1 /* 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)if.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $ 35 */ 36 37 #include "opt_compat.h" 38 #include "opt_inet6.h" 39 #include "opt_inet.h" 40 #include "opt_ifpoll.h" 41 42 #include <sys/param.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/priv.h> 48 #include <sys/protosw.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/socketops.h> 52 #include <sys/protosw.h> 53 #include <sys/kernel.h> 54 #include <sys/ktr.h> 55 #include <sys/mutex.h> 56 #include <sys/sockio.h> 57 #include <sys/syslog.h> 58 #include <sys/sysctl.h> 59 #include <sys/domain.h> 60 #include <sys/thread.h> 61 #include <sys/serialize.h> 62 #include <sys/bus.h> 63 64 #include <sys/thread2.h> 65 #include <sys/msgport2.h> 66 #include <sys/mutex2.h> 67 68 #include <net/if.h> 69 #include <net/if_arp.h> 70 #include <net/if_dl.h> 71 #include <net/if_types.h> 72 #include <net/if_var.h> 73 #include <net/ifq_var.h> 74 #include <net/radix.h> 75 #include <net/route.h> 76 #include <net/if_clone.h> 77 #include <net/netisr.h> 78 #include <net/netmsg2.h> 79 80 #include <machine/atomic.h> 81 #include <machine/stdarg.h> 82 #include <machine/smp.h> 83 84 #if defined(INET) || defined(INET6) 85 /*XXX*/ 86 #include <netinet/in.h> 87 #include <netinet/in_var.h> 88 #include <netinet/if_ether.h> 89 #ifdef INET6 90 #include <netinet6/in6_var.h> 91 #include <netinet6/in6_ifattach.h> 92 #endif 93 #endif 94 95 #if defined(COMPAT_43) 96 #include <emulation/43bsd/43bsd_socket.h> 97 #endif /* COMPAT_43 */ 98 99 struct netmsg_ifaddr { 100 struct netmsg_base base; 101 struct ifaddr *ifa; 102 struct ifnet *ifp; 103 int tail; 104 }; 105 106 struct ifaltq_stage_head { 107 TAILQ_HEAD(, ifaltq_stage) ifqs_head; 108 } __cachealign; 109 110 /* 111 * System initialization 112 */ 113 static void if_attachdomain(void *); 114 static void if_attachdomain1(struct ifnet *); 115 static int ifconf(u_long, caddr_t, struct ucred *); 116 static void ifinit(void *); 117 static void ifnetinit(void *); 118 static void if_slowtimo(void *); 119 static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 120 static int if_rtdel(struct radix_node *, void *); 121 122 #ifdef INET6 123 /* 124 * XXX: declare here to avoid to include many inet6 related files.. 125 * should be more generalized? 126 */ 127 extern void nd6_setmtu(struct ifnet *); 128 #endif 129 130 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 131 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 132 133 static int ifq_stage_cntmax = 4; 134 TUNABLE_INT("net.link.stage_cntmax", &ifq_stage_cntmax); 135 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW, 136 &ifq_stage_cntmax, 0, "ifq staging packet count max"); 137 138 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL) 139 /* Must be after netisr_init */ 140 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL) 141 142 static if_com_alloc_t *if_com_alloc[256]; 143 static if_com_free_t *if_com_free[256]; 144 145 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 146 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 147 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure"); 148 149 int ifqmaxlen = IFQ_MAXLEN; 150 struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet); 151 152 struct callout if_slowtimo_timer; 153 154 int if_index = 0; 155 struct ifnet **ifindex2ifnet = NULL; 156 static struct thread ifnet_threads[MAXCPU]; 157 158 static struct ifaltq_stage_head ifq_stage_heads[MAXCPU]; 159 160 #define IFQ_KTR_STRING "ifq=%p" 161 #define IFQ_KTR_ARGS struct ifaltq *ifq 162 #ifndef KTR_IFQ 163 #define KTR_IFQ KTR_ALL 164 #endif 165 KTR_INFO_MASTER(ifq); 166 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS); 167 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS); 168 #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg) 169 170 #define IF_START_KTR_STRING "ifp=%p" 171 #define IF_START_KTR_ARGS struct ifnet *ifp 172 #ifndef KTR_IF_START 173 #define KTR_IF_START KTR_ALL 174 #endif 175 KTR_INFO_MASTER(if_start); 176 KTR_INFO(KTR_IF_START, if_start, run, 0, 177 IF_START_KTR_STRING, IF_START_KTR_ARGS); 178 KTR_INFO(KTR_IF_START, if_start, sched, 1, 179 IF_START_KTR_STRING, IF_START_KTR_ARGS); 180 KTR_INFO(KTR_IF_START, if_start, avoid, 2, 181 IF_START_KTR_STRING, IF_START_KTR_ARGS); 182 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3, 183 IF_START_KTR_STRING, IF_START_KTR_ARGS); 184 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4, 185 IF_START_KTR_STRING, IF_START_KTR_ARGS); 186 #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg) 187 188 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head); 189 190 /* 191 * Network interface utility routines. 192 * 193 * Routines with ifa_ifwith* names take sockaddr *'s as 194 * parameters. 195 */ 196 /* ARGSUSED*/ 197 void 198 ifinit(void *dummy) 199 { 200 struct ifnet *ifp; 201 202 callout_init(&if_slowtimo_timer); 203 204 crit_enter(); 205 TAILQ_FOREACH(ifp, &ifnet, if_link) { 206 if (ifp->if_snd.ifq_maxlen == 0) { 207 if_printf(ifp, "XXX: driver didn't set ifq_maxlen\n"); 208 ifq_set_maxlen(&ifp->if_snd, ifqmaxlen); 209 } 210 } 211 crit_exit(); 212 213 if_slowtimo(0); 214 } 215 216 static int 217 if_start_cpuid(struct ifnet *ifp) 218 { 219 return ifp->if_cpuid; 220 } 221 222 #ifdef IFPOLL_ENABLE 223 static int 224 if_start_cpuid_npoll(struct ifnet *ifp) 225 { 226 int poll_cpuid = ifp->if_npoll_cpuid; 227 228 if (poll_cpuid >= 0) 229 return poll_cpuid; 230 else 231 return ifp->if_cpuid; 232 } 233 #endif 234 235 static void 236 ifq_ifstart_ipifunc(void *arg) 237 { 238 struct ifnet *ifp = arg; 239 struct lwkt_msg *lmsg = &ifp->if_start_nmsg[mycpuid].lmsg; 240 241 crit_enter(); 242 if (lmsg->ms_flags & MSGF_DONE) 243 lwkt_sendmsg(netisr_portfn(mycpuid), lmsg); 244 crit_exit(); 245 } 246 247 static __inline void 248 ifq_stage_remove(struct ifaltq_stage_head *head, struct ifaltq_stage *stage) 249 { 250 KKASSERT(stage->ifqs_flags & IFQ_STAGE_FLAG_QUED); 251 TAILQ_REMOVE(&head->ifqs_head, stage, ifqs_link); 252 stage->ifqs_flags &= ~(IFQ_STAGE_FLAG_QUED | IFQ_STAGE_FLAG_SCHED); 253 stage->ifqs_cnt = 0; 254 stage->ifqs_len = 0; 255 } 256 257 static __inline void 258 ifq_stage_insert(struct ifaltq_stage_head *head, struct ifaltq_stage *stage) 259 { 260 KKASSERT((stage->ifqs_flags & 261 (IFQ_STAGE_FLAG_QUED | IFQ_STAGE_FLAG_SCHED)) == 0); 262 stage->ifqs_flags |= IFQ_STAGE_FLAG_QUED; 263 TAILQ_INSERT_TAIL(&head->ifqs_head, stage, ifqs_link); 264 } 265 266 /* 267 * Schedule ifnet.if_start on ifnet's CPU 268 */ 269 static void 270 ifq_ifstart_schedule(struct ifaltq *ifq, int force) 271 { 272 struct ifnet *ifp = ifq->altq_ifp; 273 int cpu; 274 275 if (!force && curthread->td_type == TD_TYPE_NETISR && 276 ifq_stage_cntmax > 0) { 277 struct ifaltq_stage *stage = ifq_get_stage(ifq, mycpuid); 278 279 stage->ifqs_cnt = 0; 280 stage->ifqs_len = 0; 281 if ((stage->ifqs_flags & IFQ_STAGE_FLAG_QUED) == 0) 282 ifq_stage_insert(&ifq_stage_heads[mycpuid], stage); 283 stage->ifqs_flags |= IFQ_STAGE_FLAG_SCHED; 284 return; 285 } 286 287 cpu = ifp->if_start_cpuid(ifp); 288 if (cpu != mycpuid) 289 lwkt_send_ipiq(globaldata_find(cpu), ifq_ifstart_ipifunc, ifp); 290 else 291 ifq_ifstart_ipifunc(ifp); 292 } 293 294 /* 295 * NOTE: 296 * This function will release ifnet.if_start interlock, 297 * if ifnet.if_start does not need to be scheduled 298 */ 299 static __inline int 300 ifq_ifstart_need_schedule(struct ifaltq *ifq, int running) 301 { 302 if (!running || ifq_is_empty(ifq) 303 #ifdef ALTQ 304 || ifq->altq_tbr != NULL 305 #endif 306 ) { 307 ALTQ_LOCK(ifq); 308 /* 309 * ifnet.if_start interlock is released, if: 310 * 1) Hardware can not take any packets, due to 311 * o interface is marked down 312 * o hardware queue is full (ifq_is_oactive) 313 * Under the second situation, hardware interrupt 314 * or polling(4) will call/schedule ifnet.if_start 315 * when hardware queue is ready 316 * 2) There is not packet in the ifnet.if_snd. 317 * Further ifq_dispatch or ifq_handoff will call/ 318 * schedule ifnet.if_start 319 * 3) TBR is used and it does not allow further 320 * dequeueing. 321 * TBR callout will call ifnet.if_start 322 */ 323 if (!running || !ifq_data_ready(ifq)) { 324 ifq_clr_started(ifq); 325 ALTQ_UNLOCK(ifq); 326 return 0; 327 } 328 ALTQ_UNLOCK(ifq); 329 } 330 return 1; 331 } 332 333 static void 334 if_start_dispatch(netmsg_t msg) 335 { 336 struct lwkt_msg *lmsg = &msg->base.lmsg; 337 struct ifnet *ifp = lmsg->u.ms_resultp; 338 struct ifaltq *ifq = &ifp->if_snd; 339 int running = 0, need_sched; 340 341 crit_enter(); 342 lwkt_replymsg(lmsg, 0); /* reply ASAP */ 343 crit_exit(); 344 345 if (mycpuid != ifp->if_start_cpuid(ifp)) { 346 /* 347 * We need to chase the ifnet CPU change. 348 */ 349 logifstart(chase_sched, ifp); 350 ifq_ifstart_schedule(ifq, 1); 351 return; 352 } 353 354 ifnet_serialize_tx(ifp); 355 if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_oactive(ifq)) { 356 logifstart(run, ifp); 357 ifp->if_start(ifp); 358 if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_oactive(ifq)) 359 running = 1; 360 } 361 need_sched = ifq_ifstart_need_schedule(ifq, running); 362 ifnet_deserialize_tx(ifp); 363 364 if (need_sched) { 365 /* 366 * More data need to be transmitted, ifnet.if_start is 367 * scheduled on ifnet's CPU, and we keep going. 368 * NOTE: ifnet.if_start interlock is not released. 369 */ 370 logifstart(sched, ifp); 371 ifq_ifstart_schedule(ifq, 0); 372 } 373 } 374 375 /* Device driver ifnet.if_start helper function */ 376 void 377 if_devstart(struct ifnet *ifp) 378 { 379 struct ifaltq *ifq = &ifp->if_snd; 380 int running = 0; 381 382 ASSERT_IFNET_SERIALIZED_TX(ifp); 383 384 ALTQ_LOCK(ifq); 385 if (ifq_is_started(ifq) || !ifq_data_ready(ifq)) { 386 logifstart(avoid, ifp); 387 ALTQ_UNLOCK(ifq); 388 return; 389 } 390 ifq_set_started(ifq); 391 ALTQ_UNLOCK(ifq); 392 393 logifstart(run, ifp); 394 ifp->if_start(ifp); 395 396 if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_oactive(ifq)) 397 running = 1; 398 399 if (ifq_ifstart_need_schedule(ifq, running)) { 400 /* 401 * More data need to be transmitted, ifnet.if_start is 402 * scheduled on ifnet's CPU, and we keep going. 