = m;
2591 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2592 }
2593 
2594 static void
2595 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2596 {
2597 	m->m_nextpkt = NULL;
2598 	if (ifsq->ifsq_prio_tail == NULL)
2599 		ifsq->ifsq_prio_head = m;
2600 	else
2601 		ifsq->ifsq_prio_tail->m_nextpkt = m;
2602 	ifsq->ifsq_prio_tail = m;
2603 	ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2604 	ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2605 }
2606 
2607 static struct mbuf *
2608 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2609 {
2610 	struct mbuf *m;
2611 
2612 	m = ifsq->ifsq_norm_head;
2613 	if (m != NULL) {
2614 		if ((ifsq->ifsq_norm_head = m->m_nextpkt) == NULL)
2615 			ifsq->ifsq_norm_tail = NULL;
2616 		m->m_nextpkt = NULL;
2617 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2618 	}
2619 	return m;
2620 }
2621 
2622 static struct mbuf *
2623 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2624 {
2625 	struct mbuf *m;
2626 
2627 	m = ifsq->ifsq_prio_head;
2628 	if (m != NULL) {
2629 		if ((ifsq->ifsq_prio_head = m->m_nextpkt) == NULL)
2630 			ifsq->ifsq_prio_tail = NULL;
2631 		m->m_nextpkt = NULL;
2632 		ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2633 		ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2634 	}
2635 	return m;
2636 }
2637 
2638 int
2639 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2640     struct altq_pktattr *pa __unused)
2641 {
2642 	M_ASSERTPKTHDR(m);
2643 	if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2644 	    ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2645 		if ((m->m_flags & M_PRIO) &&
2646 		    ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen / 2) &&
2647 		    ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt / 2)) {
2648 			struct mbuf *m_drop;
2649 
2650 			/*
2651 			 * Perform drop-head on normal queue
2652 			 */
2653 			m_drop = ifsq_norm_dequeue(ifsq);
2654 			if (m_drop != NULL) {
2655 				m_freem(m_drop);
2656 				ifsq_prio_enqueue(ifsq, m);
2657 				return 0;
2658 			}
2659 			/* XXX nothing could be dropped? */
2660 		}
2661 		m_freem(m);
2662 		return ENOBUFS;
2663 	} else {
2664 		if (m->m_flags & M_PRIO)
2665 			ifsq_prio_enqueue(ifsq, m);
2666 		else
2667 			ifsq_norm_enqueue(ifsq, m);
2668 		return 0;
2669 	}
2670 }
2671 
2672 struct mbuf *
2673 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2674 {
2675 	struct mbuf *m;
2676 
2677 	switch (op) {
2678 	case ALTDQ_POLL:
2679 		m = ifsq->ifsq_prio_head;
2680 		if (m == NULL)
2681 			m = ifsq->ifsq_norm_head;
2682 		break;
2683 
2684 	case ALTDQ_REMOVE:
2685 		m = ifsq_prio_dequeue(ifsq);
2686 		if (m == NULL)
2687 			m = ifsq_norm_dequeue(ifsq);
2688 		break;
2689 
2690 	default:
2691 		panic("unsupported ALTQ dequeue op: %d", op);
2692 	}
2693 	return m;
2694 }
2695 
2696 int
2697 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2698 {
2699 	switch (req) {
2700 	case ALTRQ_PURGE:
2701 		for (;;) {
2702 			struct mbuf *m;
2703 
2704 			m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2705 			if (m == NULL)
2706 				break;
2707 			m_freem(m);
2708 		}
2709 		break;
2710 
2711 	default:
2712 		panic("unsupported ALTQ request: %d", req);
2713 	}
2714 	return 0;
2715 }
2716 
2717 static void
2718 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2719 {
2720 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
2721 	int running = 0, need_sched;
2722 
2723 	/*
2724 	 * Try to do direct ifnet.if_start on the subqueue first, if there is
2725 	 * contention on the subqueue hardware serializer, ifnet.if_start on
2726 	 * the subqueue will be scheduled on the subqueue owner CPU.
2727 	 */
2728 	if (!ifsq_tryserialize_hw(ifsq)) {
2729 		/*
2730 		 * Subqueue hardware serializer contention happened,
2731 		 * ifnet.if_start on the subqueue is scheduled on
2732 		 * the subqueue owner CPU, and we keep going.
