1 /* 2 * Copyright (c) 1980, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)if.c 8.3 (Berkeley) 1/4/94 30 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $ 31 */ 32 33 #include "opt_inet6.h" 34 #include "opt_inet.h" 35 #include "opt_ifpoll.h" 36 37 #include <sys/param.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/systm.h> 41 #include <sys/proc.h> 42 #include <sys/priv.h> 43 #include <sys/protosw.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/socketops.h> 47 #include <sys/kernel.h> 48 #include <sys/ktr.h> 49 #include <sys/mutex.h> 50 #include <sys/sockio.h> 51 #include <sys/syslog.h> 52 #include <sys/sysctl.h> 53 #include <sys/domain.h> 54 #include <sys/thread.h> 55 #include <sys/serialize.h> 56 #include <sys/bus.h> 57 58 #include <sys/thread2.h> 59 #include <sys/msgport2.h> 60 #include <sys/mutex2.h> 61 62 #include <net/if.h> 63 #include <net/if_arp.h> 64 #include <net/if_dl.h> 65 #include <net/if_types.h> 66 #include <net/if_var.h> 67 #include <net/if_ringmap.h> 68 #include <net/ifq_var.h> 69 #include <net/radix.h> 70 #include <net/route.h> 71 #include <net/if_clone.h> 72 #include <net/netisr2.h> 73 #include <net/netmsg2.h> 74 75 #include <machine/atomic.h> 76 #include <machine/stdarg.h> 77 #include <machine/smp.h> 78 79 #if defined(INET) || defined(INET6) 80 /*XXX*/ 81 #include <netinet/in.h> 82 #include <netinet/in_var.h> 83 #include <netinet/if_ether.h> 84 #ifdef INET6 85 #include <netinet6/in6_var.h> 86 #include <netinet6/in6_ifattach.h> 87 #endif 88 #endif 89 90 struct netmsg_ifaddr { 91 struct netmsg_base base; 92 struct ifaddr *ifa; 93 struct ifnet *ifp; 94 int tail; 95 }; 96 97 struct ifsubq_stage_head { 98 TAILQ_HEAD(, ifsubq_stage) stg_head; 99 } __cachealign; 100 101 struct if_ringmap { 102 int rm_cnt; 103 int rm_grid; 104 int rm_cpumap[]; 105 }; 106 107 #define RINGMAP_FLAG_NONE 0x0 108 #define RINGMAP_FLAG_POWEROF2 0x1 109 110 /* 111 * System initialization 112 */ 113 static void if_attachdomain(void *); 114 static void if_attachdomain1(struct ifnet *); 115 static int ifconf(u_long, caddr_t, struct ucred *); 116 static void ifinit(void *); 117 static void ifnetinit(void *); 118 static void if_slowtimo(void *); 119 static void link_rtrequest(int, struct rtentry *); 120 static int if_rtdel(struct radix_node *, void *); 121 static void if_slowtimo_dispatch(netmsg_t); 122 123 /* Helper functions */ 124 static void ifsq_watchdog_reset(struct ifsubq_watchdog *); 125 static int if_delmulti_serialized(struct ifnet *, struct sockaddr *); 126 static struct ifnet_array *ifnet_array_alloc(int); 127 static void ifnet_array_free(struct ifnet_array *); 128 static struct ifnet_array *ifnet_array_add(struct ifnet *, 129 const struct ifnet_array *); 130 static struct ifnet_array *ifnet_array_del(struct ifnet *, 131 const struct ifnet_array *); 132 133 #ifdef INET6 134 /* 135 * XXX: declare here to avoid to include many inet6 related files.. 136 * should be more generalized? 137 */ 138 extern void nd6_setmtu(struct ifnet *); 139 #endif 140 141 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); 142 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); 143 SYSCTL_NODE(_net_link, OID_AUTO, ringmap, CTLFLAG_RW, 0, "link ringmap"); 144 145 static int ifsq_stage_cntmax = 4; 146 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax); 147 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW, 148 &ifsq_stage_cntmax, 0, "ifq staging packet count max"); 149 150 static int if_stats_compat = 0; 151 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW, 152 &if_stats_compat, 0, "Compat the old ifnet stats"); 153 154 static int if_ringmap_dumprdr = 0; 155 SYSCTL_INT(_net_link_ringmap, OID_AUTO, dump_rdr, CTLFLAG_RW, 156 &if_ringmap_dumprdr, 0, "dump redirect table"); 157 158 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL); 159 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, ifnetinit, NULL); 160 161 static if_com_alloc_t *if_com_alloc[256]; 162 static if_com_free_t *if_com_free[256]; 163 164 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 165 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 166 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure"); 167 168 int ifqmaxlen = IFQ_MAXLEN; 169 struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet); 170 171 static struct ifnet_array ifnet_array0; 172 static struct ifnet_array *ifnet_array = &ifnet_array0; 173 174 static struct callout if_slowtimo_timer; 175 static struct netmsg_base if_slowtimo_netmsg; 176 177 int if_index = 0; 178 struct ifnet **ifindex2ifnet = NULL; 179 static struct mtx ifnet_mtx = MTX_INITIALIZER("ifnet"); 180 181 static struct ifsubq_stage_head ifsubq_stage_heads[MAXCPU]; 182 183 #ifdef notyet 184 #define IFQ_KTR_STRING "ifq=%p" 185 #define IFQ_KTR_ARGS struct ifaltq *ifq 186 #ifndef KTR_IFQ 187 #define KTR_IFQ KTR_ALL 188 #endif 189 KTR_INFO_MASTER(ifq); 190 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS); 191 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS); 192 #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg) 193 194 #define IF_START_KTR_STRING "ifp=%p" 195 #define IF_START_KTR_ARGS struct ifnet *ifp 196 #ifndef KTR_IF_START 197 #define KTR_IF_START KTR_ALL 198 #endif 199 KTR_INFO_MASTER(if_start); 200 KTR_INFO(KTR_IF_START, if_start, run, 0, 201 IF_START_KTR_STRING, IF_START_KTR_ARGS); 202 KTR_INFO(KTR_IF_START, if_start, sched, 1, 203 IF_START_KTR_STRING, IF_START_KTR_ARGS); 204 KTR_INFO(KTR_IF_START, if_start, avoid, 2, 205 IF_START_KTR_STRING, IF_START_KTR_ARGS); 206 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3, 207 IF_START_KTR_STRING, IF_START_KTR_ARGS); 208 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4, 209 IF_START_KTR_STRING, IF_START_KTR_ARGS); 210 #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg) 211 #endif 212 213 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head); 214 215 /* 216 * Network interface utility routines. 217 * 218 * Routines with ifa_ifwith* names take sockaddr *'s as 219 * parameters. 220 */ 221 /* ARGSUSED*/ 222 static void 223 ifinit(void *dummy) 224 { 225 struct ifnet *ifp; 226 227 callout_init_mp(&if_slowtimo_timer); 228 netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport, 229 MSGF_PRIORITY, if_slowtimo_dispatch); 230 231 /* XXX is this necessary? */ 232 ifnet_lock(); 233 TAILQ_FOREACH(ifp, &ifnetlist, if_link) { 234 if (ifp->if_snd.altq_maxlen == 0) { 235 if_printf(ifp, "XXX: driver didn't set altq_maxlen\n"); 236 ifq_set_maxlen(&ifp->if_snd, ifqmaxlen); 237 } 238 } 239 ifnet_unlock(); 240 241 /* Start if_slowtimo */ 242 lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg); 243 } 244 245 static void 246 ifsq_ifstart_ipifunc(void *arg) 247 { 248 struct ifaltq_subque *ifsq = arg; 249 struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid); 250 251 crit_enter(); 252 if (lmsg->ms_flags & MSGF_DONE) 253 lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg); 254 crit_exit(); 255 } 256 257 static __inline void 258 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage) 259 { 260 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED); 261 TAILQ_REMOVE(&head->stg_head, stage, stg_link); 262 stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED); 263 stage->stg_cnt = 0; 264 stage->stg_len = 0; 265 } 266 267 static __inline void 268 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage) 269 { 270 KKASSERT((stage->stg_flags & 271 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0); 272 stage->stg_flags |= IFSQ_STAGE_FLAG_QUED; 273 TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link); 274 } 275 276 /* 277 * Schedule ifnet.if_start on the subqueue owner CPU 278 */ 279 static void 280 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force) 281 { 282 int cpu; 283 284 if (!force && curthread->td_type == TD_TYPE_NETISR && 285 ifsq_stage_cntmax > 0) { 286 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid); 287 288 stage->stg_cnt = 0; 289 stage->stg_len = 0; 290 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0) 291 ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage); 292 stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED; 293 return; 294 } 295 296 cpu = ifsq_get_cpuid(ifsq); 297 if (cpu != mycpuid) 298 lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq); 299 else 300 ifsq_ifstart_ipifunc(ifsq); 301 } 302 303 /* 304 * NOTE: 305 * This function will release ifnet.if_start subqueue interlock, 306 * if ifnet.if_start for the subqueue does not need to be scheduled 307 */ 308 static __inline int 309 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running) 310 { 311 if (!running || ifsq_is_empty(ifsq) 312 #ifdef ALTQ 313 || ifsq->ifsq_altq->altq_tbr != NULL 314 #endif 315 ) { 316 ALTQ_SQ_LOCK(ifsq); 317 /* 318 * ifnet.if_start subqueue interlock is released, if: 319 * 1) Hardware can not take any packets, due to 320 * o interface is marked down 321 * o hardware queue is full (ifsq_is_oactive) 322 * Under the second situation, hardware interrupt 323 * or polling(4) will call/schedule ifnet.if_start 324 * on the subqueue when hardware queue is ready 325 * 2) There is no packet in the subqueue. 326 * Further ifq_dispatch or ifq_handoff will call/ 327 * schedule ifnet.if_start on the subqueue. 328 * 3) TBR is used and it does not allow further 329 * dequeueing. 330 * TBR callout will call ifnet.if_start on the 331 * subqueue. 332 */ 333 if (!running || !ifsq_data_ready(ifsq)) { 334 ifsq_clr_started(ifsq); 335 ALTQ_SQ_UNLOCK(ifsq); 336 return 0; 337 } 338 ALTQ_SQ_UNLOCK(ifsq); 339 } 340 return 1; 341 } 342 343 static void 344 ifsq_ifstart_dispatch(netmsg_t msg) 345 { 346 struct lwkt_msg *lmsg = &msg->base.lmsg; 347 struct ifaltq_subque *ifsq = lmsg->u.ms_resultp; 348 struct ifnet *ifp = ifsq_get_ifp(ifsq); 349 struct globaldata *gd = mycpu; 350 int running = 0, need_sched; 351 352 crit_enter_gd(gd); 353 354 lwkt_replymsg(lmsg, 0); /* reply ASAP */ 355 356 if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) { 357 /* 358 * We need to chase the subqueue owner CPU change. 359 */ 360 ifsq_ifstart_schedule(ifsq, 1); 361 crit_exit_gd(gd); 362 return; 363 } 364 365 ifsq_serialize_hw(ifsq); 366 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) { 367 ifp->if_start(ifp, ifsq); 368 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) 369 running = 1; 370 } 371 need_sched = ifsq_ifstart_need_schedule(ifsq, running); 372 ifsq_deserialize_hw(ifsq); 373 374 if (need_sched) { 375 /* 376 * More data need to be transmitted, ifnet.if_start is 377 * scheduled on the subqueue owner CPU, and we keep going. 378 * NOTE: ifnet.if_start subqueue interlock is not released. 379 */ 380 ifsq_ifstart_schedule(ifsq, 0); 381 } 382 383 crit_exit_gd(gd); 384 } 385 386 /* Device driver ifnet.if_start helper function */ 387 void 388 ifsq_devstart(struct ifaltq_subque *ifsq) 389 { 390 struct ifnet *ifp = ifsq_get_ifp(ifsq); 391 int running = 0; 392 393 ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq); 394 395 ALTQ_SQ_LOCK(ifsq); 396 if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) { 397 ALTQ_SQ_UNLOCK(ifsq); 398 return; 399 } 400 ifsq_set_started(ifsq); 401 ALTQ_SQ_UNLOCK(ifsq); 402 403 ifp->if_start(ifp, ifsq); 404 405 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) 406 running = 1; 407 408 if (ifsq_ifstart_need_schedule(ifsq, running)) { 409 /* 410 * More data need to be transmitted, ifnet.if_start is 411 * scheduled on ifnet's CPU, and we keep going. 412 * NOTE: ifnet.if_start interlock is not released. 413 */ 414 ifsq_ifstart_schedule(ifsq, 0); 415 } 416 } 417 418 void 419 if_devstart(struct ifnet *ifp) 420 { 421 ifsq_devstart(ifq_get_subq_default(&ifp->if_snd)); 422 } 423 424 /* Device driver ifnet.if_start schedule helper function */ 425 void 426 ifsq_devstart_sched(struct ifaltq_subque *ifsq) 427 { 428 ifsq_ifstart_schedule(ifsq, 1); 429 } 430 431 void 432 if_devstart_sched(struct ifnet *ifp) 433 { 434 ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd)); 435 } 436 437 static void 438 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 439 { 440 lwkt_serialize_enter(ifp->if_serializer); 441 } 442 443 static void 444 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 445 { 446 lwkt_serialize_exit(ifp->if_serializer); 447 } 448 449 static int 450 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) 451 { 452 return lwkt_serialize_try(ifp->if_serializer); 453 } 454 455 #ifdef INVARIANTS 456 static void 457 if_default_serialize_assert(struct ifnet *ifp, 458 enum ifnet_serialize slz __unused, 459 boolean_t serialized) 460 { 461 if (serialized) 462 ASSERT_SERIALIZED(ifp->if_serializer); 463 else 464 ASSERT_NOT_SERIALIZED(ifp->if_serializer); 465 } 466 #endif 467 468 /* 469 * Attach an interface to the list of "active" interfaces. 470 * 471 * The serializer is optional. 