403 * NOTE: ifnet.if_start interlock is not released. 404 */ 405 logifstart(sched, ifp); 406 ifq_ifstart_schedule(ifq, 0); 407 } 408 } 409 410 /* Device driver ifnet.if_start schedule helper function */ 411 void 412 if_devstart_sched(struct ifnet *ifp) 413 { 414 ifq_ifstart_schedule(&ifp->if_snd, 1); 415 } 416 417 static void 418 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 419 { 420 lwkt_serialize_enter(ifp->if_serializer); 421 } 422 423 static void 424 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 425 { 426 lwkt_serialize_exit(ifp->if_serializer); 427 } 428 429 static int 430 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 431 { 432 return lwkt_serialize_try(ifp->if_serializer); 433 } 434 435 #ifdef INVARIANTS 436 static void 437 if_default_serialize_assert(struct ifnet *ifp, 438 enum ifnet_serialize slz __unused, 439 boolean_t serialized) 440 { 441 if (serialized) 442 ASSERT_SERIALIZED(ifp->if_serializer); 443 else 444 ASSERT_NOT_SERIALIZED(ifp->if_serializer); 445 } 446 #endif 447 448 /* 449 * Attach an interface to the list of "active" interfaces. 450 * 451 * The serializer is optional. If non-NULL access to the interface 452 * may be MPSAFE. 453 */ 454 void 455 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer) 456 { 457 unsigned socksize, ifasize; 458 int namelen, masklen; 459 struct sockaddr_dl *sdl; 460 struct ifaddr *ifa; 461 struct ifaltq *ifq; 462 int i; 463 464 static int if_indexlim = 8; 465 466 if (ifp->if_serialize != NULL) { 467 KASSERT(ifp->if_deserialize != NULL && 468 ifp->if_tryserialize != NULL && 469 ifp->if_serialize_assert != NULL, 470 ("serialize functions are partially setup")); 471 472 /* 473 * If the device supplies serialize functions, 474 * then clear if_serializer to catch any invalid 475 * usage of this field. 476 */ 477 KASSERT(serializer == NULL, 478 ("both serialize functions and default serializer " 479 "are supplied")); 480 ifp->if_serializer = NULL; 481 } else { 482 KASSERT(ifp->if_deserialize == NULL && 483 ifp->if_tryserialize == NULL && 484 ifp->if_serialize_assert == NULL, 485 ("serialize functions are partially setup")); 486 ifp->if_serialize = if_default_serialize; 487 ifp->if_deserialize = if_default_deserialize; 488 ifp->if_tryserialize = if_default_tryserialize; 489 #ifdef INVARIANTS 490 ifp->if_serialize_assert = if_default_serialize_assert; 491 #endif 492 493 /* 494 * The serializer can be passed in from the device, 495 * allowing the same serializer to be used for both 496 * the interrupt interlock and the device queue. 497 * If not specified, the netif structure will use an 498 * embedded serializer. 499 */ 500 if (serializer == NULL) { 501 serializer = &ifp->if_default_serializer; 502 lwkt_serialize_init(serializer); 503 } 504 ifp->if_serializer = serializer; 505 } 506 507 ifp->if_start_cpuid = if_start_cpuid; 508 ifp->if_cpuid = 0; 509 510 #ifdef IFPOLL_ENABLE 511 /* Device is not in polling mode by default */ 512 ifp->if_npoll_cpuid = -1; 513 if (ifp->if_npoll != NULL) 514 ifp->if_start_cpuid = if_start_cpuid_npoll; 515 #endif 516 517 ifp->if_start_nmsg = kmalloc(ncpus * sizeof(*ifp->if_start_nmsg), 518 M_LWKTMSG, M_WAITOK); 519 for (i = 0; i < ncpus; ++i) { 520 netmsg_init(&ifp->if_start_nmsg[i], NULL, &netisr_adone_rport, 521 0, if_start_dispatch); 522 ifp->if_start_nmsg[i].lmsg.u.ms_resultp = ifp; 523 } 524 525 mtx_init(&ifp->if_ioctl_mtx); 526 mtx_lock(&ifp->if_ioctl_mtx); 527 528 TAILQ_INSERT_TAIL(&ifnet, ifp, if_link); 529 ifp->if_index = ++if_index; 530 531 /* 532 * XXX - 533 * The old code would work if the interface passed a pre-existing 534 * chain of ifaddrs to this code. We don't trust our callers to 535 * properly initialize the tailq, however, so we no longer allow 536 * this unlikely case. 537 */ 538 ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead), 539 M_IFADDR, M_WAITOK | M_ZERO); 540 for (i = 0; i < ncpus; ++i) 541 TAILQ_INIT(&ifp->if_addrheads[i]); 542 543 TAILQ_INIT(&ifp->if_prefixhead); 544 TAILQ_INIT(&ifp->if_multiaddrs); 545 TAILQ_INIT(&ifp->if_groups); 546 getmicrotime(&ifp->if_lastchange); 547 if (ifindex2ifnet == NULL || if_index >= if_indexlim) { 548 unsigned int n; 549 struct ifnet **q; 550 551 if_indexlim <<= 1; 552 553 /* grow ifindex2ifnet */ 554 n = if_indexlim * sizeof(*q); 555 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO); 556 if (ifindex2ifnet) { 557 bcopy(ifindex2ifnet, q, n/2); 558 kfree(ifindex2ifnet, M_IFADDR); 559 } 560 ifindex2ifnet = q; 561 } 562 563 ifindex2ifnet[if_index] = ifp; 564 565 /* 566 * create a Link Level name for this device 567 */ 568 namelen = strlen(ifp->if_xname); 569 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; 570 socksize = masklen + ifp->if_addrlen; 571 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1))) 572 if (socksize < sizeof(*sdl)) 573 socksize = sizeof(*sdl); 574 socksize = ROUNDUP(socksize); 575 #undef ROUNDUP 576 ifasize = sizeof(struct ifaddr) + 2 * socksize; 577 ifa = ifa_create(ifasize, M_WAITOK); 578 sdl = (struct sockaddr_dl *)(ifa + 1); 579 sdl->sdl_len = socksize; 580 sdl->sdl_family = AF_LINK; 581 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 582 sdl->sdl_nlen = namelen; 583 sdl->sdl_index = ifp->if_index; 584 sdl->sdl_type = ifp->if_type; 585 ifp->if_lladdr = ifa; 586 ifa->ifa_ifp = ifp; 587 ifa->ifa_rtrequest = link_rtrequest; 588 ifa->ifa_addr = (struct sockaddr *)sdl; 589 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 590 ifa->ifa_netmask = (struct sockaddr *)sdl; 591 sdl->sdl_len = masklen; 592 while (namelen != 0) 593 sdl->sdl_data[--namelen] = 0xff; 594 ifa_iflink(ifa, ifp, 0 /* Insert head */); 595 596 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 597 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 598 599 ifq = &ifp->if_snd; 600 ifq->altq_type = 0; 601 ifq->altq_disc = NULL; 602 ifq->altq_flags &= ALTQF_CANTCHANGE; 603 ifq->altq_tbr = NULL; 604 ifq->altq_ifp = ifp; 605 ifq->altq_started = 0; 606 ifq->altq_prepended = NULL; 607 ALTQ_LOCK_INIT(ifq); 608 ifq_set_classic(ifq); 609 610 ifq->altq_stage = 611 kmalloc_cachealign(ncpus * sizeof(struct ifaltq_stage), 612 M_DEVBUF, M_WAITOK | M_ZERO); 613 for (i = 0; i < ncpus; ++i) 614 ifq->altq_stage[i].ifqs_altq = ifq; 615 616 if (!SLIST_EMPTY(&domains)) 617 if_attachdomain1(ifp); 618 619 /* Announce the interface. */ 620 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 621 622 mtx_unlock(&ifp->if_ioctl_mtx); 623 } 624 625 static void 626 if_attachdomain(void *dummy) 627 { 628 struct ifnet *ifp; 629 630 crit_enter(); 631 TAILQ_FOREACH(ifp, &ifnet, if_list) 632 if_attachdomain1(ifp); 633 crit_exit(); 634 } 635 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, 636 if_attachdomain, NULL); 637 638 static void 639 if_attachdomain1(struct ifnet *ifp) 640 { 641 struct domain *dp; 642 643 crit_enter(); 644 645 /* address family dependent data region */ 646 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 647 SLIST_FOREACH(dp, &domains, dom_next) 648 if (dp->dom_ifattach) 649 ifp->if_afdata[dp->dom_family] = 650 (*dp->dom_ifattach)(ifp); 651 crit_exit(); 652 } 653 654 /* 655 * Purge all addresses whose type is _not_ AF_LINK 656 */ 657 void 658 if_purgeaddrs_nolink(struct ifnet *ifp) 659 { 660 struct ifaddr_container *ifac, *next; 661 662 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid], 663 ifa_link, next) { 664 struct ifaddr *ifa = ifac->ifa; 665 666 /* Leave link ifaddr as it is */ 667 if (ifa->ifa_addr->sa_family == AF_LINK) 668 continue; 669 #ifdef INET 670 /* XXX: Ugly!! ad hoc just for INET */ 671 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) { 672 struct ifaliasreq ifr; 673 #ifdef IFADDR_DEBUG_VERBOSE 674 int i; 675 676 kprintf("purge in4 addr %p: ", ifa); 677 for (i = 0; i < ncpus; ++i) 678 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 679 kprintf("\n"); 680 #endif 681 682 bzero(&ifr, sizeof ifr); 683 ifr.ifra_addr = *ifa->ifa_addr; 684 if (ifa->ifa_dstaddr) 685 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 686 if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, 687 NULL) == 0) 688 continue; 689 } 690 #endif /* INET */ 691 #ifdef INET6 692 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) { 693 #ifdef IFADDR_DEBUG_VERBOSE 694 int i; 695 696 kprintf("purge in6 addr %p: ", ifa); 697 for (i = 0; i < ncpus; ++i) 698 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 699 kprintf("\n"); 700 #endif 701 702 in6_purgeaddr(ifa); 703 /* ifp_addrhead is already updated */ 704 continue; 705 } 706 #endif /* INET6 */ 707 ifa_ifunlink(ifa, ifp); 708 ifa_destroy(ifa); 709 } 710 } 711 712 static void 713 ifq_stage_detach_handler(netmsg_t nmsg) 714 { 715 struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp; 716 struct ifaltq_stage *stage = ifq_get_stage(ifq, mycpuid); 717 718 if (stage->ifqs_flags & IFQ_STAGE_FLAG_QUED) 719 ifq_stage_remove(&ifq_stage_heads[mycpuid], stage); 720 lwkt_replymsg(&nmsg->lmsg, 0); 721 } 722 723 static void 724 ifq_stage_detach(struct ifaltq *ifq) 725 { 726 struct netmsg_base base; 727 int cpu; 728 729 netmsg_init(&base, NULL, &curthread->td_msgport, 0, 730 ifq_stage_detach_handler); 731 base.lmsg.u.ms_resultp = ifq; 732 733 for (cpu = 0; cpu < ncpus; ++cpu) 734 lwkt_domsg(netisr_portfn(cpu), &base.lmsg, 0); 735 } 736 737 /* 738 * Detach an interface, removing it from the 739 * list of "active" interfaces. 