xref: /dflybsd-src/sys/kern/vfs_vnops.c (revision c666f28aa7c82e205ee3709528b79a41e8cc5308)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
39  * $FreeBSD: src/sys/kern/vfs_vnops.c,v 1.87.2.13 2002/12/29 18:19:53 dillon Exp $
40  * $DragonFly: src/sys/kern/vfs_vnops.c,v 1.58 2008/06/28 17:59:49 dillon Exp $
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/fcntl.h>
46 #include <sys/file.h>
47 #include <sys/stat.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/mount.h>
51 #include <sys/nlookup.h>
52 #include <sys/vnode.h>
53 #include <sys/buf.h>
54 #include <sys/filio.h>
55 #include <sys/ttycom.h>
56 #include <sys/conf.h>
57 #include <sys/sysctl.h>
58 #include <sys/syslog.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/mplock2.h>
62 
63 static int vn_closefile (struct file *fp);
64 static int vn_ioctl (struct file *fp, u_long com, caddr_t data,
65 		struct ucred *cred, struct sysmsg *msg);
66 static int vn_read (struct file *fp, struct uio *uio,
67 		struct ucred *cred, int flags);
68 static int vn_kqfilter (struct file *fp, struct knote *kn);
69 static int vn_statfile (struct file *fp, struct stat *sb, struct ucred *cred);
70 static int vn_write (struct file *fp, struct uio *uio,
71 		struct ucred *cred, int flags);
72 
73 struct fileops vnode_fileops = {
74 	.fo_read = vn_read,
75 	.fo_write = vn_write,
76 	.fo_ioctl = vn_ioctl,
77 	.fo_kqfilter = vn_kqfilter,
78 	.fo_stat = vn_statfile,
79 	.fo_close = vn_closefile,
80 	.fo_shutdown = nofo_shutdown
81 };
82 
83 /*
84  * Common code for vnode open operations.  Check permissions, and call
85  * the VOP_NOPEN or VOP_NCREATE routine.
86  *
87  * The caller is responsible for setting up nd with nlookup_init() and
88  * for cleaning it up with nlookup_done(), whether we return an error
89  * or not.
90  *
91  * On success nd->nl_open_vp will hold a referenced and, if requested,
92  * locked vnode.  A locked vnode is requested via NLC_LOCKVP.  If fp
93  * is non-NULL the vnode will be installed in the file pointer.
94  *
95  * NOTE: The vnode is referenced just once on return whether or not it
96  * is also installed in the file pointer.
97  */
98 int
99 vn_open(struct nlookupdata *nd, struct file *fp, int fmode, int cmode)
100 {
101 	struct vnode *vp;
102 	struct ucred *cred = nd->nl_cred;
103 	struct vattr vat;
104 	struct vattr *vap = &vat;
105 	int error;
106 	u_int flags;
107 	uint64_t osize;
108 	struct mount *mp;
109 
110 	/*
111 	 * Certain combinations are illegal
112 	 */
113 	if ((fmode & (FWRITE | O_TRUNC)) == O_TRUNC)
114 		return(EACCES);
115 
116 	/*
117 	 * Lookup the path and create or obtain the vnode.  After a
118 	 * successful lookup a locked nd->nl_nch will be returned.
119 	 *
120 	 * The result of this section should be a locked vnode.
121 	 *
122 	 * XXX with only a little work we should be able to avoid locking
123 	 * the vnode if FWRITE, O_CREAT, and O_TRUNC are *not* set.
124 	 */
125 	nd->nl_flags |= NLC_OPEN;
126 	if (fmode & O_APPEND)
127 		nd->nl_flags |= NLC_APPEND;
128 	if (fmode & O_TRUNC)
129 		nd->nl_flags |= NLC_TRUNCATE;
130 	if (fmode & FREAD)
131 		nd->nl_flags |= NLC_READ;
132 	if (fmode & FWRITE)
133 		nd->nl_flags |= NLC_WRITE;
134 	if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
135 		nd->nl_flags |= NLC_FOLLOW;
136 
137 	if (fmode & O_CREAT) {
138 		/*
139 		 * CONDITIONAL CREATE FILE CASE
140 		 *
141 		 * Setting NLC_CREATE causes a negative hit to store
142 		 * the negative hit ncp and not return an error.  Then
143 		 * nc_error or nc_vp may be checked to see if the ncp
144 		 * represents a negative hit.  NLC_CREATE also requires
145 		 * write permission on the governing directory or EPERM
146 		 * is returned.
