xref: /dflybsd-src/sys/kern/vfs_sync.c (revision fd2da346d8d75955f03246d811568a9f680db45e)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
36  */
37 
38 /*
39  * External virtual filesystem routines
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/dirent.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/mount.h>
55 #include <sys/proc.h>
56 #include <sys/namei.h>
57 #include <sys/reboot.h>
58 #include <sys/socket.h>
59 #include <sys/stat.h>
60 #include <sys/sysctl.h>
61 #include <sys/syslog.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
64 
65 #include <machine/limits.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_kern.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vnode_pager.h>
76 
77 #include <sys/buf2.h>
78 #include <sys/thread2.h>
79 
80 /*
81  * The workitem queue.
82  */
83 #define SYNCER_MAXDELAY		32
84 static int sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS);
85 time_t syncdelay = 30;		/* max time to delay syncing data */
86 SYSCTL_PROC(_kern, OID_AUTO, syncdelay, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
87 		sysctl_kern_syncdelay, "I", "VFS data synchronization delay");
88 time_t filedelay = 30;		/* time to delay syncing files */
89 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
90 		&filedelay, 0, "File synchronization delay");
91 time_t dirdelay = 29;		/* time to delay syncing directories */
92 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
93 		&dirdelay, 0, "Directory synchronization delay");
94 time_t metadelay = 28;		/* time to delay syncing metadata */
95 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
96 		&metadelay, 0, "VFS metadata synchronization delay");
97 static int rushjob;			/* number of slots to run ASAP */
98 static int stat_rush_requests;	/* number of times I/O speeded up */
99 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
100 		&stat_rush_requests, 0, "");
101 
102 LIST_HEAD(synclist, vnode);
103 
104 #define	SC_FLAG_EXIT		(0x1)		/* request syncer exit */
105 #define	SC_FLAG_DONE		(0x2)		/* syncer confirm exit */
106 #define 	SC_FLAG_BIOOPS_ALL	(0x4)		/* do bufops_sync(NULL) */
107 
108 struct syncer_ctx {
109 	struct mount		*sc_mp;
110 	struct lwkt_token 	sc_token;
111 	struct thread		*sc_thread;
112 	int			sc_flags;
113 
114 	struct synclist 	*syncer_workitem_pending;
115 	long			syncer_mask;
116 	int 			syncer_delayno;
117 	int			syncer_forced;
118 };
119 
120 static struct syncer_ctx syncer_ctx0;
121 
122 static void syncer_thread(void *);
123 
124 static void
125 syncer_ctx_init(struct syncer_ctx *ctx, struct mount *mp)
126 {
127 	ctx->sc_mp = mp;
128 	ctx->sc_flags = 0;
129 	ctx->syncer_workitem_pending = hashinit(SYNCER_MAXDELAY, M_DEVBUF,
130 						&ctx->syncer_mask);
131 	ctx->syncer_delayno = 0;
132 	lwkt_token_init(&ctx->sc_token, "syncer");
133 }
134 
135 /*
136  * Called from vfsinit()
137  */
138 void
139 vfs_sync_init(void)
140 {
141 	syncer_ctx_init(&syncer_ctx0, NULL);
142 	syncer_ctx0.sc_flags |= SC_FLAG_BIOOPS_ALL;
143 
144 	/* Support schedcpu wakeup of syncer0 */
145 	lbolt_syncer = &syncer_ctx0;
146 }
147 
148 static int
149 sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS)
150 {
151 	int error;
152 	int v = syncdelay;
153 
154 	error = sysctl_handle_int(oidp, &v, 0, req);
155 	if (error || !req->newptr)
156 		return (error);
157 	if (v < 1)
158 		v = 1;
159 	if (v > SYNCER_MAXDELAY)
160 		v = SYNCER_MAXDELAY;
161 	syncdelay = v;
162 
163 	return(0);
164 }
165 
166 static struct syncer_ctx *
167 vn_get_syncer(struct vnode *vp)
168 {
169 	struct mount *mp;
170 	struct syncer_ctx *ctx;
171 
172 	if ((mp = vp->v_mount) != NULL)
173 		ctx = mp->mnt_syncer_ctx;
174 	else
175 		ctx = &syncer_ctx0;
176 	return (ctx);
177 }
178 
179 /*
180  * The workitem queue.
