1 /* 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if.c 8.3 (Berkeley) 1/4/94 30 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $ 31 */ 32 33 #include "opt_compat.h" 34 #include "opt_inet6.h" 35 #include "opt_inet.h" 36 #include "opt_ifpoll.h" 37 38 #include <sys/param.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/priv.h> 44 #include <sys/protosw.h> 45 #include <sys/socket.h> 46 #include <sys/socketvar.h> 47 #include <sys/socketops.h> 48 #include <sys/protosw.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/mutex.h> 52 #include <sys/sockio.h> 53 #include <sys/syslog.h> 54 #include <sys/sysctl.h> 55 #include <sys/domain.h> 56 #include <sys/thread.h> 57 #include <sys/serialize.h> 58 #include <sys/bus.h> 59 60 #include <sys/thread2.h> 61 #include <sys/msgport2.h> 62 #include <sys/mutex2.h> 63 64 #include <net/if.h> 65 #include <net/if_arp.h> 66 #include <net/if_dl.h> 67 #include <net/if_types.h> 68 #include <net/if_var.h> 69 #include <net/ifq_var.h> 70 #include <net/radix.h> 71 #include <net/route.h> 72 #include <net/if_clone.h> 73 #include <net/netisr2.h> 74 #include <net/netmsg2.h> 75 76 #include <machine/atomic.h> 77 #include <machine/stdarg.h> 78 #include <machine/smp.h> 79 80 #if defined(INET) || defined(INET6) 81 /*XXX*/ 82 #include <netinet/in.h> 83 #include <netinet/in_var.h> 84 #include <netinet/if_ether.h> 85 #ifdef INET6 86 #include <netinet6/in6_var.h> 87 #include <netinet6/in6_ifattach.h> 88 #endif 89 #endif 90 91 #if defined(COMPAT_43) 92 #include <emulation/43bsd/43bsd_socket.h> 93 #endif /* COMPAT_43 */ 94 95 struct netmsg_ifaddr { 96 struct netmsg_base base; 97 struct ifaddr *ifa; 98 struct ifnet *ifp; 99 int tail; 100 }; 101 102 struct ifsubq_stage_head { 103 TAILQ_HEAD(, ifsubq_stage) stg_head; 104 } __cachealign; 105 106 /* 107 * System initialization 108 */ 109 static void if_attachdomain(void *); 110 static void if_attachdomain1(struct ifnet *); 111 static int ifconf(u_long, caddr_t, struct ucred *); 112 static void ifinit(void *); 113 static void ifnetinit(void *); 114 static void if_slowtimo(void *); 115 static void link_rtrequest(int, struct rtentry *); 116 static int if_rtdel(struct radix_node *, void *); 117 118 /* Helper functions */ 119 static void ifsq_watchdog_reset(struct ifsubq_watchdog *); 120 121 #ifdef INET6 122 /* 123 * XXX: declare here to avoid to include many inet6 related files.. 124 * should be more generalized? 125 */ 126 extern void nd6_setmtu(struct ifnet *); 127 #endif 128 129 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 130 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 131 132 static int ifsq_stage_cntmax = 4; 133 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax); 134 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW, 135 &ifsq_stage_cntmax, 0, "ifq staging packet count max"); 136 137 static int if_stats_compat = 0; 138 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW, 139 &if_stats_compat, 0, "Compat the old ifnet stats"); 140 141 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL) 142 /* Must be after netisr_init */ 143 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL) 144 145 static if_com_alloc_t *if_com_alloc[256]; 146 static if_com_free_t *if_com_free[256]; 147 148 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 149 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 150 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure"); 151 152 int ifqmaxlen = IFQ_MAXLEN; 153 struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet); 154 155 struct callout if_slowtimo_timer; 156 157 int if_index = 0; 158 struct ifnet **ifindex2ifnet = NULL; 159 static struct thread ifnet_threads[MAXCPU]; 160 161 static struct ifsubq_stage_head ifsubq_stage_heads[MAXCPU]; 162 163 #ifdef notyet 164 #define IFQ_KTR_STRING "ifq=%p" 165 #define IFQ_KTR_ARGS struct ifaltq *ifq 166 #ifndef KTR_IFQ 167 #define KTR_IFQ KTR_ALL 168 #endif 169 KTR_INFO_MASTER(ifq); 170 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS); 171 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS); 172 #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg) 173 174 #define IF_START_KTR_STRING "ifp=%p" 175 #define IF_START_KTR_ARGS struct ifnet *ifp 176 #ifndef KTR_IF_START 177 #define KTR_IF_START KTR_ALL 178 #endif 179 KTR_INFO_MASTER(if_start); 180 KTR_INFO(KTR_IF_START, if_start, run, 0, 181 IF_START_KTR_STRING, IF_START_KTR_ARGS); 182 KTR_INFO(KTR_IF_START, if_start, sched, 1, 183 IF_START_KTR_STRING, IF_START_KTR_ARGS); 184 KTR_INFO(KTR_IF_START, if_start, avoid, 2, 185 IF_START_KTR_STRING, IF_START_KTR_ARGS); 186 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3, 187 IF_START_KTR_STRING, IF_START_KTR_ARGS); 188 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4, 189 IF_START_KTR_STRING, IF_START_KTR_ARGS); 190 #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg) 191 #endif 192 193 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head); 194 195 /* 196 * Network interface utility routines. 197 * 198 * Routines with ifa_ifwith* names take sockaddr *'s as 199 * parameters. 200 */ 201 /* ARGSUSED*/ 202 void 203 ifinit(void *dummy) 204 { 205 struct ifnet *ifp; 206 207 callout_init(&if_slowtimo_timer); 208 209 crit_enter(); 210 TAILQ_FOREACH(ifp, &ifnet, if_link) { 211 if (ifp->if_snd.altq_maxlen == 0) { 212 if_printf(ifp, "XXX: driver didn't set altq_maxlen\n"); 213 ifq_set_maxlen(&ifp->if_snd, ifqmaxlen); 214 } 215 } 216 crit_exit(); 217 218 if_slowtimo(0); 219 } 220 221 static void 222 ifsq_ifstart_ipifunc(void *arg) 223 { 224 struct ifaltq_subque *ifsq = arg; 225 struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid); 226 227 crit_enter(); 228 if (lmsg->ms_flags & MSGF_DONE) 229 lwkt_sendmsg(netisr_cpuport(mycpuid), lmsg); 230 crit_exit(); 231 } 232 233 static __inline void 234 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage) 235 { 236 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED); 237 TAILQ_REMOVE(&head->stg_head, stage, stg_link); 238 stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED); 239 stage->stg_cnt = 0; 240 stage->stg_len = 0; 241 } 242 243 static __inline void 244 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage) 245 { 246 KKASSERT((stage->stg_flags & 247 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0); 248 stage->stg_flags |= IFSQ_STAGE_FLAG_QUED; 249 TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link); 250 } 251 252 /* 253 * Schedule ifnet.if_start on the subqueue owner CPU 254 */ 255 static void 256 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force) 257 { 258 int cpu; 259 260 if (!force && curthread->td_type == TD_TYPE_NETISR && 261 ifsq_stage_cntmax > 0) { 262 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid); 263 264 stage->stg_cnt = 0; 265 stage->stg_len = 0; 266 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0) 267 ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage); 268 stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED; 269 return; 270 } 271 272 cpu = ifsq_get_cpuid(ifsq); 273 if (cpu != mycpuid) 274 lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq); 275 else 276 ifsq_ifstart_ipifunc(ifsq); 277 } 278 279 /* 280 * NOTE: 281 * This function will release ifnet.if_start subqueue interlock, 282 * if ifnet.if_start for the subqueue does not need to be scheduled 283 */ 284 static __inline int 285 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running) 286 { 287 if (!running || ifsq_is_empty(ifsq) 288 #ifdef ALTQ 289 || ifsq->ifsq_altq->altq_tbr != NULL 290 #endif 291 ) { 292 ALTQ_SQ_LOCK(ifsq); 293 /* 294 * ifnet.if_start subqueue interlock is released, if: 295 * 1) Hardware can not take any packets, due to 296 * o interface is marked down 297 * o hardware queue is full (ifsq_is_oactive) 298 * Under the second situation, hardware interrupt 299 * or polling(4) will call/schedule ifnet.if_start 300 * on the subqueue when hardware queue is ready 301 * 2) There is no packet in the subqueue. 302 * Further ifq_dispatch or ifq_handoff will call/ 303 * schedule ifnet.if_start on the subqueue. 304 * 3) TBR is used and it does not allow further 305 * dequeueing. 306 * TBR callout will call ifnet.if_start on the 307 * subqueue. 308 */ 309 if (!running || !ifsq_data_ready(ifsq)) { 310 ifsq_clr_started(ifsq); 311 ALTQ_SQ_UNLOCK(ifsq); 312 return 0; 313 } 314 ALTQ_SQ_UNLOCK(ifsq); 315 } 316 return 1; 317 } 318 319 static void 320 ifsq_ifstart_dispatch(netmsg_t msg) 321 { 322 struct lwkt_msg *lmsg = &msg->base.lmsg; 323 struct ifaltq_subque *ifsq = lmsg->u.ms_resultp; 324 struct ifnet *ifp = ifsq_get_ifp(ifsq); 325 int running = 0, need_sched; 326 327 crit_enter(); 328 lwkt_replymsg(lmsg, 0); /* reply ASAP */ 329 crit_exit(); 330 331 if (mycpuid != ifsq_get_cpuid(ifsq)) { 332 /* 333 * We need to chase the subqueue owner CPU change. 334 */ 335 ifsq_ifstart_schedule(ifsq, 1); 336 return; 337 } 338 339 ifsq_serialize_hw(ifsq); 340 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) { 341 ifp->if_start(ifp, ifsq); 342 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) 343 running = 1; 344 } 345 need_sched = ifsq_ifstart_need_schedule(ifsq, running); 346 ifsq_deserialize_hw(ifsq); 347 348 if (need_sched) { 349 /* 350 * More data need to be transmitted, ifnet.if_start is 351 * scheduled on the subqueue owner CPU, and we keep going. 352 * NOTE: ifnet.if_start subqueue interlock is not released. 353 */ 354 ifsq_ifstart_schedule(ifsq, 0); 355 } 356 } 357 358 /* Device driver ifnet.if_start helper function */ 359 void 360 ifsq_devstart(struct ifaltq_subque *ifsq) 361 { 362 struct ifnet *ifp = ifsq_get_ifp(ifsq); 363 int running = 0; 364 365 ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq); 366 367 ALTQ_SQ_LOCK(ifsq); 368 if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) { 369 ALTQ_SQ_UNLOCK(ifsq); 370 return; 371 } 372 ifsq_set_started(ifsq); 373 ALTQ_SQ_UNLOCK(ifsq); 374 375 ifp->if_start(ifp, ifsq); 376 377 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) 378 running = 1; 379 380 if (ifsq_ifstart_need_schedule(ifsq, running)) { 381 /* 382 * More data need to be transmitted, ifnet.if_start is 383 * scheduled on ifnet's CPU, and we keep going. 384 * NOTE: ifnet.if_start interlock is not released. 