147 		 */
148 		nd->nl_flags |= NLC_CREATE;
149 		nd->nl_flags |= NLC_REFDVP;
150 		bwillinode(1);
151 		error = nlookup(nd);
152 	} else {
153 		/*
154 		 * NORMAL OPEN FILE CASE
155 		 */
156 		error = nlookup(nd);
157 	}
158 
159 	if (error)
160 		return (error);
161 
162 	/*
163 	 * split case to allow us to re-resolve and retry the ncp in case
164 	 * we get ESTALE.
165 	 */
166 again:
167 	if (fmode & O_CREAT) {
168 		if (nd->nl_nch.ncp->nc_vp == NULL) {
169 			if ((error = ncp_writechk(&nd->nl_nch)) != 0)
170 				return (error);
171 			VATTR_NULL(vap);
172 			vap->va_type = VREG;
173 			vap->va_mode = cmode;
174 			if (fmode & O_EXCL)
175 				vap->va_vaflags |= VA_EXCLUSIVE;
176 			error = VOP_NCREATE(&nd->nl_nch, nd->nl_dvp, &vp,
177 					    nd->nl_cred, vap);
178 			if (error)
179 				return (error);
180 			fmode &= ~O_TRUNC;
181 			/* locked vnode is returned */
182 		} else {
183 			if (fmode & O_EXCL) {
184 				error = EEXIST;
185 			} else {
186 				error = cache_vget(&nd->nl_nch, cred,
187 						    LK_EXCLUSIVE, &vp);
188 			}
189 			if (error)
190 				return (error);
191 			fmode &= ~O_CREAT;
192 		}
193 	} else {
194 		error = cache_vget(&nd->nl_nch, cred, LK_EXCLUSIVE, &vp);
195 		if (error)
196 			return (error);
197 	}
198 
199 	/*
200 	 * We have a locked vnode and ncp now.  Note that the ncp will
201 	 * be cleaned up by the caller if nd->nl_nch is left intact.
202 	 */
203 	if (vp->v_type == VLNK) {
204 		error = EMLINK;
205 		goto bad;
206 	}
207 	if (vp->v_type == VSOCK) {
208 		error = EOPNOTSUPP;
209 		goto bad;
210 	}
211 	if (vp->v_type != VDIR && (fmode & O_DIRECTORY)) {
212 		error = ENOTDIR;
213 		goto bad;
214 	}
215 	if ((fmode & O_CREAT) == 0) {
216 		if (fmode & (FWRITE | O_TRUNC)) {
217 			if (vp->v_type == VDIR) {
218 				error = EISDIR;
219 				goto bad;
220 			}
221 			error = vn_writechk(vp, &nd->nl_nch);
222 			if (error) {
223 				/*
224 				 * Special stale handling, re-resolve the
225 				 * vnode.
226 				 */
227 				if (error == ESTALE) {
228 					vput(vp);
229 					vp = NULL;
230 					cache_setunresolved(&nd->nl_nch);
231 					error = cache_resolve(&nd->nl_nch, cred);
232 					if (error == 0)
233 						goto again;
234 				}
235 				goto bad;
236 			}
237 		}
238 	}
239 	if (fmode & O_TRUNC) {
240 		vn_unlock(vp);				/* XXX */
241 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);	/* XXX */
242 		osize = vp->v_filesize;
243 		VATTR_NULL(vap);
244 		vap->va_size = 0;
245 		error = VOP_SETATTR(vp, vap, cred);
246 		if (error)
247 			goto bad;
248 		error = VOP_GETATTR(vp, vap);
249 		if (error)
250 			goto bad;
251 		mp = vq_vptomp(vp);
252 		VFS_ACCOUNT(mp, vap->va_uid, vap->va_gid, -osize);
253 	}
254 
255 	/*
256 	 * Set or clear VNSWAPCACHE on the vp based on nd->nl_nch.ncp->nc_flag.
257 	 * These particular bits a tracked all the way from the root.
258 	 *
259 	 * NOTE: Might not work properly on NFS servers due to the
260 	 * disconnected namecache.
261 	 */
262 	flags = nd->nl_nch.ncp->nc_flag;
263 	if ((flags & (NCF_UF_CACHE | NCF_UF_PCACHE)) &&
264 	    (flags & (NCF_SF_NOCACHE | NCF_SF_PNOCACHE)) == 0) {
265 		vsetflags(vp, VSWAPCACHE);
266 	} else {
267 		vclrflags(vp, VSWAPCACHE);
268 	}
269 
270 	/*
271 	 * Setup the fp so VOP_OPEN can override it.  No descriptor has been
272 	 * associated with the fp yet so we own it clean.