181  *
182  * It is useful to delay writes of file data and filesystem metadata
183  * for tens of seconds so that quickly created and deleted files need
184  * not waste disk bandwidth being created and removed. To realize this,
185  * we append vnodes to a "workitem" queue. When running with a soft
186  * updates implementation, most pending metadata dependencies should
187  * not wait for more than a few seconds. Thus, mounted on block devices
188  * are delayed only about a half the time that file data is delayed.
189  * Similarly, directory updates are more critical, so are only delayed
190  * about a third the time that file data is delayed. Thus, there are
191  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
192  * one each second (driven off the filesystem syncer process). The
193  * syncer_delayno variable indicates the next queue that is to be processed.
194  * Items that need to be processed soon are placed in this queue:
195  *
196  *	syncer_workitem_pending[syncer_delayno]
197  *
198  * A delay of fifteen seconds is done by placing the request fifteen
199  * entries later in the queue:
200  *
201  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
202  *
203  */
204 
205 /*
206  * Add an item to the syncer work queue.
207  *
208  * WARNING: Cannot get vp->v_token here if not already held, we must
209  *	    depend on the syncer_token (which might already be held by
210  *	    the caller) to protect v_synclist and VONWORKLST.
211  *
212  * MPSAFE
213  */
214 void
215 vn_syncer_add(struct vnode *vp, int delay)
216 {
217 	struct syncer_ctx *ctx;
218 	int slot;
219 
220 	ctx = vn_get_syncer(vp);
221 
222 	lwkt_gettoken(&ctx->sc_token);
223 
224 	if (vp->v_flag & VONWORKLST)
225 		LIST_REMOVE(vp, v_synclist);
226 	if (delay <= 0) {
227 		slot = -delay & ctx->syncer_mask;
228 	} else {
229 		if (delay > SYNCER_MAXDELAY - 2)
230 			delay = SYNCER_MAXDELAY - 2;
231 		slot = (ctx->syncer_delayno + delay) & ctx->syncer_mask;
232 	}
233 
234 	LIST_INSERT_HEAD(&ctx->syncer_workitem_pending[slot], vp, v_synclist);
235 	vsetflags(vp, VONWORKLST);
236 
237 	lwkt_reltoken(&ctx->sc_token);
238 }
239 
240 /*
241  * Removes the vnode from the syncer list.  Since we might block while
242  * acquiring the syncer_token we have to recheck conditions.
243  *
244  * vp->v_token held on call
245  */
246 void
247 vn_syncer_remove(struct vnode *vp)
248 {
249 	struct syncer_ctx *ctx;
250 
251 	ctx = vn_get_syncer(vp);
252 
253 	lwkt_gettoken(&ctx->sc_token);
254 
255 	if ((vp->v_flag & (VISDIRTY | VONWORKLST | VOBJDIRTY)) == VONWORKLST &&
256 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
257 		vclrflags(vp, VONWORKLST);
258 		LIST_REMOVE(vp, v_synclist);
259 	}
260 
261 	lwkt_reltoken(&ctx->sc_token);
262 }
263 
264 /*
265  * vnode must be locked
266  */
267 void
268 vclrisdirty(struct vnode *vp)
269 {
270 	vclrflags(vp, VISDIRTY);
271 	if (vp->v_flag & VONWORKLST)
272 		vn_syncer_remove(vp);
273 }
274 
275 void
276 vclrobjdirty(struct vnode *vp)
277 {
278 	vclrflags(vp, VOBJDIRTY);
279 	if (vp->v_flag & VONWORKLST)
280 		vn_syncer_remove(vp);
281 }
282 
283 /*
284  * vnode must be stable
285  */
286 void
287 vsetisdirty(struct vnode *vp)
288 {
289 	struct syncer_ctx *ctx;
290 
291 	if ((vp->v_flag & VISDIRTY) == 0) {
292 		ctx = vn_get_syncer(vp);
293 		vsetflags(vp, VISDIRTY);
294 		lwkt_gettoken(&ctx->sc_token);
295 		if ((vp->v_flag & VONWORKLST) == 0)