472 */ 473 void 474 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer) 475 { 476 unsigned socksize; 477 int namelen, masklen; 478 struct sockaddr_dl *sdl, *sdl_addr; 479 struct ifaddr *ifa; 480 struct ifaltq *ifq; 481 struct ifnet **old_ifindex2ifnet = NULL; 482 struct ifnet_array *old_ifnet_array; 483 int i, q; 484 485 static int if_indexlim = 8; 486 487 if (ifp->if_serialize != NULL) { 488 KASSERT(ifp->if_deserialize != NULL && 489 ifp->if_tryserialize != NULL && 490 ifp->if_serialize_assert != NULL, 491 ("serialize functions are partially setup")); 492 493 /* 494 * If the device supplies serialize functions, 495 * then clear if_serializer to catch any invalid 496 * usage of this field. 497 */ 498 KASSERT(serializer == NULL, 499 ("both serialize functions and default serializer " 500 "are supplied")); 501 ifp->if_serializer = NULL; 502 } else { 503 KASSERT(ifp->if_deserialize == NULL && 504 ifp->if_tryserialize == NULL && 505 ifp->if_serialize_assert == NULL, 506 ("serialize functions are partially setup")); 507 ifp->if_serialize = if_default_serialize; 508 ifp->if_deserialize = if_default_deserialize; 509 ifp->if_tryserialize = if_default_tryserialize; 510 #ifdef INVARIANTS 511 ifp->if_serialize_assert = if_default_serialize_assert; 512 #endif 513 514 /* 515 * The serializer can be passed in from the device, 516 * allowing the same serializer to be used for both 517 * the interrupt interlock and the device queue. 518 * If not specified, the netif structure will use an 519 * embedded serializer. 520 */ 521 if (serializer == NULL) { 522 serializer = &ifp->if_default_serializer; 523 lwkt_serialize_init(serializer); 524 } 525 ifp->if_serializer = serializer; 526 } 527 528 /* 529 * XXX - 530 * The old code would work if the interface passed a pre-existing 531 * chain of ifaddrs to this code. We don't trust our callers to 532 * properly initialize the tailq, however, so we no longer allow 533 * this unlikely case. 534 */ 535 ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead), 536 M_IFADDR, M_WAITOK | M_ZERO); 537 for (i = 0; i < ncpus; ++i) 538 TAILQ_INIT(&ifp->if_addrheads[i]); 539 540 TAILQ_INIT(&ifp->if_multiaddrs); 541 TAILQ_INIT(&ifp->if_groups); 542 getmicrotime(&ifp->if_lastchange); 543 544 /* 545 * create a Link Level name for this device 546 */ 547 namelen = strlen(ifp->if_xname); 548 masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; 549 socksize = masklen + ifp->if_addrlen; 550 if (socksize < sizeof(*sdl)) 551 socksize = sizeof(*sdl); 552 socksize = RT_ROUNDUP(socksize); 553 ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize); 554 sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1); 555 sdl->sdl_len = socksize; 556 sdl->sdl_family = AF_LINK; 557 bcopy(ifp->if_xname, sdl->sdl_data, namelen); 558 sdl->sdl_nlen = namelen; 559 sdl->sdl_type = ifp->if_type; 560 ifp->if_lladdr = ifa; 561 ifa->ifa_ifp = ifp; 562 ifa->ifa_rtrequest = link_rtrequest; 563 ifa->ifa_addr = (struct sockaddr *)sdl; 564 sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); 565 ifa->ifa_netmask = (struct sockaddr *)sdl; 566 sdl->sdl_len = masklen; 567 while (namelen != 0) 568 sdl->sdl_data[--namelen] = 0xff; 569 ifa_iflink(ifa, ifp, 0 /* Insert head */); 570 571 ifp->if_data_pcpu = kmalloc_cachealign( 572 ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO); 573 574 if (ifp->if_mapsubq == NULL) 575 ifp->if_mapsubq = ifq_mapsubq_default; 576 577 ifq = &ifp->if_snd; 578 ifq->altq_type = 0; 579 ifq->altq_disc = NULL; 580 ifq->altq_flags &= ALTQF_CANTCHANGE; 581 ifq->altq_tbr = NULL; 582 ifq->altq_ifp = ifp; 583 584 if (ifq->altq_subq_cnt <= 0) 585 ifq->altq_subq_cnt = 1; 586 ifq->altq_subq = kmalloc_cachealign( 587 ifq->altq_subq_cnt * sizeof(struct ifaltq_subque), 588 M_DEVBUF, M_WAITOK | M_ZERO); 589 590 if (ifq->altq_maxlen == 0) { 591 if_printf(ifp, "driver didn't set altq_maxlen\n"); 592 ifq_set_maxlen(ifq, ifqmaxlen); 593 } 594 595 for (q = 0; q < ifq->altq_subq_cnt; ++q) { 596 struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; 597 598 ALTQ_SQ_LOCK_INIT(ifsq); 599 ifsq->ifsq_index = q; 600 601 ifsq->ifsq_altq = ifq; 602 ifsq->ifsq_ifp = ifp; 603 604 ifsq->ifsq_maxlen = ifq->altq_maxlen; 605 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES; 606 ifsq->ifsq_prepended = NULL; 607 ifsq->ifsq_started = 0; 608 ifsq->ifsq_hw_oactive = 0; 609 ifsq_set_cpuid(ifsq, 0); 610 if (ifp->if_serializer != NULL) 611 ifsq_set_hw_serialize(ifsq, ifp->if_serializer); 612 613 ifsq->ifsq_stage = 614 kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage), 615 M_DEVBUF, M_WAITOK | M_ZERO); 616 for (i = 0; i < ncpus; ++i) 617 ifsq->ifsq_stage[i].stg_subq = ifsq; 618 619 ifsq->ifsq_ifstart_nmsg = 620 kmalloc(ncpus * sizeof(struct netmsg_base), 621 M_LWKTMSG, M_WAITOK); 622 for (i = 0; i < ncpus; ++i) { 623 netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL, 624 &netisr_adone_rport, 0, ifsq_ifstart_dispatch); 625 ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq; 626 } 627 } 628 ifq_set_classic(ifq); 629 630 /* 631 * Increase mbuf cluster/jcluster limits for the mbufs that 632 * could sit on the device queues for quite some time. 633 */ 634 if (ifp->if_nmbclusters > 0) 635 mcl_inclimit(ifp->if_nmbclusters); 636 if (ifp->if_nmbjclusters > 0) 637 mjcl_inclimit(ifp->if_nmbjclusters); 638 639 /* 640 * Install this ifp into ifindex2inet, ifnet queue and ifnet 641 * array after it is setup. 642 * 643 * Protect ifindex2ifnet, ifnet queue and ifnet array changes 644 * by ifnet lock, so that non-netisr threads could get a 645 * consistent view. 646 */ 647 ifnet_lock(); 648 649 /* Don't update if_index until ifindex2ifnet is setup */ 650 ifp->if_index = if_index + 1; 651 sdl_addr->sdl_index = ifp->if_index; 652 653 /* 654 * Install this ifp into ifindex2ifnet 655 */ 656 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 657 unsigned int n; 658 struct ifnet **q; 659 660 /* 661 * Grow ifindex2ifnet 662 */ 663 if_indexlim <<= 1; 664 n = if_indexlim * sizeof(*q); 665 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO); 666 if (ifindex2ifnet != NULL) { 667 bcopy(ifindex2ifnet, q, n/2); 668 /* Free old ifindex2ifnet after sync all netisrs */ 669 old_ifindex2ifnet = ifindex2ifnet; 670 } 671 ifindex2ifnet = q; 672 } 673 ifindex2ifnet[ifp->if_index] = ifp; 674 /* 675 * Update if_index after this ifp is installed into ifindex2ifnet, 676 * so that netisrs could get a consistent view of ifindex2ifnet. 677 */ 678 cpu_sfence(); 679 if_index = ifp->if_index; 680 681 /* 682 * Install this ifp into ifnet array. 683 */ 684 /* Free old ifnet array after sync all netisrs */ 685 old_ifnet_array = ifnet_array; 686 ifnet_array = ifnet_array_add(ifp, old_ifnet_array); 687 688 /* 689 * Install this ifp into ifnet queue. 690 */ 691 TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link); 692 693 ifnet_unlock(); 694 695 /* 696 * Sync all netisrs so that the old ifindex2ifnet and ifnet array 697 * are no longer accessed and we can free them safely later on. 698 */ 699 netmsg_service_sync(); 700 if (old_ifindex2ifnet != NULL) 701 kfree(old_ifindex2ifnet, M_IFADDR); 702 ifnet_array_free(old_ifnet_array); 703 704 if (!SLIST_EMPTY(&domains)) 705 if_attachdomain1(ifp); 706 707 /* Announce the interface. */ 708 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 709 devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); 710 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 711 } 712 713 static void 714 if_attachdomain(void *dummy) 715 { 716 struct ifnet *ifp; 717 718 ifnet_lock(); 719 TAILQ_FOREACH(ifp, &ifnetlist, if_list) 720 if_attachdomain1(ifp); 721 ifnet_unlock(); 722 } 723 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, 724 if_attachdomain, NULL); 725 726 static void 727 if_attachdomain1(struct ifnet *ifp) 728 { 729 struct domain *dp; 730 731 crit_enter(); 732 733 /* address family dependent data region */ 734 bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); 735 SLIST_FOREACH(dp, &domains, dom_next) 736 if (dp->dom_ifattach) 737 ifp->if_afdata[dp->dom_family] = 738 (*dp->dom_ifattach)(ifp); 739 crit_exit(); 740 } 741 742 /* 743 * Purge all addresses whose type is _not_ AF_LINK 744 */ 745 static void 746 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg) 747 { 748 struct lwkt_msg *lmsg = &nmsg->lmsg; 749 struct ifnet *ifp = lmsg->u.ms_resultp; 750 struct ifaddr_container *ifac, *next; 751 752 ASSERT_IN_NETISR(0); 753 754 /* 755 * The ifaddr processing in the following loop will block, 756 * however, this function is called in netisr0, in which 757 * ifaddr list changes happen, so we don't care about the 758 * blockness of the ifaddr processing here. 759 */ 760 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid], 761 ifa_link, next) { 762 struct ifaddr *ifa = ifac->ifa; 763 764 /* Ignore marker */ 765 if (ifa->ifa_addr->sa_family == AF_UNSPEC) 766 continue; 767 768 /* Leave link ifaddr as it is */ 769 if (ifa->ifa_addr->sa_family == AF_LINK) 770 continue; 771 #ifdef INET 772 /* XXX: Ugly!! ad hoc just for INET */ 773 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) { 774 struct ifaliasreq ifr; 775 #ifdef IFADDR_DEBUG_VERBOSE 776 int i; 777 778 kprintf("purge in4 addr %p: ", ifa); 779 for (i = 0; i < ncpus; ++i) 780 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 781 kprintf("\n"); 782 #endif 783 784 bzero(&ifr, sizeof ifr); 785 ifr.ifra_addr = *ifa->ifa_addr; 786 if (ifa->ifa_dstaddr) 787 ifr.ifra_broadaddr = *ifa->ifa_dstaddr; 788 if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp, 789 NULL) == 0) 790 continue; 791 } 792 #endif /* INET */ 793 #ifdef INET6 794 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) { 795 #ifdef IFADDR_DEBUG_VERBOSE 796 int i; 797 798 kprintf("purge in6 addr %p: ", ifa); 799 for (i = 0; i < ncpus; ++i) 800 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); 801 kprintf("\n"); 802 #endif 803 804 in6_purgeaddr(ifa); 805 /* ifp_addrhead is already updated */ 806 continue; 807 } 808 #endif /* INET6 */ 809 ifa_ifunlink(ifa, ifp); 810 ifa_destroy(ifa); 811 } 812 813 lwkt_replymsg(lmsg, 0); 814 } 815 816 void 817 if_purgeaddrs_nolink(struct ifnet *ifp) 818 { 819 struct netmsg_base nmsg; 820 struct lwkt_msg *lmsg = &nmsg.lmsg; 821 822 ASSERT_CANDOMSG_NETISR0(curthread); 823 824 netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0, 825 if_purgeaddrs_nolink_dispatch); 826 lmsg->u.ms_resultp = ifp; 827 lwkt_domsg(netisr_cpuport(0), lmsg, 0); 828 } 829 830 static void 831 ifq_stage_detach_handler(netmsg_t nmsg) 832 { 833 struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp; 834 int q; 835 836 for (q = 0; q < ifq->altq_subq_cnt; ++q) { 837 struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; 838 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid); 839 840 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) 841 ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage); 842 } 843 lwkt_replymsg(&nmsg->lmsg, 0); 844 } 845 846 static void 847 ifq_stage_detach(struct ifaltq *ifq) 848 { 849 struct netmsg_base base; 850 int cpu; 851 852 netmsg_init(&base, NULL, &curthread->td_msgport, 0, 853 ifq_stage_detach_handler); 854 base.lmsg.u.ms_resultp = ifq; 855 856 for (cpu = 0; cpu < ncpus; ++cpu) 857 lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0); 858 } 859 860 struct netmsg_if_rtdel { 861 struct netmsg_base base; 862 struct ifnet *ifp; 863 }; 864 865 static void 866 if_rtdel_dispatch(netmsg_t msg) 867 { 868 struct netmsg_if_rtdel *rmsg = (void *)msg; 869 int i, nextcpu, cpu; 870 871 cpu = mycpuid; 872 for (i = 1; i <= AF_MAX; i++) { 873 struct radix_node_head *rnh; 874 875 if ((rnh = rt_tables[cpu][i]) == NULL) 876 continue; 877 rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp); 878 } 879 880 nextcpu = cpu + 1; 881 if (nextcpu < ncpus) 882 lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg); 883 else 884 lwkt_replymsg(&rmsg->base.lmsg, 0); 885 } 886 887 /* 888 * Detach an interface, removing it from the 889 * list of "active" interfaces. 890 */ 891 void 892 if_detach(struct ifnet *ifp) 893 { 894 struct ifnet_array *old_ifnet_array; 895 struct netmsg_if_rtdel msg; 896 struct domain *dp; 897 int q; 898 899 /* Announce that the interface is gone. */ 900 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 901 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 902 devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); 903 904 /* 905 * Remove this ifp from ifindex2inet, ifnet queue and ifnet 906 * array before it is whacked. 907 * 908 * Protect ifindex2ifnet, ifnet queue and ifnet array changes 909 * by ifnet lock, so that non-netisr threads could get a 910 * consistent view. 911 */ 912 ifnet_lock(); 913 914 /* 915 * Remove this ifp from ifindex2ifnet and maybe decrement if_index. 916 */ 917 ifindex2ifnet[ifp->if_index] = NULL; 918 while (if_index > 0 && ifindex2ifnet[if_index] == NULL) 919 if_index--; 920 921 /* 922 * Remove this ifp from ifnet queue. 923 */ 924 TAILQ_REMOVE(&ifnetlist, ifp, if_link); 925 926 /* 927 * Remove this ifp from ifnet array. 