385 */ 386 ifsq_ifstart_schedule(ifsq, 0); 387 } 388 } 389 390 void 391 if_devstart(struct ifnet *ifp) 392 { 393 ifsq_devstart(ifq_get_subq_default(&ifp->if_snd)); 394 } 395 396 /* Device driver ifnet.if_start schedule helper function */ 397 void 398 ifsq_devstart_sched(struct ifaltq_subque *ifsq) 399 { 400 ifsq_ifstart_schedule(ifsq, 1); 401 } 402 403 void 404 if_devstart_sched(struct ifnet *ifp) 405 { 406 ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd)); 407 } 408 409 static void 410 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 411 { 412 lwkt_serialize_enter(ifp->if_serializer); 413 } 414 415 static void 416 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 417 { 418 lwkt_serialize_exit(ifp->if_serializer); 419 } 420 421 static int 422 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 423 { 424 return lwkt_serialize_try(ifp->if_serializer); 425 } 426 427 #ifdef INVARIANTS 428 static void 429 if_default_serialize_assert(struct ifnet *ifp, 430 enum ifnet_serialize slz __unused, 431 boolean_t serialized) 432 { 433 if (serialized) 434 ASSERT_SERIALIZED(ifp->if_serializer); 435 else 436 ASSERT_NOT_SERIALIZED(ifp->if_serializer); 437 } 438 #endif 439 440 /* 441 * Attach an interface to the list of "active" interfaces. 442 * 443 * The serializer is optional. 444 */ 445 void 446 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer) 447 { 448 unsigned socksize, ifasize; 449 int namelen, masklen; 450 struct sockaddr_dl *sdl; 451 struct ifaddr *ifa; 452 struct ifaltq *ifq; 453 int i, q; 454 455 static int if_indexlim = 8; 456 457 if (ifp->if_serialize != NULL) { 458 KASSERT(ifp->if_deserialize != NULL && 459 ifp->if_tryserialize != NULL && 460 ifp->if_serialize_assert != NULL, 461 ("serialize functions are partially setup")); 462 463 /* 464 * If the device supplies serialize functions, 465 * then clear if_serializer to catch any invalid 466 * usage of this field. 467 */ 468 KASSERT(serializer == NULL, 469 ("both serialize functions and default serializer " 470 "are supplied")); 471 ifp->if_serializer = NULL; 472 } else { 473 KASSERT(ifp->if_deserialize == NULL && 474 ifp->if_tryserialize == NULL && 475 ifp->if_serialize_assert == NULL, 476 ("serialize functions are partially setup")); 477 ifp->if_serialize = if_default_serialize; 478 ifp->if_deserialize = if_default_deserialize; 479 ifp->if_tryserialize = if_default_tryserialize; 480 #ifdef INVARIANTS 481 ifp->if_serialize_assert = if_default_serialize_assert; 482 #endif 483 484 /* 485 * The serializer can be passed in from the device, 486 * allowing the same serializer to be used for both 487 * the interrupt interlock and the device queue. 488 * If not specified, the netif structure will use an 489 * embedded serializer. 490 */ 491 if (serializer == NULL) { 492 serializer = &ifp->if_default_serializer; 493 lwkt_serialize_init(serializer); 494 } 495 ifp->if_serializer = serializer; 496 } 497 498 mtx_init(&ifp->if_ioctl_mtx); 499 mtx_lock(&ifp->if_ioctl_mtx); 500 501 TAILQ_INSERT_TAIL(&ifnet, ifp, if_link); 502 ifp->if_index = ++if_index; 503 504 /* 505 * XXX - 506 * The old code would work if the interface passed a pre-existing 507 * chain of ifaddrs to this code. We don't trust our callers to 508 * properly initialize the tailq, however, so we no longer allow 509 * this unlikely case. 510 */ 511 ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead), 512 M_IFADDR, M_WAITOK | M_ZERO); 513 for (i = 0; i < ncpus; ++i) 514 TAILQ_INIT(&ifp->if_addrheads[i]); 515 516 TAILQ_INIT(&ifp->if_prefixhead); 517 TAILQ_INIT(&ifp->if_multiaddrs); 518 TAILQ_INIT(&ifp->if_groups); 519 getmicrotime(&ifp->if_lastchange); 520 if (ifindex2ifnet == NULL || if_index >= if_indexlim) { 521 unsigned int n; 522 struct ifnet **q; 523 524 if_indexlim <<= 1; 525 526 /* grow ifindex2ifnet */ 527 n = if_indexlim * sizeof(*q); 528 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO); 529 if (ifindex2ifnet) { 530 bcopy(ifindex2ifnet, q, n/2); 531 kfree(ifindex2ifnet, M_IFADDR); 532 } 533 ifindex2ifnet = q; 534 } 535 536 ifindex2ifnet[if_index] = ifp; 537 538 /* 539 * create a Link Level name for this device 540 */ 541 namelen = strlen(ifp->if_xname); 542 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; 543 socksize = masklen + ifp->if_addrlen; 544 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1))) 545 if (socksize < sizeof(*sdl)) 546 socksize = sizeof(*sdl); 547 socksize = ROUNDUP(socksize); 548 #undef ROUNDUP 549 ifasize = sizeof(struct ifaddr) + 2 * socksize; 550 ifa = ifa_create(ifasize, M_WAITOK); 551 sdl = (struct sockaddr_dl *)(ifa + 1); 552 sdl->sdl_len = socksize; 553 sdl->sdl_family = AF_LINK; 554 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 555 sdl->sdl_nlen = namelen; 556 sdl->sdl_index = ifp->if_index; 557 sdl->sdl_type = ifp->if_type; 558 ifp->if_lladdr = ifa; 559 ifa->ifa_ifp = ifp; 560 ifa->ifa_rtrequest = link_rtrequest; 561 ifa->ifa_addr = (struct sockaddr *)sdl; 562 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 563 ifa->ifa_netmask = (struct sockaddr *)sdl; 564 sdl->sdl_len = masklen; 565 while (namelen != 0) 566 sdl->sdl_data[--namelen] = 0xff; 567 ifa_iflink(ifa, ifp, 0 /* Insert head */); 568 569 ifp->if_data_pcpu = kmalloc_cachealign( 570 ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO); 571 572 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 573 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 574 575 if (ifp->if_mapsubq == NULL) 576 ifp->if_mapsubq = ifq_mapsubq_default; 577 578 ifq = &ifp->if_snd; 579 ifq->altq_type = 0; 580 ifq->altq_disc = NULL; 581 ifq->altq_flags &= ALTQF_CANTCHANGE; 582 ifq->altq_tbr = NULL; 583 ifq->altq_ifp = ifp; 584 585 if (ifq->altq_subq_cnt <= 0) 586 ifq->altq_subq_cnt = 1; 587 ifq->altq_subq = kmalloc_cachealign( 588 ifq->altq_subq_cnt * sizeof(struct ifaltq_subque), 589 M_DEVBUF, M_WAITOK | M_ZERO); 590 591 if (ifq->altq_maxlen == 0) { 592 if_printf(ifp, "driver didn't set altq_maxlen\n"); 593 ifq_set_maxlen(ifq, ifqmaxlen); 594 } 595 596 for (q = 0; q < ifq->altq_subq_cnt; ++q) { 597 struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; 598 599 ALTQ_SQ_LOCK_INIT(ifsq); 600 ifsq->ifsq_index = q; 601 602 ifsq->ifsq_altq = ifq; 603 ifsq->ifsq_ifp = ifp; 604 605 ifsq->ifsq_maxlen = ifq->altq_maxlen; 606 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES; 607 ifsq->ifsq_prepended = NULL; 608 ifsq->ifsq_started = 0; 609 ifsq->ifsq_hw_oactive = 0; 610 ifsq_set_cpuid(ifsq, 0); 611 if (ifp->if_serializer != NULL) 612 ifsq_set_hw_serialize(ifsq, ifp->if_serializer); 613 614 ifsq->ifsq_stage = 615 kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage), 616 M_DEVBUF, M_WAITOK | M_ZERO); 617 for (i = 0; i < ncpus; ++i) 618 ifsq->ifsq_stage[i].stg_subq = ifsq; 619 620 ifsq->ifsq_ifstart_nmsg = 621 kmalloc(ncpus * sizeof(struct netmsg_base), 622 M_LWKTMSG, M_WAITOK); 623 for (i = 0; i < ncpus; ++i) { 624 netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL, 625 &netisr_adone_rport, 0, ifsq_ifstart_dispatch); 626 ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq; 627 } 628 } 629 ifq_set_classic(ifq); 630 631 if (!SLIST_EMPTY(&domains)) 632 if_attachdomain1(ifp); 633 634 /* Announce the interface. */ 635 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 636 637 mtx_unlock(&ifp->if_ioctl_mtx); 638 } 639 640 static void 641 if_attachdomain(void *dummy) 642 { 643 struct ifnet *ifp; 644 645 crit_enter(); 646 TAILQ_FOREACH(ifp, &ifnet, if_list) 647 if_attachdomain1(ifp); 648 crit_exit(); 649 } 650 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, 651 if_attachdomain, NULL); 652 653 static void 654 if_attachdomain1(struct ifnet *ifp) 655 { 656 struct domain *dp; 657 658 crit_enter(); 659 660 /* address family dependent data region */ 661 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 662 SLIST_FOREACH(dp, &domains, dom_next) 663 if (dp->dom_ifattach) 664 ifp->if_afdata[dp->dom_family] = 665 (*dp->dom_ifattach)(ifp); 666 crit_exit(); 667 } 668 669 /* 670 * Purge all addresses whose type is _not_ AF_LINK 671 */ 672 void 673 if_purgeaddrs_nolink(struct ifnet *ifp) 674 { 675 struct ifaddr_container *ifac, *next; 676 677 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid], 678 ifa_link, next) { 679 struct ifaddr *ifa = ifac->ifa; 680 681 /* Leave link ifaddr as it is */ 682 if (ifa->ifa_addr->sa_family == AF_LINK) 683 continue; 684 #ifdef INET 685 /* XXX: Ugly!! ad hoc just for INET */ 686 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) { 687 struct ifaliasreq ifr; 688 #ifdef IFADDR_DEBUG_VERBOSE 689 int i; 690 691 kprintf("purge in4 addr %p: ", ifa); 692 for (i = 0; i < ncpus; ++i) 693 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 694 kprintf("\n"); 695 #endif 696 697 bzero(&ifr, sizeof ifr); 698 ifr.ifra_addr = *ifa->ifa_addr; 699 if (ifa->ifa_dstaddr) 700 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 701 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 702 NULL) == 0) 703 continue; 704 } 705 #endif /* INET */ 706 #ifdef INET6 707 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) { 708 #ifdef IFADDR_DEBUG_VERBOSE 709 int i; 710 711 kprintf("purge in6 addr %p: ", ifa); 712 for (i = 0; i < ncpus; ++i) 713 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 714 kprintf("\n"); 715 #endif 716 717 in6_purgeaddr(ifa); 718 /* ifp_addrhead is already updated */ 719 continue; 720 } 721 #endif /* INET6 */ 722 ifa_ifunlink(ifa, ifp); 723 ifa_destroy(ifa); 724 } 725 } 726 727 static void 728 ifq_stage_detach_handler(netmsg_t nmsg) 729 { 730 struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp; 731 int q; 732 733 for (q = 0; q < ifq->altq_subq_cnt; ++q) { 734 struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; 735 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid); 736 737 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) 738 ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage); 739 } 740 lwkt_replymsg(&nmsg->lmsg, 0); 741 } 742 743 static void 744 ifq_stage_detach(struct ifaltq *ifq) 745 { 746 struct netmsg_base base; 747 int cpu; 748 749 netmsg_init(&base, NULL, &curthread->td_msgport, 0, 750 ifq_stage_detach_handler); 751 base.lmsg.u.ms_resultp = ifq; 752 753 for (cpu = 0; cpu < ncpus; ++cpu) 754 lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0); 755 } 756 757 struct netmsg_if_rtdel { 758 struct netmsg_base base; 759 struct ifnet *ifp; 760 }; 761 762 static void 763 if_rtdel_dispatch(netmsg_t msg) 764 { 765 struct netmsg_if_rtdel *rmsg = (void *)msg; 766 int i, nextcpu, cpu; 767 768 cpu = mycpuid; 769 for (i = 1; i <= AF_MAX; i++) { 770 struct radix_node_head *rnh; 771 772 if ((rnh = rt_tables[cpu][i]) == NULL) 773 continue; 774 rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp); 775 } 776 777 nextcpu = cpu + 1; 778 if (nextcpu < ncpus) 779 lwkt_forwardmsg(rtable_portfn(nextcpu), &rmsg->base.lmsg); 780 else 781 lwkt_replymsg(&rmsg->base.lmsg, 0); 782 } 783 784 /* 785 * Detach an interface, removing it from the 786 * list of "active" interfaces. 787 */ 788 void 789 if_detach(struct ifnet *ifp) 790 { 791 struct netmsg_if_rtdel msg; 792 struct domain *dp; 793 int q; 794 795 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 796 797 /* 798 * Remove routes and flush queues. 