296 			vn_syncer_add(vp, syncdelay);
297 		lwkt_reltoken(&ctx->sc_token);
298 	}
299 }
300 
301 void
302 vsetobjdirty(struct vnode *vp)
303 {
304 	struct syncer_ctx *ctx;
305 
306 	if ((vp->v_flag & VOBJDIRTY) == 0) {
307 		ctx = vn_get_syncer(vp);
308 		vsetflags(vp, VOBJDIRTY);
309 		lwkt_gettoken(&ctx->sc_token);
310 		if ((vp->v_flag & VONWORKLST) == 0)
311 			vn_syncer_add(vp, syncdelay);
312 		lwkt_reltoken(&ctx->sc_token);
313 	}
314 }
315 
316 /*
317  * Create per-filesystem syncer process
318  */
319 void
320 vn_syncer_thr_create(struct mount *mp)
321 {
322 	struct syncer_ctx *ctx;
323 	static int syncalloc = 0;
324 	int rc;
325 
326 	if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
327 		ctx = kmalloc(sizeof(struct syncer_ctx), M_TEMP,
328 			      M_WAITOK | M_ZERO);
329 		syncer_ctx_init(ctx, mp);
330 		mp->mnt_syncer_ctx = ctx;
331 		rc = kthread_create(syncer_thread, ctx, &ctx->sc_thread,
332 				    "syncer%d", ++syncalloc);
333 	} else {
334 		mp->mnt_syncer_ctx = &syncer_ctx0;
335 	}
336 }
337 
338 /*
339  * Stop per-filesystem syncer process
340  */
341 void
342 vn_syncer_thr_stop(struct mount *mp)
343 {
344 	struct syncer_ctx *ctx;
345 
346 	ctx = mp->mnt_syncer_ctx;
347 	if (ctx == NULL || ctx == &syncer_ctx0)
348 		return;
349 	KKASSERT(mp->mnt_kern_flag & MNTK_THR_SYNC);
350 
351 	lwkt_gettoken(&ctx->sc_token);
352 
353 	/* Signal the syncer process to exit */
354 	ctx->sc_flags |= SC_FLAG_EXIT;
355 	wakeup(ctx);
356 
357 	/* Wait till syncer process exits */
358 	while ((ctx->sc_flags & SC_FLAG_DONE) == 0)
359 		tsleep(&ctx->sc_flags, 0, "syncexit", hz);
360 
361 	mp->mnt_syncer_ctx = NULL;
362 	lwkt_reltoken(&ctx->sc_token);
363 
364 	hashdestroy(ctx->syncer_workitem_pending, M_DEVBUF, ctx->syncer_mask);
365 	kfree(ctx, M_TEMP);
366 }
367 
368 struct  thread *updatethread;
369 
370 /*
371  * System filesystem synchronizer daemon.
372  */
373 static void
374 syncer_thread(void *_ctx)
375 {
376 	struct thread *td = curthread;
377 	struct syncer_ctx *ctx = _ctx;
378 	struct synclist *slp;
379 	struct vnode *vp;
380 	long starttime;
381 	int *sc_flagsp;
382 	int sc_flags;
383 	int vnodes_synced = 0;
384 
385 	/*
386 	 * syncer0 runs till system shutdown; per-filesystem syncers are
387 	 * terminated on filesystem unmount
388 	 */
389 	if (ctx == &syncer_ctx0)
390 		EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
391 				      SHUTDOWN_PRI_LAST);
392 	for (;;) {
393 		kproc_suspend_loop();
394 
395 		starttime = time_uptime;
396 		lwkt_gettoken(&ctx->sc_token);
397 
398 		/*
399 		 * Push files whose dirty time has expired.  Be careful
400 		 * of interrupt race on slp queue.
401 		 */
402 		slp = &ctx->syncer_workitem_pending[ctx->syncer_delayno];
403 		ctx->syncer_delayno = (ctx->syncer_delayno + 1) &
404 				      ctx->syncer_mask;
405 
406 		while ((vp = LIST_FIRST(slp)) != NULL) {
407 			if (ctx->syncer_forced) {
408 				if (vget(vp, LK_EXCLUSIVE) == 0) {
409 					VOP_FSYNC(vp, MNT_NOWAIT, 0);
410 					vput(vp);
411 					vnodes_synced++;
412 				}
413 			} else {
414 				if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
415 					VOP_FSYNC(vp, MNT_LAZY, 0);
416 					vput(vp);
417 					vnodes_synced++;
418 				}
419 			}
420 
421 			/*
422 			 * vp is stale but can still be used if we can
423 			 * verify that it remains at the head of the list.
424 			 * Be careful not to try to get vp->v_token as
425 			 * vp can become stale if this blocks.