2733 		 */
2734 		ifsq_ifstart_schedule(ifsq, 1);
2735 		return;
2736 	}
2737 
2738 	if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2739 		ifp->if_start(ifp, ifsq);
2740 		if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2741 			running = 1;
2742 	}
2743 	need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2744 
2745 	ifsq_deserialize_hw(ifsq);
2746 
2747 	if (need_sched) {
2748 		/*
2749 		 * More data need to be transmitted, ifnet.if_start on the
2750 		 * subqueue is scheduled on the subqueue owner CPU, and we
2751 		 * keep going.
2752 		 * NOTE: ifnet.if_start subqueue interlock is not released.
2753 		 */
2754 		ifsq_ifstart_schedule(ifsq, force_sched);
2755 	}
2756 }
2757 
2758 /*
2759  * Subqeue packets staging mechanism:
2760  *
2761  * The packets enqueued into the subqueue are staged to a certain amount
2762  * before the ifnet.if_start on the subqueue is called.  In this way, the
2763  * driver could avoid writing to hardware registers upon every packet,
2764  * instead, hardware registers could be written when certain amount of
2765  * packets are put onto hardware TX ring.  The measurement on several modern
2766  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2767  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2768  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
2769  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2770  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2771  *
2772  * Subqueue packets staging is performed for two entry points into drivers'
2773  * transmission function:
2774  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2775  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2776  *
2777  * Subqueue packets staging will be stopped upon any of the following
2778  * conditions:
2779  * - If the count of packets enqueued on the current CPU is great than or
2780  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2781  * - If the total length of packets enqueued on the current CPU is great
2782  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2783  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2784  *   is usually less than hardware's MTU.
2785  * - ifsq_ifstart_schedule() is not pending on the current CPU and
2786  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
2787  *   released.
2788  * - The if_start_rollup(), which is registered as low priority netisr
2789  *   rollup function, is called; probably because no more work is pending
2790  *   for netisr.
2791  *
2792  * NOTE:
2793  * Currently subqueue packet staging is only performed in netisr threads.
2794  */
2795 int
2796 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2797 {
2798 	struct ifaltq *ifq = &ifp->if_snd;
2799 	struct ifaltq_subque *ifsq;
2800 	int error, start = 0, len, mcast = 0, avoid_start = 0;
2801 	struct ifsubq_stage_head *head = NULL;
2802 	struct ifsubq_stage *stage = NULL;
2803 	struct globaldata *gd = mycpu;
2804 	struct thread *td = gd->gd_curthread;
2805 
2806 	crit_enter_quick(td);
2807 
2808 	ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
2809 	ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
2810 
2811 	len = m->m_pkthdr.len;
2812 	if (m->m_flags & M_MCAST)
2813 		mcast = 1;
2814 
2815 	if (td->td_type == TD_TYPE_NETISR) {
2816 		head = &ifsubq_stage_heads[mycpuid];
2817 		stage = ifsq_get_stage(ifsq, mycpuid);
2818 
2819 		stage->stg_cnt++;
2820 		stage->stg_len += len;
2821 		if (stage->stg_cnt < ifsq_stage_cntmax &&
2822 		    stage->stg_len < (ifp->if_mtu - max_protohdr))
2823 			avoid_start = 1;
2824 	}
2825 
2826 	ALTQ_SQ_LOCK(ifsq);
2827 	error = ifsq_enqueue_locked(ifsq, m, pa);
2828 	if (error) {
2829 		if (!ifsq_data_ready(ifsq)) {
2830 			ALTQ_SQ_UNLOCK(ifsq);
2831 			crit_exit_quick(td);
2832 			return error;
2833 		}
2834 		avoid_start = 0;
2835 	}