799 */ 800 crit_enter(); 801 #ifdef IFPOLL_ENABLE 802 if (ifp->if_flags & IFF_NPOLLING) 803 ifpoll_deregister(ifp); 804 #endif 805 if_down(ifp); 806 807 #ifdef ALTQ 808 if (ifq_is_enabled(&ifp->if_snd)) 809 altq_disable(&ifp->if_snd); 810 if (ifq_is_attached(&ifp->if_snd)) 811 altq_detach(&ifp->if_snd); 812 #endif 813 814 /* 815 * Clean up all addresses. 816 */ 817 ifp->if_lladdr = NULL; 818 819 if_purgeaddrs_nolink(ifp); 820 if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) { 821 struct ifaddr *ifa; 822 823 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 824 KASSERT(ifa->ifa_addr->sa_family == AF_LINK, 825 ("non-link ifaddr is left on if_addrheads")); 826 827 ifa_ifunlink(ifa, ifp); 828 ifa_destroy(ifa); 829 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]), 830 ("there are still ifaddrs left on if_addrheads")); 831 } 832 833 #ifdef INET 834 /* 835 * Remove all IPv4 kernel structures related to ifp. 836 */ 837 in_ifdetach(ifp); 838 #endif 839 840 #ifdef INET6 841 /* 842 * Remove all IPv6 kernel structs related to ifp. This should be done 843 * before removing routing entries below, since IPv6 interface direct 844 * routes are expected to be removed by the IPv6-specific kernel API. 845 * Otherwise, the kernel will detect some inconsistency and bark it. 846 */ 847 in6_ifdetach(ifp); 848 #endif 849 850 /* 851 * Delete all remaining routes using this interface 852 */ 853 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0, 854 if_rtdel_dispatch); 855 msg.ifp = ifp; 856 KASSERT(&curthread->td_msgport != rtable_portfn(0), 857 ("if_detach in rtable thread")); 858 lwkt_domsg(rtable_portfn(0), &msg.base.lmsg, 0); 859 860 /* Announce that the interface is gone. */ 861 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 862 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 863 864 SLIST_FOREACH(dp, &domains, dom_next) 865 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 866 (*dp->dom_ifdetach)(ifp, 867 ifp->if_afdata[dp->dom_family]); 868 869 /* 870 * Remove interface from ifindex2ifp[] and maybe decrement if_index. 871 */ 872 ifindex2ifnet[ifp->if_index] = NULL; 873 while (if_index > 0 && ifindex2ifnet[if_index] == NULL) 874 if_index--; 875 876 TAILQ_REMOVE(&ifnet, ifp, if_link); 877 kfree(ifp->if_addrheads, M_IFADDR); 878 879 lwkt_synchronize_ipiqs("if_detach"); 880 ifq_stage_detach(&ifp->if_snd); 881 882 for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) { 883 struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q]; 884 885 kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG); 886 kfree(ifsq->ifsq_stage, M_DEVBUF); 887 } 888 kfree(ifp->if_snd.altq_subq, M_DEVBUF); 889 890 kfree(ifp->if_data_pcpu, M_DEVBUF); 891 892 crit_exit(); 893 } 894 895 /* 896 * Create interface group without members 897 */ 898 struct ifg_group * 899 if_creategroup(const char *groupname) 900 { 901 struct ifg_group *ifg = NULL; 902 903 if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group), 904 M_TEMP, M_NOWAIT)) == NULL) 905 return (NULL); 906 907 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 908 ifg->ifg_refcnt = 0; 909 ifg->ifg_carp_demoted = 0; 910 TAILQ_INIT(&ifg->ifg_members); 911 #if NPF > 0 912 pfi_attach_ifgroup(ifg); 913 #endif 914 TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next); 915 916 return (ifg); 917 } 918 919 /* 920 * Add a group to an interface 921 */ 922 int 923 if_addgroup(struct ifnet *ifp, const char *groupname) 924 { 925 struct ifg_list *ifgl; 926 struct ifg_group *ifg = NULL; 927 struct ifg_member *ifgm; 928 929 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 930 groupname[strlen(groupname) - 1] <= '9') 931 return (EINVAL); 932 933 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 934 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 935 return (EEXIST); 936 937 if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) 938 return (ENOMEM); 939 940 if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 941 kfree(ifgl, M_TEMP); 942 return (ENOMEM); 943 } 944 945 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 946 if (!strcmp(ifg->ifg_group, groupname)) 947 break; 948 949 if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) { 950 kfree(ifgl, M_TEMP); 951 kfree(ifgm, M_TEMP); 952 return (ENOMEM); 953 } 954 955 ifg->ifg_refcnt++; 956 ifgl->ifgl_group = ifg; 957 ifgm->ifgm_ifp = ifp; 958 959 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 960 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 961 962 #if NPF > 0 963 pfi_group_change(groupname); 964 #endif 965 966 return (0); 967 } 968 969 /* 970 * Remove a group from an interface 971 */ 972 int 973 if_delgroup(struct ifnet *ifp, const char *groupname) 974 { 975 struct ifg_list *ifgl; 976 struct ifg_member *ifgm; 977 978 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 979 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 980 break; 981 if (ifgl == NULL) 982 return (ENOENT); 983 984 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 985 986 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 987 if (ifgm->ifgm_ifp == ifp) 988 break; 989 990 if (ifgm != NULL) { 991 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 992 kfree(ifgm, M_TEMP); 993 } 994 995 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 996 TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next); 997 #if NPF > 0 998 pfi_detach_ifgroup(ifgl->ifgl_group); 999 #endif 1000 kfree(ifgl->ifgl_group, M_TEMP); 1001 } 1002 1003 kfree(ifgl, M_TEMP); 1004 1005 #if NPF > 0 1006 pfi_group_change(groupname); 1007 #endif 1008 1009 return (0); 1010 } 1011 1012 /* 1013 * Stores all groups from an interface in memory pointed 1014 * to by data 1015 */ 1016 int 1017 if_getgroup(caddr_t data, struct ifnet *ifp) 1018 { 1019 int len, error; 1020 struct ifg_list *ifgl; 1021 struct ifg_req ifgrq, *ifgp; 1022 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 1023 1024 if (ifgr->ifgr_len == 0) { 1025 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1026 ifgr->ifgr_len += sizeof(struct ifg_req); 1027 return (0); 1028 } 1029 1030 len = ifgr->ifgr_len; 1031 ifgp = ifgr->ifgr_groups; 1032 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1033 if (len < sizeof(ifgrq)) 1034 return (EINVAL); 1035 bzero(&ifgrq, sizeof ifgrq); 1036 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1037 sizeof(ifgrq.ifgrq_group)); 1038 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 1039 sizeof(struct ifg_req)))) 1040 return (error); 1041 len -= sizeof(ifgrq); 1042 ifgp++; 1043 } 1044 1045 return (0); 1046 } 1047 1048 /* 1049 * Stores all members of a group in memory pointed to by data 1050 */ 1051 int 1052 if_getgroupmembers(caddr_t data) 1053 { 1054 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 1055 struct ifg_group *ifg; 1056 struct ifg_member *ifgm; 1057 struct ifg_req ifgrq, *ifgp; 1058 int len, error; 1059 1060 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 1061 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 1062 break; 1063 if (ifg == NULL) 1064 return (ENOENT); 1065 1066 if (ifgr->ifgr_len == 0) { 1067 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1068 ifgr->ifgr_len += sizeof(ifgrq); 1069 return (0); 1070 } 1071 1072 len = ifgr->ifgr_len; 1073 ifgp = ifgr->ifgr_groups; 1074 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1075 if (len < sizeof(ifgrq)) 1076 return (EINVAL); 1077 bzero(&ifgrq, sizeof ifgrq); 1078 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1079 sizeof(ifgrq.ifgrq_member)); 1080 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 1081 sizeof(struct ifg_req)))) 1082 return (error); 1083 len -= sizeof(ifgrq); 1084 ifgp++; 1085 } 1086 1087 return (0); 1088 } 1089 1090 /* 1091 * Delete Routes for a Network Interface 1092 * 1093 * Called for each routing entry via the rnh->rnh_walktree() call above 1094 * to delete all route entries referencing a detaching network interface. 1095 * 1096 * Arguments: 1097 * rn pointer to node in the routing table 1098 * arg argument passed to rnh->rnh_walktree() - detaching interface 1099 * 1100 * Returns: 1101 * 0 successful 1102 * errno failed - reason indicated 1103 * 1104 */ 1105 static int 1106 if_rtdel(struct radix_node *rn, void *arg) 1107 { 1108 struct rtentry *rt = (struct rtentry *)rn; 1109 struct ifnet *ifp = arg; 1110 int err; 1111 1112 if (rt->rt_ifp == ifp) { 1113 1114 /* 1115 * Protect (sorta) against walktree recursion problems 1116 * with cloned routes 1117 */ 1118 if (!(rt->rt_flags & RTF_UP)) 1119 return (0); 1120 1121 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, 1122 rt_mask(rt), rt->rt_flags, 1123 NULL); 1124 if (err) { 1125 log(LOG_WARNING, "if_rtdel: error %d\n", err); 1126 } 1127 } 1128 1129 return (0); 1130 } 1131 1132 /* 1133 * Locate an interface based on a complete address. 1134 */ 1135 struct ifaddr * 1136 ifa_ifwithaddr(struct sockaddr *addr) 1137 { 1138 struct ifnet *ifp; 1139 1140 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1141 struct ifaddr_container *ifac; 1142 1143 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1144 struct ifaddr *ifa = ifac->ifa; 1145 1146 if (ifa->ifa_addr->sa_family != addr->sa_family) 1147 continue; 1148 if (sa_equal(addr, ifa->ifa_addr)) 1149 return (ifa); 1150 if ((ifp->if_flags & IFF_BROADCAST) && 1151 ifa->ifa_broadaddr && 1152 /* IPv6 doesn't have broadcast */ 1153 ifa->ifa_broadaddr->sa_len != 0 && 1154 sa_equal(ifa->ifa_broadaddr, addr)) 1155 return (ifa); 1156 } 1157 } 1158 return (NULL); 1159 } 1160 /* 1161 * Locate the point to point interface with a given destination address. 1162 */ 1163 struct ifaddr * 1164 ifa_ifwithdstaddr(struct sockaddr *addr) 1165 { 1166 struct ifnet *ifp; 1167 1168 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1169 struct ifaddr_container *ifac; 1170 1171 if (!(ifp->if_flags & IFF_POINTOPOINT)) 1172 continue; 1173 1174 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1175 struct ifaddr *ifa = ifac->ifa; 1176 1177 if (ifa->ifa_addr->sa_family != addr->sa_family) 1178 continue; 1179 if (ifa->ifa_dstaddr && 1180 sa_equal(addr, ifa->ifa_dstaddr)) 1181 return (ifa); 1182 } 1183 } 1184 return (NULL); 1185 } 1186 1187 /* 1188 * Find an interface on a specific network. If many, choice 1189 * is most specific found. 1190 */ 1191 struct ifaddr * 1192 ifa_ifwithnet(struct sockaddr *addr) 1193 { 1194 struct ifnet *ifp; 1195 struct ifaddr *ifa_maybe = NULL; 1196 u_int af = addr->sa_family; 1197 char *addr_data = addr->sa_data, *cplim; 1198 1199 /* 1200 * AF_LINK addresses can be looked up directly by their index number, 1201 * so do that if we can. 1202 */ 1203 if (af == AF_LINK) { 1204 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 1205 1206 if (sdl->sdl_index && sdl->sdl_index <= if_index) 1207 return (ifindex2ifnet[sdl->sdl_index]->if_lladdr); 1208 } 1209 1210 /* 1211 * Scan though each interface, looking for ones that have 1212 * addresses in this address family. 