1 /* 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $ 40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.118 2008/09/17 21:44:18 dillon Exp $ 41 */ 42 43 /* 44 * External virtual filesystem routines 45 */ 46 #include "opt_ddb.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/buf.h> 51 #include <sys/conf.h> 52 #include <sys/dirent.h> 53 #include <sys/domain.h> 54 #include <sys/eventhandler.h> 55 #include <sys/fcntl.h> 56 #include <sys/file.h> 57 #include <sys/kernel.h> 58 #include <sys/kthread.h> 59 #include <sys/malloc.h> 60 #include <sys/mbuf.h> 61 #include <sys/mount.h> 62 #include <sys/proc.h> 63 #include <sys/reboot.h> 64 #include <sys/socket.h> 65 #include <sys/stat.h> 66 #include <sys/sysctl.h> 67 #include <sys/syslog.h> 68 #include <sys/unistd.h> 69 #include <sys/vmmeter.h> 70 #include <sys/vnode.h> 71 72 #include <machine/limits.h> 73 74 #include <vm/vm.h> 75 #include <vm/vm_object.h> 76 #include <vm/vm_extern.h> 77 #include <vm/vm_kern.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_page.h> 81 #include <vm/vm_pager.h> 82 #include <vm/vnode_pager.h> 83 #include <vm/vm_zone.h> 84 85 #include <sys/buf2.h> 86 #include <sys/thread2.h> 87 #include <sys/sysref2.h> 88 89 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure"); 90 91 int numvnodes; 92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, ""); 93 int vfs_fastdev = 1; 94 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, ""); 95 96 enum vtype iftovt_tab[16] = { 97 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 98 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 99 }; 100 int vttoif_tab[9] = { 101 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 102 S_IFSOCK, S_IFIFO, S_IFMT, 103 }; 104 105 static int reassignbufcalls; 106 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, 107 &reassignbufcalls, 0, ""); 108 static int reassignbufloops; 109 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, 110 &reassignbufloops, 0, ""); 111 static int reassignbufsortgood; 112 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, 113 &reassignbufsortgood, 0, ""); 114 static int reassignbufsortbad; 115 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, 116 &reassignbufsortbad, 0, ""); 117 static int reassignbufmethod = 1; 118 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, 119 &reassignbufmethod, 0, ""); 120 121 int nfs_mount_type = -1; 122 static struct lwkt_token spechash_token; 123 struct nfs_public nfs_pub; /* publicly exported FS */ 124 125 int desiredvnodes; 126 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW, 127 &desiredvnodes, 0, "Maximum number of vnodes"); 128 129 static void vfs_free_addrlist (struct netexport *nep); 130 static int vfs_free_netcred (struct radix_node *rn, void *w); 131 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep, 132 const struct export_args *argp); 133 134 extern int dev_ref_debug; 135 136 /* 137 * Red black tree functions 138 */ 139 static int rb_buf_compare(struct buf *b1, struct buf *b2); 140 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset); 141 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset); 142 143 static int 144 rb_buf_compare(struct buf *b1, struct buf *b2) 145 { 146 if (b1->b_loffset < b2->b_loffset) 147 return(-1); 148 if (b1->b_loffset > b2->b_loffset) 149 return(1); 150 return(0); 151 } 152 153 /* 154 * Returns non-zero if the vnode is a candidate for lazy msyncing. 155 */ 156 static __inline int 157 vshouldmsync(struct vnode *vp) 158 { 159 if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0) 160 return (0); /* other holders */ 161 if (vp->v_object && 162 (vp->v_object->ref_count || vp->v_object->resident_page_count)) { 163 return (0); 164 } 165 return (1); 166 } 167 168 /* 169 * Initialize the vnode management data structures. 170 * 171 * Called from vfsinit() 172 */ 173 void 174 vfs_subr_init(void) 175 { 176 /* 177 * Desiredvnodes is kern.maxvnodes. We want to scale it 178 * according to available system memory but we may also have 179 * to limit it based on available KVM, which is capped on 32 bit 180 * systems. 181 */ 182 desiredvnodes = min(maxproc + vmstats.v_page_count / 4, 183 KvaSize / (20 * 184 (sizeof(struct vm_object) + sizeof(struct vnode)))); 185 186 lwkt_token_init(&spechash_token); 187 } 188 189 /* 190 * Knob to control the precision of file timestamps: 191 * 192 * 0 = seconds only; nanoseconds zeroed. 193 * 1 = seconds and nanoseconds, accurate within 1/HZ. 194 * 2 = seconds and nanoseconds, truncated to microseconds. 195 * >=3 = seconds and nanoseconds, maximum precision. 196 */ 197 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 198 199 static int timestamp_precision = TSP_SEC; 200 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 201 ×tamp_precision, 0, ""); 202 203 /* 204 * Get a current timestamp. 