273 	 *
274 	 * f_nchandle inherits nl_nch.  This used to be necessary only for
275 	 * directories but now we do it unconditionally so f*() ops
276 	 * such as fchmod() can access the actual namespace that was
277 	 * used to open the file.
278 	 */
279 	if (fp) {
280 		if (nd->nl_flags & NLC_APPENDONLY)
281 			fmode |= FAPPENDONLY;
282 		fp->f_nchandle = nd->nl_nch;
283 		cache_zero(&nd->nl_nch);
284 		cache_unlock(&fp->f_nchandle);
285 	}
286 
287 	/*
288 	 * Get rid of nl_nch.  vn_open does not return it (it returns the
289 	 * vnode or the file pointer).  Note: we can't leave nl_nch locked
290 	 * through the VOP_OPEN anyway since the VOP_OPEN may block, e.g.
291 	 * on /dev/ttyd0
292 	 */
293 	if (nd->nl_nch.ncp)
294 		cache_put(&nd->nl_nch);
295 
296 	error = VOP_OPEN(vp, fmode, cred, fp);
297 	if (error) {
298 		/*
299 		 * setting f_ops to &badfileops will prevent the descriptor
300 		 * code from trying to close and release the vnode, since
301 		 * the open failed we do not want to call close.
302 		 */
303 		if (fp) {
304 			fp->f_data = NULL;
305 			fp->f_ops = &badfileops;
306 		}
307 		goto bad;
308 	}
309 
310 #if 0
311 	/*
312 	 * Assert that VREG files have been setup for vmio.
313 	 */
314 	KASSERT(vp->v_type != VREG || vp->v_object != NULL,
315 		("vn_open: regular file was not VMIO enabled!"));
316 #endif
317 
318 	/*
319 	 * Return the vnode.  XXX needs some cleaning up.  The vnode is
320 	 * only returned in the fp == NULL case.
321 	 */
322 	if (fp == NULL) {
323 		nd->nl_open_vp = vp;
324 		nd->nl_vp_fmode = fmode;
325 		if ((nd->nl_flags & NLC_LOCKVP) == 0)
326 			vn_unlock(vp);
327 	} else {
328 		vput(vp);
329 	}
330 	return (0);
331 bad:
332 	if (vp)
333 		vput(vp);
334 	return (error);
335 }
336 
337 int
338 vn_opendisk(const char *devname, int fmode, struct vnode **vpp)
339 {
340 	struct vnode *vp;
341 	int error;
342 
343 	if (strncmp(devname, "/dev/", 5) == 0)
344 		devname += 5;
345 	if ((vp = getsynthvnode(devname)) == NULL) {
346 		error = ENODEV;
347 	} else {
348 		error = VOP_OPEN(vp, fmode, proc0.p_ucred, NULL);
349 		vn_unlock(vp);
350 		if (error) {
351 			vrele(vp);
352 			vp = NULL;
353 		}
354 	}
355 	*vpp = vp;
356 	return (error);
357 }
358 
359 /*
360  * Check for write permissions on the specified vnode.  nch may be NULL.
361  */
362 int
363 vn_writechk(struct vnode *vp, struct nchandle *nch)
364 {
365 	/*
366 	 * If there's shared text associated with
367 	 * the vnode, try to free it up once.  If
368 	 * we fail, we can't allow writing.
369 	 */
370 	if (vp->v_flag & VTEXT)
371 		return (ETXTBSY);
372 
373 	/*
374 	 * If the vnode represents a regular file, check the mount
375 	 * point via the nch.  This may be a different mount point
376 	 * then the one embedded in the vnode (e.g. nullfs).
377 	 *
378 	 * We can still write to non-regular files (e.g. devices)
379 	 * via read-only mounts.
380 	 */
381 	if (nch && nch->ncp && vp->v_type == VREG)
382 		return (ncp_writechk(nch));
383 	return (0);
384 }
385 
386 /*
387  * Check whether the underlying mount is read-only.  The mount point
388  * referenced by the namecache may be different from the mount point
389  * used by the underlying vnode in the case of NULLFS, so a separate
390  * check is needed.
391  */
392 int
393 ncp_writechk(struct nchandle *nch)
394 {
395 	if (nch->mount && (nch->mount->mnt_flag & MNT_RDONLY))
396 		return (EROFS);
397 	return(0);
398 }
399 
400 /*
401  * Vnode close call
402  *
403  * MPSAFE
404  */
405 int
406 vn_close(struct vnode *vp, int flags)
407 {
408 	int error;
409 
410 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
411 	if (error == 0) {
412 		error = VOP_CLOSE(vp, flags);
413 		vn_unlock(vp);
414 	}
415 	vrele(vp);
416 	return (error);
417 }
418 
419 /*
420  * Sequential heuristic.