740 */ 741 void 742 if_detach(struct ifnet *ifp) 743 { 744 struct radix_node_head *rnh; 745 int i; 746 int cpu, origcpu; 747 struct domain *dp; 748 749 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 750 751 /* 752 * Remove routes and flush queues. 753 */ 754 crit_enter(); 755 #ifdef IFPOLL_ENABLE 756 if (ifp->if_flags & IFF_NPOLLING) 757 ifpoll_deregister(ifp); 758 #endif 759 if_down(ifp); 760 761 #ifdef ALTQ 762 if (ifq_is_enabled(&ifp->if_snd)) 763 altq_disable(&ifp->if_snd); 764 if (ifq_is_attached(&ifp->if_snd)) 765 altq_detach(&ifp->if_snd); 766 #endif 767 768 /* 769 * Clean up all addresses. 770 */ 771 ifp->if_lladdr = NULL; 772 773 if_purgeaddrs_nolink(ifp); 774 if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) { 775 struct ifaddr *ifa; 776 777 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 778 KASSERT(ifa->ifa_addr->sa_family == AF_LINK, 779 ("non-link ifaddr is left on if_addrheads")); 780 781 ifa_ifunlink(ifa, ifp); 782 ifa_destroy(ifa); 783 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]), 784 ("there are still ifaddrs left on if_addrheads")); 785 } 786 787 #ifdef INET 788 /* 789 * Remove all IPv4 kernel structures related to ifp. 790 */ 791 in_ifdetach(ifp); 792 #endif 793 794 #ifdef INET6 795 /* 796 * Remove all IPv6 kernel structs related to ifp. This should be done 797 * before removing routing entries below, since IPv6 interface direct 798 * routes are expected to be removed by the IPv6-specific kernel API. 799 * Otherwise, the kernel will detect some inconsistency and bark it. 800 */ 801 in6_ifdetach(ifp); 802 #endif 803 804 /* 805 * Delete all remaining routes using this interface 806 * Unfortuneatly the only way to do this is to slog through 807 * the entire routing table looking for routes which point 808 * to this interface...oh well... 809 */ 810 origcpu = mycpuid; 811 for (cpu = 0; cpu < ncpus; cpu++) { 812 lwkt_migratecpu(cpu); 813 for (i = 1; i <= AF_MAX; i++) { 814 if ((rnh = rt_tables[cpu][i]) == NULL) 815 continue; 816 rnh->rnh_walktree(rnh, if_rtdel, ifp); 817 } 818 } 819 lwkt_migratecpu(origcpu); 820 821 /* Announce that the interface is gone. */ 822 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 823 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 824 825 SLIST_FOREACH(dp, &domains, dom_next) 826 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 827 (*dp->dom_ifdetach)(ifp, 828 ifp->if_afdata[dp->dom_family]); 829 830 /* 831 * Remove interface from ifindex2ifp[] and maybe decrement if_index. 832 */ 833 ifindex2ifnet[ifp->if_index] = NULL; 834 while (if_index > 0 && ifindex2ifnet[if_index] == NULL) 835 if_index--; 836 837 TAILQ_REMOVE(&ifnet, ifp, if_link); 838 kfree(ifp->if_addrheads, M_IFADDR); 839 840 lwkt_synchronize_ipiqs("if_detach"); 841 ifq_stage_detach(&ifp->if_snd); 842 843 kfree(ifp->if_start_nmsg, M_LWKTMSG); 844 kfree(ifp->if_snd.altq_stage, M_DEVBUF); 845 crit_exit(); 846 } 847 848 /* 849 * Create interface group without members 850 */ 851 struct ifg_group * 852 if_creategroup(const char *groupname) 853 { 854 struct ifg_group *ifg = NULL; 855 856 if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group), 857 M_TEMP, M_NOWAIT)) == NULL) 858 return (NULL); 859 860 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 861 ifg->ifg_refcnt = 0; 862 ifg->ifg_carp_demoted = 0; 863 TAILQ_INIT(&ifg->ifg_members); 864 #if NPF > 0 865 pfi_attach_ifgroup(ifg); 866 #endif 867 TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next); 868 869 return (ifg); 870 } 871 872 /* 873 * Add a group to an interface 874 */ 875 int 876 if_addgroup(struct ifnet *ifp, const char *groupname) 877 { 878 struct ifg_list *ifgl; 879 struct ifg_group *ifg = NULL; 880 struct ifg_member *ifgm; 881 882 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 883 groupname[strlen(groupname) - 1] <= '9') 884 return (EINVAL); 885 886 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 887 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 888 return (EEXIST); 889 890 if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) 891 return (ENOMEM); 892 893 if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 894 kfree(ifgl, M_TEMP); 895 return (ENOMEM); 896 } 897 898 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 899 if (!strcmp(ifg->ifg_group, groupname)) 900 break; 901 902 if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) { 903 kfree(ifgl, M_TEMP); 904 kfree(ifgm, M_TEMP); 905 return (ENOMEM); 906 } 907 908 ifg->ifg_refcnt++; 909 ifgl->ifgl_group = ifg; 910 ifgm->ifgm_ifp = ifp; 911 912 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 913 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 914 915 #if NPF > 0 916 pfi_group_change(groupname); 917 #endif 918 919 return (0); 920 } 921 922 /* 923 * Remove a group from an interface 924 */ 925 int 926 if_delgroup(struct ifnet *ifp, const char *groupname) 927 { 928 struct ifg_list *ifgl; 929 struct ifg_member *ifgm; 930 931 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 932 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 933 break; 934 if (ifgl == NULL) 935 return (ENOENT); 936 937 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 938 939 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 940 if (ifgm->ifgm_ifp == ifp) 941 break; 942 943 if (ifgm != NULL) { 944 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 945 kfree(ifgm, M_TEMP); 946 } 947 948 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 949 TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next); 950 #if NPF > 0 951 pfi_detach_ifgroup(ifgl->ifgl_group); 952 #endif 953 kfree(ifgl->ifgl_group, M_TEMP); 954 } 955 956 kfree(ifgl, M_TEMP); 957 958 #if NPF > 0 959 pfi_group_change(groupname); 960 #endif 961 962 return (0); 963 } 964 965 /* 966 * Stores all groups from an interface in memory pointed 967 * to by data 968 */ 969 int 970 if_getgroup(caddr_t data, struct ifnet *ifp) 971 { 972 int len, error; 973 struct ifg_list *ifgl; 974 struct ifg_req ifgrq, *ifgp; 975 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 976 977 if (ifgr->ifgr_len == 0) { 978 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 979 ifgr->ifgr_len += sizeof(struct ifg_req); 980 return (0); 981 } 982 983 len = ifgr->ifgr_len; 984 ifgp = ifgr->ifgr_groups; 985 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 986 if (len < sizeof(ifgrq)) 987 return (EINVAL); 988 bzero(&ifgrq, sizeof ifgrq); 989 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 990 sizeof(ifgrq.ifgrq_group)); 991 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 992 sizeof(struct ifg_req)))) 993 return (error); 994 len -= sizeof(ifgrq); 995 ifgp++; 996 } 997 998 return (0); 999 } 1000 1001 /* 1002 * Stores all members of a group in memory pointed to by data 1003 */ 1004 int 1005 if_getgroupmembers(caddr_t data) 1006 { 1007 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 1008 struct ifg_group *ifg; 1009 struct ifg_member *ifgm; 1010 struct ifg_req ifgrq, *ifgp; 1011 int len, error; 1012 1013 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 1014 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 1015 break; 1016 if (ifg == NULL) 1017 return (ENOENT); 1018 1019 if (ifgr->ifgr_len == 0) { 1020 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1021 ifgr->ifgr_len += sizeof(ifgrq); 1022 return (0); 1023 } 1024 1025 len = ifgr->ifgr_len; 1026 ifgp = ifgr->ifgr_groups; 1027 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1028 if (len < sizeof(ifgrq)) 1029 return (EINVAL); 1030 bzero(&ifgrq, sizeof ifgrq); 1031 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1032 sizeof(ifgrq.ifgrq_member)); 1033 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 1034 sizeof(struct ifg_req)))) 1035 return (error); 1036 len -= sizeof(ifgrq); 1037 ifgp++; 1038 } 1039 1040 return (0); 1041 } 1042 1043 /* 1044 * Delete Routes for a Network Interface 1045 * 1046 * Called for each routing entry via the rnh->rnh_walktree() call above 1047 * to delete all route entries referencing a detaching network interface. 1048 * 1049 * Arguments: 1050 * rn pointer to node in the routing table 1051 * arg argument passed to rnh->rnh_walktree() - detaching interface 1052 * 1053 * Returns: 1054 * 0 successful 1055 * errno failed - reason indicated 1056 * 1057 */ 1058 static int 1059 if_rtdel(struct radix_node *rn, void *arg) 1060 { 1061 struct rtentry *rt = (struct rtentry *)rn; 1062 struct ifnet *ifp = arg; 1063 int err; 1064 1065 if (rt->rt_ifp == ifp) { 1066 1067 /* 1068 * Protect (sorta) against walktree recursion problems 1069 * with cloned routes 1070 */ 1071 if (!(rt->rt_flags & RTF_UP)) 1072 return (0); 1073 1074 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, 1075 rt_mask(rt), rt->rt_flags, 1076 NULL); 1077 if (err) { 1078 log(LOG_WARNING, "if_rtdel: error %d\n", err); 1079 } 1080 } 1081 1082 return (0); 1083 } 1084 1085 /* 1086 * Locate an interface based on a complete address. 1087 */ 1088 struct ifaddr * 1089 ifa_ifwithaddr(struct sockaddr *addr) 1090 { 1091 struct ifnet *ifp; 1092 1093 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1094 struct ifaddr_container *ifac; 1095 1096 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1097 struct ifaddr *ifa = ifac->ifa; 1098 1099 if (ifa->ifa_addr->sa_family != addr->sa_family) 1100 continue; 1101 if (sa_equal(addr, ifa->ifa_addr)) 1102 return (ifa); 1103 if ((ifp->if_flags & IFF_BROADCAST) && 1104 ifa->ifa_broadaddr && 1105 /* IPv6 doesn't have broadcast */ 1106 ifa->ifa_broadaddr->sa_len != 0 && 1107 sa_equal(ifa->ifa_broadaddr, addr)) 1108 return (ifa); 1109 } 1110 } 1111 return (NULL); 1112 } 1113 /* 1114 * Locate the point to point interface with a given destination address. 1115 */ 1116 struct ifaddr * 1117 ifa_ifwithdstaddr(struct sockaddr *addr) 1118 { 1119 struct ifnet *ifp; 1120 1121 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1122 struct ifaddr_container *ifac; 1123 1124 if (!