205 * 206 * MPSAFE 207 */ 208 void 209 vfs_timestamp(struct timespec *tsp) 210 { 211 struct timeval tv; 212 213 switch (timestamp_precision) { 214 case TSP_SEC: 215 tsp->tv_sec = time_second; 216 tsp->tv_nsec = 0; 217 break; 218 case TSP_HZ: 219 getnanotime(tsp); 220 break; 221 case TSP_USEC: 222 microtime(&tv); 223 TIMEVAL_TO_TIMESPEC(&tv, tsp); 224 break; 225 case TSP_NSEC: 226 default: 227 nanotime(tsp); 228 break; 229 } 230 } 231 232 /* 233 * Set vnode attributes to VNOVAL 234 */ 235 void 236 vattr_null(struct vattr *vap) 237 { 238 vap->va_type = VNON; 239 vap->va_size = VNOVAL; 240 vap->va_bytes = VNOVAL; 241 vap->va_mode = VNOVAL; 242 vap->va_nlink = VNOVAL; 243 vap->va_uid = VNOVAL; 244 vap->va_gid = VNOVAL; 245 vap->va_fsid = VNOVAL; 246 vap->va_fileid = VNOVAL; 247 vap->va_blocksize = VNOVAL; 248 vap->va_rmajor = VNOVAL; 249 vap->va_rminor = VNOVAL; 250 vap->va_atime.tv_sec = VNOVAL; 251 vap->va_atime.tv_nsec = VNOVAL; 252 vap->va_mtime.tv_sec = VNOVAL; 253 vap->va_mtime.tv_nsec = VNOVAL; 254 vap->va_ctime.tv_sec = VNOVAL; 255 vap->va_ctime.tv_nsec = VNOVAL; 256 vap->va_flags = VNOVAL; 257 vap->va_gen = VNOVAL; 258 vap->va_vaflags = 0; 259 vap->va_fsmid = VNOVAL; 260 /* va_*_uuid fields are only valid if related flags are set */ 261 } 262 263 /* 264 * Flush out and invalidate all buffers associated with a vnode. 265 * 266 * vp must be locked. 267 */ 268 static int vinvalbuf_bp(struct buf *bp, void *data); 269 270 struct vinvalbuf_bp_info { 271 struct vnode *vp; 272 int slptimeo; 273 int lkflags; 274 int flags; 275 }; 276 277 void 278 vupdatefsmid(struct vnode *vp) 279 { 280 atomic_set_int(&vp->v_flag, VFSMID); 281 } 282 283 int 284 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 285 { 286 struct vinvalbuf_bp_info info; 287 vm_object_t object; 288 lwkt_tokref vlock; 289 int error; 290 291 lwkt_gettoken(&vlock, &vp->v_token); 292 293 /* 294 * If we are being asked to save, call fsync to ensure that the inode 295 * is updated. 296 */ 297 if (flags & V_SAVE) { 298 error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo); 299 if (error) 300 goto done; 301 if (!RB_EMPTY(&vp->v_rbdirty_tree)) { 302 if ((error = VOP_FSYNC(vp, MNT_WAIT)) != 0) 303 goto done; 304 305 /* 306 * Dirty bufs may be left or generated via races 307 * in circumstances where vinvalbuf() is called on 308 * a vnode not undergoing reclamation. Only 309 * panic if we are trying to reclaim the vnode. 310 */ 311 if ((vp->v_flag & VRECLAIMED) && 312 (bio_track_active(&vp->v_track_write) || 313 !RB_EMPTY(&vp->v_rbdirty_tree))) { 314 panic("vinvalbuf: dirty bufs"); 315 } 316 } 317 } 318 info.slptimeo = slptimeo; 319 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 320 if (slpflag & PCATCH) 321 info.lkflags |= LK_PCATCH; 322 info.flags = flags; 323 info.vp = vp; 324 325 /* 326 * Flush the buffer cache until nothing is left. 327 */ 328 while (!RB_EMPTY(&vp->v_rbclean_tree) || 329 !RB_EMPTY(&vp->v_rbdirty_tree)) { 330 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL, 331 vinvalbuf_bp, &info); 332 if (error == 0) { 333 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, 334 vinvalbuf_bp, &info); 335 } 336 } 337 338 /* 339 * Wait for I/O completion. We may block in the pip code so we have 340 * to re-check. 341 */ 342 do { 343 bio_track_wait(&vp->v_track_write, 0, 0); 344 if ((object = vp->v_object) != NULL) { 345 while (object->paging_in_progress) 346 vm_object_pip_sleep(object, "vnvlbx"); 347 } 348 } while (bio_track_active(&vp->v_track_write)); 349 350 /* 351 * Destroy the copy in the VM cache, too. 352 */ 353 if ((object = vp->v_object) != NULL) { 354 vm_object_page_remove(object, 0, 0, 355 (flags & V_SAVE) ? TRUE : FALSE); 356 } 357 358 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree)) 359 panic("vinvalbuf: flush failed"); 360 if (!RB_EMPTY(&vp->v_rbhash_tree)) 361 panic("vinvalbuf: flush failed, buffers still present"); 362 error = 0; 363 done: 364 lwkt_reltoken(&vlock); 365 return (error); 366 } 367 368 static int 369 vinvalbuf_bp(struct buf *bp, void *data) 370 { 371 struct vinvalbuf_bp_info *info = data; 372 int error; 373 374 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 375 error = BUF_TIMELOCK(bp, info->lkflags, 376 "vinvalbuf", info->slptimeo); 377 if (error == 0) { 378 BUF_UNLOCK(bp); 379 error = ENOLCK; 380 } 381 if (error == ENOLCK) 382 return(0); 383 return (-error); 384 } 385 386 KKASSERT(bp->b_vp == info->vp); 387 388 /* 389 * XXX Since there are no node locks for NFS, I 390 * believe there is a slight chance that a delayed 391 * write will occur while sleeping just above, so 392 * check for it. Note that vfs_bio_awrite expects 393 * buffers to reside on a queue, while bwrite() and 394 * brelse() do not. 395 * 396 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite() 397 * check. This code will write out the buffer, period. 398 */ 399 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 400 (info->flags & V_SAVE)) { 401 if (bp->b_vp == info->vp) { 402 if (bp->b_flags & B_CLUSTEROK) { 403 vfs_bio_awrite(bp); 404 } else { 405 bremfree(bp); 406 bawrite(bp); 407 } 408 } else { 409 bremfree(bp); 410 bwrite(bp); 411 } 412 } else if (info->flags & V_SAVE) { 413 /* 414 * Cannot set B_NOCACHE on a clean buffer as this will 415 * destroy the VM backing store which might actually 416 * be dirty (and unsynchronized). 