2836 	if (!ifsq_is_started(ifsq)) {
2837 		if (avoid_start) {
2838 			ALTQ_SQ_UNLOCK(ifsq);
2839 
2840 			KKASSERT(!error);
2841 			if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
2842 				ifsq_stage_insert(head, stage);
2843 
2844 			IFNET_STAT_INC(ifp, obytes, len);
2845 			if (mcast)
2846 				IFNET_STAT_INC(ifp, omcasts, 1);
2847 			crit_exit_quick(td);
2848 			return error;
2849 		}
2850 
2851 		/*
2852 		 * Hold the subqueue interlock of ifnet.if_start
2853 		 */
2854 		ifsq_set_started(ifsq);
2855 		start = 1;
2856 	}
2857 	ALTQ_SQ_UNLOCK(ifsq);
2858 
2859 	if (!error) {
2860 		IFNET_STAT_INC(ifp, obytes, len);
2861 		if (mcast)
2862 			IFNET_STAT_INC(ifp, omcasts, 1);
2863 	}
2864 
2865 	if (stage != NULL) {
2866 		if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
2867 			KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
2868 			if (!avoid_start) {
2869 				ifsq_stage_remove(head, stage);
2870 				ifsq_ifstart_schedule(ifsq, 1);
2871 			}
2872 			crit_exit_quick(td);
2873 			return error;
2874 		}
2875 
2876 		if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
2877 			ifsq_stage_remove(head, stage);
2878 		} else {
2879 			stage->stg_cnt = 0;
2880 			stage->stg_len = 0;
2881 		}
2882 	}
2883 
2884 	if (!start) {
2885 		crit_exit_quick(td);
2886 		return error;
2887 	}
2888 
2889 	ifsq_ifstart_try(ifsq, 0);
2890 
2891 	crit_exit_quick(td);
2892 	return error;
2893 }
2894 
2895 void *
2896 ifa_create(int size, int flags)
2897 {
2898 	struct ifaddr *ifa;
2899 	int i;
2900 
2901 	KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
2902 
2903 	ifa = kmalloc(size, M_IFADDR, flags | M_ZERO);
2904 	if (ifa == NULL)
2905 		return NULL;
2906 
2907 	ifa->ifa_containers =
2908 	    kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
2909 	        M_IFADDR, M_WAITOK | M_ZERO);
2910 	ifa->ifa_ncnt = ncpus;
2911 	for (i = 0; i < ncpus; ++i) {
2912 		struct ifaddr_container *ifac = &ifa->ifa_containers[i];
2913 
2914 		ifac->ifa_magic = IFA_CONTAINER_MAGIC;
2915 		ifac->ifa = ifa;
2916 		ifac->ifa_refcnt = 1;
2917 	}
2918 #ifdef IFADDR_DEBUG
2919 	kprintf("alloc ifa %p %d\n", ifa, size);
2920 #endif
2921 	return ifa;
2922 }
2923 
2924 void
2925 ifac_free(struct ifaddr_container *ifac, int cpu_id)
2926 {
2927 	struct ifaddr *ifa = ifac->ifa;
2928 
2929 	KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
2930 	KKASSERT(ifac->ifa_refcnt == 0);
2931 	KASSERT(ifac->ifa_listmask == 0,
2932 		("ifa is still on %#x lists", ifac->ifa_listmask));
2933 
2934 	ifac->ifa_magic = IFA_CONTAINER_DEAD;
2935 
2936 #ifdef IFADDR_DEBUG_VERBOSE
2937 	kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
2938 #endif
2939 
2940 	KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
2941 		("invalid # of ifac, %d", ifa->ifa_ncnt));
2942 	if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
2943 #ifdef IFADDR_DEBUG
2944 		kprintf("free ifa %p\n", ifa);
2945 #endif
2946 		kfree(ifa->ifa_containers, M_IFADDR);
2947 		kfree(ifa, M_IFADDR);
2948 	}
2949 }
2950 
2951 static void
2952 ifa_iflink_dispatch(netmsg_t nmsg)
2953 {
2954 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2955 	struct ifaddr *ifa = msg->ifa;
2956 	struct ifnet *ifp = msg->ifp;
2957 	int cpu = mycpuid;
2958 	struct ifaddr_container *ifac;
2959 
2960 	crit_enter();
2961 
2962 	ifac = &ifa->ifa_containers[cpu];
2963 	ASSERT_IFAC_VALID(ifac);
2964 	KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
2965 		("ifaddr is on if_addrheads"));
2966 
2967 	ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
2968 	if (msg->tail)
2969 		TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
2970 	else
2971 		TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
2972 
2973 	crit_exit();
2974 
2975 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
2976 }
2977 
2978 void
2979 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