928 */ 929 /* Free old ifnet array after sync all netisrs */ 930 old_ifnet_array = ifnet_array; 931 ifnet_array = ifnet_array_del(ifp, old_ifnet_array); 932 933 ifnet_unlock(); 934 935 /* 936 * Sync all netisrs so that the old ifnet array is no longer 937 * accessed and we can free it safely later on. 938 */ 939 netmsg_service_sync(); 940 ifnet_array_free(old_ifnet_array); 941 942 /* 943 * Remove routes and flush queues. 944 */ 945 crit_enter(); 946 #ifdef IFPOLL_ENABLE 947 if (ifp->if_flags & IFF_NPOLLING) 948 ifpoll_deregister(ifp); 949 #endif 950 if_down(ifp); 951 952 /* Decrease the mbuf clusters/jclusters limits increased by us */ 953 if (ifp->if_nmbclusters > 0) 954 mcl_inclimit(-ifp->if_nmbclusters); 955 if (ifp->if_nmbjclusters > 0) 956 mjcl_inclimit(-ifp->if_nmbjclusters); 957 958 #ifdef ALTQ 959 if (ifq_is_enabled(&ifp->if_snd)) 960 altq_disable(&ifp->if_snd); 961 if (ifq_is_attached(&ifp->if_snd)) 962 altq_detach(&ifp->if_snd); 963 #endif 964 965 /* 966 * Clean up all addresses. 967 */ 968 ifp->if_lladdr = NULL; 969 970 if_purgeaddrs_nolink(ifp); 971 if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) { 972 struct ifaddr *ifa; 973 974 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 975 KASSERT(ifa->ifa_addr->sa_family == AF_LINK, 976 ("non-link ifaddr is left on if_addrheads")); 977 978 ifa_ifunlink(ifa, ifp); 979 ifa_destroy(ifa); 980 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]), 981 ("there are still ifaddrs left on if_addrheads")); 982 } 983 984 #ifdef INET 985 /* 986 * Remove all IPv4 kernel structures related to ifp. 987 */ 988 in_ifdetach(ifp); 989 #endif 990 991 #ifdef INET6 992 /* 993 * Remove all IPv6 kernel structs related to ifp. This should be done 994 * before removing routing entries below, since IPv6 interface direct 995 * routes are expected to be removed by the IPv6-specific kernel API. 996 * Otherwise, the kernel will detect some inconsistency and bark it. 997 */ 998 in6_ifdetach(ifp); 999 #endif 1000 1001 /* 1002 * Delete all remaining routes using this interface 1003 */ 1004 netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY, 1005 if_rtdel_dispatch); 1006 msg.ifp = ifp; 1007 rt_domsg_global(&msg.base); 1008 1009 SLIST_FOREACH(dp, &domains, dom_next) 1010 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) 1011 (*dp->dom_ifdetach)(ifp, 1012 ifp->if_afdata[dp->dom_family]); 1013 1014 kfree(ifp->if_addrheads, M_IFADDR); 1015 1016 lwkt_synchronize_ipiqs("if_detach"); 1017 ifq_stage_detach(&ifp->if_snd); 1018 1019 for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) { 1020 struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q]; 1021 1022 kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG); 1023 kfree(ifsq->ifsq_stage, M_DEVBUF); 1024 } 1025 kfree(ifp->if_snd.altq_subq, M_DEVBUF); 1026 1027 kfree(ifp->if_data_pcpu, M_DEVBUF); 1028 1029 crit_exit(); 1030 } 1031 1032 /* 1033 * Create interface group without members 1034 */ 1035 struct ifg_group * 1036 if_creategroup(const char *groupname) 1037 { 1038 struct ifg_group *ifg = NULL; 1039 1040 if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group), 1041 M_TEMP, M_NOWAIT)) == NULL) 1042 return (NULL); 1043 1044 strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); 1045 ifg->ifg_refcnt = 0; 1046 ifg->ifg_carp_demoted = 0; 1047 TAILQ_INIT(&ifg->ifg_members); 1048 #if NPF > 0 1049 pfi_attach_ifgroup(ifg); 1050 #endif 1051 TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next); 1052 1053 return (ifg); 1054 } 1055 1056 /* 1057 * Add a group to an interface 1058 */ 1059 int 1060 if_addgroup(struct ifnet *ifp, const char *groupname) 1061 { 1062 struct ifg_list *ifgl; 1063 struct ifg_group *ifg = NULL; 1064 struct ifg_member *ifgm; 1065 1066 if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && 1067 groupname[strlen(groupname) - 1] <= '9') 1068 return (EINVAL); 1069 1070 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1071 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 1072 return (EEXIST); 1073 1074 if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) 1075 return (ENOMEM); 1076 1077 if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { 1078 kfree(ifgl, M_TEMP); 1079 return (ENOMEM); 1080 } 1081 1082 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 1083 if (!strcmp(ifg->ifg_group, groupname)) 1084 break; 1085 1086 if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) { 1087 kfree(ifgl, M_TEMP); 1088 kfree(ifgm, M_TEMP); 1089 return (ENOMEM); 1090 } 1091 1092 ifg->ifg_refcnt++; 1093 ifgl->ifgl_group = ifg; 1094 ifgm->ifgm_ifp = ifp; 1095 1096 TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); 1097 TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); 1098 1099 #if NPF > 0 1100 pfi_group_change(groupname); 1101 #endif 1102 1103 return (0); 1104 } 1105 1106 /* 1107 * Remove a group from an interface 1108 */ 1109 int 1110 if_delgroup(struct ifnet *ifp, const char *groupname) 1111 { 1112 struct ifg_list *ifgl; 1113 struct ifg_member *ifgm; 1114 1115 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1116 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) 1117 break; 1118 if (ifgl == NULL) 1119 return (ENOENT); 1120 1121 TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); 1122 1123 TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) 1124 if (ifgm->ifgm_ifp == ifp) 1125 break; 1126 1127 if (ifgm != NULL) { 1128 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); 1129 kfree(ifgm, M_TEMP); 1130 } 1131 1132 if (--ifgl->ifgl_group->ifg_refcnt == 0) { 1133 TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next); 1134 #if NPF > 0 1135 pfi_detach_ifgroup(ifgl->ifgl_group); 1136 #endif 1137 kfree(ifgl->ifgl_group, M_TEMP); 1138 } 1139 1140 kfree(ifgl, M_TEMP); 1141 1142 #if NPF > 0 1143 pfi_group_change(groupname); 1144 #endif 1145 1146 return (0); 1147 } 1148 1149 /* 1150 * Stores all groups from an interface in memory pointed 1151 * to by data 1152 */ 1153 int 1154 if_getgroup(caddr_t data, struct ifnet *ifp) 1155 { 1156 int len, error; 1157 struct ifg_list *ifgl; 1158 struct ifg_req ifgrq, *ifgp; 1159 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 1160 1161 if (ifgr->ifgr_len == 0) { 1162 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) 1163 ifgr->ifgr_len += sizeof(struct ifg_req); 1164 return (0); 1165 } 1166 1167 len = ifgr->ifgr_len; 1168 ifgp = ifgr->ifgr_groups; 1169 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { 1170 if (len < sizeof(ifgrq)) 1171 return (EINVAL); 1172 bzero(&ifgrq, sizeof ifgrq); 1173 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, 1174 sizeof(ifgrq.ifgrq_group)); 1175 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 1176 sizeof(struct ifg_req)))) 1177 return (error); 1178 len -= sizeof(ifgrq); 1179 ifgp++; 1180 } 1181 1182 return (0); 1183 } 1184 1185 /* 1186 * Stores all members of a group in memory pointed to by data 1187 */ 1188 int 1189 if_getgroupmembers(caddr_t data) 1190 { 1191 struct ifgroupreq *ifgr = (struct ifgroupreq *)data; 1192 struct ifg_group *ifg; 1193 struct ifg_member *ifgm; 1194 struct ifg_req ifgrq, *ifgp; 1195 int len, error; 1196 1197 TAILQ_FOREACH(ifg, &ifg_head, ifg_next) 1198 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) 1199 break; 1200 if (ifg == NULL) 1201 return (ENOENT); 1202 1203 if (ifgr->ifgr_len == 0) { 1204 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) 1205 ifgr->ifgr_len += sizeof(ifgrq); 1206 return (0); 1207 } 1208 1209 len = ifgr->ifgr_len; 1210 ifgp = ifgr->ifgr_groups; 1211 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { 1212 if (len < sizeof(ifgrq)) 1213 return (EINVAL); 1214 bzero(&ifgrq, sizeof ifgrq); 1215 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, 1216 sizeof(ifgrq.ifgrq_member)); 1217 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, 1218 sizeof(struct ifg_req)))) 1219 return (error); 1220 len -= sizeof(ifgrq); 1221 ifgp++; 1222 } 1223 1224 return (0); 1225 } 1226 1227 /* 1228 * Delete Routes for a Network Interface 1229 * 1230 * Called for each routing entry via the rnh->rnh_walktree() call above 1231 * to delete all route entries referencing a detaching network interface. 1232 * 1233 * Arguments: 1234 * rn pointer to node in the routing table 1235 * arg argument passed to rnh->rnh_walktree() - detaching interface 1236 * 1237 * Returns: 1238 * 0 successful 1239 * errno failed - reason indicated 1240 * 1241 */ 1242 static int 1243 if_rtdel(struct radix_node *rn, void *arg) 1244 { 1245 struct rtentry *rt = (struct rtentry *)rn; 1246 struct ifnet *ifp = arg; 1247 int err; 1248 1249 if (rt->rt_ifp == ifp) { 1250 1251 /* 1252 * Protect (sorta) against walktree recursion problems 1253 * with cloned routes 1254 */ 1255 if (!(rt->rt_flags & RTF_UP)) 1256 return (0); 1257 1258 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, 1259 rt_mask(rt), rt->rt_flags, 1260 NULL); 1261 if (err) { 1262 log(LOG_WARNING, "if_rtdel: error %d\n", err); 1263 } 1264 } 1265 1266 return (0); 1267 } 1268 1269 static __inline boolean_t 1270 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa) 1271 { 1272 if (old_ifa == NULL) 1273 return TRUE; 1274 1275 if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 && 1276 (cur_ifa->ifa_ifp->if_flags & IFF_UP)) 1277 return TRUE; 1278 if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 && 1279 (cur_ifa->ifa_flags & IFA_ROUTE)) 1280 return TRUE; 1281 return FALSE; 1282 } 1283 1284 /* 1285 * Locate an interface based on a complete address. 1286 */ 1287 struct ifaddr * 1288 ifa_ifwithaddr(struct sockaddr *addr) 1289 { 1290 const struct ifnet_array *arr; 1291 int i; 1292 1293 arr = ifnet_array_get(); 1294 for (i = 0; i < arr->ifnet_count; ++i) { 1295 struct ifnet *ifp = arr->ifnet_arr[i]; 1296 struct ifaddr_container *ifac; 1297 1298 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1299 struct ifaddr *ifa = ifac->ifa; 1300 1301 if (ifa->ifa_addr->sa_family != addr->sa_family) 1302 continue; 1303 if (sa_equal(addr, ifa->ifa_addr)) 1304 return (ifa); 1305 if ((ifp->if_flags & IFF_BROADCAST) && 1306 ifa->ifa_broadaddr && 1307 /* IPv6 doesn't have broadcast */ 1308 ifa->ifa_broadaddr->sa_len != 0 && 1309 sa_equal(ifa->ifa_broadaddr, addr)) 1310 return (ifa); 1311 } 1312 } 1313 return (NULL); 1314 } 1315 1316 /* 1317 * Locate the point to point interface with a given destination address. 1318 */ 1319 struct ifaddr * 1320 ifa_ifwithdstaddr(struct sockaddr *addr) 1321 { 1322 const struct ifnet_array *arr; 1323 int i; 1324 1325 arr = ifnet_array_get(); 1326 for (i = 0; i < arr->ifnet_count; ++i) { 1327 struct ifnet *ifp = arr->ifnet_arr[i]; 1328 struct ifaddr_container *ifac; 1329 1330 if (!(ifp->if_flags & IFF_POINTOPOINT)) 1331 continue; 1332 1333 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1334 struct ifaddr *ifa = ifac->ifa; 1335 1336 if (ifa->ifa_addr->sa_family != addr->sa_family) 1337 continue; 1338 if (ifa->ifa_dstaddr && 1339 sa_equal(addr, ifa->ifa_dstaddr)) 1340 return (ifa); 1341 } 1342 } 1343 return (NULL); 1344 } 1345 1346 /* 1347 * Find an interface on a specific network. If many, choice 1348 * is most specific found. 1349 */ 1350 struct ifaddr * 1351 ifa_ifwithnet(struct sockaddr *addr) 1352 { 1353 struct ifaddr *ifa_maybe = NULL; 1354 u_int af = addr->sa_family; 1355 char *addr_data = addr->sa_data, *cplim; 1356 const struct ifnet_array *arr; 1357 int i; 1358 1359 /* 1360 * AF_LINK addresses can be looked up directly by their index number, 1361 * so do that if we can. 1362 */ 1363 if (af == AF_LINK) { 1364 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; 1365 1366 if (sdl->sdl_index && sdl->sdl_index <= if_index) 1367 return (ifindex2ifnet[sdl->sdl_index]->if_lladdr); 1368 } 1369 1370 /* 1371 * Scan though each interface, looking for ones that have 1372 * addresses in this address family. 1373 */ 1374 arr = ifnet_array_get(); 1375 for (i = 0; i < arr->ifnet_count; ++i) { 1376 struct ifnet *ifp = arr->ifnet_arr[i]; 1377 struct ifaddr_container *ifac; 1378 1379 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1380 struct ifaddr *ifa = ifac->ifa; 1381 char *cp, *cp2, *cp3; 1382 1383 if (ifa->ifa_addr->sa_family != af) 1384 next: continue; 1385 if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) { 1386 /* 1387 * This is a bit broken as it doesn't 1388 * take into account that the remote end may 1389 * be a single node in the network we are 1390 * looking for. 1391 * The trouble is that we don't know the 1392 * netmask for the remote end. 1393 */ 1394 if (ifa->ifa_dstaddr != NULL && 1395 sa_equal(addr, ifa->ifa_dstaddr)) 1396 return (ifa); 1397 } else { 1398 /* 1399 * if we have a special address handler, 1400 * then use it instead of the generic one. 1401 */ 1402 if (ifa->ifa_claim_addr) { 1403 if ((*ifa->ifa_claim_addr)(ifa, addr)) { 1404 return (ifa); 1405 } else { 1406 continue; 1407 } 1408 } 1409 1410 /* 1411 * Scan all the bits in the ifa's address. 