417 */ 418 bremfree(bp); 419 bp->b_flags |= (B_INVAL | B_RELBUF); 420 brelse(bp); 421 } else { 422 bremfree(bp); 423 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF); 424 brelse(bp); 425 } 426 return(0); 427 } 428 429 /* 430 * Truncate a file's buffer and pages to a specified length. This 431 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 432 * sync activity. 433 * 434 * The vnode must be locked. 435 */ 436 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data); 437 static int vtruncbuf_bp_trunc(struct buf *bp, void *data); 438 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data); 439 static int vtruncbuf_bp_metasync(struct buf *bp, void *data); 440 441 int 442 vtruncbuf(struct vnode *vp, off_t length, int blksize) 443 { 444 off_t truncloffset; 445 const char *filename; 446 lwkt_tokref vlock; 447 int count; 448 449 /* 450 * Round up to the *next* block, then destroy the buffers in question. 451 * Since we are only removing some of the buffers we must rely on the 452 * scan count to determine whether a loop is necessary. 453 */ 454 if ((count = (int)(length % blksize)) != 0) 455 truncloffset = length + (blksize - count); 456 else 457 truncloffset = length; 458 459 lwkt_gettoken(&vlock, &vp->v_token); 460 do { 461 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, 462 vtruncbuf_bp_trunc_cmp, 463 vtruncbuf_bp_trunc, &truncloffset); 464 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, 465 vtruncbuf_bp_trunc_cmp, 466 vtruncbuf_bp_trunc, &truncloffset); 467 } while(count); 468 469 /* 470 * For safety, fsync any remaining metadata if the file is not being 471 * truncated to 0. Since the metadata does not represent the entire 472 * dirty list we have to rely on the hit count to ensure that we get 473 * all of it. 474 */ 475 if (length > 0) { 476 do { 477 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, 478 vtruncbuf_bp_metasync_cmp, 479 vtruncbuf_bp_metasync, vp); 480 } while (count); 481 } 482 483 /* 484 * Clean out any left over VM backing store. 485 * 486 * It is possible to have in-progress I/O from buffers that were 487 * not part of the truncation. This should not happen if we 488 * are truncating to 0-length. 489 */ 490 vnode_pager_setsize(vp, length); 491 bio_track_wait(&vp->v_track_write, 0, 0); 492 493 filename = TAILQ_FIRST(&vp->v_namecache) ? 494 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"; 495 496 /* 497 * Make sure no buffers were instantiated while we were trying 498 * to clean out the remaining VM pages. This could occur due 499 * to busy dirty VM pages being flushed out to disk. 500 */ 501 do { 502 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, 503 vtruncbuf_bp_trunc_cmp, 504 vtruncbuf_bp_trunc, &truncloffset); 505 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, 506 vtruncbuf_bp_trunc_cmp, 507 vtruncbuf_bp_trunc, &truncloffset); 508 if (count) { 509 kprintf("Warning: vtruncbuf(): Had to re-clean %d " 510 "left over buffers in %s\n", count, filename); 511 } 512 } while(count); 513 514 lwkt_reltoken(&vlock); 515 516 return (0); 517 } 518 519 /* 520 * The callback buffer is beyond the new file EOF and must be destroyed. 521 * Note that the compare function must conform to the RB_SCAN's requirements. 522 */ 523 static 524 int 525 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data) 526 { 527 if (bp->b_loffset >= *(off_t *)data) 528 return(0); 529 return(-1); 530 } 531 532 static 533 int 534 vtruncbuf_bp_trunc(struct buf *bp, void *data) 535 { 536 /* 537 * Do not try to use a buffer we cannot immediately lock, but sleep 538 * anyway to prevent a livelock. The code will loop until all buffers 539 * can be acted upon. 540 */ 541 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 542 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0) 543 BUF_UNLOCK(bp); 544 } else { 545 bremfree(bp); 546 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE); 547 brelse(bp); 548 } 549 return(1); 550 } 551 552 /* 553 * Fsync all meta-data after truncating a file to be non-zero. Only metadata 554 * blocks (with a negative loffset) are scanned. 555 * Note that the compare function must conform to the RB_SCAN's requirements. 556 */ 557 static int 558 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data) 559 { 560 if (bp->b_loffset < 0) 561 return(0); 562 return(1); 563 } 564 565 static int 566 vtruncbuf_bp_metasync(struct buf *bp, void *data) 567 { 568 struct vnode *vp = data; 569 570 if (bp->b_flags & B_DELWRI) { 571 /* 572 * Do not try to use a buffer we cannot immediately lock, 573 * but sleep anyway to prevent a livelock. The code will 574 * loop until all buffers can be acted upon. 575 */ 576 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 577 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0) 578 BUF_UNLOCK(bp); 579 } else { 580 bremfree(bp); 581 if (bp->b_vp == vp) 582 bawrite(bp); 583 else 584 bwrite(bp); 585 } 586 return(1); 587 } else { 588 return(0); 589 } 590 } 591 592 /* 593 * vfsync - implements a multipass fsync on a file which understands 594 * dependancies and meta-data. The passed vnode must be locked. The 595 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY. 596 * 597 * When fsyncing data asynchronously just do one consolidated pass starting 598 * with the most negative block number. This may not get all the data due 599 * to dependancies. 