1213 */ 1214 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1215 struct ifaddr_container *ifac; 1216 1217 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1218 struct ifaddr *ifa = ifac->ifa; 1219 char *cp, *cp2, *cp3; 1220 1221 if (ifa->ifa_addr->sa_family != af) 1222 next: continue; 1223 if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) { 1224 /* 1225 * This is a bit broken as it doesn't 1226 * take into account that the remote end may 1227 * be a single node in the network we are 1228 * looking for. 1229 * The trouble is that we don't know the 1230 * netmask for the remote end. 1231 */ 1232 if (ifa->ifa_dstaddr != NULL && 1233 sa_equal(addr, ifa->ifa_dstaddr)) 1234 return (ifa); 1235 } else { 1236 /* 1237 * if we have a special address handler, 1238 * then use it instead of the generic one. 1239 */ 1240 if (ifa->ifa_claim_addr) { 1241 if ((*ifa->ifa_claim_addr)(ifa, addr)) { 1242 return (ifa); 1243 } else { 1244 continue; 1245 } 1246 } 1247 1248 /* 1249 * Scan all the bits in the ifa's address. 1250 * If a bit dissagrees with what we are 1251 * looking for, mask it with the netmask 1252 * to see if it really matters. 1253 * (A byte at a time) 1254 */ 1255 if (ifa->ifa_netmask == 0) 1256 continue; 1257 cp = addr_data; 1258 cp2 = ifa->ifa_addr->sa_data; 1259 cp3 = ifa->ifa_netmask->sa_data; 1260 cplim = ifa->ifa_netmask->sa_len + 1261 (char *)ifa->ifa_netmask; 1262 while (cp3 < cplim) 1263 if ((*cp++ ^ *cp2++) & *cp3++) 1264 goto next; /* next address! */ 1265 /* 1266 * If the netmask of what we just found 1267 * is more specific than what we had before 1268 * (if we had one) then remember the new one 1269 * before continuing to search 1270 * for an even better one. 1271 */ 1272 if (ifa_maybe == NULL || 1273 rn_refines((char *)ifa->ifa_netmask, 1274 (char *)ifa_maybe->ifa_netmask)) 1275 ifa_maybe = ifa; 1276 } 1277 } 1278 } 1279 return (ifa_maybe); 1280 } 1281 1282 /* 1283 * Find an interface address specific to an interface best matching 1284 * a given address. 1285 */ 1286 struct ifaddr * 1287 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1288 { 1289 struct ifaddr_container *ifac; 1290 char *cp, *cp2, *cp3; 1291 char *cplim; 1292 struct ifaddr *ifa_maybe = NULL; 1293 u_int af = addr->sa_family; 1294 1295 if (af >= AF_MAX) 1296 return (0); 1297 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1298 struct ifaddr *ifa = ifac->ifa; 1299 1300 if (ifa->ifa_addr->sa_family != af) 1301 continue; 1302 if (ifa_maybe == NULL) 1303 ifa_maybe = ifa; 1304 if (ifa->ifa_netmask == NULL) { 1305 if (sa_equal(addr, ifa->ifa_addr) || 1306 (ifa->ifa_dstaddr != NULL && 1307 sa_equal(addr, ifa->ifa_dstaddr))) 1308 return (ifa); 1309 continue; 1310 } 1311 if (ifp->if_flags & IFF_POINTOPOINT) { 1312 if (sa_equal(addr, ifa->ifa_dstaddr)) 1313 return (ifa); 1314 } else { 1315 cp = addr->sa_data; 1316 cp2 = ifa->ifa_addr->sa_data; 1317 cp3 = ifa->ifa_netmask->sa_data; 1318 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1319 for (; cp3 < cplim; cp3++) 1320 if ((*cp++ ^ *cp2++) & *cp3) 1321 break; 1322 if (cp3 == cplim) 1323 return (ifa); 1324 } 1325 } 1326 return (ifa_maybe); 1327 } 1328 1329 /* 1330 * Default action when installing a route with a Link Level gateway. 1331 * Lookup an appropriate real ifa to point to. 1332 * This should be moved to /sys/net/link.c eventually. 1333 */ 1334 static void 1335 link_rtrequest(int cmd, struct rtentry *rt) 1336 { 1337 struct ifaddr *ifa; 1338 struct sockaddr *dst; 1339 struct ifnet *ifp; 1340 1341 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1342 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL) 1343 return; 1344 ifa = ifaof_ifpforaddr(dst, ifp); 1345 if (ifa != NULL) { 1346 IFAFREE(rt->rt_ifa); 1347 IFAREF(ifa); 1348 rt->rt_ifa = ifa; 1349 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1350 ifa->ifa_rtrequest(cmd, rt); 1351 } 1352 } 1353 1354 /* 1355 * Mark an interface down and notify protocols of 1356 * the transition. 1357 * NOTE: must be called at splnet or eqivalent. 1358 */ 1359 void 1360 if_unroute(struct ifnet *ifp, int flag, int fam) 1361 { 1362 struct ifaddr_container *ifac; 1363 1364 ifp->if_flags &= ~flag; 1365 getmicrotime(&ifp->if_lastchange); 1366 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1367 struct ifaddr *ifa = ifac->ifa; 1368 1369 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1370 kpfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1371 } 1372 ifq_purge_all(&ifp->if_snd); 1373 rt_ifmsg(ifp); 1374 } 1375 1376 /* 1377 * Mark an interface up and notify protocols of 1378 * the transition. 1379 * NOTE: must be called at splnet or eqivalent. 1380 */ 1381 void 1382 if_route(struct ifnet *ifp, int flag, int fam) 1383 { 1384 struct ifaddr_container *ifac; 1385 1386 ifq_purge_all(&ifp->if_snd); 1387 ifp->if_flags |= flag; 1388 getmicrotime(&ifp->if_lastchange); 1389 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1390 struct ifaddr *ifa = ifac->ifa; 1391 1392 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1393 kpfctlinput(PRC_IFUP, ifa->ifa_addr); 1394 } 1395 rt_ifmsg(ifp); 1396 #ifdef INET6 1397 in6_if_up(ifp); 1398 #endif 1399 } 1400 1401 /* 1402 * Mark an interface down and notify protocols of the transition. An 1403 * interface going down is also considered to be a synchronizing event. 1404 * We must ensure that all packet processing related to the interface 1405 * has completed before we return so e.g. the caller can free the ifnet 1406 * structure that the mbufs may be referencing. 1407 * 1408 * NOTE: must be called at splnet or eqivalent. 1409 */ 1410 void 1411 if_down(struct ifnet *ifp) 1412 { 1413 if_unroute(ifp, IFF_UP, AF_UNSPEC); 1414 netmsg_service_sync(); 1415 } 1416 1417 /* 1418 * Mark an interface up and notify protocols of 1419 * the transition. 1420 * NOTE: must be called at splnet or eqivalent. 1421 */ 1422 void 1423 if_up(struct ifnet *ifp) 1424 { 1425 if_route(ifp, IFF_UP, AF_UNSPEC); 1426 } 1427 1428 /* 1429 * Process a link state change. 1430 * NOTE: must be called at splsoftnet or equivalent. 1431 */ 1432 void 1433 if_link_state_change(struct ifnet *ifp) 1434 { 1435 int link_state = ifp->if_link_state; 1436 1437 rt_ifmsg(ifp); 1438 devctl_notify("IFNET", ifp->if_xname, 1439 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); 1440 } 1441 1442 /* 1443 * Handle interface watchdog timer routines. Called 1444 * from softclock, we decrement timers (if set) and 1445 * call the appropriate interface routine on expiration. 1446 */ 1447 static void 1448 if_slowtimo(void *arg) 1449 { 1450 struct ifnet *ifp; 1451 1452 crit_enter(); 1453 1454 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1455 if (if_stats_compat) { 1456 IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets); 1457 IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors); 1458 IFNET_STAT_GET(ifp, opackets, ifp->if_opackets); 1459 IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors); 1460 IFNET_STAT_GET(ifp, collisions, ifp->if_collisions); 1461 IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes); 1462 IFNET_STAT_GET(ifp, obytes, ifp->if_obytes); 1463 IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts); 1464 IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts); 1465 IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops); 1466 IFNET_STAT_GET(ifp, noproto, ifp->if_noproto); 1467 } 1468 1469 if (ifp->if_timer == 0 || --ifp->if_timer) 1470 continue; 1471 if (ifp->if_watchdog) { 1472 if (ifnet_tryserialize_all(ifp)) { 1473 (*ifp->if_watchdog)(ifp); 1474 ifnet_deserialize_all(ifp); 1475 } else { 1476 /* try again next timeout */ 1477 ++ifp->if_timer; 1478 } 1479 } 1480 } 1481 1482 crit_exit(); 1483 1484 callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL); 1485 } 1486 1487 /* 1488 * Map interface name to 1489 * interface structure pointer. 1490 */ 1491 struct ifnet * 1492 ifunit(const char *name) 1493 { 1494 struct ifnet *ifp; 1495 1496 /* 1497 * Search all the interfaces for this name/number 1498 */ 1499 1500 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1501 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) 1502 break; 1503 } 1504 return (ifp); 1505 } 1506 1507 1508 /* 1509 * Map interface name in a sockaddr_dl to 1510 * interface structure pointer. 1511 */ 1512 struct ifnet * 1513 if_withname(struct sockaddr *sa) 1514 { 1515 char ifname[IFNAMSIZ+1]; 1516 struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa; 1517 1518 if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) || 1519 (sdl->sdl_nlen > IFNAMSIZ) ) 1520 return NULL; 1521 1522 /* 1523 * ifunit wants a null-terminated name. It may not be null-terminated 1524 * in the sockaddr. We don't want to change the caller's sockaddr, 1525 * and there might not be room to put the trailing null anyway, so we 1526 * make a local copy that we know we can null terminate safely. 1527 */ 1528 1529 bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen); 1530 ifname[sdl->sdl_nlen] = '\0'; 1531 return ifunit(ifname); 1532 } 1533 1534 1535 /* 1536 * Interface ioctls. 1537 */ 1538 int 1539 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred) 1540 { 1541 struct ifnet *ifp; 1542 struct ifreq *ifr; 1543 struct ifstat *ifs; 1544 int error; 1545 short oif_flags; 1546 int new_flags; 1547 #ifdef COMPAT_43 1548 int ocmd; 1549 #endif 1550 size_t namelen, onamelen; 1551 char new_name[IFNAMSIZ]; 1552 struct ifaddr *ifa; 1553 struct sockaddr_dl *sdl; 1554 1555 switch (cmd) { 1556 case SIOCGIFCONF: 1557 case OSIOCGIFCONF: 1558 return (ifconf(cmd, data, cred)); 1559 default: 1560 break; 1561 } 1562 1563 ifr = (struct ifreq *)data; 1564 1565 switch (cmd) { 1566 case SIOCIFCREATE: 1567 case SIOCIFCREATE2: 1568 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1569 return (error); 1570 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), 1571 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL)); 1572 case SIOCIFDESTROY: 1573 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1574 return (error); 1575 return (if_clone_destroy(ifr->ifr_name)); 1576 case SIOCIFGCLONERS: 1577 return (if_clone_list((struct if_clonereq *)data)); 1578 default: 1579 break; 1580 } 1581 1582 /* 1583 * Nominal ioctl through interface, lookup the ifp and obtain a 1584 * lock to serialize the ifconfig ioctl operation. 