1412 * If a bit dissagrees with what we are 1413 * looking for, mask it with the netmask 1414 * to see if it really matters. 1415 * (A byte at a time) 1416 */ 1417 if (ifa->ifa_netmask == 0) 1418 continue; 1419 cp = addr_data; 1420 cp2 = ifa->ifa_addr->sa_data; 1421 cp3 = ifa->ifa_netmask->sa_data; 1422 cplim = ifa->ifa_netmask->sa_len + 1423 (char *)ifa->ifa_netmask; 1424 while (cp3 < cplim) 1425 if ((*cp++ ^ *cp2++) & *cp3++) 1426 goto next; /* next address! */ 1427 /* 1428 * If the netmask of what we just found 1429 * is more specific than what we had before 1430 * (if we had one) then remember the new one 1431 * before continuing to search for an even 1432 * better one. If the netmasks are equal, 1433 * we prefer the this ifa based on the result 1434 * of ifa_prefer(). 1435 */ 1436 if (ifa_maybe == NULL || 1437 rn_refines((char *)ifa->ifa_netmask, 1438 (char *)ifa_maybe->ifa_netmask) || 1439 (sa_equal(ifa_maybe->ifa_netmask, 1440 ifa->ifa_netmask) && 1441 ifa_prefer(ifa, ifa_maybe))) 1442 ifa_maybe = ifa; 1443 } 1444 } 1445 } 1446 return (ifa_maybe); 1447 } 1448 1449 /* 1450 * Find an interface address specific to an interface best matching 1451 * a given address. 1452 */ 1453 struct ifaddr * 1454 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) 1455 { 1456 struct ifaddr_container *ifac; 1457 char *cp, *cp2, *cp3; 1458 char *cplim; 1459 struct ifaddr *ifa_maybe = NULL; 1460 u_int af = addr->sa_family; 1461 1462 if (af >= AF_MAX) 1463 return (0); 1464 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1465 struct ifaddr *ifa = ifac->ifa; 1466 1467 if (ifa->ifa_addr->sa_family != af) 1468 continue; 1469 if (ifa_maybe == NULL) 1470 ifa_maybe = ifa; 1471 if (ifa->ifa_netmask == NULL) { 1472 if (sa_equal(addr, ifa->ifa_addr) || 1473 (ifa->ifa_dstaddr != NULL && 1474 sa_equal(addr, ifa->ifa_dstaddr))) 1475 return (ifa); 1476 continue; 1477 } 1478 if (ifp->if_flags & IFF_POINTOPOINT) { 1479 if (sa_equal(addr, ifa->ifa_dstaddr)) 1480 return (ifa); 1481 } else { 1482 cp = addr->sa_data; 1483 cp2 = ifa->ifa_addr->sa_data; 1484 cp3 = ifa->ifa_netmask->sa_data; 1485 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1486 for (; cp3 < cplim; cp3++) 1487 if ((*cp++ ^ *cp2++) & *cp3) 1488 break; 1489 if (cp3 == cplim) 1490 return (ifa); 1491 } 1492 } 1493 return (ifa_maybe); 1494 } 1495 1496 /* 1497 * Default action when installing a route with a Link Level gateway. 1498 * Lookup an appropriate real ifa to point to. 1499 * This should be moved to /sys/net/link.c eventually. 1500 */ 1501 static void 1502 link_rtrequest(int cmd, struct rtentry *rt) 1503 { 1504 struct ifaddr *ifa; 1505 struct sockaddr *dst; 1506 struct ifnet *ifp; 1507 1508 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1509 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL) 1510 return; 1511 ifa = ifaof_ifpforaddr(dst, ifp); 1512 if (ifa != NULL) { 1513 IFAFREE(rt->rt_ifa); 1514 IFAREF(ifa); 1515 rt->rt_ifa = ifa; 1516 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1517 ifa->ifa_rtrequest(cmd, rt); 1518 } 1519 } 1520 1521 struct netmsg_ifroute { 1522 struct netmsg_base base; 1523 struct ifnet *ifp; 1524 int flag; 1525 int fam; 1526 }; 1527 1528 /* 1529 * Mark an interface down and notify protocols of the transition. 1530 */ 1531 static void 1532 if_unroute_dispatch(netmsg_t nmsg) 1533 { 1534 struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg; 1535 struct ifnet *ifp = msg->ifp; 1536 int flag = msg->flag, fam = msg->fam; 1537 struct ifaddr_container *ifac; 1538 1539 ifp->if_flags &= ~flag; 1540 getmicrotime(&ifp->if_lastchange); 1541 /* 1542 * The ifaddr processing in the following loop will block, 1543 * however, this function is called in netisr0, in which 1544 * ifaddr list changes happen, so we don't care about the 1545 * blockness of the ifaddr processing here. 1546 */ 1547 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1548 struct ifaddr *ifa = ifac->ifa; 1549 1550 /* Ignore marker */ 1551 if (ifa->ifa_addr->sa_family == AF_UNSPEC) 1552 continue; 1553 1554 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1555 kpfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1556 } 1557 ifq_purge_all(&ifp->if_snd); 1558 rt_ifmsg(ifp); 1559 1560 lwkt_replymsg(&nmsg->lmsg, 0); 1561 } 1562 1563 void 1564 if_unroute(struct ifnet *ifp, int flag, int fam) 1565 { 1566 struct netmsg_ifroute msg; 1567 1568 ASSERT_CANDOMSG_NETISR0(curthread); 1569 1570 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0, 1571 if_unroute_dispatch); 1572 msg.ifp = ifp; 1573 msg.flag = flag; 1574 msg.fam = fam; 1575 lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0); 1576 } 1577 1578 /* 1579 * Mark an interface up and notify protocols of the transition. 1580 */ 1581 static void 1582 if_route_dispatch(netmsg_t nmsg) 1583 { 1584 struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg; 1585 struct ifnet *ifp = msg->ifp; 1586 int flag = msg->flag, fam = msg->fam; 1587 struct ifaddr_container *ifac; 1588 1589 ifq_purge_all(&ifp->if_snd); 1590 ifp->if_flags |= flag; 1591 getmicrotime(&ifp->if_lastchange); 1592 /* 1593 * The ifaddr processing in the following loop will block, 1594 * however, this function is called in netisr0, in which 1595 * ifaddr list changes happen, so we don't care about the 1596 * blockness of the ifaddr processing here. 1597 */ 1598 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 1599 struct ifaddr *ifa = ifac->ifa; 1600 1601 /* Ignore marker */ 1602 if (ifa->ifa_addr->sa_family == AF_UNSPEC) 1603 continue; 1604 1605 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) 1606 kpfctlinput(PRC_IFUP, ifa->ifa_addr); 1607 } 1608 rt_ifmsg(ifp); 1609 #ifdef INET6 1610 in6_if_up(ifp); 1611 #endif 1612 1613 lwkt_replymsg(&nmsg->lmsg, 0); 1614 } 1615 1616 void 1617 if_route(struct ifnet *ifp, int flag, int fam) 1618 { 1619 struct netmsg_ifroute msg; 1620 1621 ASSERT_CANDOMSG_NETISR0(curthread); 1622 1623 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0, 1624 if_route_dispatch); 1625 msg.ifp = ifp; 1626 msg.flag = flag; 1627 msg.fam = fam; 1628 lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0); 1629 } 1630 1631 /* 1632 * Mark an interface down and notify protocols of the transition. An 1633 * interface going down is also considered to be a synchronizing event. 1634 * We must ensure that all packet processing related to the interface 1635 * has completed before we return so e.g. the caller can free the ifnet 1636 * structure that the mbufs may be referencing. 1637 * 1638 * NOTE: must be called at splnet or eqivalent. 1639 */ 1640 void 1641 if_down(struct ifnet *ifp) 1642 { 1643 if_unroute(ifp, IFF_UP, AF_UNSPEC); 1644 netmsg_service_sync(); 1645 } 1646 1647 /* 1648 * Mark an interface up and notify protocols of 1649 * the transition. 1650 * NOTE: must be called at splnet or eqivalent. 1651 */ 1652 void 1653 if_up(struct ifnet *ifp) 1654 { 1655 if_route(ifp, IFF_UP, AF_UNSPEC); 1656 } 1657 1658 /* 1659 * Process a link state change. 1660 * NOTE: must be called at splsoftnet or equivalent. 1661 */ 1662 void 1663 if_link_state_change(struct ifnet *ifp) 1664 { 1665 int link_state = ifp->if_link_state; 1666 1667 rt_ifmsg(ifp); 1668 devctl_notify("IFNET", ifp->if_xname, 1669 (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); 1670 } 1671 1672 /* 1673 * Handle interface watchdog timer routines. Called 1674 * from softclock, we decrement timers (if set) and 1675 * call the appropriate interface routine on expiration. 1676 */ 1677 static void 1678 if_slowtimo_dispatch(netmsg_t nmsg) 1679 { 1680 struct globaldata *gd = mycpu; 1681 const struct ifnet_array *arr; 1682 int i; 1683 1684 ASSERT_IN_NETISR(0); 1685 1686 crit_enter_gd(gd); 1687 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */ 1688 crit_exit_gd(gd); 1689 1690 arr = ifnet_array_get(); 1691 for (i = 0; i < arr->ifnet_count; ++i) { 1692 struct ifnet *ifp = arr->ifnet_arr[i]; 1693 1694 crit_enter_gd(gd); 1695 1696 if (if_stats_compat) { 1697 IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets); 1698 IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors); 1699 IFNET_STAT_GET(ifp, opackets, ifp->if_opackets); 1700 IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors); 1701 IFNET_STAT_GET(ifp, collisions, ifp->if_collisions); 1702 IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes); 1703 IFNET_STAT_GET(ifp, obytes, ifp->if_obytes); 1704 IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts); 1705 IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts); 1706 IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops); 1707 IFNET_STAT_GET(ifp, noproto, ifp->if_noproto); 1708 IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops); 1709 } 1710 1711 if (ifp->if_timer == 0 || --ifp->if_timer) { 1712 crit_exit_gd(gd); 1713 continue; 1714 } 1715 if (ifp->if_watchdog) { 1716 if (ifnet_tryserialize_all(ifp)) { 1717 (*ifp->if_watchdog)(ifp); 1718 ifnet_deserialize_all(ifp); 1719 } else { 1720 /* try again next timeout */ 1721 ++ifp->if_timer; 1722 } 1723 } 1724 1725 crit_exit_gd(gd); 1726 } 1727 1728 callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL); 1729 } 1730 1731 static void 1732 if_slowtimo(void *arg __unused) 1733 { 1734 struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg; 1735 1736 KASSERT(mycpuid == 0, ("not on cpu0")); 1737 crit_enter(); 1738 if (lmsg->ms_flags & MSGF_DONE) 1739 lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg); 1740 crit_exit(); 1741 } 1742 1743 /* 1744 * Map interface name to 1745 * interface structure pointer. 1746 */ 1747 struct ifnet * 1748 ifunit(const char *name) 1749 { 1750 struct ifnet *ifp; 1751 1752 /* 1753 * Search all the interfaces for this name/number 1754 */ 1755 KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked")); 1756 1757 TAILQ_FOREACH(ifp, &ifnetlist, if_link) { 1758 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) 1759 break; 1760 } 1761 return (ifp); 1762 } 1763 1764 struct ifnet * 1765 ifunit_netisr(const char *name) 1766 { 1767 const struct ifnet_array *arr; 1768 int i; 1769 1770 /* 1771 * Search all the interfaces for this name/number 1772 */ 1773 1774 arr = ifnet_array_get(); 1775 for (i = 0; i < arr->ifnet_count; ++i) { 1776 struct ifnet *ifp = arr->ifnet_arr[i]; 1777 1778 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) 1779 return ifp; 1780 } 1781 return NULL; 1782 } 1783 1784 /* 1785 * Interface ioctls. 1786 */ 1787 int 1788 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred) 1789 { 1790 struct ifnet *ifp; 1791 struct ifreq *ifr; 1792 struct ifstat *ifs; 1793 int error, do_ifup = 0; 1794 short oif_flags; 1795 int new_flags; 1796 size_t namelen, onamelen; 1797 char new_name[IFNAMSIZ]; 1798 struct ifaddr *ifa; 1799 struct sockaddr_dl *sdl; 1800 1801 switch (cmd) { 1802 case SIOCGIFCONF: 1803 case OSIOCGIFCONF: 1804 return (ifconf(cmd, data, cred)); 1805 default: 1806 break; 1807 } 1808 1809 ifr = (struct ifreq *)data; 1810 1811 switch (cmd) { 1812 case SIOCIFCREATE: 1813 case SIOCIFCREATE2: 1814 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1815 return (error); 1816 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), 1817 cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL)); 1818 case SIOCIFDESTROY: 1819 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) 1820 return (error); 1821 return (if_clone_destroy(ifr->ifr_name)); 1822 case SIOCIFGCLONERS: 1823 return (if_clone_list((struct if_clonereq *)data)); 1824 default: 1825 break; 1826 } 1827 1828 /* 1829 * Nominal ioctl through interface, lookup the ifp and obtain a 1830 * lock to serialize the ifconfig ioctl operation. 