600 * 601 * When fsyncing data synchronously do a data pass, then a metadata pass, 602 * then do additional data+metadata passes to try to get all the data out. 603 */ 604 static int vfsync_wait_output(struct vnode *vp, 605 int (*waitoutput)(struct vnode *, struct thread *)); 606 static int vfsync_data_only_cmp(struct buf *bp, void *data); 607 static int vfsync_meta_only_cmp(struct buf *bp, void *data); 608 static int vfsync_lazy_range_cmp(struct buf *bp, void *data); 609 static int vfsync_bp(struct buf *bp, void *data); 610 611 struct vfsync_info { 612 struct vnode *vp; 613 int synchronous; 614 int syncdeps; 615 int lazycount; 616 int lazylimit; 617 int skippedbufs; 618 int (*checkdef)(struct buf *); 619 }; 620 621 int 622 vfsync(struct vnode *vp, int waitfor, int passes, 623 int (*checkdef)(struct buf *), 624 int (*waitoutput)(struct vnode *, struct thread *)) 625 { 626 struct vfsync_info info; 627 lwkt_tokref vlock; 628 int error; 629 630 bzero(&info, sizeof(info)); 631 info.vp = vp; 632 if ((info.checkdef = checkdef) == NULL) 633 info.syncdeps = 1; 634 635 lwkt_gettoken(&vlock, &vp->v_token); 636 637 switch(waitfor) { 638 case MNT_LAZY: 639 /* 640 * Lazy (filesystem syncer typ) Asynchronous plus limit the 641 * number of data (not meta) pages we try to flush to 1MB. 642 * A non-zero return means that lazy limit was reached. 643 */ 644 info.lazylimit = 1024 * 1024; 645 info.syncdeps = 1; 646 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, 647 vfsync_lazy_range_cmp, vfsync_bp, &info); 648 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, 649 vfsync_meta_only_cmp, vfsync_bp, &info); 650 if (error == 0) 651 vp->v_lazyw = 0; 652 else if (!RB_EMPTY(&vp->v_rbdirty_tree)) 653 vn_syncer_add_to_worklist(vp, 1); 654 error = 0; 655 break; 656 case MNT_NOWAIT: 657 /* 658 * Asynchronous. Do a data-only pass and a meta-only pass. 659 */ 660 info.syncdeps = 1; 661 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp, 662 vfsync_bp, &info); 663 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp, 664 vfsync_bp, &info); 665 error = 0; 666 break; 667 default: 668 /* 669 * Synchronous. Do a data-only pass, then a meta-data+data 670 * pass, then additional integrated passes to try to get 671 * all the dependancies flushed. 672 */ 673 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp, 674 vfsync_bp, &info); 675 error = vfsync_wait_output(vp, waitoutput); 676 if (error == 0) { 677 info.skippedbufs = 0; 678 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, 679 vfsync_bp, &info); 680 error = vfsync_wait_output(vp, waitoutput); 681 if (info.skippedbufs) 682 kprintf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs); 683 } 684 while (error == 0 && passes > 0 && 685 !RB_EMPTY(&vp->v_rbdirty_tree) 686 ) { 687 if (--passes == 0) { 688 info.synchronous = 1; 689 info.syncdeps = 1; 690 } 691 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, 692 vfsync_bp, &info); 693 if (error < 0) 694 error = -error; 695 info.syncdeps = 1; 696 if (error == 0) 697 error = vfsync_wait_output(vp, waitoutput); 698 } 699 break; 700 } 701 lwkt_reltoken(&vlock); 702 return(error); 703 } 704 705 static int 706 vfsync_wait_output(struct vnode *vp, 707 int (*waitoutput)(struct vnode *, struct thread *)) 708 { 709 int error; 710 711 error = bio_track_wait(&vp->v_track_write, 0, 0); 712 if (waitoutput) 713 error = waitoutput(vp, curthread); 714 return(error); 715 } 716 717 static int 718 vfsync_data_only_cmp(struct buf *bp, void *data) 719 { 720 if (bp->b_loffset < 0) 721 return(-1); 722 return(0); 723 } 724 725 static int 726 vfsync_meta_only_cmp(struct buf *bp, void *data) 727 { 728 if (bp->b_loffset < 0) 729 return(0); 730 return(1); 731 } 732 733 static int 734 vfsync_lazy_range_cmp(struct buf *bp, void *data) 735 { 736 struct vfsync_info *info = data; 737 if (bp->b_loffset < info->vp->v_lazyw) 738 return(-1); 739 return(0); 740 } 741 742 static int 743 vfsync_bp(struct buf *bp, void *data) 744 { 745 struct vfsync_info *info = data; 746 struct vnode *vp = info->vp; 747 int error; 748 749 /* 750 * if syncdeps is not set we do not try to write buffers which have 751 * dependancies. 752 */ 753 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) 754 return(0); 755 756 /* 757 * Ignore buffers that we cannot immediately lock. XXX 758 */ 759 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 760 kprintf("Warning: vfsync_bp skipping dirty buffer %p\n", bp); 761 ++info->skippedbufs; 762 return(0); 763 } 764 if ((bp->b_flags & B_DELWRI) == 0) 765 panic("vfsync_bp: buffer not dirty"); 766 if (vp != bp->b_vp) 767 panic("vfsync_bp: buffer vp mismatch"); 768 769 /* 770 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer 771 * has been written but an additional handshake with the device 772 * is required before we can dispose of the buffer. We have no idea 773 * how to do this so we have to skip these buffers. 