421  *
422  * MPSAFE (f_seqcount and f_nextoff are allowed to race)
423  */
424 static __inline
425 int
426 sequential_heuristic(struct uio *uio, struct file *fp)
427 {
428 	/*
429 	 * Sequential heuristic - detect sequential operation
430 	 *
431 	 * NOTE: SMP: We allow f_seqcount updates to race.
432 	 */
433 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
434 	    uio->uio_offset == fp->f_nextoff) {
435 		int tmpseq = fp->f_seqcount;
436 
437 		tmpseq += (uio->uio_resid + BKVASIZE - 1) / BKVASIZE;
438 		if (tmpseq > IO_SEQMAX)
439 			tmpseq = IO_SEQMAX;
440 		fp->f_seqcount = tmpseq;
441 		return(fp->f_seqcount << IO_SEQSHIFT);
442 	}
443 
444 	/*
445 	 * Not sequential, quick draw-down of seqcount
446 	 *
447 	 * NOTE: SMP: We allow f_seqcount updates to race.
448 	 */
449 	if (fp->f_seqcount > 1)
450 		fp->f_seqcount = 1;
451 	else
452 		fp->f_seqcount = 0;
453 	return(0);
454 }
455 
456 /*
457  * get - lock and return the f_offset field.
458  * set - set and unlock the f_offset field.
459  *
460  * These routines serve the dual purpose of serializing access to the
461  * f_offset field (at least on i386) and guaranteeing operational integrity
462  * when multiple read()ers and write()ers are present on the same fp.
463  *
464  * MPSAFE
465  */
466 static __inline off_t
467 vn_get_fpf_offset(struct file *fp)
468 {
469 	u_int	flags;
470 	u_int	nflags;
471 
472 	/*
473 	 * Shortcut critical path.
474 	 */
475 	flags = fp->f_flag & ~FOFFSETLOCK;
476 	if (atomic_cmpset_int(&fp->f_flag, flags, flags | FOFFSETLOCK))
477 		return(fp->f_offset);
478 
479 	/*
480 	 * The hard way
481 	 */
482 	for (;;) {
483 		flags = fp->f_flag;
484 		if (flags & FOFFSETLOCK) {
485 			nflags = flags | FOFFSETWAKE;
486 			tsleep_interlock(&fp->f_flag, 0);
487 			if (atomic_cmpset_int(&fp->f_flag, flags, nflags))
488 				tsleep(&fp->f_flag, PINTERLOCKED, "fpoff", 0);
489 		} else {
490 			nflags = flags | FOFFSETLOCK;
491 			if (atomic_cmpset_int(&fp->f_flag, flags, nflags))
492 				break;
493 		}
494 	}
495 	return(fp->f_offset);
496 }
497 
498 /*
499  * MPSAFE
500  */
501 static __inline void
502 vn_set_fpf_offset(struct file *fp, off_t offset)
503 {
504 	u_int	flags;
505 	u_int	nflags;
506 
507 	/*
508 	 * We hold the lock so we can set the offset without interference.
509 	 */
510 	fp->f_offset = offset;
511 
512 	/*
513 	 * Normal release is already a reasonably critical path.
514 	 */
515 	for (;;) {
516 		flags = fp->f_flag;
517 		nflags = flags & ~(FOFFSETLOCK | FOFFSETWAKE);
518 		if (atomic_cmpset_int(&fp->f_flag, flags, nflags)) {
519 			if (flags & FOFFSETWAKE)
520 				wakeup(&fp->f_flag);
521 			break;
522 		}
523 	}
524 }
525 
526 /*
527  * MPSAFE
528  */
529 static __inline off_t
530 vn_poll_fpf_offset(struct file *fp)
531 {
532 #if defined(__x86_64__) || !defined(SMP)
533 	return(fp->f_offset);
534 #else
535 	off_t off = vn_get_fpf_offset(fp);
536 	vn_set_fpf_offset(fp, off);
537 	return(off);
538 #endif
539 }
540 
541 /*
542  * Package up an I/O request on a vnode into a uio and do it.