1831 */ 1832 ifnet_lock(); 1833 1834 ifp = ifunit(ifr->ifr_name); 1835 if (ifp == NULL) { 1836 ifnet_unlock(); 1837 return (ENXIO); 1838 } 1839 error = 0; 1840 1841 switch (cmd) { 1842 case SIOCGIFINDEX: 1843 ifr->ifr_index = ifp->if_index; 1844 break; 1845 1846 case SIOCGIFFLAGS: 1847 ifr->ifr_flags = ifp->if_flags; 1848 ifr->ifr_flagshigh = ifp->if_flags >> 16; 1849 break; 1850 1851 case SIOCGIFCAP: 1852 ifr->ifr_reqcap = ifp->if_capabilities; 1853 ifr->ifr_curcap = ifp->if_capenable; 1854 break; 1855 1856 case SIOCGIFMETRIC: 1857 ifr->ifr_metric = ifp->if_metric; 1858 break; 1859 1860 case SIOCGIFMTU: 1861 ifr->ifr_mtu = ifp->if_mtu; 1862 break; 1863 1864 case SIOCGIFTSOLEN: 1865 ifr->ifr_tsolen = ifp->if_tsolen; 1866 break; 1867 1868 case SIOCGIFDATA: 1869 error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data, 1870 sizeof(ifp->if_data)); 1871 break; 1872 1873 case SIOCGIFPHYS: 1874 ifr->ifr_phys = ifp->if_physical; 1875 break; 1876 1877 case SIOCGIFPOLLCPU: 1878 ifr->ifr_pollcpu = -1; 1879 break; 1880 1881 case SIOCSIFPOLLCPU: 1882 break; 1883 1884 case SIOCSIFFLAGS: 1885 error = priv_check_cred(cred, PRIV_ROOT, 0); 1886 if (error) 1887 break; 1888 new_flags = (ifr->ifr_flags & 0xffff) | 1889 (ifr->ifr_flagshigh << 16); 1890 if (ifp->if_flags & IFF_SMART) { 1891 /* Smart drivers twiddle their own routes */ 1892 } else if (ifp->if_flags & IFF_UP && 1893 (new_flags & IFF_UP) == 0) { 1894 if_down(ifp); 1895 } else if (new_flags & IFF_UP && 1896 (ifp->if_flags & IFF_UP) == 0) { 1897 do_ifup = 1; 1898 } 1899 1900 #ifdef IFPOLL_ENABLE 1901 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) { 1902 if (new_flags & IFF_NPOLLING) 1903 ifpoll_register(ifp); 1904 else 1905 ifpoll_deregister(ifp); 1906 } 1907 #endif 1908 1909 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 1910 (new_flags &~ IFF_CANTCHANGE); 1911 if (new_flags & IFF_PPROMISC) { 1912 /* Permanently promiscuous mode requested */ 1913 ifp->if_flags |= IFF_PROMISC; 1914 } else if (ifp->if_pcount == 0) { 1915 ifp->if_flags &= ~IFF_PROMISC; 1916 } 1917 if (ifp->if_ioctl) { 1918 ifnet_serialize_all(ifp); 1919 ifp->if_ioctl(ifp, cmd, data, cred); 1920 ifnet_deserialize_all(ifp); 1921 } 1922 if (do_ifup) 1923 if_up(ifp); 1924 getmicrotime(&ifp->if_lastchange); 1925 break; 1926 1927 case SIOCSIFCAP: 1928 error = priv_check_cred(cred, PRIV_ROOT, 0); 1929 if (error) 1930 break; 1931 if (ifr->ifr_reqcap & ~ifp->if_capabilities) { 1932 error = EINVAL; 1933 break; 1934 } 1935 ifnet_serialize_all(ifp); 1936 ifp->if_ioctl(ifp, cmd, data, cred); 1937 ifnet_deserialize_all(ifp); 1938 break; 1939 1940 case SIOCSIFNAME: 1941 error = priv_check_cred(cred, PRIV_ROOT, 0); 1942 if (error) 1943 break; 1944 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); 1945 if (error) 1946 break; 1947 if (new_name[0] == '\0') { 1948 error = EINVAL; 1949 break; 1950 } 1951 if (ifunit(new_name) != NULL) { 1952 error = EEXIST; 1953 break; 1954 } 1955 1956 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); 1957 1958 /* Announce the departure of the interface. */ 1959 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1960 1961 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); 1962 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; 1963 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1964 namelen = strlen(new_name); 1965 onamelen = sdl->sdl_nlen; 1966 /* 1967 * Move the address if needed. This is safe because we 1968 * allocate space for a name of length IFNAMSIZ when we 1969 * create this in if_attach(). 1970 */ 1971 if (namelen != onamelen) { 1972 bcopy(sdl->sdl_data + onamelen, 1973 sdl->sdl_data + namelen, sdl->sdl_alen); 1974 } 1975 bcopy(new_name, sdl->sdl_data, namelen); 1976 sdl->sdl_nlen = namelen; 1977 sdl = (struct sockaddr_dl *)ifa->ifa_netmask; 1978 bzero(sdl->sdl_data, onamelen); 1979 while (namelen != 0) 1980 sdl->sdl_data[--namelen] = 0xff; 1981 1982 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); 1983 1984 /* Announce the return of the interface. */ 1985 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 1986 break; 1987 1988 case SIOCSIFMETRIC: 1989 error = priv_check_cred(cred, PRIV_ROOT, 0); 1990 if (error) 1991 break; 1992 ifp->if_metric = ifr->ifr_metric; 1993 getmicrotime(&ifp->if_lastchange); 1994 break; 1995 1996 case SIOCSIFPHYS: 1997 error = priv_check_cred(cred, PRIV_ROOT, 0); 1998 if (error) 1999 break; 2000 if (ifp->if_ioctl == NULL) { 2001 error = EOPNOTSUPP; 2002 break; 2003 } 2004 ifnet_serialize_all(ifp); 2005 error = ifp->if_ioctl(ifp, cmd, data, cred); 2006 ifnet_deserialize_all(ifp); 2007 if (error == 0) 2008 getmicrotime(&ifp->if_lastchange); 2009 break; 2010 2011 case SIOCSIFMTU: 2012 { 2013 u_long oldmtu = ifp->if_mtu; 2014 2015 error = priv_check_cred(cred, PRIV_ROOT, 0); 2016 if (error) 2017 break; 2018 if (ifp->if_ioctl == NULL) { 2019 error = EOPNOTSUPP; 2020 break; 2021 } 2022 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) { 2023 error = EINVAL; 2024 break; 2025 } 2026 ifnet_serialize_all(ifp); 2027 error = ifp->if_ioctl(ifp, cmd, data, cred); 2028 ifnet_deserialize_all(ifp); 2029 if (error == 0) { 2030 getmicrotime(&ifp->if_lastchange); 2031 rt_ifmsg(ifp); 2032 } 2033 /* 2034 * If the link MTU changed, do network layer specific procedure. 2035 */ 2036 if (ifp->if_mtu != oldmtu) { 2037 #ifdef INET6 2038 nd6_setmtu(ifp); 2039 #endif 2040 } 2041 break; 2042 } 2043 2044 case SIOCSIFTSOLEN: 2045 error = priv_check_cred(cred, PRIV_ROOT, 0); 2046 if (error) 2047 break; 2048 2049 /* XXX need driver supplied upper limit */ 2050 if (ifr->ifr_tsolen <= 0) { 2051 error = EINVAL; 2052 break; 2053 } 2054 ifp->if_tsolen = ifr->ifr_tsolen; 2055 break; 2056 2057 case SIOCADDMULTI: 2058 case SIOCDELMULTI: 2059 error = priv_check_cred(cred, PRIV_ROOT, 0); 2060 if (error) 2061 break; 2062 2063 /* Don't allow group membership on non-multicast interfaces. */ 2064 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2065 error = EOPNOTSUPP; 2066 break; 2067 } 2068 2069 /* Don't let users screw up protocols' entries. */ 2070 if (ifr->ifr_addr.sa_family != AF_LINK) { 2071 error = EINVAL; 2072 break; 2073 } 2074 2075 if (cmd == SIOCADDMULTI) { 2076 struct ifmultiaddr *ifma; 2077 error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); 2078 } else { 2079 error = if_delmulti(ifp, &ifr->ifr_addr); 2080 } 2081 if (error == 0) 2082 getmicrotime(&ifp->if_lastchange); 2083 break; 2084 2085 case SIOCSIFPHYADDR: 2086 case SIOCDIFPHYADDR: 2087 #ifdef INET6 2088 case SIOCSIFPHYADDR_IN6: 2089 #endif 2090 case SIOCSLIFPHYADDR: 2091 case SIOCSIFMEDIA: 2092 case SIOCSIFGENERIC: 2093 error = priv_check_cred(cred, PRIV_ROOT, 0); 2094 if (error) 2095 break; 2096 if (ifp->if_ioctl == 0) { 2097 error = EOPNOTSUPP; 2098 break; 2099 } 2100 ifnet_serialize_all(ifp); 2101 error = ifp->if_ioctl(ifp, cmd, data, cred); 2102 ifnet_deserialize_all(ifp); 2103 if (error == 0) 2104 getmicrotime(&ifp->if_lastchange); 2105 break; 2106 2107 case SIOCGIFSTATUS: 2108 ifs = (struct ifstat *)data; 2109 ifs->ascii[0] = '\0'; 2110 /* fall through */ 2111 case SIOCGIFPSRCADDR: 2112 case SIOCGIFPDSTADDR: 2113 case SIOCGLIFPHYADDR: 2114 case SIOCGIFMEDIA: 2115 case SIOCGIFGENERIC: 2116 if (ifp->if_ioctl == NULL) { 2117 error = EOPNOTSUPP; 2118 break; 2119 } 2120 ifnet_serialize_all(ifp); 2121 error = ifp->if_ioctl(ifp, cmd, data, cred); 2122 ifnet_deserialize_all(ifp); 2123 break; 2124 2125 case SIOCSIFLLADDR: 2126 error = priv_check_cred(cred, PRIV_ROOT, 0); 2127 if (error) 2128 break; 2129 error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, 2130 ifr->ifr_addr.sa_len); 2131 EVENTHANDLER_INVOKE(iflladdr_event, ifp); 2132 break; 2133 2134 default: 2135 oif_flags = ifp->if_flags; 2136 if (so->so_proto == 0) { 2137 error = EOPNOTSUPP; 2138 break; 2139 } 2140 error = so_pru_control_direct(so, cmd, data, ifp); 2141 2142 if ((oif_flags ^ ifp->if_flags) & IFF_UP) { 2143 #ifdef INET6 2144 DELAY(100);/* XXX: temporary workaround for fxp issue*/ 2145 if (ifp->if_flags & IFF_UP) { 2146 crit_enter(); 2147 in6_if_up(ifp); 2148 crit_exit(); 2149 } 2150 #endif 2151 } 2152 break; 2153 } 2154 2155 ifnet_unlock(); 2156 return (error); 2157 } 2158 2159 /* 2160 * Set/clear promiscuous mode on interface ifp based on the truth value 2161 * of pswitch. The calls are reference counted so that only the first 2162 * "on" request actually has an effect, as does the final "off" request. 2163 * Results are undefined if the "off" and "on" requests are not matched. 2164 */ 2165 int 2166 ifpromisc(struct ifnet *ifp, int pswitch) 2167 { 2168 struct ifreq ifr; 2169 int error; 2170 int oldflags; 2171 2172 oldflags = ifp->if_flags; 2173 if (ifp->if_flags & IFF_PPROMISC) { 2174 /* Do nothing if device is in permanently promiscuous mode */ 2175 ifp->if_pcount += pswitch ? 1 : -1; 2176 return (0); 2177 } 2178 if (pswitch) { 2179 /* 2180 * If the device is not configured up, we cannot put it in 2181 * promiscuous mode. 2182 */ 2183 if ((ifp->if_flags & IFF_UP) == 0) 2184 return (ENETDOWN); 2185 if (ifp->if_pcount++ != 0) 2186 return (0); 2187 ifp->if_flags |= IFF_PROMISC; 2188 log(LOG_INFO, "%s: promiscuous mode enabled\n", 2189 ifp->if_xname); 2190 } else { 2191 if (--ifp->if_pcount > 0) 2192 return (0); 2193 ifp->if_flags &= ~IFF_PROMISC; 2194 log(LOG_INFO, "%s: promiscuous mode disabled\n", 2195 ifp->if_xname); 2196 } 2197 ifr.ifr_flags = ifp->if_flags; 2198 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2199 ifnet_serialize_all(ifp); 2200 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); 2201 ifnet_deserialize_all(ifp); 2202 if (error == 0) 2203 rt_ifmsg(ifp); 2204 else 2205 ifp->if_flags = oldflags; 2206 return error; 2207 } 2208 2209 /* 2210 * Return interface configuration 2211 * of system. List may be used 2212 * in later ioctl's (above) to get 2213 * other information. 2214 */ 2215 static int 2216 ifconf(u_long cmd, caddr_t data, struct ucred *cred) 2217 { 2218 struct ifconf *ifc = (struct ifconf *)data; 2219 struct ifnet *ifp; 2220 struct sockaddr *sa; 2221 struct ifreq ifr, *ifrp; 2222 int space = ifc->ifc_len, error = 0; 2223 2224 ifrp = ifc->ifc_req; 2225 2226 ifnet_lock(); 2227 TAILQ_FOREACH(ifp, &ifnetlist, if_link) { 2228 struct ifaddr_container *ifac, *ifac_mark; 2229 struct ifaddr_marker mark; 2230 struct ifaddrhead *head; 2231 int addrs; 2232 2233 if (space <= sizeof ifr) 2234 break; 2235 2236 /* 2237 * Zero the stack declared structure first to prevent 2238 * memory disclosure. 2239 */ 2240 bzero(&ifr, sizeof(ifr)); 2241 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) 2242 >= sizeof(ifr.ifr_name)) { 2243 error = ENAMETOOLONG; 2244 break; 2245 } 2246 2247 /* 2248 * Add a marker, since copyout() could block and during that 2249 * period the list could be changed. Inserting the marker to 2250 * the header of the list will not cause trouble for the code 2251 * assuming that the first element of the list is AF_LINK; the 2252 * marker will be moved to the next position w/o blocking. 2253 */ 2254 ifa_marker_init(&mark, ifp); 2255 ifac_mark = &mark.ifac; 2256 head = &ifp->if_addrheads[mycpuid]; 2257 2258 addrs = 0; 2259 TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link); 2260 while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) { 2261 struct ifaddr *ifa = ifac->ifa; 2262 2263 TAILQ_REMOVE(head, ifac_mark, ifa_link); 2264 TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link); 2265 2266 /* Ignore marker */ 2267 if (ifa->ifa_addr->sa_family == AF_UNSPEC) 2268 continue; 2269 2270 if (space <= sizeof ifr) 2271 break; 2272 sa = ifa->ifa_addr; 2273 if (cred->cr_prison && 2274 prison_if(cred, sa)) 2275 continue; 2276 addrs++; 2277 /* 2278 * Keep a reference on this ifaddr, so that it will 2279 * not be destroyed when its address is copied to 2280 * the userland, which could block. 2281 */ 2282 IFAREF(ifa); 2283 if (sa->sa_len <= sizeof(*sa)) { 2284 ifr.ifr_addr = *sa; 2285 error = copyout(&ifr, ifrp, sizeof ifr); 2286 ifrp++; 2287 } else { 2288 if (space < (sizeof ifr) + sa->sa_len - 2289 sizeof(*sa)) { 2290 IFAFREE(ifa); 2291 break; 2292 } 2293 space -= sa->sa_len - sizeof(*sa); 2294 error = copyout(&ifr, ifrp, 2295 sizeof ifr.ifr_name); 2296 if (error == 0) 2297 error = copyout(sa, &ifrp->ifr_addr, 2298 sa->sa_len); 2299 ifrp = (struct ifreq *) 2300 (sa->sa_len + (caddr_t)&ifrp->ifr_addr); 2301 } 2302 IFAFREE(ifa); 2303 if (error) 2304 break; 2305 space -= sizeof ifr; 2306 } 2307 TAILQ_REMOVE(head, ifac_mark, ifa_link); 2308 if (error) 2309 break; 2310 if (!addrs) { 2311 bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr); 2312 error = copyout(&ifr, ifrp, sizeof ifr); 2313 if (error) 2314 break; 2315 space -= sizeof ifr; 2316 ifrp++; 2317 } 2318 } 2319 ifnet_unlock(); 2320 2321 ifc->ifc_len -= space; 2322 return (error); 2323 } 2324 2325 /* 2326 * Just like if_promisc(), but for all-multicast-reception mode. 2327 */ 2328 int 2329 if_allmulti(struct ifnet *ifp, int onswitch) 2330 { 2331 int error = 0; 2332 struct ifreq ifr; 2333 2334 crit_enter(); 2335 2336 if (onswitch) { 2337 if (ifp->if_amcount++ == 0) { 2338 ifp->if_flags |= IFF_ALLMULTI; 2339 ifr.ifr_flags = ifp->if_flags; 2340 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2341 ifnet_serialize_all(ifp); 2342 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2343 NULL); 2344 ifnet_deserialize_all(ifp); 2345 } 2346 } else { 2347 if (ifp->if_amcount > 1) { 2348 ifp->if_amcount--; 2349 } else { 2350 ifp->if_amcount = 0; 2351 ifp->if_flags &= ~IFF_ALLMULTI; 2352 ifr.ifr_flags = ifp->if_flags; 2353 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2354 ifnet_serialize_all(ifp); 2355 error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2356 NULL); 2357 ifnet_deserialize_all(ifp); 2358 } 2359 } 2360 2361 crit_exit(); 2362 2363 if (error == 0) 2364 rt_ifmsg(ifp); 2365 return error; 2366 } 2367 2368 /* 2369 * Add a multicast listenership to the interface in question. 