(ifp->if_flags & IFF_POINTOPOINT)) 1125 continue; 1126 1127 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1128 struct ifaddr *ifa = ifac->ifa; 1129 1130 if (ifa->ifa_addr->sa_family != addr->sa_family) 1131 continue; 1132 if (ifa->ifa_dstaddr && 1133 sa_equal(addr, ifa->ifa_dstaddr)) 1134 return (ifa); 1135 } 1136 } 1137 return (NULL); 1138 } 1139 1140 /* 1141 * Find an interface on a specific network. If many, choice 1142 * is most specific found. 1143 */ 1144 struct ifaddr * 1145 ifa_ifwithnet(struct sockaddr *addr) 1146 { 1147 struct ifnet *ifp; 1148 struct ifaddr *ifa_maybe = NULL; 1149 u_int af = addr->sa_family; 1150 char *addr_data = addr->sa_data, *cplim; 1151 1152 /* 1153 * AF_LINK addresses can be looked up directly by their index number, 1154 * so do that if we can. 1155 */ 1156 if (af == AF_LINK) { 1157 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 1158 1159 if (sdl->sdl_index && sdl->sdl_index <= if_index) 1160 return (ifindex2ifnet[sdl->sdl_index]->if_lladdr); 1161 } 1162 1163 /* 1164 * Scan though each interface, looking for ones that have 1165 * addresses in this address family. 1166 */ 1167 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1168 struct ifaddr_container *ifac; 1169 1170 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1171 struct ifaddr *ifa = ifac->ifa; 1172 char *cp, *cp2, *cp3; 1173 1174 if (ifa->ifa_addr->sa_family != af) 1175 next: continue; 1176 if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) { 1177 /* 1178 * This is a bit broken as it doesn't 1179 * take into account that the remote end may 1180 * be a single node in the network we are 1181 * looking for. 1182 * The trouble is that we don't know the 1183 * netmask for the remote end. 1184 */ 1185 if (ifa->ifa_dstaddr != NULL && 1186 sa_equal(addr, ifa->ifa_dstaddr)) 1187 return (ifa); 1188 } else { 1189 /* 1190 * if we have a special address handler, 1191 * then use it instead of the generic one. 1192 */ 1193 if (ifa->ifa_claim_addr) { 1194 if ((*ifa->ifa_claim_addr)(ifa, addr)) { 1195 return (ifa); 1196 } else { 1197 continue; 1198 } 1199 } 1200 1201 /* 1202 * Scan all the bits in the ifa's address. 1203 * If a bit dissagrees with what we are 1204 * looking for, mask it with the netmask 1205 * to see if it really matters. 1206 * (A byte at a time) 1207 */ 1208 if (ifa->ifa_netmask == 0) 1209 continue; 1210 cp = addr_data; 1211 cp2 = ifa->ifa_addr->sa_data; 1212 cp3 = ifa->ifa_netmask->sa_data; 1213 cplim = ifa->ifa_netmask->sa_len + 1214 (char *)ifa->ifa_netmask; 1215 while (cp3 < cplim) 1216 if ((*cp++ ^ *cp2++) & *cp3++) 1217 goto next; /* next address! */ 1218 /* 1219 * If the netmask of what we just found 1220 * is more specific than what we had before 1221 * (if we had one) then remember the new one 1222 * before continuing to search 1223 * for an even better one. 1224 */ 1225 if (ifa_maybe == NULL || 1226 rn_refines((char *)ifa->ifa_netmask, 1227 (char *)ifa_maybe->ifa_netmask)) 1228 ifa_maybe = ifa; 1229 } 1230 } 1231 } 1232 return (ifa_maybe); 1233 } 1234 1235 /* 1236 * Find an interface address specific to an interface best matching 1237 * a given address. 1238 */ 1239 struct ifaddr * 1240 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1241 { 1242 struct ifaddr_container *ifac; 1243 char *cp, *cp2, *cp3; 1244 char *cplim; 1245 struct ifaddr *ifa_maybe = NULL; 1246 u_int af = addr->sa_family; 1247 1248 if (af >= AF_MAX) 1249 return (0); 1250 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1251 struct ifaddr *ifa = ifac->ifa; 1252 1253 if (ifa->ifa_addr->sa_family != af) 1254 continue; 1255 if (ifa_maybe == NULL) 1256 ifa_maybe = ifa; 1257 if (ifa->ifa_netmask == NULL) { 1258 if (sa_equal(addr, ifa->ifa_addr) || 1259 (ifa->ifa_dstaddr != NULL && 1260 sa_equal(addr, ifa->ifa_dstaddr))) 1261 return (ifa); 1262 continue; 1263 } 1264 if (ifp->if_flags & IFF_POINTOPOINT) { 1265 if (sa_equal(addr, ifa->ifa_dstaddr)) 1266 return (ifa); 1267 } else { 1268 cp = addr->sa_data; 1269 cp2 = ifa->ifa_addr->sa_data; 1270 cp3 = ifa->ifa_netmask->sa_data; 1271 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1272 for (; cp3 < cplim; cp3++) 1273 if ((*cp++ ^ *cp2++) & *cp3) 1274 break; 1275 if (cp3 == cplim) 1276 return (ifa); 1277 } 1278 } 1279 return (ifa_maybe); 1280 } 1281 1282 /* 1283 * Default action when installing a route with a Link Level gateway. 1284 * Lookup an appropriate real ifa to point to. 1285 * This should be moved to /sys/net/link.c eventually. 1286 */ 1287 static void 1288 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) 1289 { 1290 struct ifaddr *ifa; 1291 struct sockaddr *dst; 1292 struct ifnet *ifp; 1293 1294 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1295 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL) 1296 return; 1297 ifa = ifaof_ifpforaddr(dst, ifp); 1298 if (ifa != NULL) { 1299 IFAFREE(rt->rt_ifa); 1300 IFAREF(ifa); 1301 rt->rt_ifa = ifa; 1302 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1303 ifa->ifa_rtrequest(cmd, rt, info); 1304 } 1305 } 1306 1307 /* 1308 * Mark an interface down and notify protocols of 1309 * the transition. 1310 * NOTE: must be called at splnet or eqivalent. 1311 */ 1312 void 1313 if_unroute(struct ifnet *ifp, int flag, int fam) 1314 { 1315 struct ifaddr_container *ifac; 1316 1317 ifp->if_flags &= ~flag; 1318 getmicrotime(&ifp->if_lastchange); 1319 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1320 struct ifaddr *ifa = ifac->ifa; 1321 1322 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1323 kpfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1324 } 1325 ifq_purge_all(&ifp->if_snd); 1326 rt_ifmsg(ifp); 1327 } 1328 1329 /* 1330 * Mark an interface up and notify protocols of 1331 * the transition. 1332 * NOTE: must be called at splnet or eqivalent. 1333 */ 1334 void 1335 if_route(struct ifnet *ifp, int flag, int fam) 1336 { 1337 struct ifaddr_container *ifac; 1338 1339 ifq_purge_all(&ifp->if_snd); 1340 ifp->if_flags |= flag; 1341 getmicrotime(&ifp->if_lastchange); 1342 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1343 struct ifaddr *ifa = ifac->ifa; 1344 1345 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1346 kpfctlinput(PRC_IFUP, ifa->ifa_addr); 1347 } 1348 rt_ifmsg(ifp); 1349 #ifdef INET6 1350 in6_if_up(ifp); 1351 #endif 1352 } 1353 1354 /* 1355 * Mark an interface down and notify protocols of the transition. An 1356 * interface going down is also considered to be a synchronizing event. 1357 * We must ensure that all packet processing related to the interface 1358 * has completed before we return so e.g. the caller can free the ifnet 1359 * structure that the mbufs may be referencing. 1360 * 1361 * NOTE: must be called at splnet or eqivalent. 1362 */ 1363 void 1364 if_down(struct ifnet *ifp) 1365 { 1366 if_unroute(ifp, IFF_UP, AF_UNSPEC); 1367 netmsg_service_sync(); 1368 } 1369 1370 /* 1371 * Mark an interface up and notify protocols of 1372 * the transition. 1373 * NOTE: must be called at splnet or eqivalent. 1374 */ 1375 void 1376 if_up(struct ifnet *ifp) 1377 { 1378 if_route(ifp, IFF_UP, AF_UNSPEC); 1379 } 1380 1381 /* 1382 * Process a link state change. 1383 * NOTE: must be called at splsoftnet or equivalent. 1384 */ 1385 void 1386 if_link_state_change(struct ifnet *ifp) 1387 { 1388 int link_state = ifp->if_link_state; 1389 1390 rt_ifmsg(ifp); 1391 devctl_notify("IFNET", ifp->if_xname, 1392 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); 1393 } 1394 1395 /* 1396 * Handle interface watchdog timer routines. Called 1397 * from softclock, we decrement timers (if set) and 1398 * call the appropriate interface routine on expiration. 1399 */ 1400 static void 1401 if_slowtimo(void *arg) 1402 { 1403 struct ifnet *ifp; 1404 1405 crit_enter(); 1406 1407 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1408 if (ifp->if_timer == 0 || --ifp->if_timer) 1409 continue; 1410 if (ifp->if_watchdog) { 1411 if (ifnet_tryserialize_all(ifp)) { 1412 (*ifp->if_watchdog)(ifp); 1413 ifnet_deserialize_all(ifp); 1414 } else { 1415 /* try again next timeout */ 1416 ++ifp->if_timer; 1417 } 1418 } 1419 } 1420 1421 crit_exit(); 1422 1423 callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL); 1424 } 1425 1426 /* 1427 * Map interface name to 1428 * interface structure pointer. 1429 */ 1430 struct ifnet * 1431 ifunit(const char *name) 1432 { 1433 struct ifnet *ifp; 1434 1435 /* 1436 * Search all the interfaces for this name/number 1437 */ 1438 1439 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1440 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) 1441 break; 1442 } 1443 return (ifp); 1444 } 1445 1446 1447 /* 1448 * Map interface name in a sockaddr_dl to 1449 * interface structure pointer. 1450 */ 1451 struct ifnet * 1452 if_withname(struct sockaddr *sa) 1453 { 1454 char ifname[IFNAMSIZ+1]; 1455 struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa; 1456 1457 if ( (sa->sa_family != AF_LINK) || (sdl->sdl_nlen == 0) || 1458 (sdl->sdl_nlen > IFNAMSIZ) ) 1459 return NULL; 1460 1461 /* 1462 * ifunit wants a null-terminated name. It may not be null-terminated 1463 * in the sockaddr. We don't want to change the caller's sockaddr, 1464 * and there might not be room to put the trailing null anyway, so we 1465 * make a local copy that we know we can null terminate safely. 1466 */ 1467 1468 bcopy(sdl->sdl_data, ifname, sdl->sdl_nlen); 1469 ifname[sdl->sdl_nlen] = '\0'; 1470 return ifunit(ifname); 1471 } 1472 1473 1474 /* 1475 * Interface ioctls. 