426 			 *
427 			 * If the vp is still at the head of the list were
428 			 * unable to completely flush it and move it to
429 			 * a later slot to give other vnodes a fair shot.
430 			 *
431 			 * Note that v_tag VT_VFS vnodes can remain on the
432 			 * worklist with no dirty blocks, but sync_fsync()
433 			 * moves it to a later slot so we will never see it
434 			 * here.
435 			 *
436 			 * It is possible to race a vnode with no dirty
437 			 * buffers being removed from the list.  If this
438 			 * occurs we will move the vnode in the synclist
439 			 * and then the other thread will remove it.  Do
440 			 * not try to remove it here.
441 			 */
442 			if (LIST_FIRST(slp) == vp)
443 				vn_syncer_add(vp, syncdelay);
444 		}
445 
446 		sc_flags = ctx->sc_flags;
447 
448 		/* Exit on unmount */
449 		if (sc_flags & SC_FLAG_EXIT)
450 			break;
451 
452 		lwkt_reltoken(&ctx->sc_token);
453 
454 		/*
455 		 * Do sync processing for each mount.
456 		 */
457 		if (ctx->sc_mp || sc_flags & SC_FLAG_BIOOPS_ALL)
458 			bio_ops_sync(ctx->sc_mp);
459 
460 		/*
461 		 * The variable rushjob allows the kernel to speed up the
462 		 * processing of the filesystem syncer process. A rushjob
463 		 * value of N tells the filesystem syncer to process the next
464 		 * N seconds worth of work on its queue ASAP. Currently rushjob
465 		 * is used by the soft update code to speed up the filesystem
466 		 * syncer process when the incore state is getting so far
467 		 * ahead of the disk that the kernel memory pool is being
468 		 * threatened with exhaustion.
469 		 */
470 		if (ctx == &syncer_ctx0 && rushjob > 0) {
471 			atomic_subtract_int(&rushjob, 1);
472 			continue;
473 		}
474 		/*
475 		 * If it has taken us less than a second to process the
476 		 * current work, then wait. Otherwise start right over
477 		 * again. We can still lose time if any single round
478 		 * takes more than two seconds, but it does not really
479 		 * matter as we are just trying to generally pace the
480 		 * filesystem activity.
481 		 */
482 		if (time_uptime == starttime)
483 			tsleep(ctx, 0, "syncer", hz);
484 	}
485 
486 	/*
487 	 * Unmount/exit path for per-filesystem syncers; sc_token held
488 	 */
489 	ctx->sc_flags |= SC_FLAG_DONE;
490 	sc_flagsp = &ctx->sc_flags;
491 	lwkt_reltoken(&ctx->sc_token);
492 	wakeup(sc_flagsp);
493 
494 	kthread_exit();
495 }
496 
497 static void
498 syncer_thread_start(void)
499 {
500 	syncer_thread(&syncer_ctx0);
501 }
502 
503 static struct kproc_desc up_kp = {
504 	"syncer0",
505 	syncer_thread_start,
506 	&updatethread
507 };
508 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
509 
510 /*
511  * Request the syncer daemon to speed up its work.
512  * We never push it to speed up more than half of its
513  * normal turn time, otherwise it could take over the cpu.
514  */
515 int
516 speedup_syncer(void)
517 {
518 	/*
519 	 * Don't bother protecting the test.  unsleep_and_wakeup_thread()
520 	 * will only do something real if the thread is in the right state.
521 	 */
522 	wakeup(lbolt_syncer);
523 	if (rushjob < syncdelay / 2) {
524 		atomic_add_int(&rushjob, 1);
525 		stat_rush_requests += 1;
526 		return (1);
527 	}
528 	return(0);
529 }
530 
531 /*
532  * Routine to create and manage a filesystem syncer vnode.
533  */
534 static int sync_close(struct vop_close_args *);
535 static int sync_fsync(struct vop_fsync_args *);
536 static int sync_inactive(struct vop_inactive_args *);
537 static int sync_reclaim (struct vop_reclaim_args *);
538 static int sync_print(struct vop_print_args *);
539 
540 static struct vop_ops sync_vnode_vops = {
541 	.vop_default =	vop_eopnotsupp,
542 	.vop_close =	sync_close,
543 	.vop_fsync =	sync_fsync,
544 	.vop_inactive =	sync_inactive,
545 	.vop_reclaim =	sync_reclaim,
546 	.vop_print =	sync_print,
547 };
548 
549 static struct vop_ops *sync_vnode_vops_p = &sync_vnode_vops;
550 
551 VNODEOP_SET(sync_vnode_vops);
552 
553 /*
554  * Create a new filesystem syncer vnode for the specified mount point.