774 */ 775 if (bp->b_flags & B_NEEDCOMMIT) { 776 BUF_UNLOCK(bp); 777 return(0); 778 } 779 780 /* 781 * Ask bioops if it is ok to sync 782 */ 783 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) { 784 bremfree(bp); 785 brelse(bp); 786 return(0); 787 } 788 789 if (info->synchronous) { 790 /* 791 * Synchronous flushing. An error may be returned. 792 */ 793 bremfree(bp); 794 error = bwrite(bp); 795 } else { 796 /* 797 * Asynchronous flushing. A negative return value simply 798 * stops the scan and is not considered an error. We use 799 * this to support limited MNT_LAZY flushes. 800 */ 801 vp->v_lazyw = bp->b_loffset; 802 if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) { 803 info->lazycount += vfs_bio_awrite(bp); 804 } else { 805 info->lazycount += bp->b_bufsize; 806 bremfree(bp); 807 bawrite(bp); 808 } 809 if (info->lazylimit && info->lazycount >= info->lazylimit) 810 error = 1; 811 else 812 error = 0; 813 } 814 return(-error); 815 } 816 817 /* 818 * Associate a buffer with a vnode. 819 * 820 * MPSAFE 821 */ 822 int 823 bgetvp(struct vnode *vp, struct buf *bp) 824 { 825 lwkt_tokref vlock; 826 827 KASSERT(bp->b_vp == NULL, ("bgetvp: not free")); 828 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0); 829 830 /* 831 * Insert onto list for new vnode. 832 */ 833 lwkt_gettoken(&vlock, &vp->v_token); 834 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) { 835 lwkt_reltoken(&vlock); 836 return (EEXIST); 837 } 838 bp->b_vp = vp; 839 bp->b_flags |= B_HASHED; 840 bp->b_flags |= B_VNCLEAN; 841 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) 842 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp); 843 vhold(vp); 844 lwkt_reltoken(&vlock); 845 return(0); 846 } 847 848 /* 849 * Disassociate a buffer from a vnode. 850 */ 851 void 852 brelvp(struct buf *bp) 853 { 854 struct vnode *vp; 855 lwkt_tokref vlock; 856 857 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 858 859 /* 860 * Delete from old vnode list, if on one. 861 */ 862 vp = bp->b_vp; 863 lwkt_gettoken(&vlock, &vp->v_token); 864 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) { 865 if (bp->b_flags & B_VNDIRTY) 866 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp); 867 else 868 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp); 869 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN); 870 } 871 if (bp->b_flags & B_HASHED) { 872 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp); 873 bp->b_flags &= ~B_HASHED; 874 } 875 if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) { 876 vp->v_flag &= ~VONWORKLST; 877 LIST_REMOVE(vp, v_synclist); 878 } 879 bp->b_vp = NULL; 880 lwkt_reltoken(&vlock); 881 882 vdrop(vp); 883 } 884 885 /* 886 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI. 887 * This routine is called when the state of the B_DELWRI bit is changed. 888 * 889 * MPSAFE 890 */ 891 void 892 reassignbuf(struct buf *bp) 893 { 894 struct vnode *vp = bp->b_vp; 895 lwkt_tokref vlock; 896 int delay; 897 898 KKASSERT(vp != NULL); 899 ++reassignbufcalls; 900 901 /* 902 * B_PAGING flagged buffers cannot be reassigned because their vp 903 * is not fully linked in. 904 */ 905 if (bp->b_flags & B_PAGING) 906 panic("cannot reassign paging buffer"); 907 908 lwkt_gettoken(&vlock, &vp->v_token); 909 if (bp->b_flags & B_DELWRI) { 910 /* 911 * Move to the dirty list, add the vnode to the worklist 912 */ 913 if (bp->b_flags & B_VNCLEAN) { 914 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp); 915 bp->b_flags &= ~B_VNCLEAN; 916 } 917 if ((bp->b_flags & B_VNDIRTY) == 0) { 918 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) { 919 panic("reassignbuf: dup lblk vp %p bp %p", 920 vp, bp); 921 } 922 bp->b_flags |= B_VNDIRTY; 923 } 924 if ((vp->v_flag & VONWORKLST) == 0) { 925 switch (vp->v_type) { 926 case VDIR: 927 delay = dirdelay; 928 break; 929 case VCHR: 930 case VBLK: 931 if (vp->v_rdev && 932 vp->v_rdev->si_mountpoint != NULL) { 933 delay = metadelay; 934 break; 935 } 936 /* fall through */ 937 default: 938 delay = filedelay; 939 } 940 vn_syncer_add_to_worklist(vp, delay); 941 } 942 } else { 943 /* 944 * Move to the clean list, remove the vnode from the worklist 945 * if no dirty blocks remain. 946 */ 947 if (bp->b_flags & B_VNDIRTY) { 948 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp); 949 bp->b_flags &= ~B_VNDIRTY; 950 } 951 if ((bp->b_flags & B_VNCLEAN) == 0) { 952 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) { 953 panic("reassignbuf: dup lblk vp %p bp %p", 954 vp, bp); 955 } 956 bp->b_flags |= B_VNCLEAN; 957 } 958 if ((vp->v_flag & VONWORKLST) && 959 RB_EMPTY(&vp->v_rbdirty_tree)) { 960 vp->v_flag &= ~VONWORKLST; 961 LIST_REMOVE(vp, v_synclist); 962 } 963 } 964 lwkt_reltoken(&vlock); 965 } 966 967 /* 968 * Create a vnode for a block device. 969 * Used for mounting the root file system. 