1476 */ 1477 int 1478 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred) 1479 { 1480 struct ifnet *ifp; 1481 struct ifreq *ifr; 1482 struct ifstat *ifs; 1483 int error; 1484 short oif_flags; 1485 int new_flags; 1486 #ifdef COMPAT_43 1487 int ocmd; 1488 #endif 1489 size_t namelen, onamelen; 1490 char new_name[IFNAMSIZ]; 1491 struct ifaddr *ifa; 1492 struct sockaddr_dl *sdl; 1493 1494 switch (cmd) { 1495 case SIOCGIFCONF: 1496 case OSIOCGIFCONF: 1497 return (ifconf(cmd, data, cred)); 1498 default: 1499 break; 1500 } 1501 1502 ifr = (struct ifreq *)data; 1503 1504 switch (cmd) { 1505 case SIOCIFCREATE: 1506 case SIOCIFCREATE2: 1507 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1508 return (error); 1509 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), 1510 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL)); 1511 case SIOCIFDESTROY: 1512 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1513 return (error); 1514 return (if_clone_destroy(ifr->ifr_name)); 1515 case SIOCIFGCLONERS: 1516 return (if_clone_list((struct if_clonereq *)data)); 1517 default: 1518 break; 1519 } 1520 1521 /* 1522 * Nominal ioctl through interface, lookup the ifp and obtain a 1523 * lock to serialize the ifconfig ioctl operation. 1524 */ 1525 ifp = ifunit(ifr->ifr_name); 1526 if (ifp == NULL) 1527 return (ENXIO); 1528 error = 0; 1529 mtx_lock(&ifp->if_ioctl_mtx); 1530 1531 switch (cmd) { 1532 case SIOCGIFINDEX: 1533 ifr->ifr_index = ifp->if_index; 1534 break; 1535 1536 case SIOCGIFFLAGS: 1537 ifr->ifr_flags = ifp->if_flags; 1538 ifr->ifr_flagshigh = ifp->if_flags >> 16; 1539 break; 1540 1541 case SIOCGIFCAP: 1542 ifr->ifr_reqcap = ifp->if_capabilities; 1543 ifr->ifr_curcap = ifp->if_capenable; 1544 break; 1545 1546 case SIOCGIFMETRIC: 1547 ifr->ifr_metric = ifp->if_metric; 1548 break; 1549 1550 case SIOCGIFMTU: 1551 ifr->ifr_mtu = ifp->if_mtu; 1552 break; 1553 1554 case SIOCGIFDATA: 1555 error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data, 1556 sizeof(ifp->if_data)); 1557 break; 1558 1559 case SIOCGIFPHYS: 1560 ifr->ifr_phys = ifp->if_physical; 1561 break; 1562 1563 case SIOCGIFPOLLCPU: 1564 ifr->ifr_pollcpu = -1; 1565 break; 1566 1567 case SIOCSIFPOLLCPU: 1568 break; 1569 1570 case SIOCSIFFLAGS: 1571 error = priv_check_cred(cred, PRIV_ROOT, 0); 1572 if (error) 1573 break; 1574 new_flags = (ifr->ifr_flags & 0xffff) | 1575 (ifr->ifr_flagshigh << 16); 1576 if (ifp->if_flags & IFF_SMART) { 1577 /* Smart drivers twiddle their own routes */ 1578 } else if (ifp->if_flags & IFF_UP && 1579 (new_flags & IFF_UP) == 0) { 1580 crit_enter(); 1581 if_down(ifp); 1582 crit_exit(); 1583 } else if (new_flags & IFF_UP && 1584 (ifp->if_flags & IFF_UP) == 0) { 1585 crit_enter(); 1586 if_up(ifp); 1587 crit_exit(); 1588 } 1589 1590 #ifdef IFPOLL_ENABLE 1591 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) { 1592 if (new_flags & IFF_NPOLLING) 1593 ifpoll_register(ifp); 1594 else 1595 ifpoll_deregister(ifp); 1596 } 1597 #endif 1598 1599 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 1600 (new_flags &~ IFF_CANTCHANGE); 1601 if (new_flags & IFF_PPROMISC) { 1602 /* Permanently promiscuous mode requested */ 1603 ifp->if_flags |= IFF_PROMISC; 1604 } else if (ifp->if_pcount == 0) { 1605 ifp->if_flags &= ~IFF_PROMISC; 1606 } 1607 if (ifp->if_ioctl) { 1608 ifnet_serialize_all(ifp); 1609 ifp->if_ioctl(ifp, cmd, data, cred); 1610 ifnet_deserialize_all(ifp); 1611 } 1612 getmicrotime(&ifp->if_lastchange); 1613 break; 1614 1615 case SIOCSIFCAP: 1616 error = priv_check_cred(cred, PRIV_ROOT, 0); 1617 if (error) 1618 break; 1619 if (ifr->ifr_reqcap & ~ifp->if_capabilities) { 1620 error = EINVAL; 1621 break; 1622 } 1623 ifnet_serialize_all(ifp); 1624 ifp->if_ioctl(ifp, cmd, data, cred); 1625 ifnet_deserialize_all(ifp); 1626 break; 1627 1628 case SIOCSIFNAME: 1629 error = priv_check_cred(cred, PRIV_ROOT, 0); 1630 if (error) 1631 break; 1632 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 1633 if (error) 1634 break; 1635 if (new_name[0] == '\0') { 1636 error = EINVAL; 1637 break; 1638 } 1639 if (ifunit(new_name) != NULL) { 1640 error = EEXIST; 1641 break; 1642 } 1643 1644 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 1645 1646 /* Announce the departure of the interface. */ 1647 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1648 1649 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 1650 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 1651 /* XXX IFA_LOCK(ifa); */ 1652 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1653 namelen = strlen(new_name); 1654 onamelen = sdl->sdl_nlen; 1655 /* 1656 * Move the address if needed. This is safe because we 1657 * allocate space for a name of length IFNAMSIZ when we 1658 * create this in if_attach(). 1659 */ 1660 if (namelen != onamelen) { 1661 bcopy(sdl->sdl_data + onamelen, 1662 sdl->sdl_data + namelen, sdl->sdl_alen); 1663 } 1664 bcopy(new_name, sdl->sdl_data, namelen); 1665 sdl->sdl_nlen = namelen; 1666 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 1667 bzero(sdl->sdl_data, onamelen); 1668 while (namelen != 0) 1669 sdl->sdl_data[--namelen] = 0xff; 1670 /* XXX IFA_UNLOCK(ifa) */ 1671 1672 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 1673 1674 /* Announce the return of the interface. */ 1675 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 1676 break; 1677 1678 case SIOCSIFMETRIC: 1679 error = priv_check_cred(cred, PRIV_ROOT, 0); 1680 if (error) 1681 break; 1682 ifp->if_metric = ifr->ifr_metric; 1683 getmicrotime(&ifp->if_lastchange); 1684 break; 1685 1686 case SIOCSIFPHYS: 1687 error = priv_check_cred(cred, PRIV_ROOT, 0); 1688 if (error) 1689 break; 1690 if (ifp->if_ioctl == NULL) { 1691 error = EOPNOTSUPP; 1692 break; 1693 } 1694 ifnet_serialize_all(ifp); 1695 error = ifp->if_ioctl(ifp, cmd, data, cred); 1696 ifnet_deserialize_all(ifp); 1697 if (error == 0) 1698 getmicrotime(&ifp->if_lastchange); 1699 break; 1700 1701 case SIOCSIFMTU: 1702 { 1703 u_long oldmtu = ifp->if_mtu; 1704 1705 error = priv_check_cred(cred, PRIV_ROOT, 0); 1706 if (error) 1707 break; 1708 if (ifp->if_ioctl == NULL) { 1709 error = EOPNOTSUPP; 1710 break; 1711 } 1712 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) { 1713 error = EINVAL; 1714 break; 1715 } 1716 ifnet_serialize_all(ifp); 1717 error = ifp->if_ioctl(ifp, cmd, data, cred); 1718 ifnet_deserialize_all(ifp); 1719 if (error == 0) { 1720 getmicrotime(&ifp->if_lastchange); 1721 rt_ifmsg(ifp); 1722 } 1723 /* 1724 * If the link MTU changed, do network layer specific procedure. 1725 */ 1726 if (ifp->if_mtu != oldmtu) { 1727 #ifdef INET6 1728 nd6_setmtu(ifp); 1729 #endif 1730 } 1731 break; 1732 } 1733 1734 case SIOCADDMULTI: 1735 case SIOCDELMULTI: 1736 error = priv_check_cred(cred, PRIV_ROOT, 0); 1737 if (error) 1738 break; 1739 1740 /* Don't allow group membership on non-multicast interfaces. */ 1741 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 1742 error = EOPNOTSUPP; 1743 break; 1744 } 1745 1746 /* Don't let users screw up protocols' entries. */ 1747 if (ifr->ifr_addr.sa_family != AF_LINK) { 1748 error = EINVAL; 1749 break; 1750 } 1751 1752 if (cmd == SIOCADDMULTI) { 1753 struct ifmultiaddr *ifma; 1754 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 1755 } else { 1756 error = if_delmulti(ifp, &ifr->ifr_addr); 1757 } 1758 if (error == 0) 1759 getmicrotime(&ifp->if_lastchange); 1760 break; 1761 1762 case SIOCSIFPHYADDR: 1763 case SIOCDIFPHYADDR: 1764 #ifdef INET6 1765 case SIOCSIFPHYADDR_IN6: 1766 #endif 1767 case SIOCSLIFPHYADDR: 1768 case SIOCSIFMEDIA: 1769 case SIOCSIFGENERIC: 1770 error = priv_check_cred(cred, PRIV_ROOT, 0); 1771 if (error) 1772 break; 1773 if (ifp->if_ioctl == 0) { 1774 error = EOPNOTSUPP; 1775 break; 1776 } 1777 ifnet_serialize_all(ifp); 1778 error = ifp->if_ioctl(ifp, cmd, data, cred); 1779 ifnet_deserialize_all(ifp); 1780 if (error == 0) 1781 getmicrotime(&ifp->if_lastchange); 1782 break; 1783 1784 case SIOCGIFSTATUS: 1785 ifs = (struct ifstat *)data; 1786 ifs->ascii[0] = '\0'; 1787 /* fall through */ 1788 case SIOCGIFPSRCADDR: 1789 case SIOCGIFPDSTADDR: 1790 case SIOCGLIFPHYADDR: 1791 case SIOCGIFMEDIA: 1792 case SIOCGIFGENERIC: 1793 if (ifp->if_ioctl == NULL) { 1794 error = EOPNOTSUPP; 1795 break; 1796 } 1797 ifnet_serialize_all(ifp); 1798 error = ifp->if_ioctl(ifp, cmd, data, cred); 1799 ifnet_deserialize_all(ifp); 1800 break; 1801 1802 case SIOCSIFLLADDR: 1803 error = priv_check_cred(cred, PRIV_ROOT, 0); 1804 if (error) 1805 break; 1806 error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, 1807 ifr->ifr_addr.sa_len); 1808 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 1809 break; 1810 1811 default: 1812 oif_flags = ifp->if_flags; 1813 if (so->so_proto == 0) { 1814 error = EOPNOTSUPP; 1815 break; 1816 } 1817 #ifndef COMPAT_43 1818 error = so_pru_control_direct(so, cmd, data, ifp); 1819 #else 1820 ocmd = cmd; 1821 1822 switch (cmd) { 1823 case SIOCSIFDSTADDR: 1824 case SIOCSIFADDR: 1825 case SIOCSIFBRDADDR: 1826 case SIOCSIFNETMASK: 1827 #if BYTE_ORDER != BIG_ENDIAN 1828 if (ifr->ifr_addr.sa_family == 0 && 1829 ifr->ifr_addr.sa_len < 16) { 1830 ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len; 1831 ifr->ifr_addr.sa_len = 16; 1832 } 1833 #else 1834 if (ifr->ifr_addr.sa_len == 0) 1835 ifr->ifr_addr.sa_len = 16; 1836 #endif 1837 break; 1838 case OSIOCGIFADDR: 1839 cmd = SIOCGIFADDR; 1840 break; 1841 case OSIOCGIFDSTADDR: 1842 cmd = SIOCGIFDSTADDR; 1843 break; 1844 case OSIOCGIFBRDADDR: 1845 cmd = SIOCGIFBRDADDR; 1846 break; 1847 case OSIOCGIFNETMASK: 1848 cmd = SIOCGIFNETMASK; 1849 break; 1850 default: 1851 break; 1852 } 1853 1854 error = so_pru_control_direct(so, cmd, data, ifp); 1855 1856 switch (ocmd) { 1857 case OSIOCGIFADDR: 1858 case OSIOCGIFDSTADDR: 1859 case OSIOCGIFBRDADDR: 1860 case OSIOCGIFNETMASK: 1861 *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family; 1862 break; 1863 } 1864 #endif /* COMPAT_43 */ 1865 1866 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 1867 #ifdef INET6 1868 DELAY(100);/* XXX: temporary workaround for fxp issue*/ 1869 if (ifp->if_flags & IFF_UP) { 1870 crit_enter(); 1871 in6_if_up(ifp); 1872 crit_exit(); 1873 } 1874 #endif 1875 } 1876 break; 1877 } 1878 1879 mtx_unlock(&ifp->if_ioctl_mtx); 1880 return (error); 1881 } 1882 1883 /* 1884 * Set/clear promiscuous mode on interface ifp based on the truth value 1885 * of pswitch. The calls are reference counted so that only the first 1886 * "on" request actually has an effect, as does the final "off" request. 