1585 */ 1586 ifp = ifunit(ifr->ifr_name); 1587 if (ifp == NULL) 1588 return (ENXIO); 1589 error = 0; 1590 mtx_lock(&ifp->if_ioctl_mtx); 1591 1592 switch (cmd) { 1593 case SIOCGIFINDEX: 1594 ifr->ifr_index = ifp->if_index; 1595 break; 1596 1597 case SIOCGIFFLAGS: 1598 ifr->ifr_flags = ifp->if_flags; 1599 ifr->ifr_flagshigh = ifp->if_flags >> 16; 1600 break; 1601 1602 case SIOCGIFCAP: 1603 ifr->ifr_reqcap = ifp->if_capabilities; 1604 ifr->ifr_curcap = ifp->if_capenable; 1605 break; 1606 1607 case SIOCGIFMETRIC: 1608 ifr->ifr_metric = ifp->if_metric; 1609 break; 1610 1611 case SIOCGIFMTU: 1612 ifr->ifr_mtu = ifp->if_mtu; 1613 break; 1614 1615 case SIOCGIFTSOLEN: 1616 ifr->ifr_tsolen = ifp->if_tsolen; 1617 break; 1618 1619 case SIOCGIFDATA: 1620 error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data, 1621 sizeof(ifp->if_data)); 1622 break; 1623 1624 case SIOCGIFPHYS: 1625 ifr->ifr_phys = ifp->if_physical; 1626 break; 1627 1628 case SIOCGIFPOLLCPU: 1629 ifr->ifr_pollcpu = -1; 1630 break; 1631 1632 case SIOCSIFPOLLCPU: 1633 break; 1634 1635 case SIOCSIFFLAGS: 1636 error = priv_check_cred(cred, PRIV_ROOT, 0); 1637 if (error) 1638 break; 1639 new_flags = (ifr->ifr_flags & 0xffff) | 1640 (ifr->ifr_flagshigh << 16); 1641 if (ifp->if_flags & IFF_SMART) { 1642 /* Smart drivers twiddle their own routes */ 1643 } else if (ifp->if_flags & IFF_UP && 1644 (new_flags & IFF_UP) == 0) { 1645 crit_enter(); 1646 if_down(ifp); 1647 crit_exit(); 1648 } else if (new_flags & IFF_UP && 1649 (ifp->if_flags & IFF_UP) == 0) { 1650 crit_enter(); 1651 if_up(ifp); 1652 crit_exit(); 1653 } 1654 1655 #ifdef IFPOLL_ENABLE 1656 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) { 1657 if (new_flags & IFF_NPOLLING) 1658 ifpoll_register(ifp); 1659 else 1660 ifpoll_deregister(ifp); 1661 } 1662 #endif 1663 1664 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 1665 (new_flags &~ IFF_CANTCHANGE); 1666 if (new_flags & IFF_PPROMISC) { 1667 /* Permanently promiscuous mode requested */ 1668 ifp->if_flags |= IFF_PROMISC; 1669 } else if (ifp->if_pcount == 0) { 1670 ifp->if_flags &= ~IFF_PROMISC; 1671 } 1672 if (ifp->if_ioctl) { 1673 ifnet_serialize_all(ifp); 1674 ifp->if_ioctl(ifp, cmd, data, cred); 1675 ifnet_deserialize_all(ifp); 1676 } 1677 getmicrotime(&ifp->if_lastchange); 1678 break; 1679 1680 case SIOCSIFCAP: 1681 error = priv_check_cred(cred, PRIV_ROOT, 0); 1682 if (error) 1683 break; 1684 if (ifr->ifr_reqcap & ~ifp->if_capabilities) { 1685 error = EINVAL; 1686 break; 1687 } 1688 ifnet_serialize_all(ifp); 1689 ifp->if_ioctl(ifp, cmd, data, cred); 1690 ifnet_deserialize_all(ifp); 1691 break; 1692 1693 case SIOCSIFNAME: 1694 error = priv_check_cred(cred, PRIV_ROOT, 0); 1695 if (error) 1696 break; 1697 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 1698 if (error) 1699 break; 1700 if (new_name[0] == '\0') { 1701 error = EINVAL; 1702 break; 1703 } 1704 if (ifunit(new_name) != NULL) { 1705 error = EEXIST; 1706 break; 1707 } 1708 1709 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 1710 1711 /* Announce the departure of the interface. */ 1712 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1713 1714 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 1715 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 1716 /* XXX IFA_LOCK(ifa); */ 1717 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1718 namelen = strlen(new_name); 1719 onamelen = sdl->sdl_nlen; 1720 /* 1721 * Move the address if needed. This is safe because we 1722 * allocate space for a name of length IFNAMSIZ when we 1723 * create this in if_attach(). 1724 */ 1725 if (namelen != onamelen) { 1726 bcopy(sdl->sdl_data + onamelen, 1727 sdl->sdl_data + namelen, sdl->sdl_alen); 1728 } 1729 bcopy(new_name, sdl->sdl_data, namelen); 1730 sdl->sdl_nlen = namelen; 1731 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 1732 bzero(sdl->sdl_data, onamelen); 1733 while (namelen != 0) 1734 sdl->sdl_data[--namelen] = 0xff; 1735 /* XXX IFA_UNLOCK(ifa) */ 1736 1737 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 1738 1739 /* Announce the return of the interface. */ 1740 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 1741 break; 1742 1743 case SIOCSIFMETRIC: 1744 error = priv_check_cred(cred, PRIV_ROOT, 0); 1745 if (error) 1746 break; 1747 ifp->if_metric = ifr->ifr_metric; 1748 getmicrotime(&ifp->if_lastchange); 1749 break; 1750 1751 case SIOCSIFPHYS: 1752 error = priv_check_cred(cred, PRIV_ROOT, 0); 1753 if (error) 1754 break; 1755 if (ifp->if_ioctl == NULL) { 1756 error = EOPNOTSUPP; 1757 break; 1758 } 1759 ifnet_serialize_all(ifp); 1760 error = ifp->if_ioctl(ifp, cmd, data, cred); 1761 ifnet_deserialize_all(ifp); 1762 if (error == 0) 1763 getmicrotime(&ifp->if_lastchange); 1764 break; 1765 1766 case SIOCSIFMTU: 1767 { 1768 u_long oldmtu = ifp->if_mtu; 1769 1770 error = priv_check_cred(cred, PRIV_ROOT, 0); 1771 if (error) 1772 break; 1773 if (ifp->if_ioctl == NULL) { 1774 error = EOPNOTSUPP; 1775 break; 1776 } 1777 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) { 1778 error = EINVAL; 1779 break; 1780 } 1781 ifnet_serialize_all(ifp); 1782 error = ifp->if_ioctl(ifp, cmd, data, cred); 1783 ifnet_deserialize_all(ifp); 1784 if (error == 0) { 1785 getmicrotime(&ifp->if_lastchange); 1786 rt_ifmsg(ifp); 1787 } 1788 /* 1789 * If the link MTU changed, do network layer specific procedure. 1790 */ 1791 if (ifp->if_mtu != oldmtu) { 1792 #ifdef INET6 1793 nd6_setmtu(ifp); 1794 #endif 1795 } 1796 break; 1797 } 1798 1799 case SIOCSIFTSOLEN: 1800 error = priv_check_cred(cred, PRIV_ROOT, 0); 1801 if (error) 1802 break; 1803 1804 /* XXX need driver supplied upper limit */ 1805 if (ifr->ifr_tsolen <= 0) { 1806 error = EINVAL; 1807 break; 1808 } 1809 ifp->if_tsolen = ifr->ifr_tsolen; 1810 break; 1811 1812 case SIOCADDMULTI: 1813 case SIOCDELMULTI: 1814 error = priv_check_cred(cred, PRIV_ROOT, 0); 1815 if (error) 1816 break; 1817 1818 /* Don't allow group membership on non-multicast interfaces. */ 1819 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 1820 error = EOPNOTSUPP; 1821 break; 1822 } 1823 1824 /* Don't let users screw up protocols' entries. */ 1825 if (ifr->ifr_addr.sa_family != AF_LINK) { 1826 error = EINVAL; 1827 break; 1828 } 1829 1830 if (cmd == SIOCADDMULTI) { 1831 struct ifmultiaddr *ifma; 1832 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 1833 } else { 1834 error = if_delmulti(ifp, &ifr->ifr_addr); 1835 } 1836 if (error == 0) 1837 getmicrotime(&ifp->if_lastchange); 1838 break; 1839 1840 case SIOCSIFPHYADDR: 1841 case SIOCDIFPHYADDR: 1842 #ifdef INET6 1843 case SIOCSIFPHYADDR_IN6: 1844 #endif 1845 case SIOCSLIFPHYADDR: 1846 case SIOCSIFMEDIA: 1847 case SIOCSIFGENERIC: 1848 error = priv_check_cred(cred, PRIV_ROOT, 0); 1849 if (error) 1850 break; 1851 if (ifp->if_ioctl == 0) { 1852 error = EOPNOTSUPP; 1853 break; 1854 } 1855 ifnet_serialize_all(ifp); 1856 error = ifp->if_ioctl(ifp, cmd, data, cred); 1857 ifnet_deserialize_all(ifp); 1858 if (error == 0) 1859 getmicrotime(&ifp->if_lastchange); 1860 break; 1861 1862 case SIOCGIFSTATUS: 1863 ifs = (struct ifstat *)data; 1864 ifs->ascii[0] = '\0'; 1865 /* fall through */ 1866 case SIOCGIFPSRCADDR: 1867 case SIOCGIFPDSTADDR: 1868 case SIOCGLIFPHYADDR: 1869 case SIOCGIFMEDIA: 1870 case SIOCGIFGENERIC: 1871 if (ifp->if_ioctl == NULL) { 1872 error = EOPNOTSUPP; 1873 break; 1874 } 1875 ifnet_serialize_all(ifp); 1876 error = ifp->if_ioctl(ifp, cmd, data, cred); 1877 ifnet_deserialize_all(ifp); 1878 break; 1879 1880 case SIOCSIFLLADDR: 1881 error = priv_check_cred(cred, PRIV_ROOT, 0); 1882 if (error) 1883 break; 1884 error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, 1885 ifr->ifr_addr.sa_len); 1886 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 1887 break; 1888 1889 default: 1890 oif_flags = ifp->if_flags; 1891 if (so->so_proto == 0) { 1892 error = EOPNOTSUPP; 1893 break; 1894 } 1895 #ifndef COMPAT_43 1896 error = so_pru_control_direct(so, cmd, data, ifp); 1897 #else 1898 ocmd = cmd; 1899 1900 switch (cmd) { 1901 case SIOCSIFDSTADDR: 1902 case SIOCSIFADDR: 1903 case SIOCSIFBRDADDR: 1904 case SIOCSIFNETMASK: 1905 #if BYTE_ORDER != BIG_ENDIAN 1906 if (ifr->ifr_addr.sa_family == 0 && 1907 ifr->ifr_addr.sa_len < 16) { 1908 ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len; 1909 ifr->ifr_addr.sa_len = 16; 1910 } 1911 #else 1912 if (ifr->ifr_addr.sa_len == 0) 1913 ifr->ifr_addr.sa_len = 16; 1914 #endif 1915 break; 1916 case OSIOCGIFADDR: 1917 cmd = SIOCGIFADDR; 1918 break; 1919 case OSIOCGIFDSTADDR: 1920 cmd = SIOCGIFDSTADDR; 1921 break; 1922 case OSIOCGIFBRDADDR: 1923 cmd = SIOCGIFBRDADDR; 1924 break; 1925 case OSIOCGIFNETMASK: 1926 cmd = SIOCGIFNETMASK; 1927 break; 1928 default: 1929 break; 1930 } 1931 1932 error = so_pru_control_direct(so, cmd, data, ifp); 1933 1934 switch (ocmd) { 1935 case OSIOCGIFADDR: 1936 case OSIOCGIFDSTADDR: 1937 case OSIOCGIFBRDADDR: 1938 case OSIOCGIFNETMASK: 1939 *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family; 1940 break; 1941 } 1942 #endif /* COMPAT_43 */ 1943 1944 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 1945 #ifdef INET6 1946 DELAY(100);/* XXX: temporary workaround for fxp issue*/ 1947 if (ifp->if_flags & IFF_UP) { 1948 crit_enter(); 1949 in6_if_up(ifp); 1950 crit_exit(); 1951 } 1952 #endif 1953 } 1954 break; 1955 } 1956 1957 mtx_unlock(&ifp->if_ioctl_mtx); 1958 return (error); 1959 } 1960 1961 /* 1962 * Set/clear promiscuous mode on interface ifp based on the truth value 1963 * of pswitch. The calls are reference counted so that only the first 1964 * "on" request actually has an effect, as does the final "off" request. 1965 * Results are undefined if the "off" and "on" requests are not matched. 1966 */ 1967 int 1968 ifpromisc(struct ifnet *ifp, int pswitch) 1969 { 1970 struct ifreq ifr; 1971 int error; 1972 int oldflags; 1973 1974 oldflags = ifp->if_flags; 1975 if (ifp->if_flags & IFF_PPROMISC) { 1976 /* Do nothing if device is in permanently promiscuous mode */ 1977 ifp->if_pcount += pswitch ? 1 : -1; 1978 return (0); 1979 } 1980 if (pswitch) { 1981 /* 1982 * If the device is not configured up, we cannot put it in 1983 * promiscuous mode. 1984 */ 1985 if ((ifp->if_flags & IFF_UP) == 0) 1986 return (ENETDOWN); 1987 if (ifp->if_pcount++ != 0) 1988 return (0); 1989 ifp->if_flags |= IFF_PROMISC; 1990 log(LOG_INFO, "%s: promiscuous mode enabled\n", 1991 ifp->if_xname); 1992 } else { 1993 if (--ifp->if_pcount > 0) 1994 return (0); 1995 ifp->if_flags &= ~IFF_PROMISC; 1996 log(LOG_INFO, "%s: promiscuous mode disabled\n", 1997 ifp->if_xname); 1998 } 1999 ifr.ifr_flags = ifp->if_flags; 2000 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2001 ifnet_serialize_all(ifp); 2002 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); 2003 ifnet_deserialize_all(ifp); 2004 if (error == 0) 2005 rt_ifmsg(ifp); 2006 else 2007 ifp->if_flags = oldflags; 2008 return error; 2009 } 2010 2011 /* 2012 * Return interface configuration 2013 * of system. List may be used 2014 * in later ioctl's (above) to get 2015 * other information. 