970 */ 971 extern struct vop_ops *devfs_vnode_dev_vops_p; 972 int 973 bdevvp(cdev_t dev, struct vnode **vpp) 974 { 975 struct vnode *vp; 976 struct vnode *nvp; 977 int error; 978 979 if (dev == NULL) { 980 *vpp = NULLVP; 981 return (ENXIO); 982 } 983 error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p/*&spec_vnode_vops_p*/, &nvp, 0, 0); 984 if (error) { 985 *vpp = NULLVP; 986 return (error); 987 } 988 vp = nvp; 989 vp->v_type = VCHR; 990 vp->v_rdev = dev; 991 vp->v_umajor = dev->si_umajor; 992 vp->v_uminor = dev->si_uminor; 993 vx_unlock(vp); 994 *vpp = vp; 995 return (0); 996 } 997 998 int 999 v_associate_rdev(struct vnode *vp, cdev_t dev) 1000 { 1001 lwkt_tokref ilock; 1002 1003 if (dev == NULL) 1004 return(ENXIO); 1005 if (dev_is_good(dev) == 0) 1006 return(ENXIO); 1007 KKASSERT(vp->v_rdev == NULL); 1008 if (dev_ref_debug) 1009 kprintf("Z1"); 1010 vp->v_rdev = reference_dev(dev); 1011 lwkt_gettoken(&ilock, &spechash_token); 1012 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext); 1013 lwkt_reltoken(&ilock); 1014 return(0); 1015 } 1016 1017 void 1018 v_release_rdev(struct vnode *vp) 1019 { 1020 lwkt_tokref ilock; 1021 cdev_t dev; 1022 1023 if ((dev = vp->v_rdev) != NULL) { 1024 lwkt_gettoken(&ilock, &spechash_token); 1025 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext); 1026 vp->v_rdev = NULL; 1027 release_dev(dev); 1028 lwkt_reltoken(&ilock); 1029 } 1030 } 1031 1032 /* 1033 * Add a vnode to the alias list hung off the cdev_t. We only associate 1034 * the device number with the vnode. The actual device is not associated 1035 * until the vnode is opened (usually in spec_open()), and will be 1036 * disassociated on last close. 1037 */ 1038 void 1039 addaliasu(struct vnode *nvp, int x, int y) 1040 { 1041 if (nvp->v_type != VBLK && nvp->v_type != VCHR) 1042 panic("addaliasu on non-special vnode"); 1043 nvp->v_umajor = x; 1044 nvp->v_uminor = y; 1045 } 1046 1047 /* 1048 * Simple call that a filesystem can make to try to get rid of a 1049 * vnode. It will fail if anyone is referencing the vnode (including 1050 * the caller). 1051 * 1052 * The filesystem can check whether its in-memory inode structure still 1053 * references the vp on return. 1054 */ 1055 void 1056 vclean_unlocked(struct vnode *vp) 1057 { 1058 vx_get(vp); 1059 if (sysref_isactive(&vp->v_sysref) == 0) 1060 vgone_vxlocked(vp); 1061 vx_put(vp); 1062 } 1063 1064 /* 1065 * Disassociate a vnode from its underlying filesystem. 1066 * 1067 * The vnode must be VX locked and referenced. In all normal situations 1068 * there are no active references. If vclean_vxlocked() is called while 1069 * there are active references, the vnode is being ripped out and we have 1070 * to call VOP_CLOSE() as appropriate before we can reclaim it. 1071 */ 1072 void 1073 vclean_vxlocked(struct vnode *vp, int flags) 1074 { 1075 int active; 1076 int n; 1077 vm_object_t object; 1078 1079 /* 1080 * If the vnode has already been reclaimed we have nothing to do. 1081 */ 1082 if (vp->v_flag & VRECLAIMED) 1083 return; 1084 vp->v_flag |= VRECLAIMED; 1085 1086 /* 1087 * Scrap the vfs cache 1088 */ 1089 while (cache_inval_vp(vp, 0) != 0) { 1090 kprintf("Warning: vnode %p clean/cache_resolution race detected\n", vp); 1091 tsleep(vp, 0, "vclninv", 2); 1092 } 1093 1094 /* 1095 * Check to see if the vnode is in use. If so we have to reference it 1096 * before we clean it out so that its count cannot fall to zero and 1097 * generate a race against ourselves to recycle it. 1098 */ 1099 active = sysref_isactive(&vp->v_sysref); 1100 1101 /* 1102 * Clean out any buffers associated with the vnode and destroy its 1103 * object, if it has one. 1104 */ 1105 vinvalbuf(vp, V_SAVE, 0, 0); 1106 1107 /* 1108 * If purging an active vnode (typically during a forced unmount 1109 * or reboot), it must be closed and deactivated before being 1110 * reclaimed. This isn't really all that safe, but what can 1111 * we do? XXX. 1112 * 1113 * Note that neither of these routines unlocks the vnode. 1114 */ 1115 if (active && (flags & DOCLOSE)) { 1116 while ((n = vp->v_opencount) != 0) { 1117 if (vp->v_writecount) 1118 VOP_CLOSE(vp, FWRITE|FNONBLOCK); 1119 else 1120 VOP_CLOSE(vp, FNONBLOCK); 1121 if (vp->v_opencount == n) { 1122 kprintf("Warning: unable to force-close" 1123 " vnode %p\n", vp); 1124 break; 1125 } 1126 } 1127 } 1128 1129 /* 1130 * If the vnode has not been deactivated, deactivated it. Deactivation 1131 * can create new buffers and VM pages so we have to call vinvalbuf() 1132 * again to make sure they all get flushed. 1133 * 1134 * This can occur if a file with a link count of 0 needs to be 1135 * truncated. 1136 */ 1137 if ((vp->v_flag & VINACTIVE) == 0) { 1138 vp->v_flag |= VINACTIVE; 1139 VOP_INACTIVE(vp); 1140 vinvalbuf(vp, V_SAVE, 0, 0); 1141 } 1142 1143 /* 1144 * If the vnode has an object, destroy it. 1145 */ 1146 if ((object = vp->v_object) != NULL) { 1147 if (object->ref_count == 0) { 1148 if ((object->flags & OBJ_DEAD) == 0) 1149 vm_object_terminate(object); 1150 } else { 1151 vm_pager_deallocate(object); 1152 } 1153 vp->v_flag &= ~VOBJBUF; 1154 } 1155 KKASSERT((vp->v_flag & VOBJBUF) == 0); 1156 1157 /* 1158 * Reclaim the vnode. 