2980 {
2981 	struct netmsg_ifaddr msg;
2982 
2983 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
2984 		    0, ifa_iflink_dispatch);
2985 	msg.ifa = ifa;
2986 	msg.ifp = ifp;
2987 	msg.tail = tail;
2988 
2989 	ifa_domsg(&msg.base.lmsg, 0);
2990 }
2991 
2992 static void
2993 ifa_ifunlink_dispatch(netmsg_t nmsg)
2994 {
2995 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
2996 	struct ifaddr *ifa = msg->ifa;
2997 	struct ifnet *ifp = msg->ifp;
2998 	int cpu = mycpuid;
2999 	struct ifaddr_container *ifac;
3000 
3001 	crit_enter();
3002 
3003 	ifac = &ifa->ifa_containers[cpu];
3004 	ASSERT_IFAC_VALID(ifac);
3005 	KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3006 		("ifaddr is not on if_addrhead"));
3007 
3008 	TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3009 	ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3010 
3011 	crit_exit();
3012 
3013 	ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3014 }
3015 
3016 void
3017 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3018 {
3019 	struct netmsg_ifaddr msg;
3020 
3021 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3022 		    0, ifa_ifunlink_dispatch);
3023 	msg.ifa = ifa;
3024 	msg.ifp = ifp;
3025 
3026 	ifa_domsg(&msg.base.lmsg, 0);
3027 }
3028 
3029 static void
3030 ifa_destroy_dispatch(netmsg_t nmsg)
3031 {
3032 	struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3033 
3034 	IFAFREE(msg->ifa);
3035 	ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
3036 }
3037 
3038 void
3039 ifa_destroy(struct ifaddr *ifa)
3040 {
3041 	struct netmsg_ifaddr msg;
3042 
3043 	netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3044 		    0, ifa_destroy_dispatch);
3045 	msg.ifa = ifa;
3046 
3047 	ifa_domsg(&msg.base.lmsg, 0);
3048 }
3049 
3050 struct lwkt_port *
3051 ifnet_portfn(int cpu)
3052 {
3053 	return &ifnet_threads[cpu].td_msgport;
3054 }
3055 
3056 void
3057 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
3058 {
3059 	KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
3060 
3061 	if (next_cpu < ncpus)
3062 		lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
3063 	else
3064 		lwkt_replymsg(lmsg, 0);
3065 }
3066 
3067 int
3068 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
3069 {
3070 	KKASSERT(cpu < ncpus);
3071 	return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
3072 }
3073 
3074 void
3075 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
3076 {
3077 	KKASSERT(cpu < ncpus);
3078 	lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
3079 }
3080 
3081 /*
3082  * Generic netmsg service loop.  Some protocols may roll their own but all
3083  * must do the basic command dispatch function call done here.
3084  */
3085 static void
3086 ifnet_service_loop(void *arg __unused)
3087 {
3088 	netmsg_t msg;
3089 
3090 	while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
3091 		KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
3092 		msg->base.nm_dispatch(msg);
3093 	}
3094 }
3095 
3096 static void
3097 if_start_rollup(void)
3098 {
3099 	struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3100 	struct ifsubq_stage *stage;
3101 
3102 	crit_enter();
3103 
3104 	while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3105 		struct ifaltq_subque *ifsq = stage->stg_subq;
3106 		int is_sched = 0;
3107 
3108 		if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3109 			is_sched = 1;
3110 		ifsq_stage_remove(head, stage);
3111 
3112 		if (is_sched) {
3113 			ifsq_ifstart_schedule(ifsq, 1);
3114 		} else {
3115 			int start = 0;
3116 
3117 			ALTQ_SQ_LOCK(ifsq);
3118 			if (!ifsq_is_started(ifsq)) {
3119 				/*
3120 				 * Hold the subqueue interlock of
3121 				 * ifnet.if_start
3122 				 */
3123 				ifsq_set_started(ifsq);
3124 				start = 1;
3125 			}
3126 			ALTQ_SQ_UNLOCK(ifsq);
3127 
3128 			if (start)
3129 				ifsq_ifstart_try(ifsq, 1);