1887 * Results are undefined if the "off" and "on" requests are not matched. 1888 */ 1889 int 1890 ifpromisc(struct ifnet *ifp, int pswitch) 1891 { 1892 struct ifreq ifr; 1893 int error; 1894 int oldflags; 1895 1896 oldflags = ifp->if_flags; 1897 if (ifp->if_flags & IFF_PPROMISC) { 1898 /* Do nothing if device is in permanently promiscuous mode */ 1899 ifp->if_pcount += pswitch ? 1 : -1; 1900 return (0); 1901 } 1902 if (pswitch) { 1903 /* 1904 * If the device is not configured up, we cannot put it in 1905 * promiscuous mode. 1906 */ 1907 if ((ifp->if_flags & IFF_UP) == 0) 1908 return (ENETDOWN); 1909 if (ifp->if_pcount++ != 0) 1910 return (0); 1911 ifp->if_flags |= IFF_PROMISC; 1912 log(LOG_INFO, "%s: promiscuous mode enabled\n", 1913 ifp->if_xname); 1914 } else { 1915 if (--ifp->if_pcount > 0) 1916 return (0); 1917 ifp->if_flags &= ~IFF_PROMISC; 1918 log(LOG_INFO, "%s: promiscuous mode disabled\n", 1919 ifp->if_xname); 1920 } 1921 ifr.ifr_flags = ifp->if_flags; 1922 ifr.ifr_flagshigh = ifp->if_flags >> 16; 1923 ifnet_serialize_all(ifp); 1924 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); 1925 ifnet_deserialize_all(ifp); 1926 if (error == 0) 1927 rt_ifmsg(ifp); 1928 else 1929 ifp->if_flags = oldflags; 1930 return error; 1931 } 1932 1933 /* 1934 * Return interface configuration 1935 * of system. List may be used 1936 * in later ioctl's (above) to get 1937 * other information. 1938 */ 1939 static int 1940 ifconf(u_long cmd, caddr_t data, struct ucred *cred) 1941 { 1942 struct ifconf *ifc = (struct ifconf *)data; 1943 struct ifnet *ifp; 1944 struct sockaddr *sa; 1945 struct ifreq ifr, *ifrp; 1946 int space = ifc->ifc_len, error = 0; 1947 1948 ifrp = ifc->ifc_req; 1949 TAILQ_FOREACH(ifp, &ifnet, if_link) { 1950 struct ifaddr_container *ifac; 1951 int addrs; 1952 1953 if (space <= sizeof ifr) 1954 break; 1955 1956 /* 1957 * Zero the stack declared structure first to prevent 1958 * memory disclosure. 1959 */ 1960 bzero(&ifr, sizeof(ifr)); 1961 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 1962 >= sizeof(ifr.ifr_name)) { 1963 error = ENAMETOOLONG; 1964 break; 1965 } 1966 1967 addrs = 0; 1968 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1969 struct ifaddr *ifa = ifac->ifa; 1970 1971 if (space <= sizeof ifr) 1972 break; 1973 sa = ifa->ifa_addr; 1974 if (cred->cr_prison && 1975 prison_if(cred, sa)) 1976 continue; 1977 addrs++; 1978 #ifdef COMPAT_43 1979 if (cmd == OSIOCGIFCONF) { 1980 struct osockaddr *osa = 1981 (struct osockaddr *)&ifr.ifr_addr; 1982 ifr.ifr_addr = *sa; 1983 osa->sa_family = sa->sa_family; 1984 error = copyout(&ifr, ifrp, sizeof ifr); 1985 ifrp++; 1986 } else 1987 #endif 1988 if (sa->sa_len <= sizeof(*sa)) { 1989 ifr.ifr_addr = *sa; 1990 error = copyout(&ifr, ifrp, sizeof ifr); 1991 ifrp++; 1992 } else { 1993 if (space < (sizeof ifr) + sa->sa_len - 1994 sizeof(*sa)) 1995 break; 1996 space -= sa->sa_len - sizeof(*sa); 1997 error = copyout(&ifr, ifrp, 1998 sizeof ifr.ifr_name); 1999 if (error == 0) 2000 error = copyout(sa, &ifrp->ifr_addr, 2001 sa->sa_len); 2002 ifrp = (struct ifreq *) 2003 (sa->sa_len + (caddr_t)&ifrp->ifr_addr); 2004 } 2005 if (error) 2006 break; 2007 space -= sizeof ifr; 2008 } 2009 if (error) 2010 break; 2011 if (!addrs) { 2012 bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr); 2013 error = copyout(&ifr, ifrp, sizeof ifr); 2014 if (error) 2015 break; 2016 space -= sizeof ifr; 2017 ifrp++; 2018 } 2019 } 2020 ifc->ifc_len -= space; 2021 return (error); 2022 } 2023 2024 /* 2025 * Just like if_promisc(), but for all-multicast-reception mode. 2026 */ 2027 int 2028 if_allmulti(struct ifnet *ifp, int onswitch) 2029 { 2030 int error = 0; 2031 struct ifreq ifr; 2032 2033 crit_enter(); 2034 2035 if (onswitch) { 2036 if (ifp->if_amcount++ == 0) { 2037 ifp->if_flags |= IFF_ALLMULTI; 2038 ifr.ifr_flags = ifp->if_flags; 2039 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2040 ifnet_serialize_all(ifp); 2041 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2042 NULL); 2043 ifnet_deserialize_all(ifp); 2044 } 2045 } else { 2046 if (ifp->if_amcount > 1) { 2047 ifp->if_amcount--; 2048 } else { 2049 ifp->if_amcount = 0; 2050 ifp->if_flags &= ~IFF_ALLMULTI; 2051 ifr.ifr_flags = ifp->if_flags; 2052 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2053 ifnet_serialize_all(ifp); 2054 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2055 NULL); 2056 ifnet_deserialize_all(ifp); 2057 } 2058 } 2059 2060 crit_exit(); 2061 2062 if (error == 0) 2063 rt_ifmsg(ifp); 2064 return error; 2065 } 2066 2067 /* 2068 * Add a multicast listenership to the interface in question. 2069 * The link layer provides a routine which converts 2070 */ 2071 int 2072 if_addmulti( 2073 struct ifnet *ifp, /* interface to manipulate */ 2074 struct sockaddr *sa, /* address to add */ 2075 struct ifmultiaddr **retifma) 2076 { 2077 struct sockaddr *llsa, *dupsa; 2078 int error; 2079 struct ifmultiaddr *ifma; 2080 2081 /* 2082 * If the matching multicast address already exists 2083 * then don't add a new one, just add a reference 2084 */ 2085 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2086 if (sa_equal(sa, ifma->ifma_addr)) { 2087 ifma->ifma_refcount++; 2088 if (retifma) 2089 *retifma = ifma; 2090 return 0; 2091 } 2092 } 2093 2094 /* 2095 * Give the link layer a chance to accept/reject it, and also 2096 * find out which AF_LINK address this maps to, if it isn't one 2097 * already. 2098 */ 2099 if (ifp->if_resolvemulti) { 2100 ifnet_serialize_all(ifp); 2101 error = ifp->if_resolvemulti(ifp, &llsa, sa); 2102 ifnet_deserialize_all(ifp); 2103 if (error) 2104 return error; 2105 } else { 2106 llsa = NULL; 2107 } 2108 2109 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK); 2110 dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_WAITOK); 2111 bcopy(sa, dupsa, sa->sa_len); 2112 2113 ifma->ifma_addr = dupsa; 2114 ifma->ifma_lladdr = llsa; 2115 ifma->ifma_ifp = ifp; 2116 ifma->ifma_refcount = 1; 2117 ifma->ifma_protospec = 0; 2118 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 2119 2120 /* 2121 * Some network interfaces can scan the address list at 2122 * interrupt time; lock them out. 2123 */ 2124 crit_enter(); 2125 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2126 crit_exit(); 2127 if (retifma) 2128 *retifma = ifma; 2129 2130 if (llsa != NULL) { 2131 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2132 if (sa_equal(ifma->ifma_addr, llsa)) 2133 break; 2134 } 2135 if (ifma) { 2136 ifma->ifma_refcount++; 2137 } else { 2138 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_WAITOK); 2139 dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_WAITOK); 2140 bcopy(llsa, dupsa, llsa->sa_len); 2141 ifma->ifma_addr = dupsa; 2142 ifma->ifma_ifp = ifp; 2143 ifma->ifma_refcount = 1; 2144 crit_enter(); 2145 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2146 crit_exit(); 2147 } 2148 } 2149 /* 2150 * We are certain we have added something, so call down to the 2151 * interface to let them know about it. 2152 */ 2153 crit_enter(); 2154 ifnet_serialize_all(ifp); 2155 if (ifp->if_ioctl) 2156 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL); 2157 ifnet_deserialize_all(ifp); 2158 crit_exit(); 2159 2160 return 0; 2161 } 2162 2163 /* 2164 * Remove a reference to a multicast address on this interface. Yell 2165 * if the request does not match an existing membership. 2166 */ 2167 int 2168 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 2169 { 2170 struct ifmultiaddr *ifma; 2171 2172 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2173 if (sa_equal(sa, ifma->ifma_addr)) 2174 break; 2175 if (ifma == NULL) 2176 return ENOENT; 2177 2178 if (ifma->ifma_refcount > 1) { 2179 ifma->ifma_refcount--; 2180 return 0; 2181 } 2182 2183 rt_newmaddrmsg(RTM_DELMADDR, ifma); 2184 sa = ifma->ifma_lladdr; 2185 crit_enter(); 2186 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2187 /* 2188 * Make sure the interface driver is notified 2189 * in the case of a link layer mcast group being left. 2190 */ 2191 if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) { 2192 ifnet_serialize_all(ifp); 2193 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2194 ifnet_deserialize_all(ifp); 2195 } 2196 crit_exit(); 2197 kfree(ifma->ifma_addr, M_IFMADDR); 2198 kfree(ifma, M_IFMADDR); 2199 if (sa == NULL) 2200 return 0; 2201 2202 /* 2203 * Now look for the link-layer address which corresponds to 2204 * this network address. It had been squirreled away in 2205 * ifma->ifma_lladdr for this purpose (so we don't have 2206 * to call ifp->if_resolvemulti() again), and we saved that 2207 * value in sa above. If some nasty deleted the 2208 * link-layer address out from underneath us, we can deal because 2209 * the address we stored was is not the same as the one which was 2210 * in the record for the link-layer address. (So we don't complain 2211 * in that case.) 2212 */ 2213 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2214 if (sa_equal(sa, ifma->ifma_addr)) 2215 break; 2216 if (ifma == NULL) 2217 return 0; 2218 2219 if (ifma->ifma_refcount > 1) { 2220 ifma->ifma_refcount--; 2221 return 0; 2222 } 2223 2224 crit_enter(); 2225 ifnet_serialize_all(ifp); 2226 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2227 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2228 ifnet_deserialize_all(ifp); 2229 crit_exit(); 2230 kfree(ifma->ifma_addr, M_IFMADDR); 2231 kfree(sa, M_IFMADDR); 2232 kfree(ifma, M_IFMADDR); 2233 2234 return 0; 2235 } 2236 2237 /* 2238 * Delete all multicast group membership for an interface. 