2370 * The link layer provides a routine which converts 2371 */ 2372 int 2373 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa, 2374 struct ifmultiaddr **retifma) 2375 { 2376 struct sockaddr *llsa, *dupsa; 2377 int error; 2378 struct ifmultiaddr *ifma; 2379 2380 ASSERT_IFNET_SERIALIZED_ALL(ifp); 2381 2382 /* 2383 * If the matching multicast address already exists 2384 * then don't add a new one, just add a reference 2385 */ 2386 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2387 if (sa_equal(sa, ifma->ifma_addr)) { 2388 ifma->ifma_refcount++; 2389 if (retifma) 2390 *retifma = ifma; 2391 return 0; 2392 } 2393 } 2394 2395 /* 2396 * Give the link layer a chance to accept/reject it, and also 2397 * find out which AF_LINK address this maps to, if it isn't one 2398 * already. 2399 */ 2400 if (ifp->if_resolvemulti) { 2401 error = ifp->if_resolvemulti(ifp, &llsa, sa); 2402 if (error) 2403 return error; 2404 } else { 2405 llsa = NULL; 2406 } 2407 2408 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT); 2409 dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT); 2410 bcopy(sa, dupsa, sa->sa_len); 2411 2412 ifma->ifma_addr = dupsa; 2413 ifma->ifma_lladdr = llsa; 2414 ifma->ifma_ifp = ifp; 2415 ifma->ifma_refcount = 1; 2416 ifma->ifma_protospec = NULL; 2417 rt_newmaddrmsg(RTM_NEWMADDR, ifma); 2418 2419 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2420 if (retifma) 2421 *retifma = ifma; 2422 2423 if (llsa != NULL) { 2424 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2425 if (sa_equal(ifma->ifma_addr, llsa)) 2426 break; 2427 } 2428 if (ifma) { 2429 ifma->ifma_refcount++; 2430 } else { 2431 ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT); 2432 dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT); 2433 bcopy(llsa, dupsa, llsa->sa_len); 2434 ifma->ifma_addr = dupsa; 2435 ifma->ifma_ifp = ifp; 2436 ifma->ifma_refcount = 1; 2437 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); 2438 } 2439 } 2440 /* 2441 * We are certain we have added something, so call down to the 2442 * interface to let them know about it. 2443 */ 2444 if (ifp->if_ioctl) 2445 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL); 2446 2447 return 0; 2448 } 2449 2450 int 2451 if_addmulti(struct ifnet *ifp, struct sockaddr *sa, 2452 struct ifmultiaddr **retifma) 2453 { 2454 int error; 2455 2456 ifnet_serialize_all(ifp); 2457 error = if_addmulti_serialized(ifp, sa, retifma); 2458 ifnet_deserialize_all(ifp); 2459 2460 return error; 2461 } 2462 2463 /* 2464 * Remove a reference to a multicast address on this interface. Yell 2465 * if the request does not match an existing membership. 2466 */ 2467 static int 2468 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa) 2469 { 2470 struct ifmultiaddr *ifma; 2471 2472 ASSERT_IFNET_SERIALIZED_ALL(ifp); 2473 2474 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2475 if (sa_equal(sa, ifma->ifma_addr)) 2476 break; 2477 if (ifma == NULL) 2478 return ENOENT; 2479 2480 if (ifma->ifma_refcount > 1) { 2481 ifma->ifma_refcount--; 2482 return 0; 2483 } 2484 2485 rt_newmaddrmsg(RTM_DELMADDR, ifma); 2486 sa = ifma->ifma_lladdr; 2487 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2488 /* 2489 * Make sure the interface driver is notified 2490 * in the case of a link layer mcast group being left. 2491 */ 2492 if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) 2493 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2494 kfree(ifma->ifma_addr, M_IFMADDR); 2495 kfree(ifma, M_IFMADDR); 2496 if (sa == NULL) 2497 return 0; 2498 2499 /* 2500 * Now look for the link-layer address which corresponds to 2501 * this network address. It had been squirreled away in 2502 * ifma->ifma_lladdr for this purpose (so we don't have 2503 * to call ifp->if_resolvemulti() again), and we saved that 2504 * value in sa above. If some nasty deleted the 2505 * link-layer address out from underneath us, we can deal because 2506 * the address we stored was is not the same as the one which was 2507 * in the record for the link-layer address. (So we don't complain 2508 * in that case.) 2509 */ 2510 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2511 if (sa_equal(sa, ifma->ifma_addr)) 2512 break; 2513 if (ifma == NULL) 2514 return 0; 2515 2516 if (ifma->ifma_refcount > 1) { 2517 ifma->ifma_refcount--; 2518 return 0; 2519 } 2520 2521 TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); 2522 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); 2523 kfree(ifma->ifma_addr, M_IFMADDR); 2524 kfree(sa, M_IFMADDR); 2525 kfree(ifma, M_IFMADDR); 2526 2527 return 0; 2528 } 2529 2530 int 2531 if_delmulti(struct ifnet *ifp, struct sockaddr *sa) 2532 { 2533 int error; 2534 2535 ifnet_serialize_all(ifp); 2536 error = if_delmulti_serialized(ifp, sa); 2537 ifnet_deserialize_all(ifp); 2538 2539 return error; 2540 } 2541 2542 /* 2543 * Delete all multicast group membership for an interface. 2544 * Should be used to quickly flush all multicast filters. 2545 */ 2546 void 2547 if_delallmulti_serialized(struct ifnet *ifp) 2548 { 2549 struct ifmultiaddr *ifma, mark; 2550 struct sockaddr sa; 2551 2552 ASSERT_IFNET_SERIALIZED_ALL(ifp); 2553 2554 bzero(&sa, sizeof(sa)); 2555 sa.sa_family = AF_UNSPEC; 2556 sa.sa_len = sizeof(sa); 2557 2558 bzero(&mark, sizeof(mark)); 2559 mark.ifma_addr = &sa; 2560 2561 TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link); 2562 while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) { 2563 TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link); 2564 TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark, 2565 ifma_link); 2566 2567 if (ifma->ifma_addr->sa_family == AF_UNSPEC) 2568 continue; 2569 2570 if_delmulti_serialized(ifp, ifma->ifma_addr); 2571 } 2572 TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link); 2573 } 2574 2575 2576 /* 2577 * Set the link layer address on an interface. 2578 * 2579 * At this time we only support certain types of interfaces, 2580 * and we don't allow the length of the address to change. 2581 */ 2582 int 2583 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) 2584 { 2585 struct sockaddr_dl *sdl; 2586 struct ifreq ifr; 2587 2588 sdl = IF_LLSOCKADDR(ifp); 2589 if (sdl == NULL) 2590 return (EINVAL); 2591 if (len != sdl->sdl_alen) /* don't allow length to change */ 2592 return (EINVAL); 2593 switch (ifp->if_type) { 2594 case IFT_ETHER: /* these types use struct arpcom */ 2595 case IFT_XETHER: 2596 case IFT_L2VLAN: 2597 case IFT_IEEE8023ADLAG: 2598 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len); 2599 bcopy(lladdr, LLADDR(sdl), len); 2600 break; 2601 default: 2602 return (ENODEV); 2603 } 2604 /* 2605 * If the interface is already up, we need 2606 * to re-init it in order to reprogram its 2607 * address filter. 2608 */ 2609 ifnet_serialize_all(ifp); 2610 if ((ifp->if_flags & IFF_UP) != 0) { 2611 #ifdef INET 2612 struct ifaddr_container *ifac; 2613 #endif 2614 2615 ifp->if_flags &= ~IFF_UP; 2616 ifr.ifr_flags = ifp->if_flags; 2617 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2618 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2619 NULL); 2620 ifp->if_flags |= IFF_UP; 2621 ifr.ifr_flags = ifp->if_flags; 2622 ifr.ifr_flagshigh = ifp->if_flags >> 16; 2623 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, 2624 NULL); 2625 #ifdef INET 2626 /* 2627 * Also send gratuitous ARPs to notify other nodes about 2628 * the address change. 2629 */ 2630 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { 2631 struct ifaddr *ifa = ifac->ifa; 2632 2633 if (ifa->ifa_addr != NULL && 2634 ifa->ifa_addr->sa_family == AF_INET) 2635 arp_gratuitous(ifp, ifa); 2636 } 2637 #endif 2638 } 2639 ifnet_deserialize_all(ifp); 2640 return (0); 2641 } 2642 2643 struct ifmultiaddr * 2644 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp) 2645 { 2646 struct ifmultiaddr *ifma; 2647 2648 /* TODO: need ifnet_serialize_main */ 2649 ifnet_serialize_all(ifp); 2650 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) 2651 if (sa_equal(ifma->ifma_addr, sa)) 2652 break; 2653 ifnet_deserialize_all(ifp); 2654 2655 return ifma; 2656 } 2657 2658 /* 2659 * This function locates the first real ethernet MAC from a network 2660 * card and loads it into node, returning 0 on success or ENOENT if 2661 * no suitable interfaces were found. It is used by the uuid code to 2662 * generate a unique 6-byte number. 2663 */ 2664 int 2665 if_getanyethermac(uint16_t *node, int minlen) 2666 { 2667 struct ifnet *ifp; 2668 struct sockaddr_dl *sdl; 2669 2670 ifnet_lock(); 2671 TAILQ_FOREACH(ifp, &ifnetlist, if_link) { 2672 if (ifp->if_type != IFT_ETHER) 2673 continue; 2674 sdl = IF_LLSOCKADDR(ifp); 2675 if (sdl->sdl_alen < minlen) 2676 continue; 2677 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node, 2678 minlen); 2679 ifnet_unlock(); 2680 return(0); 2681 } 2682 ifnet_unlock(); 2683 return (ENOENT); 2684 } 2685 2686 /* 2687 * The name argument must be a pointer to storage which will last as 2688 * long as the interface does. For physical devices, the result of 2689 * device_get_name(dev) is a good choice and for pseudo-devices a 2690 * static string works well. 2691 */ 2692 void 2693 if_initname(struct ifnet *ifp, const char *name, int unit) 2694 { 2695 ifp->if_dname = name; 2696 ifp->if_dunit = unit; 2697 if (unit != IF_DUNIT_NONE) 2698 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); 2699 else 2700 strlcpy(ifp->if_xname, name, IFNAMSIZ); 2701 } 2702 2703 int 2704 if_printf(struct ifnet *ifp, const char *fmt, ...) 2705 { 2706 __va_list ap; 2707 int retval; 2708 2709 retval = kprintf("%s: ", ifp->if_xname); 2710 __va_start(ap, fmt); 2711 retval += kvprintf(fmt, ap); 2712 __va_end(ap); 2713 return (retval); 2714 } 2715 2716 struct ifnet * 2717 if_alloc(uint8_t type) 2718 { 2719 struct ifnet *ifp; 2720 size_t size; 2721 2722 /* 2723 * XXX temporary hack until arpcom is setup in if_l2com 2724 */ 2725 if (type == IFT_ETHER) 2726 size = sizeof(struct arpcom); 2727 else 2728 size = sizeof(struct ifnet); 2729 2730 ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO); 2731 2732 ifp->if_type = type; 2733 2734 if (if_com_alloc[type] != NULL) { 2735 ifp->if_l2com = if_com_alloc[type](type, ifp); 2736 if (ifp->if_l2com == NULL) { 2737 kfree(ifp, M_IFNET); 2738 return (NULL); 2739 } 2740 } 2741 return (ifp); 2742 } 2743 2744 void 2745 if_free(struct ifnet *ifp) 2746 { 2747 kfree(ifp, M_IFNET); 2748 } 2749 2750 void 2751 ifq_set_classic(struct ifaltq *ifq) 2752 { 2753 ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq, 2754 ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request); 2755 } 2756 2757 void 2758 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq, 2759 ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request) 2760 { 2761 int q; 2762 2763 KASSERT(mapsubq != NULL, ("mapsubq is not specified")); 2764 KASSERT(enqueue != NULL, ("enqueue is not specified")); 2765 KASSERT(dequeue != NULL, ("dequeue is not specified")); 2766 KASSERT(request != NULL, ("request is not specified")); 2767 2768 ifq->altq_mapsubq = mapsubq; 2769 for (q = 0; q < ifq->altq_subq_cnt; ++q) { 2770 struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; 2771 2772 ifsq->ifsq_enqueue = enqueue; 2773 ifsq->ifsq_dequeue = dequeue; 2774 ifsq->ifsq_request = request; 2775 } 2776 } 2777 2778 static void 2779 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m) 2780 { 2781 2782 classq_add(&ifsq->ifsq_norm, m); 2783 ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len); 2784 } 2785 2786 static void 2787 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m) 2788 { 2789 2790 classq_add(&ifsq->ifsq_prio, m); 2791 ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len); 2792 ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len); 2793 } 2794 2795 static struct mbuf * 2796 ifsq_norm_dequeue(struct ifaltq_subque *ifsq) 2797 { 2798 struct mbuf *m; 2799 2800 m = classq_get(&ifsq->ifsq_norm); 2801 if (m != NULL) 2802 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len); 2803 return (m); 2804 } 2805 2806 static struct mbuf * 2807 ifsq_prio_dequeue(struct ifaltq_subque *ifsq) 2808 { 2809 struct mbuf *m; 2810 2811 m = classq_get(&ifsq->ifsq_prio); 2812 if (m != NULL) { 2813 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len); 2814 ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len); 2815 } 2816 return (m); 2817 } 2818 2819 int 2820 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m, 2821 struct altq_pktattr *pa __unused) 2822 { 2823 2824 M_ASSERTPKTHDR(m); 2825 again: 2826 if (ifsq->ifsq_len >= ifsq->ifsq_maxlen || 2827 ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) { 2828 struct mbuf *m_drop; 2829 2830 if (m->m_flags & M_PRIO) { 2831 m_drop = NULL; 2832 if (ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen >> 1) && 2833 ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt >> 1)) { 2834 /* Try dropping some from normal queue. */ 2835 m_drop = ifsq_norm_dequeue(ifsq); 2836 } 2837 if (m_drop == NULL) 2838 m_drop = ifsq_prio_dequeue(ifsq); 2839 } else { 2840 m_drop = ifsq_norm_dequeue(ifsq); 2841 } 2842 if (m_drop != NULL) { 2843 IFNET_STAT_INC(ifsq->ifsq_ifp, oqdrops, 1); 2844 m_freem(m_drop); 2845 goto again; 2846 } 2847 /* 2848 * No old packets could be dropped! 