3130 		}
3131 		KKASSERT((stage->stg_flags &
3132 		    (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3133 	}
3134 
3135 	crit_exit();
3136 }
3137 
3138 static void
3139 ifnetinit(void *dummy __unused)
3140 {
3141 	int i;
3142 
3143 	for (i = 0; i < ncpus; ++i) {
3144 		struct thread *thr = &ifnet_threads[i];
3145 
3146 		lwkt_create(ifnet_service_loop, NULL, NULL,
3147 			    thr, TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
3148 			    i, "ifnet %d", i);
3149 		netmsg_service_port_init(&thr->td_msgport);
3150 		lwkt_schedule(thr);
3151 	}
3152 
3153 	for (i = 0; i < ncpus; ++i)
3154 		TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3155 	netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3156 }
3157 
3158 void
3159 if_register_com_alloc(u_char type,
3160     if_com_alloc_t *a, if_com_free_t *f)
3161 {
3162 
3163         KASSERT(if_com_alloc[type] == NULL,
3164             ("if_register_com_alloc: %d already registered", type));
3165         KASSERT(if_com_free[type] == NULL,
3166             ("if_register_com_alloc: %d free already registered", type));
3167 
3168         if_com_alloc[type] = a;
3169         if_com_free[type] = f;
3170 }
3171 
3172 void
3173 if_deregister_com_alloc(u_char type)
3174 {
3175 
3176         KASSERT(if_com_alloc[type] != NULL,
3177             ("if_deregister_com_alloc: %d not registered", type));
3178         KASSERT(if_com_free[type] != NULL,
3179             ("if_deregister_com_alloc: %d free not registered", type));
3180         if_com_alloc[type] = NULL;
3181         if_com_free[type] = NULL;
3182 }
3183 
3184 int
3185 if_ring_count2(int cnt, int cnt_max)
3186 {
3187 	int shift = 0;
3188 
3189 	KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3190 	    ("invalid ring count max %d", cnt_max));
3191 
3192 	if (cnt <= 0)
3193 		cnt = cnt_max;
3194 	if (cnt > ncpus2)
3195 		cnt = ncpus2;
3196 	if (cnt > cnt_max)
3197 		cnt = cnt_max;
3198 
3199 	while ((1 << (shift + 1)) <= cnt)
3200 		++shift;
3201 	cnt = 1 << shift;
3202 
3203 	KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3204 	    ("calculate cnt %d, ncpus2 %d, cnt max %d",
3205 	     cnt, ncpus2, cnt_max));
3206 	return cnt;
3207 }
3208 
3209 void
3210 ifq_set_maxlen(struct ifaltq *ifq, int len)
3211 {
3212 	ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3213 }
3214 
3215 int
3216 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3217 {
3218 	return ALTQ_SUBQ_INDEX_DEFAULT;
3219 }
3220 
3221 int
3222 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3223 {
3224 	return (cpuid & ifq->altq_subq_mask);
3225 }
3226 
3227 static void
3228 ifsq_watchdog(void *arg)
3229 {
3230 	struct ifsubq_watchdog *wd = arg;
3231 	struct ifnet *ifp;
3232 
3233 	if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3234 		goto done;
3235 
3236 	ifp = ifsq_get_ifp(wd->wd_subq);
3237 	if (ifnet_tryserialize_all(ifp)) {
3238 		wd->wd_watchdog(wd->wd_subq);
3239 		ifnet_deserialize_all(ifp);
3240 	} else {
3241 		/* try again next timeout */
3242 		wd->wd_timer = 1;
3243 	}
3244 done:
3245 	ifsq_watchdog_reset(wd);
3246 }
3247 
3248 static void
3249 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3250 {
3251 	callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3252 	    ifsq_get_cpuid(wd->wd_subq));
3253 }
3254 
3255 void
3256 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3257     ifsq_watchdog_t watchdog)
3258 {
3259 	callout_init_mp(&wd->wd_callout);
3260 	wd->wd_timer = 0;
3261 	wd->wd_subq = ifsq;
3262 	wd->wd_watchdog = watchdog;
3263 }
3264 
3265 void
3266 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3267 {
3268 	wd->wd_timer = 0;
3269 	ifsq_watchdog_reset(wd);
3270 }
3271 
3272 void
3273 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3274 {
3275 	wd->wd_timer = 0;
3276 	callout_stop(&wd->wd_callout);
3277 }
3278