2239 * Should be used to quickly flush all multicast filters. 2240 */ 2241 void 2242 if_delallmulti(struct ifnet *ifp) 2243 { 2244 struct ifmultiaddr *ifma; 2245 struct ifmultiaddr *next; 2246 2247 TAILQ_FOREACH_MUTABLE(ifma, &ifp->if_multiaddrs, ifma_link, next) 2248 if_delmulti(ifp, ifma->ifma_addr); 2249 } 2250 2251 2252 /* 2253 * Set the link layer address on an interface. 2254 * 2255 * At this time we only support certain types of interfaces, 2256 * and we don't allow the length of the address to change. 2257 */ 2258 int 2259 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 2260 { 2261 struct sockaddr_dl *sdl; 2262 struct ifreq ifr; 2263 2264 sdl = IF_LLSOCKADDR(ifp); 2265 if (sdl == NULL) 2266 return (EINVAL); 2267 if (len != sdl->sdl_alen) /* don't allow length to change */ 2268 return (EINVAL); 2269 switch (ifp->if_type) { 2270 case IFT_ETHER: /* these types use struct arpcom */ 2271 case IFT_XETHER: 2272 case IFT_L2VLAN: 2273 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len); 2274 bcopy(lladdr, LLADDR(sdl), len); 2275 break; 2276 default: 2277 return (ENODEV); 2278 } 2279 /* 2280 * If the interface is already up, we need 2281 * to re-init it in order to reprogram its 2282 * address filter. 2283 */ 2284 ifnet_serialize_all(ifp); 2285 if ((ifp->if_flags & IFF_UP) != 0) { 2286 #ifdef INET 2287 struct ifaddr_container *ifac; 2288 #endif 2289 2290 ifp->if_flags &= ~IFF_UP; 2291 ifr.ifr_flags = ifp->if_flags; 2292 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2293 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2294 NULL); 2295 ifp->if_flags |= IFF_UP; 2296 ifr.ifr_flags = ifp->if_flags; 2297 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2298 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2299 NULL); 2300 #ifdef INET 2301 /* 2302 * Also send gratuitous ARPs to notify other nodes about 2303 * the address change. 2304 */ 2305 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2306 struct ifaddr *ifa = ifac->ifa; 2307 2308 if (ifa->ifa_addr != NULL && 2309 ifa->ifa_addr->sa_family == AF_INET) 2310 arp_gratuitous(ifp, ifa); 2311 } 2312 #endif 2313 } 2314 ifnet_deserialize_all(ifp); 2315 return (0); 2316 } 2317 2318 struct ifmultiaddr * 2319 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp) 2320 { 2321 struct ifmultiaddr *ifma; 2322 2323 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2324 if (sa_equal(ifma->ifma_addr, sa)) 2325 break; 2326 2327 return ifma; 2328 } 2329 2330 /* 2331 * This function locates the first real ethernet MAC from a network 2332 * card and loads it into node, returning 0 on success or ENOENT if 2333 * no suitable interfaces were found. It is used by the uuid code to 2334 * generate a unique 6-byte number. 2335 */ 2336 int 2337 if_getanyethermac(uint16_t *node, int minlen) 2338 { 2339 struct ifnet *ifp; 2340 struct sockaddr_dl *sdl; 2341 2342 TAILQ_FOREACH(ifp, &ifnet, if_link) { 2343 if (ifp->if_type != IFT_ETHER) 2344 continue; 2345 sdl = IF_LLSOCKADDR(ifp); 2346 if (sdl->sdl_alen < minlen) 2347 continue; 2348 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node, 2349 minlen); 2350 return(0); 2351 } 2352 return (ENOENT); 2353 } 2354 2355 /* 2356 * The name argument must be a pointer to storage which will last as 2357 * long as the interface does. For physical devices, the result of 2358 * device_get_name(dev) is a good choice and for pseudo-devices a 2359 * static string works well. 2360 */ 2361 void 2362 if_initname(struct ifnet *ifp, const char *name, int unit) 2363 { 2364 ifp->if_dname = name; 2365 ifp->if_dunit = unit; 2366 if (unit != IF_DUNIT_NONE) 2367 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 2368 else 2369 strlcpy(ifp->if_xname, name, IFNAMSIZ); 2370 } 2371 2372 int 2373 if_printf(struct ifnet *ifp, const char *fmt, ...) 2374 { 2375 __va_list ap; 2376 int retval; 2377 2378 retval = kprintf("%s: ", ifp->if_xname); 2379 __va_start(ap, fmt); 2380 retval += kvprintf(fmt, ap); 2381 __va_end(ap); 2382 return (retval); 2383 } 2384 2385 struct ifnet * 2386 if_alloc(uint8_t type) 2387 { 2388 struct ifnet *ifp; 2389 size_t size; 2390 2391 /* 2392 * XXX temporary hack until arpcom is setup in if_l2com 2393 */ 2394 if (type == IFT_ETHER) 2395 size = sizeof(struct arpcom); 2396 else 2397 size = sizeof(struct ifnet); 2398 2399 ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO); 2400 2401 ifp->if_type = type; 2402 2403 if (if_com_alloc[type] != NULL) { 2404 ifp->if_l2com = if_com_alloc[type](type, ifp); 2405 if (ifp->if_l2com == NULL) { 2406 kfree(ifp, M_IFNET); 2407 return (NULL); 2408 } 2409 } 2410 return (ifp); 2411 } 2412 2413 void 2414 if_free(struct ifnet *ifp) 2415 { 2416 kfree(ifp, M_IFNET); 2417 } 2418 2419 void 2420 ifq_set_classic(struct ifaltq *ifq) 2421 { 2422 ifq->altq_enqueue = ifq_classic_enqueue; 2423 ifq->altq_dequeue = ifq_classic_dequeue; 2424 ifq->altq_request = ifq_classic_request; 2425 } 2426 2427 int 2428 ifq_classic_enqueue(struct ifaltq *ifq, struct mbuf *m, 2429 struct altq_pktattr *pa __unused) 2430 { 2431 logifq(enqueue, ifq); 2432 if (IF_QFULL(ifq)) { 2433 m_freem(m); 2434 return(ENOBUFS); 2435 } else { 2436 IF_ENQUEUE(ifq, m); 2437 return(0); 2438 } 2439 } 2440 2441 struct mbuf * 2442 ifq_classic_dequeue(struct ifaltq *ifq, struct mbuf *mpolled, int op) 2443 { 2444 struct mbuf *m; 2445 2446 switch (op) { 2447 case ALTDQ_POLL: 2448 IF_POLL(ifq, m); 2449 break; 2450 case ALTDQ_REMOVE: 2451 logifq(dequeue, ifq); 2452 IF_DEQUEUE(ifq, m); 2453 break; 2454 default: 2455 panic("unsupported ALTQ dequeue op: %d", op); 2456 } 2457 KKASSERT(mpolled == NULL || mpolled == m); 2458 return(m); 2459 } 2460 2461 int 2462 ifq_classic_request(struct ifaltq *ifq, int req, void *arg) 2463 { 2464 switch (req) { 2465 case ALTRQ_PURGE: 2466 IF_DRAIN(ifq); 2467 break; 2468 default: 2469 panic("unsupported ALTQ request: %d", req); 2470 } 2471 return(0); 2472 } 2473 2474 static void 2475 ifq_try_ifstart(struct ifaltq *ifq, int force_sched) 2476 { 2477 struct ifnet *ifp = ifq->altq_ifp; 2478 int running = 0, need_sched; 2479 2480 /* 2481 * Try to do direct ifnet.if_start first, if there is 2482 * contention on ifnet's serializer, ifnet.if_start will 2483 * be scheduled on ifnet's CPU. 2484 */ 2485 if (!ifnet_tryserialize_tx(ifp)) { 2486 /* 2487 * ifnet serializer contention happened, 2488 * ifnet.if_start is scheduled on ifnet's 2489 * CPU, and we keep going. 2490 */ 2491 logifstart(contend_sched, ifp); 2492 ifq_ifstart_schedule(ifq, 1); 2493 return; 2494 } 2495 2496 if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_oactive(ifq)) { 2497 logifstart(run, ifp); 2498 ifp->if_start(ifp); 2499 if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_oactive(ifq)) 2500 running = 1; 2501 } 2502 need_sched = ifq_ifstart_need_schedule(ifq, running); 2503 2504 ifnet_deserialize_tx(ifp); 2505 2506 if (need_sched) { 2507 /* 2508 * More data need to be transmitted, ifnet.if_start is 2509 * scheduled on ifnet's CPU, and we keep going. 2510 * NOTE: ifnet.if_start interlock is not released. 2511 */ 2512 logifstart(sched, ifp); 2513 ifq_ifstart_schedule(ifq, force_sched); 2514 } 2515 } 2516 2517 /* 2518 * IFQ packets staging mechanism: 2519 * 2520 * The packets enqueued into IFQ are staged to a certain amount before the 2521 * ifnet's if_start is called. In this way, the driver could avoid writing 2522 * to hardware registers upon every packet, instead, hardware registers 2523 * could be written when certain amount of packets are put onto hardware 2524 * TX ring. The measurement on several modern NICs (emx(4), igb(4), bnx(4), 2525 * bge(4), jme(4)) shows that the hardware registers writing aggregation 2526 * could save ~20% CPU time when 18bytes UDP datagrams are transmitted at 2527 * 1.48Mpps. The performance improvement by hardware registers writing 2528 * aggeregation is also mentioned by Luigi Rizzo's netmap paper 2529 * (http://info.iet.unipi.it/~luigi/netmap/). 2530 * 2531 * IFQ packets staging is performed for two entry points into drivers's 2532 * transmission function: 2533 * - Direct ifnet's if_start calling, i.e. ifq_try_ifstart() 2534 * - ifnet's if_start scheduling, i.e. ifq_ifstart_schedule() 2535 * 2536 * IFQ packets staging will be stopped upon any of the following conditions: 2537 * - If the count of packets enqueued on the current CPU is great than or 2538 * equal to ifq_stage_cntmax. (XXX this should be per-interface) 2539 * - If the total length of packets enqueued on the current CPU is great 2540 * than or equal to the hardware's MTU - max_protohdr. max_protohdr is 2541 * cut from the hardware's MTU mainly bacause a full TCP segment's size 2542 * is usually less than hardware's MTU. 2543 * - ifq_ifstart_schedule() is not pending on the current CPU and if_start 2544 * interlock (if_snd.altq_started) is not released. 2545 * - The if_start_rollup(), which is registered as low priority netisr 2546 * rollup function, is called; probably because no more work is pending 2547 * for netisr. 2548 * 2549 * NOTE: 2550 * Currently IFQ packet staging is only performed in netisr threads. 