2849 * NOTE: Caller increases oqdrops. 2850 */ 2851 m_freem(m); 2852 return (ENOBUFS); 2853 } else { 2854 if (m->m_flags & M_PRIO) 2855 ifsq_prio_enqueue(ifsq, m); 2856 else 2857 ifsq_norm_enqueue(ifsq, m); 2858 return (0); 2859 } 2860 } 2861 2862 struct mbuf * 2863 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op) 2864 { 2865 struct mbuf *m; 2866 2867 switch (op) { 2868 case ALTDQ_POLL: 2869 m = classq_head(&ifsq->ifsq_prio); 2870 if (m == NULL) 2871 m = classq_head(&ifsq->ifsq_norm); 2872 break; 2873 2874 case ALTDQ_REMOVE: 2875 m = ifsq_prio_dequeue(ifsq); 2876 if (m == NULL) 2877 m = ifsq_norm_dequeue(ifsq); 2878 break; 2879 2880 default: 2881 panic("unsupported ALTQ dequeue op: %d", op); 2882 } 2883 return m; 2884 } 2885 2886 int 2887 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg) 2888 { 2889 switch (req) { 2890 case ALTRQ_PURGE: 2891 for (;;) { 2892 struct mbuf *m; 2893 2894 m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE); 2895 if (m == NULL) 2896 break; 2897 m_freem(m); 2898 } 2899 break; 2900 2901 default: 2902 panic("unsupported ALTQ request: %d", req); 2903 } 2904 return 0; 2905 } 2906 2907 static void 2908 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched) 2909 { 2910 struct ifnet *ifp = ifsq_get_ifp(ifsq); 2911 int running = 0, need_sched; 2912 2913 /* 2914 * Try to do direct ifnet.if_start on the subqueue first, if there is 2915 * contention on the subqueue hardware serializer, ifnet.if_start on 2916 * the subqueue will be scheduled on the subqueue owner CPU. 2917 */ 2918 if (!ifsq_tryserialize_hw(ifsq)) { 2919 /* 2920 * Subqueue hardware serializer contention happened, 2921 * ifnet.if_start on the subqueue is scheduled on 2922 * the subqueue owner CPU, and we keep going. 2923 */ 2924 ifsq_ifstart_schedule(ifsq, 1); 2925 return; 2926 } 2927 2928 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) { 2929 ifp->if_start(ifp, ifsq); 2930 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) 2931 running = 1; 2932 } 2933 need_sched = ifsq_ifstart_need_schedule(ifsq, running); 2934 2935 ifsq_deserialize_hw(ifsq); 2936 2937 if (need_sched) { 2938 /* 2939 * More data need to be transmitted, ifnet.if_start on the 2940 * subqueue is scheduled on the subqueue owner CPU, and we 2941 * keep going. 2942 * NOTE: ifnet.if_start subqueue interlock is not released. 2943 */ 2944 ifsq_ifstart_schedule(ifsq, force_sched); 2945 } 2946 } 2947 2948 /* 2949 * Subqeue packets staging mechanism: 2950 * 2951 * The packets enqueued into the subqueue are staged to a certain amount 2952 * before the ifnet.if_start on the subqueue is called. In this way, the 2953 * driver could avoid writing to hardware registers upon every packet, 2954 * instead, hardware registers could be written when certain amount of 2955 * packets are put onto hardware TX ring. The measurement on several modern 2956 * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware 2957 * registers writing aggregation could save ~20% CPU time when 18bytes UDP 2958 * datagrams are transmitted at 1.48Mpps. The performance improvement by 2959 * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's 2960 * netmap paper (http://info.iet.unipi.it/~luigi/netmap/). 2961 * 2962 * Subqueue packets staging is performed for two entry points into drivers' 2963 * transmission function: 2964 * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try() 2965 * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule() 2966 * 2967 * Subqueue packets staging will be stopped upon any of the following 2968 * conditions: 2969 * - If the count of packets enqueued on the current CPU is great than or 2970 * equal to ifsq_stage_cntmax. (XXX this should be per-interface) 2971 * - If the total length of packets enqueued on the current CPU is great 2972 * than or equal to the hardware's MTU - max_protohdr. max_protohdr is 2973 * cut from the hardware's MTU mainly bacause a full TCP segment's size 2974 * is usually less than hardware's MTU. 2975 * - ifsq_ifstart_schedule() is not pending on the current CPU and 2976 * ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not 2977 * released. 2978 * - The if_start_rollup(), which is registered as low priority netisr 2979 * rollup function, is called; probably because no more work is pending 2980 * for netisr. 2981 * 2982 * NOTE: 2983 * Currently subqueue packet staging is only performed in netisr threads. 2984 */ 2985 int 2986 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa) 2987 { 2988 struct ifaltq *ifq = &ifp->if_snd; 2989 struct ifaltq_subque *ifsq; 2990 int error, start = 0, len, mcast = 0, avoid_start = 0; 2991 struct ifsubq_stage_head *head = NULL; 2992 struct ifsubq_stage *stage = NULL; 2993 struct globaldata *gd = mycpu; 2994 struct thread *td = gd->gd_curthread; 2995 2996 crit_enter_quick(td); 2997 2998 ifsq = ifq_map_subq(ifq, gd->gd_cpuid); 2999 ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq); 3000 3001 len = m->m_pkthdr.len; 3002 if (m->m_flags & M_MCAST) 3003 mcast = 1; 3004 3005 if (td->td_type == TD_TYPE_NETISR) { 3006 head = &ifsubq_stage_heads[mycpuid]; 3007 stage = ifsq_get_stage(ifsq, mycpuid); 3008 3009 stage->stg_cnt++; 3010 stage->stg_len += len; 3011 if (stage->stg_cnt < ifsq_stage_cntmax && 3012 stage->stg_len < (ifp->if_mtu - max_protohdr)) 3013 avoid_start = 1; 3014 } 3015 3016 ALTQ_SQ_LOCK(ifsq); 3017 error = ifsq_enqueue_locked(ifsq, m, pa); 3018 if (error) { 3019 IFNET_STAT_INC(ifp, oqdrops, 1); 3020 if (!ifsq_data_ready(ifsq)) { 3021 ALTQ_SQ_UNLOCK(ifsq); 3022 crit_exit_quick(td); 3023 return error; 3024 } 3025 avoid_start = 0; 3026 } 3027 if (!ifsq_is_started(ifsq)) { 3028 if (avoid_start) { 3029 ALTQ_SQ_UNLOCK(ifsq); 3030 3031 KKASSERT(!error); 3032 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0) 3033 ifsq_stage_insert(head, stage); 3034 3035 IFNET_STAT_INC(ifp, obytes, len); 3036 if (mcast) 3037 IFNET_STAT_INC(ifp, omcasts, 1); 3038 crit_exit_quick(td); 3039 return error; 3040 } 3041 3042 /* 3043 * Hold the subqueue interlock of ifnet.if_start 3044 */ 3045 ifsq_set_started(ifsq); 3046 start = 1; 3047 } 3048 ALTQ_SQ_UNLOCK(ifsq); 3049 3050 if (!error) { 3051 IFNET_STAT_INC(ifp, obytes, len); 3052 if (mcast) 3053 IFNET_STAT_INC(ifp, omcasts, 1); 3054 } 3055 3056 if (stage != NULL) { 3057 if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) { 3058 KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED); 3059 if (!avoid_start) { 3060 ifsq_stage_remove(head, stage); 3061 ifsq_ifstart_schedule(ifsq, 1); 3062 } 3063 crit_exit_quick(td); 3064 return error; 3065 } 3066 3067 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) { 3068 ifsq_stage_remove(head, stage); 3069 } else { 3070 stage->stg_cnt = 0; 3071 stage->stg_len = 0; 3072 } 3073 } 3074 3075 if (!start) { 3076 crit_exit_quick(td); 3077 return error; 3078 } 3079 3080 ifsq_ifstart_try(ifsq, 0); 3081 3082 crit_exit_quick(td); 3083 return error; 3084 } 3085 3086 void * 3087 ifa_create(int size) 3088 { 3089 struct ifaddr *ifa; 3090 int i; 3091 3092 KASSERT(size >= sizeof(*ifa), ("ifaddr size too small")); 3093 3094 ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO); 3095 ifa->ifa_containers = 3096 kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container), 3097 M_IFADDR, M_INTWAIT | M_ZERO); 3098 3099 ifa->ifa_ncnt = ncpus; 3100 for (i = 0; i < ncpus; ++i) { 3101 struct ifaddr_container *ifac = &ifa->ifa_containers[i]; 3102 3103 ifac->ifa_magic = IFA_CONTAINER_MAGIC; 3104 ifac->ifa = ifa; 3105 ifac->ifa_refcnt = 1; 3106 } 3107 #ifdef IFADDR_DEBUG 3108 kprintf("alloc ifa %p %d\n", ifa, size); 3109 #endif 3110 return ifa; 3111 } 3112 3113 void 3114 ifac_free(struct ifaddr_container *ifac, int cpu_id) 3115 { 3116 struct ifaddr *ifa = ifac->ifa; 3117 3118 KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC); 3119 KKASSERT(ifac->ifa_refcnt == 0); 3120 KASSERT(ifac->ifa_listmask == 0, 3121 ("ifa is still on %#x lists", ifac->ifa_listmask)); 3122 3123 ifac->ifa_magic = IFA_CONTAINER_DEAD; 3124 3125 #ifdef IFADDR_DEBUG_VERBOSE 3126 kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id); 3127 #endif 3128 3129 KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus, 3130 ("invalid # of ifac, %d", ifa->ifa_ncnt)); 3131 if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) { 3132 #ifdef IFADDR_DEBUG 3133 kprintf("free ifa %p\n", ifa); 3134 #endif 3135 kfree(ifa->ifa_containers, M_IFADDR); 3136 kfree(ifa, M_IFADDR); 3137 } 3138 } 3139 3140 static void 3141 ifa_iflink_dispatch(netmsg_t nmsg) 3142 { 3143 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 3144 struct ifaddr *ifa = msg->ifa; 3145 struct ifnet *ifp = msg->ifp; 3146 int cpu = mycpuid; 3147 struct ifaddr_container *ifac; 3148 3149 crit_enter(); 3150 3151 ifac = &ifa->ifa_containers[cpu]; 3152 ASSERT_IFAC_VALID(ifac); 3153 KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0, 3154 ("ifaddr is on if_addrheads")); 3155 3156 ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD; 3157 if (msg->tail) 3158 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link); 3159 else 3160 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link); 3161 3162 crit_exit(); 3163 3164 netisr_forwardmsg(&nmsg->base, cpu + 1); 3165 } 3166 3167 void 3168 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail) 3169 { 3170 struct netmsg_ifaddr msg; 3171 3172 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 3173 0, ifa_iflink_dispatch); 3174 msg.ifa = ifa; 3175 msg.ifp = ifp; 3176 msg.tail = tail; 3177 3178 netisr_domsg(&msg.base, 0); 3179 } 3180 3181 static void 3182 ifa_ifunlink_dispatch(netmsg_t nmsg) 3183 { 3184 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 3185 struct ifaddr *ifa = msg->ifa; 3186 struct ifnet *ifp = msg->ifp; 3187 int cpu = mycpuid; 3188 struct ifaddr_container *ifac; 3189 3190 crit_enter(); 3191 3192 ifac = &ifa->ifa_containers[cpu]; 3193 ASSERT_IFAC_VALID(ifac); 3194 KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD, 3195 ("ifaddr is not on if_addrhead")); 3196 3197 TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link); 3198 ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD; 3199 3200 crit_exit(); 3201 3202 netisr_forwardmsg(&nmsg->base, cpu + 1); 3203 } 3204 3205 void 3206 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp) 3207 { 3208 struct netmsg_ifaddr msg; 3209 3210 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 3211 0, ifa_ifunlink_dispatch); 3212 msg.ifa = ifa; 3213 msg.ifp = ifp; 3214 3215 netisr_domsg(&msg.base, 0); 3216 } 3217 3218 static void 3219 ifa_destroy_dispatch(netmsg_t nmsg) 3220 { 3221 struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; 3222 3223 IFAFREE(msg->ifa); 3224 netisr_forwardmsg(&nmsg->base, mycpuid + 1); 3225 } 3226 3227 void 3228 ifa_destroy(struct ifaddr *ifa) 3229 { 3230 struct netmsg_ifaddr msg; 3231 3232 netmsg_init(&msg.base, NULL, &curthread->td_msgport, 3233 0, ifa_destroy_dispatch); 3234 msg.ifa = ifa; 3235 3236 netisr_domsg(&msg.base, 0); 3237 } 3238 3239 static void 3240 if_start_rollup(void) 3241 { 3242 struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid]; 3243 struct ifsubq_stage *stage; 3244 3245 crit_enter(); 3246 3247 while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) { 3248 struct ifaltq_subque *ifsq = stage->stg_subq; 3249 int is_sched = 0; 3250 3251 if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED) 3252 is_sched = 1; 3253 ifsq_stage_remove(head, stage); 3254 3255 if (is_sched) { 3256 ifsq_ifstart_schedule(ifsq, 1); 3257 } else { 3258 int start = 0; 3259 3260 ALTQ_SQ_LOCK(ifsq); 3261 if (!ifsq_is_started(ifsq)) { 3262 /* 3263 * Hold the subqueue interlock of 3264 * ifnet.if_start 3265 */ 3266 ifsq_set_started(ifsq); 3267 start = 1; 3268 } 3269 ALTQ_SQ_UNLOCK(ifsq); 3270 3271 if (start) 3272 ifsq_ifstart_try(ifsq, 1); 3273 } 3274 KKASSERT((stage->stg_flags & 3275 (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0); 3276 } 3277 3278 crit_exit(); 3279 } 3280 3281 static void 3282 ifnetinit(void *dummy __unused) 3283 { 3284 int i; 3285 3286 for (i = 0; i < ncpus; ++i) 3287 TAILQ_INIT(&ifsubq_stage_heads[i].stg_head); 3288 netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART); 3289 } 3290 3291 void 3292 if_register_com_alloc(u_char type, 3293 if_com_alloc_t *a, if_com_free_t *f) 3294 { 3295 3296 KASSERT(if_com_alloc[type] == NULL, 3297 ("if_register_com_alloc: %d already registered", type)); 3298 KASSERT(if_com_free[type] == NULL, 3299 ("if_register_com_alloc: %d free already registered", type)); 3300 3301 if_com_alloc[type] = a; 3302 if_com_free[type] = f; 3303 } 3304 3305 void 3306 if_deregister_com_alloc(u_char type) 3307 { 3308 3309 KASSERT(if_com_alloc[type] != NULL, 3310 ("if_deregister_com_alloc: %d not registered", type)); 3311 KASSERT(if_com_free[type] != NULL, 3312 ("if_deregister_com_alloc: %d free not registered", type)); 