555  * This vnode is placed on the worklist and is responsible for sync'ing
556  * the filesystem.
557  *
558  * NOTE: read-only mounts are also placed on the worklist.  The filesystem
559  * sync code is also responsible for cleaning up vnodes.
560  */
561 int
562 vfs_allocate_syncvnode(struct mount *mp)
563 {
564 	struct vnode *vp;
565 	static long start, incr, next;
566 	int error;
567 
568 	/* Allocate a new vnode */
569 	error = getspecialvnode(VT_VFS, mp, &sync_vnode_vops_p, &vp, 0, 0);
570 	if (error) {
571 		mp->mnt_syncer = NULL;
572 		return (error);
573 	}
574 	vp->v_type = VNON;
575 	/*
576 	 * Place the vnode onto the syncer worklist. We attempt to
577 	 * scatter them about on the list so that they will go off
578 	 * at evenly distributed times even if all the filesystems
579 	 * are mounted at once.
580 	 */
581 	next += incr;
582 	if (next == 0 || next > SYNCER_MAXDELAY) {
583 		start /= 2;
584 		incr /= 2;
585 		if (start == 0) {
586 			start = SYNCER_MAXDELAY / 2;
587 			incr = SYNCER_MAXDELAY;
588 		}
589 		next = start;
590 	}
591 	vn_syncer_add(vp, syncdelay > 0 ? next % syncdelay : 0);
592 
593 	/*
594 	 * The mnt_syncer field inherits the vnode reference, which is
595 	 * held until later decomissioning.
596 	 */
597 	mp->mnt_syncer = vp;
598 	vx_unlock(vp);
599 	return (0);
600 }
601 
602 static int
603 sync_close(struct vop_close_args *ap)
604 {
605 	return (0);
606 }
607 
608 /*
609  * Do a lazy sync of the filesystem.
610  *
611  * sync_fsync { struct vnode *a_vp, int a_waitfor }
612  */
613 static int
614 sync_fsync(struct vop_fsync_args *ap)
615 {
616 	struct vnode *syncvp = ap->a_vp;
617 	struct mount *mp = syncvp->v_mount;
618 	int asyncflag;
619 
620 	/*
621 	 * We only need to do something if this is a lazy evaluation.
622 	 */
623 	if ((ap->a_waitfor & MNT_LAZY) == 0)
624 		return (0);
625 
626 	/*
627 	 * Move ourselves to the back of the sync list.
628 	 */
629 	vn_syncer_add(syncvp, syncdelay);
630 
631 	/*
632 	 * Walk the list of vnodes pushing all that are dirty and
633 	 * not already on the sync list, and freeing vnodes which have
634 	 * no refs and whos VM objects are empty.  vfs_msync() handles
635 	 * the VM issues and must be called whether the mount is readonly
636 	 * or not.
637 	 */
638 	if (vfs_busy(mp, LK_NOWAIT) != 0)
639 		return (0);
640 	if (mp->mnt_flag & MNT_RDONLY) {
641 		vfs_msync(mp, MNT_NOWAIT);
642 	} else {
643 		asyncflag = mp->mnt_flag & MNT_ASYNC;
644 		mp->mnt_flag &= ~MNT_ASYNC;	/* ZZZ hack */
645 		vfs_msync(mp, MNT_NOWAIT);
646 		VFS_SYNC(mp, MNT_NOWAIT | MNT_LAZY);
647 		if (asyncflag)
648 			mp->mnt_flag |= MNT_ASYNC;
649 	}
650 	vfs_unbusy(mp);
651 	return (0);
652 }
653 
654 /*
655  * The syncer vnode is no longer referenced.
656  *
657  * sync_inactive { struct vnode *a_vp, struct proc *a_p }
658  */
659 static int
660 sync_inactive(struct vop_inactive_args *ap)
661 {
662 	vgone_vxlocked(ap->a_vp);
663 	return (0);
664 }
665 
666 /*
667  * The syncer vnode is no longer needed and is being decommissioned.