543  *
544  * MPSAFE
545  */
546 int
547 vn_rdwr(enum uio_rw rw, struct vnode *vp, caddr_t base, int len,
548 	off_t offset, enum uio_seg segflg, int ioflg,
549 	struct ucred *cred, int *aresid)
550 {
551 	struct uio auio;
552 	struct iovec aiov;
553 	int error;
554 
555 	if ((ioflg & IO_NODELOCKED) == 0)
556 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
557 	auio.uio_iov = &aiov;
558 	auio.uio_iovcnt = 1;
559 	aiov.iov_base = base;
560 	aiov.iov_len = len;
561 	auio.uio_resid = len;
562 	auio.uio_offset = offset;
563 	auio.uio_segflg = segflg;
564 	auio.uio_rw = rw;
565 	auio.uio_td = curthread;
566 	if (rw == UIO_READ) {
567 		error = VOP_READ(vp, &auio, ioflg, cred);
568 	} else {
569 		error = VOP_WRITE(vp, &auio, ioflg, cred);
570 	}
571 	if (aresid)
572 		*aresid = auio.uio_resid;
573 	else
574 		if (auio.uio_resid && error == 0)
575 			error = EIO;
576 	if ((ioflg & IO_NODELOCKED) == 0)
577 		vn_unlock(vp);
578 	return (error);
579 }
580 
581 /*
582  * Package up an I/O request on a vnode into a uio and do it.  The I/O
583  * request is split up into smaller chunks and we try to avoid saturating
584  * the buffer cache while potentially holding a vnode locked, so we
585  * check bwillwrite() before calling vn_rdwr().  We also call lwkt_user_yield()
586  * to give other processes a chance to lock the vnode (either other processes
587  * core'ing the same binary, or unrelated processes scanning the directory).
588  *
589  * MPSAFE
590  */
591 int
592 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, caddr_t base, int len,
593 		 off_t offset, enum uio_seg segflg, int ioflg,
594 		 struct ucred *cred, int *aresid)
595 {
596 	int error = 0;
597 
598 	do {
599 		int chunk;
600 
601 		/*
602 		 * Force `offset' to a multiple of MAXBSIZE except possibly
603 		 * for the first chunk, so that filesystems only need to
604 		 * write full blocks except possibly for the first and last
605 		 * chunks.
606 		 */
607 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
608 
609 		if (chunk > len)
610 			chunk = len;
611 		if (vp->v_type == VREG) {
612 			switch(rw) {
613 			case UIO_READ:
614 				bwillread(chunk);
615 				break;
616 			case UIO_WRITE:
617 				bwillwrite(chunk);
618 				break;
619 			}
620 		}
621 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
622 				ioflg, cred, aresid);
623 		len -= chunk;	/* aresid calc already includes length */
624 		if (error)
625 			break;
626 		offset += chunk;
627 		base += chunk;
628 		lwkt_user_yield();
629 	} while (len);
630 	if (aresid)
631 		*aresid += len;
632 	return (error);
633 }
634 
635 /*
636  * File pointers can no longer get ripped up by revoke so
637  * we don't need to lock access to the vp.
638  *
639  * f_offset updates are not guaranteed against multiple readers
640  */
641 static int
642 vn_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
643 {
644 	struct vnode *vp;
645 	int error, ioflag;
646 
647 	KASSERT(uio->uio_td == curthread,
648 		("uio_td %p is not td %p", uio->uio_td, curthread));
649 	vp = (struct vnode *)fp->f_data;
650 
651 	ioflag = 0;
652 	if (flags & O_FBLOCKING) {
653 		/* ioflag &= ~IO_NDELAY; */
654 	} else if (flags & O_FNONBLOCKING) {
655 		ioflag |= IO_NDELAY;
656 	} else if (fp->f_flag & FNONBLOCK) {
657 		ioflag |= IO_NDELAY;
658 	}
659 	if (flags & O_FBUFFERED) {
660 		/* ioflag &= ~IO_DIRECT; */
661 	} else if (flags & O_FUNBUFFERED) {
662 		ioflag |= IO_DIRECT;
663 	} else if (fp->f_flag & O_DIRECT) {
664 		ioflag |= IO_DIRECT;
665 	}
666 	if ((flags & O_FOFFSET) == 0 && (vp->v_flag & VNOTSEEKABLE) == 0)
667 		uio->uio_offset = vn_get_fpf_offset(fp);
668 	vn_lock(vp, LK_SHARED | LK_RETRY);
669 	ioflag |= sequential_heuristic(uio, fp);
670 
671 	error = VOP_READ(vp, uio, ioflag, cred);
672 	fp->f_nextoff = uio->uio_offset;
673 	vn_unlock(vp);
674 	if ((flags & O_FOFFSET) == 0 && (vp->v_flag & VNOTSEEKABLE) == 0)
675 		vn_set_fpf_offset(fp, uio->uio_offset);