3313 if_com_alloc[type] = NULL; 3314 if_com_free[type] = NULL; 3315 } 3316 3317 void 3318 ifq_set_maxlen(struct ifaltq *ifq, int len) 3319 { 3320 ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax); 3321 } 3322 3323 int 3324 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused) 3325 { 3326 return ALTQ_SUBQ_INDEX_DEFAULT; 3327 } 3328 3329 int 3330 ifq_mapsubq_modulo(struct ifaltq *ifq, int cpuid) 3331 { 3332 3333 return (cpuid % ifq->altq_subq_mappriv); 3334 } 3335 3336 static void 3337 ifsq_watchdog(void *arg) 3338 { 3339 struct ifsubq_watchdog *wd = arg; 3340 struct ifnet *ifp; 3341 3342 if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer)) 3343 goto done; 3344 3345 ifp = ifsq_get_ifp(wd->wd_subq); 3346 if (ifnet_tryserialize_all(ifp)) { 3347 wd->wd_watchdog(wd->wd_subq); 3348 ifnet_deserialize_all(ifp); 3349 } else { 3350 /* try again next timeout */ 3351 wd->wd_timer = 1; 3352 } 3353 done: 3354 ifsq_watchdog_reset(wd); 3355 } 3356 3357 static void 3358 ifsq_watchdog_reset(struct ifsubq_watchdog *wd) 3359 { 3360 callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd, 3361 ifsq_get_cpuid(wd->wd_subq)); 3362 } 3363 3364 void 3365 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq, 3366 ifsq_watchdog_t watchdog) 3367 { 3368 callout_init_mp(&wd->wd_callout); 3369 wd->wd_timer = 0; 3370 wd->wd_subq = ifsq; 3371 wd->wd_watchdog = watchdog; 3372 } 3373 3374 void 3375 ifsq_watchdog_start(struct ifsubq_watchdog *wd) 3376 { 3377 wd->wd_timer = 0; 3378 ifsq_watchdog_reset(wd); 3379 } 3380 3381 void 3382 ifsq_watchdog_stop(struct ifsubq_watchdog *wd) 3383 { 3384 wd->wd_timer = 0; 3385 callout_stop(&wd->wd_callout); 3386 } 3387 3388 void 3389 ifnet_lock(void) 3390 { 3391 KASSERT(curthread->td_type != TD_TYPE_NETISR, 3392 ("try holding ifnet lock in netisr")); 3393 mtx_lock(&ifnet_mtx); 3394 } 3395 3396 void 3397 ifnet_unlock(void) 3398 { 3399 KASSERT(curthread->td_type != TD_TYPE_NETISR, 3400 ("try holding ifnet lock in netisr")); 3401 mtx_unlock(&ifnet_mtx); 3402 } 3403 3404 static struct ifnet_array * 3405 ifnet_array_alloc(int count) 3406 { 3407 struct ifnet_array *arr; 3408 3409 arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]), 3410 M_IFNET, M_WAITOK); 3411 arr->ifnet_count = count; 3412 3413 return arr; 3414 } 3415 3416 static void 3417 ifnet_array_free(struct ifnet_array *arr) 3418 { 3419 if (arr == &ifnet_array0) 3420 return; 3421 kfree(arr, M_IFNET); 3422 } 3423 3424 static struct ifnet_array * 3425 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr) 3426 { 3427 struct ifnet_array *arr; 3428 int count, i; 3429 3430 KASSERT(old_arr->ifnet_count >= 0, 3431 ("invalid ifnet array count %d", old_arr->ifnet_count)); 3432 count = old_arr->ifnet_count + 1; 3433 arr = ifnet_array_alloc(count); 3434 3435 /* 3436 * Save the old ifnet array and append this ifp to the end of 3437 * the new ifnet array. 3438 */ 3439 for (i = 0; i < old_arr->ifnet_count; ++i) { 3440 KASSERT(old_arr->ifnet_arr[i] != ifp, 3441 ("%s is already in ifnet array", ifp->if_xname)); 3442 arr->ifnet_arr[i] = old_arr->ifnet_arr[i]; 3443 } 3444 KASSERT(i == count - 1, 3445 ("add %s, ifnet array index mismatch, should be %d, but got %d", 3446 ifp->if_xname, count - 1, i)); 3447 arr->ifnet_arr[i] = ifp; 3448 3449 return arr; 3450 } 3451 3452 static struct ifnet_array * 3453 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr) 3454 { 3455 struct ifnet_array *arr; 3456 int count, i, idx, found = 0; 3457 3458 KASSERT(old_arr->ifnet_count > 0, 3459 ("invalid ifnet array count %d", old_arr->ifnet_count)); 3460 count = old_arr->ifnet_count - 1; 3461 arr = ifnet_array_alloc(count); 3462 3463 /* 3464 * Save the old ifnet array, but skip this ifp. 3465 */ 3466 idx = 0; 3467 for (i = 0; i < old_arr->ifnet_count; ++i) { 3468 if (old_arr->ifnet_arr[i] == ifp) { 3469 KASSERT(!found, 3470 ("dup %s is in ifnet array", ifp->if_xname)); 3471 found = 1; 3472 continue; 3473 } 3474 KASSERT(idx < count, 3475 ("invalid ifnet array index %d, count %d", idx, count)); 3476 arr->ifnet_arr[idx] = old_arr->ifnet_arr[i]; 3477 ++idx; 3478 } 3479 KASSERT(found, ("%s is not in ifnet array", ifp->if_xname)); 3480 KASSERT(idx == count, 3481 ("del %s, ifnet array count mismatch, should be %d, but got %d ", 3482 ifp->if_xname, count, idx)); 3483 3484 return arr; 3485 } 3486 3487 const struct ifnet_array * 3488 ifnet_array_get(void) 3489 { 3490 const struct ifnet_array *ret; 3491 3492 KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr")); 3493 ret = ifnet_array; 3494 /* Make sure 'ret' is really used. */ 3495 cpu_ccfence(); 3496 return (ret); 3497 } 3498 3499 int 3500 ifnet_array_isempty(void) 3501 { 3502 KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr")); 3503 if (ifnet_array->ifnet_count == 0) 3504 return 1; 3505 else 3506 return 0; 3507 } 3508 3509 void 3510 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp) 3511 { 3512 struct ifaddr *ifa; 3513 3514 memset(mark, 0, sizeof(*mark)); 3515 ifa = &mark->ifa; 3516 3517 mark->ifac.ifa = ifa; 3518 3519 ifa->ifa_addr = &mark->addr; 3520 ifa->ifa_dstaddr = &mark->dstaddr; 3521 ifa->ifa_netmask = &mark->netmask; 3522 ifa->ifa_ifp = ifp; 3523 } 3524 3525 static int 3526 if_ringcnt_fixup(int ring_cnt, int ring_cntmax) 3527 { 3528 3529 KASSERT(ring_cntmax > 0, ("invalid ring count max %d", ring_cntmax)); 3530 3531 if (ring_cnt <= 0 || ring_cnt > ring_cntmax) 3532 ring_cnt = ring_cntmax; 3533 if (ring_cnt > netisr_ncpus) 3534 ring_cnt = netisr_ncpus; 3535 return (ring_cnt); 3536 } 3537 3538 static void 3539 if_ringmap_set_grid(device_t dev, struct if_ringmap *rm, int grid) 3540 { 3541 int i, offset; 3542 3543 KASSERT(grid > 0, ("invalid if_ringmap grid %d", grid)); 3544 KASSERT(grid >= rm->rm_cnt, ("invalid if_ringmap grid %d, count %d", 3545 grid, rm->rm_cnt)); 3546 rm->rm_grid = grid; 3547 3548 offset = (rm->rm_grid * device_get_unit(dev)) % netisr_ncpus; 3549 for (i = 0; i < rm->rm_cnt; ++i) { 3550 rm->rm_cpumap[i] = offset + i; 3551 KASSERT(rm->rm_cpumap[i] < netisr_ncpus, 3552 ("invalid cpumap[%d] = %d, offset %d", i, 3553 rm->rm_cpumap[i], offset)); 3554 } 3555 } 3556 3557 static struct if_ringmap * 3558 if_ringmap_alloc_flags(device_t dev, int ring_cnt, int ring_cntmax, 3559 uint32_t flags) 3560 { 3561 struct if_ringmap *rm; 3562 int i, grid = 0, prev_grid; 3563 3564 ring_cnt = if_ringcnt_fixup(ring_cnt, ring_cntmax); 3565 rm = kmalloc(__offsetof(struct if_ringmap, rm_cpumap[ring_cnt]), 3566 M_DEVBUF, M_WAITOK | M_ZERO); 3567 3568 rm->rm_cnt = ring_cnt; 3569 if (flags & RINGMAP_FLAG_POWEROF2) 3570 rm->rm_cnt = 1 << (fls(rm->rm_cnt) - 1); 3571 3572 prev_grid = netisr_ncpus; 3573 for (i = 0; i < netisr_ncpus; ++i) { 3574 if (netisr_ncpus % (i + 1) != 0) 3575 continue; 3576 3577 grid = netisr_ncpus / (i + 1); 3578 if (rm->rm_cnt > grid) { 3579 grid = prev_grid; 3580 break; 3581 } 3582 3583 if (rm->rm_cnt > netisr_ncpus / (i + 2)) 3584 break; 3585 prev_grid = grid; 3586 } 3587 if_ringmap_set_grid(dev, rm, grid); 3588 3589 return (rm); 3590 } 3591 3592 struct if_ringmap * 3593 if_ringmap_alloc(device_t dev, int ring_cnt, int ring_cntmax) 3594 { 3595 3596 return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax, 3597 RINGMAP_FLAG_NONE)); 3598 } 3599 3600 struct if_ringmap * 3601 if_ringmap_alloc2(device_t dev, int ring_cnt, int ring_cntmax) 3602 { 3603 3604 return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax, 3605 RINGMAP_FLAG_POWEROF2)); 3606 } 3607 3608 void 3609 if_ringmap_free(struct if_ringmap *rm) 3610 { 3611 3612 kfree(rm, M_DEVBUF); 3613 } 3614 3615 /* 3616 * Align the two ringmaps. 3617 * 3618 * e.g. 8 netisrs, rm0 contains 4 rings, rm1 contains 2 rings. 3619 * 3620 * Before: 3621 * 3622 * CPU 0 1 2 3 4 5 6 7 3623 * NIC_RX n0 n1 n2 n3 3624 * NIC_TX N0 N1 3625 * 3626 * After: 3627 * 3628 * CPU 0 1 2 3 4 5 6 7 3629 * NIC_RX n0 n1 n2 n3 3630 * NIC_TX N0 N1 3631 */ 3632 void 3633 if_ringmap_align(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1) 3634 { 3635 3636 if (rm0->rm_grid > rm1->rm_grid) 3637 if_ringmap_set_grid(dev, rm1, rm0->rm_grid); 3638 else if (rm0->rm_grid < rm1->rm_grid) 3639 if_ringmap_set_grid(dev, rm0, rm1->rm_grid); 3640 } 3641 3642 void 3643 if_ringmap_match(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1) 3644 { 3645 int subset_grid, cnt, divisor, mod, offset, i; 3646 struct if_ringmap *subset_rm, *rm; 3647 int old_rm0_grid, old_rm1_grid; 3648 3649 if (rm0->rm_grid == rm1->rm_grid) 3650 return; 3651 3652 /* Save grid for later use */ 3653 old_rm0_grid = rm0->rm_grid; 3654 old_rm1_grid = rm1->rm_grid; 3655 3656 if_ringmap_align(dev, rm0, rm1); 3657 3658 /* 3659 * Re-shuffle rings to get more even distribution. 3660 * 3661 * e.g. 12 netisrs, rm0 contains 4 rings, rm1 contains 2 rings. 3662 * 3663 * CPU 0 1 2 3 4 5 6 7 8 9 10 11 3664 * 3665 * NIC_RX a0 a1 a2 a3 b0 b1 b2 b3 c0 c1 c2 c3 3666 * NIC_TX A0 A1 B0 B1 C0 C1 3667 * 3668 * NIC_RX d0 d1 d2 d3 e0 e1 e2 e3 f0 f1 f2 f3 3669 * NIC_TX D0 D1 E0 E1 F0 F1 3670 */ 3671 3672 if (rm0->rm_cnt >= (2 * old_rm1_grid)) { 3673 cnt = rm0->rm_cnt; 3674 subset_grid = old_rm1_grid; 3675 subset_rm = rm1; 3676 rm = rm0; 3677 } else if (rm1->rm_cnt > (2 * old_rm0_grid)) { 3678 cnt = rm1->rm_cnt; 3679 subset_grid = old_rm0_grid; 3680 subset_rm = rm0; 3681 rm = rm1; 3682 } else { 3683 /* No space to shuffle. */ 3684 return; 3685 } 3686 3687 mod = cnt / subset_grid; 3688 KKASSERT(mod >= 2); 3689 divisor = netisr_ncpus / rm->rm_grid; 3690 offset = ((device_get_unit(dev) / divisor) % mod) * subset_grid; 3691 3692 for (i = 0; i < subset_rm->rm_cnt; ++i) { 3693 subset_rm->rm_cpumap[i] += offset; 3694 KASSERT(subset_rm->rm_cpumap[i] < netisr_ncpus, 3695 ("match: invalid cpumap[%d] = %d, offset %d", 3696 i, subset_rm->rm_cpumap[i], offset)); 3697 } 3698 #ifdef INVARIANTS 3699 for (i = 0; i < subset_rm->rm_cnt; ++i) { 3700 int j; 3701 3702 for (j = 0; j < rm->rm_cnt; ++j) { 3703 if (rm->rm_cpumap[j] == subset_rm->rm_cpumap[i]) 3704 break; 3705 } 3706 KASSERT(j < rm->rm_cnt, 3707 ("subset cpumap[%d] = %d not found in superset", 3708 i, subset_rm->rm_cpumap[i])); 3709 } 3710 #endif 3711 } 3712 3713 int 3714 if_ringmap_count(const struct if_ringmap *rm) 3715 { 3716 3717 return (rm->rm_cnt); 3718 } 3719 3720 int 3721 if_ringmap_cpumap(const struct if_ringmap *rm, int ring) 3722 { 3723 3724 KASSERT(ring >= 0 && ring < rm->rm_cnt, ("invalid ring %d", ring)); 3725 return (rm->rm_cpumap[ring]); 3726 } 3727 3728 void 3729 if_ringmap_rdrtable(const struct if_ringmap *rm, int table[], int table_nent) 3730 { 3731 int i, grid_idx, grid_cnt, patch_off, patch_cnt, ncopy; 3732 3733 KASSERT(table_nent > 0 && (table_nent & NETISR_CPUMASK) == 0, 3734 ("invalid redirect table entries %d", table_nent)); 3735 3736 grid_idx = 0; 3737 for (i = 0; i < NETISR_CPUMAX; ++i) { 3738 table[i] = grid_idx++ % rm->rm_cnt; 3739 3740 if (grid_idx == rm->rm_grid) 3741 grid_idx = 0; 3742 } 3743 3744 /* 3745 * Make the ring distributed more evenly for the remainder 3746 * of each grid. 3747 * 3748 * e.g. 12 netisrs, rm contains 8 rings. 3749 * 3750 * Redirect table before: 3751 * 3752 * 0 1 2 3 4 5 6 7 0 1 2 3 0 1 2 3 3753 * 4 5 6 7 0 1 2 3 0 1 2 3 4 5 6 7 3754 * 0 1 2 3 0 1 2 3 4 5 6 7 0 1 2 3 3755 * .... 3756 * 3757 * Redirect table after being patched (pX, patched entries): 3758 * 3759 * 0 1 2 3 4 5 6 7 p0 p1 p2 p3 0 1 2 3 3760 * 4 5 6 7 p4 p5 p6 p7 0 1 2 3 4 5 6 7 3761 * p0 p1 p2 p3 0 1 2 3 4 5 6 7 p4 p5 p6 p7 3762 * .... 3763 */ 3764 patch_cnt = rm->rm_grid % rm->rm_cnt; 3765 if (patch_cnt == 0) 3766 goto done; 3767 patch_off = rm->rm_grid - (rm->rm_grid % rm->rm_cnt); 3768 3769 grid_cnt = roundup(NETISR_CPUMAX, rm->rm_grid) / rm->rm_grid; 3770 grid_idx = 0; 3771 for (i = 0; i < grid_cnt; ++i) { 3772 int j; 3773 3774 for (j = 0; j < patch_cnt; ++j) { 3775 int fix_idx; 3776 3777 fix_idx = (i * rm->rm_grid) + patch_off + j; 3778 if (fix_idx >= NETISR_CPUMAX) 3779 goto done; 3780 table[fix_idx] = grid_idx++ % rm->rm_cnt; 3781 } 3782 } 3783 done: 3784 /* 3785 * If the device supports larger redirect table, duplicate 3786 * the first NETISR_CPUMAX entries to the rest of the table, 3787 * so that it matches upper layer's expectation: 3788 * (hash & NETISR_CPUMASK) % netisr_ncpus 3789 */ 3790 ncopy = table_nent / NETISR_CPUMAX; 3791 for (i = 1; i < ncopy; ++i) { 3792 memcpy(&table[i * NETISR_CPUMAX], table, 3793 NETISR_CPUMAX * sizeof(table[0])); 3794 } 3795 if (if_ringmap_dumprdr) { 3796 for (i = 0; i < table_nent; ++i) { 3797 if (i != 0 && i % 16 == 0) 3798 kprintf("\n"); 3799 kprintf("%03d ", table[i]); 3800 } 3801 kprintf("\n"); 3802 } 3803 } 3804 3805 int 3806 if_ringmap_cpumap_sysctl(SYSCTL_HANDLER_ARGS) 3807 { 3808 struct if_ringmap *rm = arg1; 3809 int i, error = 0; 3810 3811 for (i = 0; i < rm->rm_cnt; ++i) { 3812 int cpu = rm->rm_cpumap[i]; 3813 3814 error = SYSCTL_OUT(req, &cpu, sizeof(cpu)); 3815 if (error) 3816 break; 3817 } 3818 return (error); 3819 } 3820