1159 */ 1160 if (VOP_RECLAIM(vp)) 1161 panic("vclean: cannot reclaim"); 1162 1163 /* 1164 * Done with purge, notify sleepers of the grim news. 1165 */ 1166 vp->v_ops = &dead_vnode_vops_p; 1167 vn_pollgone(vp); 1168 vp->v_tag = VT_NON; 1169 1170 /* 1171 * If we are destroying an active vnode, reactivate it now that 1172 * we have reassociated it with deadfs. This prevents the system 1173 * from crashing on the vnode due to it being unexpectedly marked 1174 * as inactive or reclaimed. 1175 */ 1176 if (active && (flags & DOCLOSE)) { 1177 vp->v_flag &= ~(VINACTIVE|VRECLAIMED); 1178 } 1179 } 1180 1181 /* 1182 * Eliminate all activity associated with the requested vnode 1183 * and with all vnodes aliased to the requested vnode. 1184 * 1185 * The vnode must be referenced but should not be locked. 1186 */ 1187 int 1188 vrevoke(struct vnode *vp, struct ucred *cred) 1189 { 1190 struct vnode *vq; 1191 struct vnode *vqn; 1192 lwkt_tokref ilock; 1193 cdev_t dev; 1194 int error; 1195 1196 /* 1197 * If the vnode has a device association, scrap all vnodes associated 1198 * with the device. Don't let the device disappear on us while we 1199 * are scrapping the vnodes. 1200 * 1201 * The passed vp will probably show up in the list, do not VX lock 1202 * it twice! 1203 * 1204 * Releasing the vnode's rdev here can mess up specfs's call to 1205 * device close, so don't do it. The vnode has been disassociated 1206 * and the device will be closed after the last ref on the related 1207 * fp goes away (if not still open by e.g. the kernel). 1208 */ 1209 if (vp->v_type != VCHR) { 1210 error = fdrevoke(vp, DTYPE_VNODE, cred); 1211 return (error); 1212 } 1213 if ((dev = vp->v_rdev) == NULL) { 1214 return(0); 1215 } 1216 reference_dev(dev); 1217 lwkt_gettoken(&ilock, &spechash_token); 1218 1219 vqn = SLIST_FIRST(&dev->si_hlist); 1220 if (vqn) 1221 vref(vqn); 1222 while ((vq = vqn) != NULL) { 1223 vqn = SLIST_NEXT(vqn, v_cdevnext); 1224 if (vqn) 1225 vref(vqn); 1226 fdrevoke(vq, DTYPE_VNODE, cred); 1227 /*v_release_rdev(vq);*/ 1228 vrele(vq); 1229 } 1230 lwkt_reltoken(&ilock); 1231 dev_drevoke(dev); 1232 //release_dev(dev); 1233 return (0); 1234 } 1235 1236 /* 1237 * This is called when the object underlying a vnode is being destroyed, 1238 * such as in a remove(). Try to recycle the vnode immediately if the 1239 * only active reference is our reference. 1240 * 1241 * Directory vnodes in the namecache with children cannot be immediately 1242 * recycled because numerous VOP_N*() ops require them to be stable. 1243 */ 1244 int 1245 vrecycle(struct vnode *vp) 1246 { 1247 if (vp->v_sysref.refcnt <= 1) { 1248 if (cache_inval_vp_nonblock(vp)) 1249 return(0); 1250 vgone_vxlocked(vp); 1251 return (1); 1252 } 1253 return (0); 1254 } 1255 1256 /* 1257 * Return the maximum I/O size allowed for strategy calls on VP. 1258 * 1259 * If vp is VCHR or VBLK we dive the device, otherwise we use 1260 * the vp's mount info. 1261 */ 1262 int 1263 vmaxiosize(struct vnode *vp) 1264 { 1265 if (vp->v_type == VBLK || vp->v_type == VCHR) { 1266 return(vp->v_rdev->si_iosize_max); 1267 } else { 1268 return(vp->v_mount->mnt_iosize_max); 1269 } 1270 } 1271 1272 /* 1273 * Eliminate all activity associated with a vnode in preparation for reuse. 1274 * 1275 * The vnode must be VX locked and refd and will remain VX locked and refd 1276 * on return. This routine may be called with the vnode in any state, as 1277 * long as it is VX locked. The vnode will be cleaned out and marked 1278 * VRECLAIMED but will not actually be reused until all existing refs and 1279 * holds go away. 1280 * 1281 * NOTE: This routine may be called on a vnode which has not yet been 1282 * already been deactivated (VOP_INACTIVE), or on a vnode which has 1283 * already been reclaimed. 1284 * 1285 * This routine is not responsible for placing us back on the freelist. 1286 * Instead, it happens automatically when the caller releases the VX lock 1287 * (assuming there aren't any other references). 1288 */ 1289 1290 void 1291 vgone_vxlocked(struct vnode *vp) 1292 { 1293 /* 1294 * assert that the VX lock is held. This is an absolute requirement 1295 * now for vgone_vxlocked() to be called. 1296 */ 1297 KKASSERT(vp->v_lock.lk_exclusivecount == 1); 1298 1299 /* 1300 * Clean out the filesystem specific data and set the VRECLAIMED 1301 * bit. Also deactivate the vnode if necessary. 1302 */ 1303 vclean_vxlocked(vp, DOCLOSE); 1304 1305 /* 1306 * Delete from old mount point vnode list, if on one. 1307 */ 1308 if (vp->v_mount != NULL) 1309 insmntque(vp, NULL); 1310 1311 /* 1312 * If special device, remove it from special device alias list 1313 * if it is on one. This should normally only occur if a vnode is 1314 * being revoked as the device should otherwise have been released 1315 * naturally. 1316 */ 1317 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) { 1318 v_release_rdev(vp); 1319 } 1320 1321 /* 1322 * Set us to VBAD 1323 */ 1324 vp->v_type = VBAD; 1325 } 1326 1327 /* 1328 * Lookup a vnode by device number. 