676 	return (error);
677 }
678 
679 /*
680  * MPSAFE
681  */
682 static int
683 vn_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
684 {
685 	struct vnode *vp;
686 	int error, ioflag;
687 
688 	KASSERT(uio->uio_td == curthread,
689 		("uio_td %p is not p %p", uio->uio_td, curthread));
690 	vp = (struct vnode *)fp->f_data;
691 
692 	ioflag = IO_UNIT;
693 	if (vp->v_type == VREG &&
694 	   ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) {
695 		ioflag |= IO_APPEND;
696 	}
697 
698 	if (flags & O_FBLOCKING) {
699 		/* ioflag &= ~IO_NDELAY; */
700 	} else if (flags & O_FNONBLOCKING) {
701 		ioflag |= IO_NDELAY;
702 	} else if (fp->f_flag & FNONBLOCK) {
703 		ioflag |= IO_NDELAY;
704 	}
705 	if (flags & O_FBUFFERED) {
706 		/* ioflag &= ~IO_DIRECT; */
707 	} else if (flags & O_FUNBUFFERED) {
708 		ioflag |= IO_DIRECT;
709 	} else if (fp->f_flag & O_DIRECT) {
710 		ioflag |= IO_DIRECT;
711 	}
712 	if (flags & O_FASYNCWRITE) {
713 		/* ioflag &= ~IO_SYNC; */
714 	} else if (flags & O_FSYNCWRITE) {
715 		ioflag |= IO_SYNC;
716 	} else if (fp->f_flag & O_FSYNC) {
717 		ioflag |= IO_SYNC;
718 	}
719 
720 	if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))
721 		ioflag |= IO_SYNC;
722 	if ((flags & O_FOFFSET) == 0)
723 		uio->uio_offset = vn_get_fpf_offset(fp);
724 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
725 	ioflag |= sequential_heuristic(uio, fp);
726 	error = VOP_WRITE(vp, uio, ioflag, cred);
727 	fp->f_nextoff = uio->uio_offset;
728 	vn_unlock(vp);
729 	if ((flags & O_FOFFSET) == 0)
730 		vn_set_fpf_offset(fp, uio->uio_offset);
731 	return (error);
732 }
733 
734 /*
735  * MPSAFE
736  */
737 static int
738 vn_statfile(struct file *fp, struct stat *sb, struct ucred *cred)
739 {
740 	struct vnode *vp;
741 	int error;
742 
743 	vp = (struct vnode *)fp->f_data;
744 	error = vn_stat(vp, sb, cred);
745 	return (error);
746 }
747 
748 /*
749  * MPSAFE
750  */
751 int
752 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *cred)
753 {
754 	struct vattr vattr;
755 	struct vattr *vap;
756 	int error;
757 	u_short mode;
758 	cdev_t dev;
759 
760 	vap = &vattr;
761 	error = VOP_GETATTR(vp, vap);
762 	if (error)
763 		return (error);
764 
765 	/*
766 	 * Zero the spare stat fields
767 	 */
768 	sb->st_lspare = 0;
769 	sb->st_qspare1 = 0;
770 	sb->st_qspare2 = 0;
771 
772 	/*
773 	 * Copy from vattr table
774 	 */
775 	if (vap->va_fsid != VNOVAL)
776 		sb->st_dev = vap->va_fsid;
777 	else
778 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
779 	sb->st_ino = vap->va_fileid;
780 	mode = vap->va_mode;
781 	switch (vap->va_type) {
782 	case VREG:
783 		mode |= S_IFREG;
784 		break;
785 	case VDATABASE:
786 		mode |= S_IFDB;
787 		break;
788 	case VDIR:
789 		mode |= S_IFDIR;
790 		break;
791 	case VBLK:
792 		mode |= S_IFBLK;
793 		break;
794 	case VCHR:
795 		mode |= S_IFCHR;
796 		break;
797 	case VLNK:
798 		mode |= S_IFLNK;
799 		/* This is a cosmetic change, symlinks do not have a mode. */
800 		if (vp->v_mount->mnt_flag & MNT_NOSYMFOLLOW)
801 			sb->st_mode &= ~ACCESSPERMS;	/* 0000 */
802 		else
803 			sb->st_mode |= ACCESSPERMS;	/* 0777 */
804 		break;
805 	case VSOCK:
806 		mode |= S_IFSOCK;
807 		break;
808 	case VFIFO:
809 		mode |= S_IFIFO;
810 		break;
811 	default:
812 		return (EBADF);
813 	}
814 	sb->st_mode = mode;
815 	if (vap->va_nlink > (nlink_t)-1)
816 		sb->st_nlink = (nlink_t)-1;
817 	else
818 		sb->st_nlink = vap->va_nlink;
819 	sb->st_uid = vap->va_uid;
820 	sb->st_gid = vap->va_gid;
821 	sb->st_rdev = dev2udev(vp->v_rdev);
822 	sb->st_size = vap->va_size;
823 	sb->st_atimespec = vap->va_atime;
824 	sb->st_mtimespec = vap->va_mtime;
825 	sb->st_ctimespec = vap->va_ctime;
826 
827 	/*
828 	 * A VCHR and VBLK device may track the last access and last modified
829 	 * time independantly of the filesystem.  This is particularly true
830 	 * because device read and write calls may bypass the filesystem.