2016 */ 2017 static int 2018 ifconf(u_long cmd, caddr_t data, struct ucred *cred) 2019 { 2020 struct ifconf *ifc = (struct ifconf *)data; 2021 struct ifnet *ifp; 2022 struct sockaddr *sa; 2023 struct ifreq ifr, *ifrp; 2024 int space = ifc->ifc_len, error = 0; 2025 2026 ifrp = ifc->ifc_req; 2027 TAILQ_FOREACH(ifp, &ifnet, if_link) { 2028 struct ifaddr_container *ifac; 2029 int addrs; 2030 2031 if (space <= sizeof ifr) 2032 break; 2033 2034 /* 2035 * Zero the stack declared structure first to prevent 2036 * memory disclosure. 2037 */ 2038 bzero(&ifr, sizeof(ifr)); 2039 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 2040 >= sizeof(ifr.ifr_name)) { 2041 error = ENAMETOOLONG; 2042 break; 2043 } 2044 2045 addrs = 0; 2046 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2047 struct ifaddr *ifa = ifac->ifa; 2048 2049 if (space <= sizeof ifr) 2050 break; 2051 sa = ifa->ifa_addr; 2052 if (cred->cr_prison && 2053 prison_if(cred, sa)) 2054 continue; 2055 addrs++; 2056 #ifdef COMPAT_43 2057 if (cmd == OSIOCGIFCONF) { 2058 struct osockaddr *osa = 2059 (struct osockaddr *)&ifr.ifr_addr; 2060 ifr.ifr_addr = *sa; 2061 osa->sa_family = sa->sa_family; 2062 error = copyout(&ifr, ifrp, sizeof ifr); 2063 ifrp++; 2064 } else 2065 #endif 2066 if (sa->sa_len <= sizeof(*sa)) { 2067 ifr.ifr_addr = *sa; 2068 error = copyout(&ifr, ifrp, sizeof ifr); 2069 ifrp++; 2070 } else { 2071 if (space < (sizeof ifr) + sa->sa_len - 2072 sizeof(*sa)) 2073 break; 2074 space -= sa->sa_len - sizeof(*sa); 2075 error = copyout(&ifr, ifrp, 2076 sizeof ifr.ifr_name); 2077 if (error == 0) 2078 error = copyout(sa, &ifrp->ifr_addr, 2079 sa->sa_len); 2080 ifrp = (struct ifreq *) 2081 (sa->sa_len + (caddr_t)&ifrp->ifr_addr); 2082 } 2083 if (error) 2084 break; 2085 space -= sizeof ifr; 2086 } 2087 if (error) 2088 break; 2089 if (!addrs) { 2090 bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr); 2091 error = copyout(&ifr, ifrp, sizeof ifr); 2092 if (error) 2093 break; 2094 space -= sizeof ifr; 2095 ifrp++; 2096 } 2097 } 2098 ifc->ifc_len -= space; 2099 return (error); 2100 } 2101 2102 /* 2103 * Just like if_promisc(), but for all-multicast-reception mode. 2104 */ 2105 int 2106 if_allmulti(struct ifnet *ifp, int onswitch) 2107 { 2108 int error = 0; 2109 struct ifreq ifr; 2110 2111 crit_enter(); 2112 2113 if (onswitch) { 2114 if (ifp->if_amcount++ == 0) { 2115 ifp->if_flags |= IFF_ALLMULTI; 2116 ifr.ifr_flags = ifp->if_flags; 2117 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2118 ifnet_serialize_all(ifp); 2119 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2120 NULL); 2121 ifnet_deserialize_all(ifp); 2122 } 2123 } else { 2124 if (ifp->if_amcount > 1) { 2125 ifp->if_amcount--; 2126 } else { 2127 ifp->if_amcount = 0; 2128 ifp->if_flags &= ~IFF_ALLMULTI; 2129 ifr.ifr_flags = ifp->if_flags; 2130 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2131 ifnet_serialize_all(ifp); 2132 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2133 NULL); 2134 ifnet_deserialize_all(ifp); 2135 } 2136 } 2137 2138 crit_exit(); 2139 2140 if (error == 0) 2141 rt_ifmsg(ifp); 2142 return error; 2143 } 2144 2145 /* 2146 * Add a multicast listenership to the interface in question. 2147 * The link layer provides a routine which converts 2148 */ 2149 int 2150 if_addmulti( 2151 struct ifnet *ifp, /* interface to manipulate */ 2152 struct sockaddr *sa, /* address to add */ 2153 struct ifmultiaddr **retifma) 2154 { 2155 struct sockaddr *llsa, *dupsa; 2156 int error; 2157 struct ifmultiaddr *ifma; 2158 2159 /* 2160 * If the matching multicast address already exists 2161 * then don't add a new one, just add a reference 2162 */ 2163 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2164 if (sa_equal(sa, ifma->ifma_addr)) { 2165 ifma->ifma_refcount++; 2166 if (retifma) 2167 *retifma = ifma; 2168 return 0; 2169 } 2170 } 2171 2172 /* 2173 * Give the link layer a chance to accept/reject it, and also 2174 * find out which AF_LINK address this maps to, if it isn't one 2175 * already. 2176 */ 2177 if (ifp->if_resolvemulti) { 2178 ifnet_serialize_all(ifp); 2179 error = ifp->if_resolvemulti(ifp, &llsa, sa); 2180 ifnet_deserialize_all(ifp); 2181 if (error) 2182 return error; 2183 } else { 2184 llsa = NULL; 2185 } 2186 2187 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK); 2188 dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK); 2189 bcopy(sa, dupsa, sa->sa_len); 2190 2191 ifma->ifma_addr = dupsa; 2192 ifma->ifma_lladdr = llsa; 2193 ifma->ifma_ifp = ifp; 2194 ifma->ifma_refcount = 1; 2195 ifma->ifma_protospec = 0; 2196 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 2197 2198 /* 2199 * Some network interfaces can scan the address list at 2200 * interrupt time; lock them out. 2201 */ 2202 crit_enter(); 2203 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2204 crit_exit(); 2205 if (retifma) 2206 *retifma = ifma; 2207 2208 if (llsa != NULL) { 2209 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2210 if (sa_equal(ifma->ifma_addr, llsa)) 2211 break; 2212 } 2213 if (ifma) { 2214 ifma->ifma_refcount++; 2215 } else { 2216 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK); 2217 dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK); 2218 bcopy(llsa, dupsa, llsa->sa_len); 2219 ifma->ifma_addr = dupsa; 2220 ifma->ifma_ifp = ifp; 2221 ifma->ifma_refcount = 1; 2222 crit_enter(); 2223 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2224 crit_exit(); 2225 } 2226 } 2227 /* 2228 * We are certain we have added something, so call down to the 2229 * interface to let them know about it. 2230 */ 2231 crit_enter(); 2232 ifnet_serialize_all(ifp); 2233 if (ifp->if_ioctl) 2234 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL); 2235 ifnet_deserialize_all(ifp); 2236 crit_exit(); 2237 2238 return 0; 2239 } 2240 2241 /* 2242 * Remove a reference to a multicast address on this interface. Yell 2243 * if the request does not match an existing membership. 2244 */ 2245 int 2246 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 2247 { 2248 struct ifmultiaddr *ifma; 2249 2250 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2251 if (sa_equal(sa, ifma->ifma_addr)) 2252 break; 2253 if (ifma == NULL) 2254 return ENOENT; 2255 2256 if (ifma->ifma_refcount > 1) { 2257 ifma->ifma_refcount--; 2258 return 0; 2259 } 2260 2261 rt_newmaddrmsg(RTM_DELMADDR, ifma); 2262 sa = ifma->ifma_lladdr; 2263 crit_enter(); 2264 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2265 /* 2266 * Make sure the interface driver is notified 2267 * in the case of a link layer mcast group being left. 2268 */ 2269 if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) { 2270 ifnet_serialize_all(ifp); 2271 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2272 ifnet_deserialize_all(ifp); 2273 } 2274 crit_exit(); 2275 kfree(ifma->ifma_addr, M_IFMADDR); 2276 kfree(ifma, M_IFMADDR); 2277 if (sa == NULL) 2278 return 0; 2279 2280 /* 2281 * Now look for the link-layer address which corresponds to 2282 * this network address. It had been squirreled away in 2283 * ifma->ifma_lladdr for this purpose (so we don't have 2284 * to call ifp->if_resolvemulti() again), and we saved that 2285 * value in sa above. If some nasty deleted the 2286 * link-layer address out from underneath us, we can deal because 2287 * the address we stored was is not the same as the one which was 2288 * in the record for the link-layer address. (So we don't complain 2289 * in that case.) 2290 */ 2291 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2292 if (sa_equal(sa, ifma->ifma_addr)) 2293 break; 2294 if (ifma == NULL) 2295 return 0; 2296 2297 if (ifma->ifma_refcount > 1) { 2298 ifma->ifma_refcount--; 2299 return 0; 2300 } 2301 2302 crit_enter(); 2303 ifnet_serialize_all(ifp); 2304 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2305 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2306 ifnet_deserialize_all(ifp); 2307 crit_exit(); 2308 kfree(ifma->ifma_addr, M_IFMADDR); 2309 kfree(sa, M_IFMADDR); 2310 kfree(ifma, M_IFMADDR); 2311 2312 return 0; 2313 } 2314 2315 /* 2316 * Delete all multicast group membership for an interface. 2317 * Should be used to quickly flush all multicast filters. 2318 */ 2319 void 2320 if_delallmulti(struct ifnet *ifp) 2321 { 2322 struct ifmultiaddr *ifma; 2323 struct ifmultiaddr *next; 2324 2325 TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next) 2326 if_delmulti(ifp, ifma->ifma_addr); 2327 } 2328 2329 2330 /* 2331 * Set the link layer address on an interface. 2332 * 2333 * At this time we only support certain types of interfaces, 2334 * and we don't allow the length of the address to change. 2335 */ 2336 int 2337 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 2338 { 2339 struct sockaddr_dl *sdl; 2340 struct ifreq ifr; 2341 2342 sdl = IF_LLSOCKADDR(ifp); 2343 if (sdl == NULL) 2344 return (EINVAL); 2345 if (len != sdl->sdl_alen) /* don't allow length to change */ 2346 return (EINVAL); 2347 switch (ifp->if_type) { 2348 case IFT_ETHER: /* these types use struct arpcom */ 2349 case IFT_XETHER: 2350 case IFT_L2VLAN: 2351 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len); 2352 bcopy(lladdr, LLADDR(sdl), len); 2353 break; 2354 default: 2355 return (ENODEV); 2356 } 2357 /* 2358 * If the interface is already up, we need 2359 * to re-init it in order to reprogram its 2360 * address filter. 2361 */ 2362 ifnet_serialize_all(ifp); 2363 if ((ifp->if_flags & IFF_UP) != 0) { 2364 #ifdef INET 2365 struct ifaddr_container *ifac; 2366 #endif 2367 2368 ifp->if_flags &= ~IFF_UP; 2369 ifr.ifr_flags = ifp->if_flags; 2370 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2371 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2372 NULL); 2373 ifp->if_flags |= IFF_UP; 2374 ifr.ifr_flags = ifp->if_flags; 2375 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2376 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2377 NULL); 2378 #ifdef INET 2379 /* 2380 * Also send gratuitous ARPs to notify other nodes about 2381 * the address change. 2382 */ 2383 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2384 struct ifaddr *ifa = ifac->ifa; 2385 2386 if (ifa->ifa_addr != NULL && 2387 ifa->ifa_addr->sa_family == AF_INET) 2388 arp_gratuitous(ifp, ifa); 2389 } 2390 #endif 2391 } 2392 ifnet_deserialize_all(ifp); 2393 return (0); 2394 } 2395 2396 struct ifmultiaddr * 2397 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp) 2398 { 2399 struct ifmultiaddr *ifma; 2400 2401 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2402 if (sa_equal(ifma->ifma_addr, sa)) 2403 break; 2404 2405 return ifma; 2406 } 2407 2408 /* 2409 * This function locates the first real ethernet MAC from a network 2410 * card and loads it into node, returning 0 on success or ENOENT if 2411 * no suitable interfaces were found. It is used by the uuid code to 2412 * generate a unique 6-byte number. 