668  * This can only occur when the last reference has been released on
669  * mp->mnt_syncer, so mp->mnt_syncer had better be NULL.
670  *
671  * Modifications to the worklist must be protected with a critical
672  * section.
673  *
674  *	sync_reclaim { struct vnode *a_vp }
675  */
676 static int
677 sync_reclaim(struct vop_reclaim_args *ap)
678 {
679 	struct vnode *vp = ap->a_vp;
680 	struct syncer_ctx *ctx;
681 
682 	ctx = vn_get_syncer(vp);
683 
684 	lwkt_gettoken(&ctx->sc_token);
685 	KKASSERT(vp->v_mount->mnt_syncer != vp);
686 	if (vp->v_flag & VONWORKLST) {
687 		LIST_REMOVE(vp, v_synclist);
688 		vclrflags(vp, VONWORKLST);
689 	}
690 	lwkt_reltoken(&ctx->sc_token);
691 
692 	return (0);
693 }
694 
695 /*
696  * This is very similar to vmntvnodescan() but it only scans the
697  * vnodes on the syncer list.  VFS's which support faster VFS_SYNC
698  * operations use the VISDIRTY flag on the vnode to ensure that vnodes
699  * with dirty inodes are added to the syncer in addition to vnodes
700  * with dirty buffers, and can use this function instead of nmntvnodescan().
701  *
702  * This is important when a system has millions of vnodes.
703  */
704 int
705 vsyncscan(
706     struct mount *mp,
707     int vmsc_flags,
708     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
709     void *data
710 ) {
711 	struct syncer_ctx *ctx;
712 	struct synclist *slp;
713 	struct vnode *vp;
714 	int b;
715 	int i;
716 	int lkflags;
717 
718 	if (vmsc_flags & VMSC_NOWAIT)
719 		lkflags = LK_NOWAIT;
720 	else
721 		lkflags = 0;
722 
723 	/*
724 	 * Syncer list context.  This API requires a dedicated syncer thread.
725 	 * (MNTK_THR_SYNC).
726 	 */
727 	KKASSERT(mp->mnt_kern_flag & MNTK_THR_SYNC);
728 	ctx = mp->mnt_syncer_ctx;
729 	KKASSERT(ctx != &syncer_ctx0);
730 
731 	lwkt_gettoken(&ctx->sc_token);
732 
733 	/*
734 	 * Setup for loop.  Allow races against the syncer thread but
735 	 * require that the syncer thread no be lazy if we were told
736 	 * not to be lazy.
737 	 */
738 	b = ctx->syncer_delayno & ctx->syncer_mask;
739 	i = b;
740 	if ((vmsc_flags & VMSC_NOWAIT) == 0)
741 		++ctx->syncer_forced;
742 
743 	do {
744 		slp = &ctx->syncer_workitem_pending[i];
745 
746 		while ((vp = LIST_FIRST(slp)) != NULL) {
747 			KKASSERT(vp->v_mount == mp);
748 			if (vmsc_flags & VMSC_GETVP) {
749 				if (vget(vp, LK_EXCLUSIVE | lkflags) == 0) {
750 					slowfunc(mp, vp, data);
751 					vput(vp);
752 				}
753 			} else if (vmsc_flags & VMSC_GETVX) {
754 				vx_get(vp);
755 				slowfunc(mp, vp, data);
756 				vx_put(vp);
757 			} else {
758 				vhold(vp);
759 				slowfunc(mp, vp, data);
760 				vdrop(vp);
761 			}
762 			if (LIST_FIRST(slp) == vp)
763 				vn_syncer_add(vp, -(i + syncdelay));
764 		}
765 		i = (i + 1) & ctx->syncer_mask;
766 	} while (i != b);
767 
768 	if ((vmsc_flags & VMSC_NOWAIT) == 0)
769 		--ctx->syncer_forced;
770 	lwkt_reltoken(&ctx->sc_token);
771 	return(0);
772 }
773 
774 /*
775  * Print out a syncer vnode.
776  *
777  *	sync_print { struct vnode *a_vp }
778  */
779 static int
780 sync_print(struct vop_print_args *ap)
781 {
782 	struct vnode *vp = ap->a_vp;
783 
784 	kprintf("syncer vnode");
785 	lockmgr_printinfo(&vp->v_lock);
786 	kprintf("\n");
787 	return (0);
788 }
789 
790