831 	 */
832 	if (vp->v_type == VCHR || vp->v_type == VBLK) {
833 		dev = vp->v_rdev;
834 		if (dev != NULL) {
835 			if (dev->si_lastread) {
836 				sb->st_atimespec.tv_sec = dev->si_lastread;
837 				sb->st_atimespec.tv_nsec = 0;
838 			}
839 			if (dev->si_lastwrite) {
840 				sb->st_atimespec.tv_sec = dev->si_lastwrite;
841 				sb->st_atimespec.tv_nsec = 0;
842 			}
843 		}
844 	}
845 
846         /*
847 	 * According to www.opengroup.org, the meaning of st_blksize is
848 	 *   "a filesystem-specific preferred I/O block size for this
849 	 *    object.  In some filesystem types, this may vary from file
850 	 *    to file"
851 	 * Default to PAGE_SIZE after much discussion.
852 	 */
853 
854 	if (vap->va_type == VREG) {
855 		sb->st_blksize = vap->va_blocksize;
856 	} else if (vn_isdisk(vp, NULL)) {
857 		/*
858 		 * XXX this is broken.  If the device is not yet open (aka
859 		 * stat() call, aka v_rdev == NULL), how are we supposed
860 		 * to get a valid block size out of it?
861 		 */
862 		dev = vp->v_rdev;
863 
864 		sb->st_blksize = dev->si_bsize_best;
865 		if (sb->st_blksize < dev->si_bsize_phys)
866 			sb->st_blksize = dev->si_bsize_phys;
867 		if (sb->st_blksize < BLKDEV_IOSIZE)
868 			sb->st_blksize = BLKDEV_IOSIZE;
869 	} else {
870 		sb->st_blksize = PAGE_SIZE;
871 	}
872 
873 	sb->st_flags = vap->va_flags;
874 
875 	error = priv_check_cred(cred, PRIV_VFS_GENERATION, 0);
876 	if (error)
877 		sb->st_gen = 0;
878 	else
879 		sb->st_gen = (u_int32_t)vap->va_gen;
880 
881 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
882 	return (0);
883 }
884 
885 /*
886  * MPALMOSTSAFE - acquires mplock
887  */
888 static int
889 vn_ioctl(struct file *fp, u_long com, caddr_t data, struct ucred *ucred,
890 	 struct sysmsg *msg)
891 {
892 	struct vnode *vp = ((struct vnode *)fp->f_data);
893 	struct vnode *ovp;
894 	struct vattr vattr;
895 	int error;
896 	off_t size;
897 
898 	switch (vp->v_type) {
899 	case VREG:
900 	case VDIR:
901 		if (com == FIONREAD) {
902 			error = VOP_GETATTR(vp, &vattr);
903 			if (error)
904 				break;
905 			size = vattr.va_size;
906 			if ((vp->v_flag & VNOTSEEKABLE) == 0)
907 				size -= vn_poll_fpf_offset(fp);
908 			if (size > 0x7FFFFFFF)
909 				size = 0x7FFFFFFF;
910 			*(int *)data = size;
911 			error = 0;
912 			break;
913 		}
914 		if (com == FIOASYNC) {				/* XXX */
915 			error = 0;				/* XXX */
916 			break;
917 		}
918 		/* fall into ... */
919 	default:
920 #if 0
921 		return (ENOTTY);
922 #endif
923 	case VFIFO:
924 	case VCHR:
925 	case VBLK:
926 		if (com == FIODTYPE) {
927 			if (vp->v_type != VCHR && vp->v_type != VBLK) {
928 				error = ENOTTY;
929 				break;
930 			}
931 			*(int *)data = dev_dflags(vp->v_rdev) & D_TYPEMASK;
932 			error = 0;
933 			break;
934 		}
935 		error = VOP_IOCTL(vp, com, data, fp->f_flag, ucred, msg);
936 		if (error == 0 && com == TIOCSCTTY) {
937 			struct proc *p = curthread->td_proc;
938 			struct session *sess;
939 
940 			if (p == NULL) {
941 				error = ENOTTY;
942 				break;
943 			}
944 
945 			get_mplock();
946 			sess = p->p_session;
947 			/* Do nothing if reassigning same control tty */
948 			if (sess->s_ttyvp == vp) {
949 				error = 0;
950 				rel_mplock();
951 				break;
952 			}
953 
954 			/* Get rid of reference to old control tty */
955 			ovp = sess->s_ttyvp;
956 			vref(vp);
957 			sess->s_ttyvp = vp;
958 			if (ovp)
959 				vrele(ovp);
960 			rel_mplock();
961 		}
962 		break;
963 	}
964 	return (error);
965 }
966 
967 /*
968  * Check that the vnode is still valid, and if so
969  * acquire requested lock.