2413 */ 2414 int 2415 if_getanyethermac(uint16_t *node, int minlen) 2416 { 2417 struct ifnet *ifp; 2418 struct sockaddr_dl *sdl; 2419 2420 TAILQ_FOREACH(ifp, &ifnet, if_link) { 2421 if (ifp->if_type != IFT_ETHER) 2422 continue; 2423 sdl = IF_LLSOCKADDR(ifp); 2424 if (sdl->sdl_alen < minlen) 2425 continue; 2426 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node, 2427 minlen); 2428 return(0); 2429 } 2430 return (ENOENT); 2431 } 2432 2433 /* 2434 * The name argument must be a pointer to storage which will last as 2435 * long as the interface does. For physical devices, the result of 2436 * device_get_name(dev) is a good choice and for pseudo-devices a 2437 * static string works well. 2438 */ 2439 void 2440 if_initname(struct ifnet *ifp, const char *name, int unit) 2441 { 2442 ifp->if_dname = name; 2443 ifp->if_dunit = unit; 2444 if (unit != IF_DUNIT_NONE) 2445 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 2446 else 2447 strlcpy(ifp->if_xname, name, IFNAMSIZ); 2448 } 2449 2450 int 2451 if_printf(struct ifnet *ifp, const char *fmt, ...) 2452 { 2453 __va_list ap; 2454 int retval; 2455 2456 retval = kprintf("%s: ", ifp->if_xname); 2457 __va_start(ap, fmt); 2458 retval += kvprintf(fmt, ap); 2459 __va_end(ap); 2460 return (retval); 2461 } 2462 2463 struct ifnet * 2464 if_alloc(uint8_t type) 2465 { 2466 struct ifnet *ifp; 2467 size_t size; 2468 2469 /* 2470 * XXX temporary hack until arpcom is setup in if_l2com 2471 */ 2472 if (type == IFT_ETHER) 2473 size = sizeof(struct arpcom); 2474 else 2475 size = sizeof(struct ifnet); 2476 2477 ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO); 2478 2479 ifp->if_type = type; 2480 2481 if (if_com_alloc[type] != NULL) { 2482 ifp->if_l2com = if_com_alloc[type](type, ifp); 2483 if (ifp->if_l2com == NULL) { 2484 kfree(ifp, M_IFNET); 2485 return (NULL); 2486 } 2487 } 2488 return (ifp); 2489 } 2490 2491 void 2492 if_free(struct ifnet *ifp) 2493 { 2494 kfree(ifp, M_IFNET); 2495 } 2496 2497 void 2498 ifq_set_classic(struct ifaltq *ifq) 2499 { 2500 ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq, 2501 ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request); 2502 } 2503 2504 void 2505 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq, 2506 ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request) 2507 { 2508 int q; 2509 2510 KASSERT(mapsubq != NULL, ("mapsubq is not specified")); 2511 KASSERT(enqueue != NULL, ("enqueue is not specified")); 2512 KASSERT(dequeue != NULL, ("dequeue is not specified")); 2513 KASSERT(request != NULL, ("request is not specified")); 2514 2515 ifq->altq_mapsubq = mapsubq; 2516 for (q = 0; q < ifq->altq_subq_cnt; ++q) { 2517 struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; 2518 2519 ifsq->ifsq_enqueue = enqueue; 2520 ifsq->ifsq_dequeue = dequeue; 2521 ifsq->ifsq_request = request; 2522 } 2523 } 2524 2525 static void 2526 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m) 2527 { 2528 m->m_nextpkt = NULL; 2529 if (ifsq->ifsq_norm_tail == NULL) 2530 ifsq->ifsq_norm_head = m; 2531 else 2532 ifsq->ifsq_norm_tail->m_nextpkt = m; 2533 ifsq->ifsq_norm_tail = m; 2534 ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len); 2535 } 2536 2537 static void 2538 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m) 2539 { 2540 m->m_nextpkt = NULL; 2541 if (ifsq->ifsq_prio_tail == NULL) 2542 ifsq->ifsq_prio_head = m; 2543 else 2544 ifsq->ifsq_prio_tail->m_nextpkt = m; 2545 ifsq->ifsq_prio_tail = m; 2546 ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len); 2547 ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len); 2548 } 2549 2550 static struct mbuf * 2551 ifsq_norm_dequeue(struct ifaltq_subque *ifsq) 2552 { 2553 struct mbuf *m; 2554 2555 m = ifsq->ifsq_norm_head; 2556 if (m != NULL) { 2557 if ((ifsq->ifsq_norm_head = m->m_nextpkt) == NULL) 2558 ifsq->ifsq_norm_tail = NULL; 2559 m->m_nextpkt = NULL; 2560 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len); 2561 } 2562 return m; 2563 } 2564 2565 static struct mbuf * 2566 ifsq_prio_dequeue(struct ifaltq_subque *ifsq) 2567 { 2568 struct mbuf *m; 2569 2570 m = ifsq->ifsq_prio_head; 2571 if (m != NULL) { 2572 if ((ifsq->ifsq_prio_head = m->m_nextpkt) == NULL) 2573 ifsq->ifsq_prio_tail = NULL; 2574 m->m_nextpkt = NULL; 2575 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len); 2576 ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len); 2577 } 2578 return m; 2579 } 2580 2581 int 2582 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m, 2583 struct altq_pktattr *pa __unused) 2584 { 2585 M_ASSERTPKTHDR(m); 2586 if (ifsq->ifsq_len >= ifsq->ifsq_maxlen || 2587 ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) { 2588 if ((m->m_flags & M_PRIO) && 2589 ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen / 2) && 2590 ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt / 2)) { 2591 struct mbuf *m_drop; 2592 2593 /* 2594 * Perform drop-head on normal queue 2595 */ 2596 m_drop = ifsq_norm_dequeue(ifsq); 2597 if (m_drop != NULL) { 2598 m_freem(m_drop); 2599 ifsq_prio_enqueue(ifsq, m); 2600 return 0; 2601 } 2602 /* XXX nothing could be dropped? */ 2603 } 2604 m_freem(m); 2605 return ENOBUFS; 2606 } else { 2607 if (m->m_flags & M_PRIO) 2608 ifsq_prio_enqueue(ifsq, m); 2609 else 2610 ifsq_norm_enqueue(ifsq, m); 2611 return 0; 2612 } 2613 } 2614 2615 struct mbuf * 2616 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op) 2617 { 2618 struct mbuf *m; 2619 2620 switch (op) { 2621 case ALTDQ_POLL: 2622 m = ifsq->ifsq_prio_head; 2623 if (m == NULL) 2624 m = ifsq->ifsq_norm_head; 2625 break; 2626 2627 case ALTDQ_REMOVE: 2628 m = ifsq_prio_dequeue(ifsq); 2629 if (m == NULL) 2630 m = ifsq_norm_dequeue(ifsq); 2631 break; 2632 2633 default: 2634 panic("unsupported ALTQ dequeue op: %d", op); 2635 } 2636 return m; 2637 } 2638 2639 int 2640 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg) 2641 { 2642 switch (req) { 2643 case ALTRQ_PURGE: 2644 for (;;) { 2645 struct mbuf *m; 2646 2647 m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE); 2648 if (m == NULL) 2649 break; 2650 m_freem(m); 2651 } 2652 break; 2653 2654 default: 2655 panic("unsupported ALTQ request: %d", req); 2656 } 2657 return 0; 2658 } 2659 2660 static void 2661 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched) 2662 { 2663 struct ifnet *ifp = ifsq_get_ifp(ifsq); 2664 int running = 0, need_sched; 2665 2666 /* 2667 * Try to do direct ifnet.if_start on the subqueue first, if there is 2668 * contention on the subqueue hardware serializer, ifnet.if_start on 2669 * the subqueue will be scheduled on the subqueue owner CPU. 2670 */ 2671 if (!ifsq_tryserialize_hw(ifsq)) { 2672 /* 2673 * Subqueue hardware serializer contention happened, 2674 * ifnet.if_start on the subqueue is scheduled on 2675 * the subqueue owner CPU, and we keep going. 2676 */ 2677 ifsq_ifstart_schedule(ifsq, 1); 2678 return; 2679 } 2680 2681 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) { 2682 ifp->if_start(ifp, ifsq); 2683 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) 2684 running = 1; 2685 } 2686 need_sched = ifsq_ifstart_need_schedule(ifsq, running); 2687 2688 ifsq_deserialize_hw(ifsq); 2689 2690 if (need_sched) { 2691 /* 2692 * More data need to be transmitted, ifnet.if_start on the 2693 * subqueue is scheduled on the subqueue owner CPU, and we 2694 * keep going. 2695 * NOTE: ifnet.if_start subqueue interlock is not released. 2696 */ 2697 ifsq_ifstart_schedule(ifsq, force_sched); 2698 } 2699 } 2700 2701 /* 2702 * Subqeue packets staging mechanism: 2703 * 2704 * The packets enqueued into the subqueue are staged to a certain amount 2705 * before the ifnet.if_start on the subqueue is called. In this way, the 2706 * driver could avoid writing to hardware registers upon every packet, 2707 * instead, hardware registers could be written when certain amount of 2708 * packets are put onto hardware TX ring. The measurement on several modern 2709 * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware 2710 * registers writing aggregation could save ~20% CPU time when 18bytes UDP 2711 * datagrams are transmitted at 1.48Mpps. The performance improvement by 2712 * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's 2713 * netmap paper (http://info.iet.unipi.it/~luigi/netmap/). 2714 * 2715 * Subqueue packets staging is performed for two entry points into drivers' 2716 * transmission function: 2717 * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try() 2718 * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule() 2719 * 2720 * Subqueue packets staging will be stopped upon any of the following 2721 * conditions: 2722 * - If the count of packets enqueued on the current CPU is great than or 2723 * equal to ifsq_stage_cntmax. (XXX this should be per-interface) 2724 * - If the total length of packets enqueued on the current CPU is great 2725 * than or equal to the hardware's MTU - max_protohdr. max_protohdr is 2726 * cut from the hardware's MTU mainly bacause a full TCP segment's size 2727 * is usually less than hardware's MTU. 2728 * - ifsq_ifstart_schedule() is not pending on the current CPU and 2729 * ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not 2730 * released. 2731 * - The if_start_rollup(), which is registered as low priority netisr 2732 * rollup function, is called; probably because no more work is pending 2733 * for netisr. 2734 * 2735 * NOTE: 2736 * Currently subqueue packet staging is only performed in netisr threads. 