2551 */ 2552 int 2553 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa) 2554 { 2555 struct ifaltq *ifq = &ifp->if_snd; 2556 int error, start = 0, len, mcast = 0, avoid_start = 0; 2557 struct ifaltq_stage_head *head = NULL; 2558 struct ifaltq_stage *stage = NULL; 2559 2560 ASSERT_IFNET_NOT_SERIALIZED_TX(ifp); 2561 2562 len = m->m_pkthdr.len; 2563 if (m->m_flags & M_MCAST) 2564 mcast = 1; 2565 2566 if (curthread->td_type == TD_TYPE_NETISR) { 2567 head = &ifq_stage_heads[mycpuid]; 2568 stage = ifq_get_stage(ifq, mycpuid); 2569 2570 stage->ifqs_cnt++; 2571 stage->ifqs_len += len; 2572 if (stage->ifqs_cnt < ifq_stage_cntmax && 2573 stage->ifqs_len < (ifp->if_mtu - max_protohdr)) 2574 avoid_start = 1; 2575 } 2576 2577 ALTQ_LOCK(ifq); 2578 error = ifq_enqueue_locked(ifq, m, pa); 2579 if (error) { 2580 if (!ifq_data_ready(ifq)) { 2581 ALTQ_UNLOCK(ifq); 2582 return error; 2583 } 2584 avoid_start = 0; 2585 } 2586 if (!ifq_is_started(ifq)) { 2587 if (avoid_start) { 2588 ALTQ_UNLOCK(ifq); 2589 2590 KKASSERT(!error); 2591 if ((stage->ifqs_flags & IFQ_STAGE_FLAG_QUED) == 0) 2592 ifq_stage_insert(head, stage); 2593 2594 ifp->if_obytes += len; 2595 if (mcast) 2596 ifp->if_omcasts++; 2597 return error; 2598 } 2599 2600 /* 2601 * Hold the interlock of ifnet.if_start 2602 */ 2603 ifq_set_started(ifq); 2604 start = 1; 2605 } 2606 ALTQ_UNLOCK(ifq); 2607 2608 if (!error) { 2609 ifp->if_obytes += len; 2610 if (mcast) 2611 ifp->if_omcasts++; 2612 } 2613 2614 if (stage != NULL) { 2615 if (!start && (stage->ifqs_flags & IFQ_STAGE_FLAG_SCHED)) { 2616 KKASSERT(stage->ifqs_flags & IFQ_STAGE_FLAG_QUED); 2617 if (!avoid_start) { 2618 ifq_stage_remove(head, stage); 2619 ifq_ifstart_schedule(ifq, 1); 2620 } 2621 return error; 2622 } 2623 2624 if (stage->ifqs_flags & IFQ_STAGE_FLAG_QUED) { 2625 ifq_stage_remove(head, stage); 2626 } else { 2627 stage->ifqs_cnt = 0; 2628 stage->ifqs_len = 0; 2629 } 2630 } 2631 2632 if (!start) { 2633 logifstart(avoid, ifp); 2634 return error; 2635 } 2636 2637 ifq_try_ifstart(ifq, 0); 2638 return error; 2639 } 2640 2641 void * 2642 ifa_create(int size, int flags) 2643 { 2644 struct ifaddr *ifa; 2645 int i; 2646 2647 KASSERT(size >= sizeof(*ifa), ("ifaddr size too small")); 2648 2649 ifa = kmalloc(size, M_IFADDR, flags | M_ZERO); 2650 if (ifa == NULL) 2651 return NULL; 2652 2653 ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container), 2654 M_IFADDR, M_WAITOK | M_ZERO); 2655 ifa->ifa_ncnt = ncpus; 2656 for (i = 0; i < ncpus; ++i) { 2657 struct ifaddr_container *ifac = &ifa->ifa_containers[i]; 2658 2659 ifac->ifa_magic = IFA_CONTAINER_MAGIC; 2660 ifac->ifa = ifa; 2661 ifac->ifa_refcnt = 1; 2662 } 2663 #ifdef IFADDR_DEBUG 2664 kprintf("alloc ifa %p %d\n", ifa, size); 2665 #endif 2666 return ifa; 2667 } 2668 2669 void 2670 ifac_free(struct ifaddr_container *ifac, int cpu_id) 2671 { 2672 struct ifaddr *ifa = ifac->ifa; 2673 2674 KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC); 2675 KKASSERT(ifac->ifa_refcnt == 0); 2676 KASSERT(ifac->ifa_listmask == 0, 2677 ("ifa is still on %#x lists", ifac->ifa_listmask)); 2678 2679 ifac->ifa_magic = IFA_CONTAINER_DEAD; 2680 2681 #ifdef IFADDR_DEBUG_VERBOSE 2682 kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id); 2683 #endif 2684 2685 KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus, 2686 ("invalid # of ifac, %d", ifa->ifa_ncnt)); 2687 if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) { 2688 #ifdef IFADDR_DEBUG 2689 kprintf("free ifa %p\n", ifa); 2690 #endif 2691 kfree(ifa->ifa_containers, M_IFADDR); 2692 kfree(ifa, M_IFADDR); 2693 } 2694 } 2695 2696 static void 2697 ifa_iflink_dispatch(netmsg_t nmsg) 2698 { 2699 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2700 struct ifaddr *ifa = msg->ifa; 2701 struct ifnet *ifp = msg->ifp; 2702 int cpu = mycpuid; 2703 struct ifaddr_container *ifac; 2704 2705 crit_enter(); 2706 2707 ifac = &ifa->ifa_containers[cpu]; 2708 ASSERT_IFAC_VALID(ifac); 2709 KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0, 2710 ("ifaddr is on if_addrheads")); 2711 2712 ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD; 2713 if (msg->tail) 2714 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link); 2715 else 2716 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link); 2717 2718 crit_exit(); 2719 2720 ifa_forwardmsg(&nmsg->lmsg, cpu + 1); 2721 } 2722 2723 void 2724 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail) 2725 { 2726 struct netmsg_ifaddr msg; 2727 2728 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2729 0, ifa_iflink_dispatch); 2730 msg.ifa = ifa; 2731 msg.ifp = ifp; 2732 msg.tail = tail; 2733 2734 ifa_domsg(&msg.base.lmsg, 0); 2735 } 2736 2737 static void 2738 ifa_ifunlink_dispatch(netmsg_t nmsg) 2739 { 2740 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2741 struct ifaddr *ifa = msg->ifa; 2742 struct ifnet *ifp = msg->ifp; 2743 int cpu = mycpuid; 2744 struct ifaddr_container *ifac; 2745 2746 crit_enter(); 2747 2748 ifac = &ifa->ifa_containers[cpu]; 2749 ASSERT_IFAC_VALID(ifac); 2750 KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD, 2751 ("ifaddr is not on if_addrhead")); 2752 2753 TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link); 2754 ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD; 2755 2756 crit_exit(); 2757 2758 ifa_forwardmsg(&nmsg->lmsg, cpu + 1); 2759 } 2760 2761 void 2762 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp) 2763 { 2764 struct netmsg_ifaddr msg; 2765 2766 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2767 0, ifa_ifunlink_dispatch); 2768 msg.ifa = ifa; 2769 msg.ifp = ifp; 2770 2771 ifa_domsg(&msg.base.lmsg, 0); 2772 } 2773 2774 static void 2775 ifa_destroy_dispatch(netmsg_t nmsg) 2776 { 2777 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 2778 2779 IFAFREE(msg->ifa); 2780 ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1); 2781 } 2782 2783 void 2784 ifa_destroy(struct ifaddr *ifa) 2785 { 2786 struct netmsg_ifaddr msg; 2787 2788 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 2789 0, ifa_destroy_dispatch); 2790 msg.ifa = ifa; 2791 2792 ifa_domsg(&msg.base.lmsg, 0); 2793 } 2794 2795 struct lwkt_port * 2796 ifnet_portfn(int cpu) 2797 { 2798 return &ifnet_threads[cpu].td_msgport; 2799 } 2800 2801 void 2802 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu) 2803 { 2804 KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus); 2805 2806 if (next_cpu < ncpus) 2807 lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg); 2808 else 2809 lwkt_replymsg(lmsg, 0); 2810 } 2811 2812 int 2813 ifnet_domsg(struct lwkt_msg *lmsg, int cpu) 2814 { 2815 KKASSERT(cpu < ncpus); 2816 return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0); 2817 } 2818 2819 void 2820 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu) 2821 { 2822 KKASSERT(cpu < ncpus); 2823 lwkt_sendmsg(ifnet_portfn(cpu), lmsg); 2824 } 2825 2826 /* 2827 * Generic netmsg service loop. Some protocols may roll their own but all 2828 * must do the basic command dispatch function call done here. 2829 */ 2830 static void 2831 ifnet_service_loop(void *arg __unused) 2832 { 2833 netmsg_t msg; 2834 2835 while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) { 2836 KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg")); 2837 msg->base.nm_dispatch(msg); 2838 } 2839 } 2840 2841 static void 2842 if_start_rollup(void) 2843 { 2844 struct ifaltq_stage_head *head = &ifq_stage_heads[mycpuid]; 2845 struct ifaltq_stage *stage; 2846 2847 while ((stage = TAILQ_FIRST(&head->ifqs_head)) != NULL) { 2848 struct ifaltq *ifq = stage->ifqs_altq; 2849 int is_sched = 0; 2850 2851 if (stage->ifqs_flags & IFQ_STAGE_FLAG_SCHED) 2852 is_sched = 1; 2853 ifq_stage_remove(head, stage); 2854 2855 if (is_sched) { 2856 ifq_ifstart_schedule(ifq, 1); 2857 } else { 2858 int start = 0; 2859 2860 ALTQ_LOCK(ifq); 2861 if (!ifq_is_started(ifq)) { 2862 /* 2863 * Hold the interlock of ifnet.if_start 2864 */ 2865 ifq_set_started(ifq); 2866 start = 1; 2867 } 2868 ALTQ_UNLOCK(ifq); 2869 2870 if (start) 2871 ifq_try_ifstart(ifq, 1); 2872 } 2873 KKASSERT((stage->ifqs_flags & 2874 (IFQ_STAGE_FLAG_QUED | IFQ_STAGE_FLAG_SCHED)) == 0); 2875 } 2876 } 2877 2878 static void 2879 ifnetinit(void *dummy __unused) 2880 { 2881 int i; 2882 2883 for (i = 0; i < ncpus; ++i) { 2884 struct thread *thr = &ifnet_threads[i]; 2885 2886 lwkt_create(ifnet_service_loop, NULL, NULL, 2887 thr, TDF_NOSTART|TDF_FORCE_SPINPORT, 2888 i, "ifnet %d", i); 2889 netmsg_service_port_init(&thr->td_msgport); 2890 lwkt_schedule(thr); 2891 } 2892 2893 for (i = 0; i < ncpus; ++i) 2894 TAILQ_INIT(&ifq_stage_heads[i].ifqs_head); 2895 netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART); 2896 } 2897 2898 struct ifnet * 2899 ifnet_byindex(unsigned short idx) 2900 { 2901 if (idx > if_index) 2902 return NULL; 2903 return ifindex2ifnet[idx]; 2904 } 2905 2906 struct ifaddr * 2907 ifaddr_byindex(unsigned short idx) 2908 { 2909 struct ifnet *ifp; 2910 2911 ifp = ifnet_byindex(idx); 2912 if (!ifp) 2913 return NULL; 2914 return TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 2915 } 2916 2917 void 2918 if_register_com_alloc(u_char type, 2919 if_com_alloc_t *a, if_com_free_t *f) 2920 { 2921 2922 KASSERT(if_com_alloc[type] == NULL, 2923 ("if_register_com_alloc: %d already registered", type)); 2924 KASSERT(if_com_free[type] == NULL, 2925 ("if_register_com_alloc: %d free already registered", type)); 2926 2927 if_com_alloc[type] = a; 2928 if_com_free[type] = f; 2929 } 2930 2931 void 2932 if_deregister_com_alloc(u_char type) 2933 { 2934 2935 KASSERT(if_com_alloc[type] != NULL, 2936 ("if_deregister_com_alloc: %d not registered", type)); 2937 KASSERT(if_com_free[type] != NULL, 2938 ("if_deregister_com_alloc: %d free not registered", type)); 2939 if_com_alloc[type] = NULL; 2940 if_com_free[type] = NULL; 2941 } 2942 2943 int 2944 if_ring_count2(int cnt, int cnt_max) 2945 { 2946 int shift = 0; 2947 2948 KASSERT(cnt_max >= 1 && powerof2(cnt_max), 2949 ("invalid ring count max %d", cnt_max)); 2950 2951 if (cnt <= 0) 2952 cnt = cnt_max; 2953 if (cnt > ncpus2) 2954 cnt = ncpus2; 2955 if (cnt > cnt_max) 2956 cnt = cnt_max; 2957 2958 while ((1 << (shift + 1)) <= cnt) 2959 ++shift; 2960 cnt = 1 << shift; 2961 2962 KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max, 2963 ("calculate cnt %d, ncpus2 %d, cnt max %d", 2964 cnt, ncpus2, cnt_max)); 2965 return cnt; 2966 } 2967 2968 void 2969 ifq_set_maxlen(struct ifaltq *ifq, int len) 2970 { 2971 ifq->ifq_maxlen = len + (ncpus * ifq_stage_cntmax); 2972 } 2973