970  */
971 int
972 #ifndef	DEBUG_LOCKS
973 vn_lock(struct vnode *vp, int flags)
974 #else
975 debug_vn_lock(struct vnode *vp, int flags, const char *filename, int line)
976 #endif
977 {
978 	int error;
979 
980 	do {
981 #ifdef	DEBUG_LOCKS
982 		vp->filename = filename;
983 		vp->line = line;
984 		error = debuglockmgr(&vp->v_lock, flags,
985 				     "vn_lock", filename, line);
986 #else
987 		error = lockmgr(&vp->v_lock, flags);
988 #endif
989 		if (error == 0)
990 			break;
991 	} while (flags & LK_RETRY);
992 
993 	/*
994 	 * Because we (had better!) have a ref on the vnode, once it
995 	 * goes to VRECLAIMED state it will not be recycled until all
996 	 * refs go away.  So we can just check the flag.
997 	 */
998 	if (error == 0 && (vp->v_flag & VRECLAIMED)) {
999 		lockmgr(&vp->v_lock, LK_RELEASE);
1000 		error = ENOENT;
1001 	}
1002 	return (error);
1003 }
1004 
1005 #ifdef DEBUG_VN_UNLOCK
1006 
1007 void
1008 debug_vn_unlock(struct vnode *vp, const char *filename, int line)
1009 {
1010 	kprintf("vn_unlock from %s:%d\n", filename, line);
1011 	lockmgr(&vp->v_lock, LK_RELEASE);
1012 }
1013 
1014 #else
1015 
1016 void
1017 vn_unlock(struct vnode *vp)
1018 {
1019 	lockmgr(&vp->v_lock, LK_RELEASE);
1020 }
1021 
1022 #endif
1023 
1024 /*
1025  * MPSAFE
1026  */
1027 int
1028 vn_islocked(struct vnode *vp)
1029 {
1030 	return (lockstatus(&vp->v_lock, curthread));
1031 }
1032 
1033 /*
1034  * Return the lock status of a vnode and unlock the vnode
1035  * if we owned the lock.  This is not a boolean, if the
1036  * caller cares what the lock status is the caller must
1037  * check the various possible values.
1038  *
1039  * This only unlocks exclusive locks held by the caller,
1040  * it will NOT unlock shared locks (there is no way to
1041  * tell who the shared lock belongs to).
1042  *
1043  * MPSAFE
1044  */
1045 int
1046 vn_islocked_unlock(struct vnode *vp)
1047 {
1048 	int vpls;
1049 
1050 	vpls = lockstatus(&vp->v_lock, curthread);
1051 	if (vpls == LK_EXCLUSIVE)
1052 		lockmgr(&vp->v_lock, LK_RELEASE);
1053 	return(vpls);
1054 }
1055 
1056 /*
1057  * Restore a vnode lock that we previously released via
1058  * vn_islocked_unlock().  This is a NOP if we did not
1059  * own the original lock.
1060  *
1061  * MPSAFE
1062  */
1063 void
1064 vn_islocked_relock(struct vnode *vp, int vpls)
1065 {
1066 	int error;
1067 
1068 	if (vpls == LK_EXCLUSIVE)
1069 		error = lockmgr(&vp->v_lock, vpls);
1070 }
1071 
1072 /*
1073  * MPSAFE
1074  */
1075 static int
1076 vn_closefile(struct file *fp)
1077 {
1078 	int error;
1079 
1080 	fp->f_ops = &badfileops;
1081 	error = vn_close(((struct vnode *)fp->f_data), fp->f_flag);
1082 	return (error);
1083 }
1084 
1085 /*
1086  * MPSAFE
1087  */
1088 static int
1089 vn_kqfilter(struct file *fp, struct knote *kn)
1090 {
1091 	int error;
1092 
1093 	error = VOP_KQFILTER(((struct vnode *)fp->f_data), kn);
1094 	return (error);
1095 }
1096