2737 */ 2738 int 2739 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa) 2740 { 2741 struct ifaltq *ifq = &ifp->if_snd; 2742 struct ifaltq_subque *ifsq; 2743 int error, start = 0, len, mcast = 0, avoid_start = 0; 2744 struct ifsubq_stage_head *head = NULL; 2745 struct ifsubq_stage *stage = NULL; 2746 2747 ifsq = ifq_map_subq(ifq, mycpuid); 2748 ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq); 2749 2750 len = m->m_pkthdr.len; 2751 if (m->m_flags & M_MCAST) 2752 mcast = 1; 2753 2754 if (curthread->td_type == TD_TYPE_NETISR) { 2755 head = &ifsubq_stage_heads[mycpuid]; 2756 stage = ifsq_get_stage(ifsq, mycpuid); 2757 2758 stage->stg_cnt++; 2759 stage->stg_len += len; 2760 if (stage->stg_cnt < ifsq_stage_cntmax && 2761 stage->stg_len < (ifp->if_mtu - max_protohdr)) 2762 avoid_start = 1; 2763 } 2764 2765 ALTQ_SQ_LOCK(ifsq); 2766 error = ifsq_enqueue_locked(ifsq, m, pa); 2767 if (error) { 2768 if (!ifsq_data_ready(ifsq)) { 2769 ALTQ_SQ_UNLOCK(ifsq); 2770 return error; 2771 } 2772 avoid_start = 0; 2773 } 2774 if (!ifsq_is_started(ifsq)) { 2775 if (avoid_start) { 2776 ALTQ_SQ_UNLOCK(ifsq); 2777 2778 KKASSERT(!error); 2779 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0) 2780 ifsq_stage_insert(head, stage); 2781 2782 IFNET_STAT_INC(ifp, obytes, len); 2783 if (mcast) 2784 IFNET_STAT_INC(ifp, omcasts, 1); 2785 return error; 2786 } 2787 2788 /* 2789 * Hold the subqueue interlock of ifnet.if_start 2790 */ 2791 ifsq_set_started(ifsq); 2792 start = 1; 2793 } 2794 ALTQ_SQ_UNLOCK(ifsq); 2795 2796 if (!error) { 2797 IFNET_STAT_INC(ifp, obytes, len); 2798 if (mcast) 2799 IFNET_STAT_INC(ifp, omcasts, 1); 2800 } 2801 2802 if (stage != NULL) { 2803 if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) { 2804 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED); 2805 if (!avoid_start) { 2806 ifsq_stage_remove(head, stage); 2807 ifsq_ifstart_schedule(ifsq, 1); 2808 } 2809 return error; 2810 } 2811 2812 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) { 2813 ifsq_stage_remove(head, stage); 2814 } else { 2815 stage->stg_cnt = 0; 2816 stage->stg_len = 0; 2817 } 2818 } 2819 2820 if (!start) 2821 return error; 2822 2823 ifsq_ifstart_try(ifsq, 0); 2824 return error; 2825 } 2826 2827 void * 2828 ifa_create(int size, int flags) 2829 { 2830 struct ifaddr *ifa; 2831 int i; 2832 2833 KASSERT(size >= sizeof(*ifa), ("ifaddr size too small")); 2834 2835 ifa = kmalloc(size, M_IFADDR, flags | M_ZERO); 2836 if (ifa == NULL) 2837 return NULL; 2838 2839 ifa->ifa_containers = 2840 kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container), 2841 M_IFADDR, M_WAITOK | M_ZERO); 2842 ifa->ifa_ncnt = ncpus; 2843 for (i = 0; i < ncpus; ++i) { 2844 struct ifaddr_container *ifac = &ifa->ifa_containers[i]; 2845 2846 ifac->ifa_magic = IFA_CONTAINER_MAGIC; 2847 ifac->ifa = ifa; 2848 ifac->ifa_refcnt = 1; 2849 } 2850 #ifdef IFADDR_DEBUG 2851 kprintf("alloc ifa %p %d\n", ifa, size); 2852 #endif 2853 return ifa; 2854 } 2855 2856 void 2857 ifac_free(struct ifaddr_container *ifac, int cpu_id) 2858 { 2859 struct ifaddr *ifa = ifac->ifa; 2860 2861 KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC); 2862 KKASSERT(ifac->ifa_refcnt == 0); 2863 KASSERT(ifac->ifa_listmask == 0, 2864 ("ifa is still on %#x lists", ifac->ifa_listmask)); 2865 2866 ifac->ifa_magic = IFA_CONTAINER_DEAD; 2867 2868 #ifdef IFADDR_DEBUG_VERBOSE 2869 kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id); 2870 #endif 2871 2872 KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus, 2873 ("invalid # of ifac, %d", ifa->ifa_ncnt)); 2874 if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) { 2875 #ifdef IFADDR_DEBUG 2876 kprintf("free ifa %p\n", ifa); 2877 #endif 2878 kfree(ifa->ifa_containers, M_IFADDR); 2879 kfree(ifa, M_IFADDR); 2880 } 2881 } 2882 2883 static void 2884 ifa_iflink_dispatch(netmsg_t nmsg) 2885 { 2886 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2887 struct ifaddr *ifa = msg->ifa; 2888 struct ifnet *ifp = msg->ifp; 2889 int cpu = mycpuid; 2890 struct ifaddr_container *ifac; 2891 2892 crit_enter(); 2893 2894 ifac = &ifa->ifa_containers[cpu]; 2895 ASSERT_IFAC_VALID(ifac); 2896 KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0, 2897 ("ifaddr is on if_addrheads")); 2898 2899 ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD; 2900 if (msg->tail) 2901 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link); 2902 else 2903 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link); 2904 2905 crit_exit(); 2906 2907 ifa_forwardmsg(&nmsg->lmsg, cpu + 1); 2908 } 2909 2910 void 2911 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail) 2912 { 2913 struct netmsg_ifaddr msg; 2914 2915 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2916 0, ifa_iflink_dispatch); 2917 msg.ifa = ifa; 2918 msg.ifp = ifp; 2919 msg.tail = tail; 2920 2921 ifa_domsg(&msg.base.lmsg, 0); 2922 } 2923 2924 static void 2925 ifa_ifunlink_dispatch(netmsg_t nmsg) 2926 { 2927 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2928 struct ifaddr *ifa = msg->ifa; 2929 struct ifnet *ifp = msg->ifp; 2930 int cpu = mycpuid; 2931 struct ifaddr_container *ifac; 2932 2933 crit_enter(); 2934 2935 ifac = &ifa->ifa_containers[cpu]; 2936 ASSERT_IFAC_VALID(ifac); 2937 KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD, 2938 ("ifaddr is not on if_addrhead")); 2939 2940 TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link); 2941 ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD; 2942 2943 crit_exit(); 2944 2945 ifa_forwardmsg(&nmsg->lmsg, cpu + 1); 2946 } 2947 2948 void 2949 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp) 2950 { 2951 struct netmsg_ifaddr msg; 2952 2953 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2954 0, ifa_ifunlink_dispatch); 2955 msg.ifa = ifa; 2956 msg.ifp = ifp; 2957 2958 ifa_domsg(&msg.base.lmsg, 0); 2959 } 2960 2961 static void 2962 ifa_destroy_dispatch(netmsg_t nmsg) 2963 { 2964 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2965 2966 IFAFREE(msg->ifa); 2967 ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1); 2968 } 2969 2970 void 2971 ifa_destroy(struct ifaddr *ifa) 2972 { 2973 struct netmsg_ifaddr msg; 2974 2975 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2976 0, ifa_destroy_dispatch); 2977 msg.ifa = ifa; 2978 2979 ifa_domsg(&msg.base.lmsg, 0); 2980 } 2981 2982 struct lwkt_port * 2983 ifnet_portfn(int cpu) 2984 { 2985 return &ifnet_threads[cpu].td_msgport; 2986 } 2987 2988 void 2989 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu) 2990 { 2991 KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus); 2992 2993 if (next_cpu < ncpus) 2994 lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg); 2995 else 2996 lwkt_replymsg(lmsg, 0); 2997 } 2998 2999 int 3000 ifnet_domsg(struct lwkt_msg *lmsg, int cpu) 3001 { 3002 KKASSERT(cpu < ncpus); 3003 return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0); 3004 } 3005 3006 void 3007 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu) 3008 { 3009 KKASSERT(cpu < ncpus); 3010 lwkt_sendmsg(ifnet_portfn(cpu), lmsg); 3011 } 3012 3013 /* 3014 * Generic netmsg service loop. Some protocols may roll their own but all 3015 * must do the basic command dispatch function call done here. 3016 */ 3017 static void 3018 ifnet_service_loop(void *arg __unused) 3019 { 3020 netmsg_t msg; 3021 3022 while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) { 3023 KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg")); 3024 msg->base.nm_dispatch(msg); 3025 } 3026 } 3027 3028 static void 3029 if_start_rollup(void) 3030 { 3031 struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid]; 3032 struct ifsubq_stage *stage; 3033 3034 while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) { 3035 struct ifaltq_subque *ifsq = stage->stg_subq; 3036 int is_sched = 0; 3037 3038 if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED) 3039 is_sched = 1; 3040 ifsq_stage_remove(head, stage); 3041 3042 if (is_sched) { 3043 ifsq_ifstart_schedule(ifsq, 1); 3044 } else { 3045 int start = 0; 3046 3047 ALTQ_SQ_LOCK(ifsq); 3048 if (!ifsq_is_started(ifsq)) { 3049 /* 3050 * Hold the subqueue interlock of 3051 * ifnet.if_start 3052 */ 3053 ifsq_set_started(ifsq); 3054 start = 1; 3055 } 3056 ALTQ_SQ_UNLOCK(ifsq); 3057 3058 if (start) 3059 ifsq_ifstart_try(ifsq, 1); 3060 } 3061 KKASSERT((stage->stg_flags & 3062 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0); 3063 } 3064 } 3065 3066 static void 3067 ifnetinit(void *dummy __unused) 3068 { 3069 int i; 3070 3071 for (i = 0; i < ncpus; ++i) { 3072 struct thread *thr = &ifnet_threads[i]; 3073 3074 lwkt_create(ifnet_service_loop, NULL, NULL, 3075 thr, TDF_NOSTART|TDF_FORCE_SPINPORT, 3076 i, "ifnet %d", i); 3077 netmsg_service_port_init(&thr->td_msgport); 3078 lwkt_schedule(thr); 3079 } 3080 3081 for (i = 0; i < ncpus; ++i) 3082 TAILQ_INIT(&ifsubq_stage_heads[i].stg_head); 3083 netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART); 3084 } 3085 3086 struct ifnet * 3087 ifnet_byindex(unsigned short idx) 3088 { 3089 if (idx > if_index) 3090 return NULL; 3091 return ifindex2ifnet[idx]; 3092 } 3093 3094 struct ifaddr * 3095 ifaddr_byindex(unsigned short idx) 3096 { 3097 struct ifnet *ifp; 3098 3099 ifp = ifnet_byindex(idx); 3100 if (!ifp) 3101 return NULL; 3102 return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 3103 } 3104 3105 void 3106 if_register_com_alloc(u_char type, 3107 if_com_alloc_t *a, if_com_free_t *f) 3108 { 3109 3110 KASSERT(if_com_alloc[type] == NULL, 3111 ("if_register_com_alloc: %d already registered", type)); 3112 KASSERT(if_com_free[type] == NULL, 3113 ("if_register_com_alloc: %d free already registered", type)); 3114 3115 if_com_alloc[type] = a; 3116 if_com_free[type] = f; 3117 } 3118 3119 void 3120 if_deregister_com_alloc(u_char type) 3121 { 3122 3123 KASSERT(if_com_alloc[type] != NULL, 3124 ("if_deregister_com_alloc: %d not registered", type)); 3125 KASSERT(if_com_free[type] != NULL, 3126 ("if_deregister_com_alloc: %d free not registered", type)); 3127 if_com_alloc[type] = NULL; 3128 if_com_free[type] = NULL; 3129 } 3130 3131 int 3132 if_ring_count2(int cnt, int cnt_max) 3133 { 3134 int shift = 0; 3135 3136 KASSERT(cnt_max >= 1 && powerof2(cnt_max), 3137 ("invalid ring count max %d", cnt_max)); 3138 3139 if (cnt <= 0) 3140 cnt = cnt_max; 3141 if (cnt > ncpus2) 3142 cnt = ncpus2; 3143 if (cnt > cnt_max) 3144 cnt = cnt_max; 3145 3146 while ((1 << (shift + 1)) <= cnt) 3147 ++shift; 3148 cnt = 1 << shift; 3149 3150 KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max, 3151 ("calculate cnt %d, ncpus2 %d, cnt max %d", 3152 cnt, ncpus2, cnt_max)); 3153 return cnt; 3154 } 3155 3156 void 3157 ifq_set_maxlen(struct ifaltq *ifq, int len) 3158 { 3159 ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax); 3160 } 3161 3162 int 3163 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused) 3164 { 3165 return ALTQ_SUBQ_INDEX_DEFAULT; 3166 } 3167 3168 int 3169 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid) 3170 { 3171 return (cpuid & ifq->altq_subq_mask); 3172 } 3173 3174 static void 3175 ifsq_watchdog(void *arg) 3176 { 3177 struct ifsubq_watchdog *wd = arg; 3178 struct ifnet *ifp; 3179 3180 if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer)) 3181 goto done; 3182 3183 ifp = ifsq_get_ifp(wd->wd_subq); 3184 if (ifnet_tryserialize_all(ifp)) { 3185 wd->wd_watchdog(wd->wd_subq); 3186 ifnet_deserialize_all(ifp); 3187 } else { 3188 /* try again next timeout */ 3189 wd->wd_timer = 1; 3190 } 3191 done: 3192 ifsq_watchdog_reset(wd); 3193 } 3194 3195 static void 3196 ifsq_watchdog_reset(struct ifsubq_watchdog *wd) 3197 { 3198 callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd, 3199 ifsq_get_cpuid(wd->wd_subq)); 3200 } 3201 3202 void 3203 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq, 3204 ifsq_watchdog_t watchdog) 3205 { 3206 callout_init_mp(&wd->wd_callout); 3207 wd->wd_timer = 0; 3208 wd->wd_subq = ifsq; 3209 wd->wd_watchdog = watchdog; 3210 } 3211 3212 void 3213 ifsq_watchdog_start(struct ifsubq_watchdog *wd) 3214 { 3215 wd->wd_timer = 0; 3216 ifsq_watchdog_reset(wd); 3217 } 3218 3219 void 3220 ifsq_watchdog_stop(struct ifsubq_watchdog *wd) 3221 { 3222 wd->wd_timer = 0; 3223 callout_stop(&wd->wd_callout); 3224 } 3225