1329 * 1330 * Returns non-zero and *vpp set to a vref'd vnode on success. 1331 * Returns zero on failure. 1332 */ 1333 int 1334 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp) 1335 { 1336 lwkt_tokref ilock; 1337 struct vnode *vp; 1338 1339 lwkt_gettoken(&ilock, &spechash_token); 1340 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) { 1341 if (type == vp->v_type) { 1342 *vpp = vp; 1343 vref(vp); 1344 lwkt_reltoken(&ilock); 1345 return (1); 1346 } 1347 } 1348 lwkt_reltoken(&ilock); 1349 return (0); 1350 } 1351 1352 /* 1353 * Calculate the total number of references to a special device. This 1354 * routine may only be called for VBLK and VCHR vnodes since v_rdev is 1355 * an overloaded field. Since udev2dev can now return NULL, we have 1356 * to check for a NULL v_rdev. 1357 */ 1358 int 1359 count_dev(cdev_t dev) 1360 { 1361 lwkt_tokref ilock; 1362 struct vnode *vp; 1363 int count = 0; 1364 1365 if (SLIST_FIRST(&dev->si_hlist)) { 1366 lwkt_gettoken(&ilock, &spechash_token); 1367 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) { 1368 if (vp->v_sysref.refcnt > 0) 1369 count += vp->v_sysref.refcnt; 1370 } 1371 lwkt_reltoken(&ilock); 1372 } 1373 return(count); 1374 } 1375 1376 int 1377 count_udev(int x, int y) 1378 { 1379 cdev_t dev; 1380 1381 if ((dev = get_dev(x, y)) == NULL) 1382 return(0); 1383 return(count_dev(dev)); 1384 } 1385 1386 int 1387 vcount(struct vnode *vp) 1388 { 1389 if (vp->v_rdev == NULL) 1390 return(0); 1391 return(count_dev(vp->v_rdev)); 1392 } 1393 1394 /* 1395 * Initialize VMIO for a vnode. This routine MUST be called before a 1396 * VFS can issue buffer cache ops on a vnode. It is typically called 1397 * when a vnode is initialized from its inode. 1398 */ 1399 int 1400 vinitvmio(struct vnode *vp, off_t filesize) 1401 { 1402 vm_object_t object; 1403 int error = 0; 1404 1405 retry: 1406 if ((object = vp->v_object) == NULL) { 1407 object = vnode_pager_alloc(vp, filesize, 0, 0); 1408 /* 1409 * Dereference the reference we just created. This assumes 1410 * that the object is associated with the vp. 1411 */ 1412 object->ref_count--; 1413 vrele(vp); 1414 } else { 1415 if (object->flags & OBJ_DEAD) { 1416 vn_unlock(vp); 1417 vm_object_dead_sleep(object, "vodead"); 1418 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1419 goto retry; 1420 } 1421 } 1422 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object")); 1423 vp->v_flag |= VOBJBUF; 1424 return (error); 1425 } 1426 1427 1428 /* 1429 * Print out a description of a vnode. 1430 */ 1431 static char *typename[] = 1432 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"}; 1433 1434 void 1435 vprint(char *label, struct vnode *vp) 1436 { 1437 char buf[96]; 1438 1439 if (label != NULL) 1440 kprintf("%s: %p: ", label, (void *)vp); 1441 else 1442 kprintf("%p: ", (void *)vp); 1443 kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,", 1444 typename[vp->v_type], 1445 vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs); 1446 buf[0] = '\0'; 1447 if (vp->v_flag & VROOT) 1448 strcat(buf, "|VROOT"); 1449 if (vp->v_flag & VPFSROOT) 1450 strcat(buf, "|VPFSROOT"); 1451 if (vp->v_flag & VTEXT) 1452 strcat(buf, "|VTEXT"); 1453 if (vp->v_flag & VSYSTEM) 1454 strcat(buf, "|VSYSTEM"); 1455 if (vp->v_flag & VFREE) 1456 strcat(buf, "|VFREE"); 1457 if (vp->v_flag & VOBJBUF) 1458 strcat(buf, "|VOBJBUF"); 1459 if (buf[0] != '\0') 1460 kprintf(" flags (%s)", &buf[1]); 1461 if (vp->v_data == NULL) { 1462 kprintf("\n"); 1463 } else { 1464 kprintf("\n\t"); 1465 VOP_PRINT(vp); 1466 } 1467 } 1468 1469 #ifdef DDB 1470 #include <ddb/ddb.h> 1471 1472 static int db_show_locked_vnodes(struct mount *mp, void *data); 1473 1474 /* 1475 * List all of the locked vnodes in the system. 1476 * Called when debugging the kernel. 1477 */ 1478 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes) 1479 { 1480 kprintf("Locked vnodes\n"); 1481 mountlist_scan(db_show_locked_vnodes, NULL, 1482 MNTSCAN_FORWARD|MNTSCAN_NOBUSY); 1483 } 1484 1485 static int 1486 db_show_locked_vnodes(struct mount *mp, void *data __unused) 1487 { 1488 struct vnode *vp; 1489 1490 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 1491 if (vn_islocked(vp)) 1492 vprint(NULL, vp); 1493 } 1494 return(0); 1495 } 1496 #endif 1497 1498 /* 1499 * Top level filesystem related information gathering. 1500 */ 1501 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS); 1502 1503 static int 1504 vfs_sysctl(SYSCTL_HANDLER_ARGS) 1505 { 1506 int *name = (int *)arg1 - 1; /* XXX */ 1507 u_int namelen = arg2 + 1; /* XXX */ 1508 struct vfsconf *vfsp; 1509 int maxtypenum; 1510 1511 #if 1 || defined(COMPAT_PRELITE2) 1512 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 1513 if (namelen == 1) 1514 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 1515 #endif 1516 1517 #ifdef notyet 1518 /* all sysctl names at this level are at least name and field */ 1519 if (namelen < 2) 1520 return (ENOTDIR); /* overloaded */ 1521 if (name[0] != VFS_GENERIC) { 1522 vfsp = vfsconf_find_by_typenum(name[0]); 1523 if (vfsp == NULL) 1524 return (EOPNOTSUPP); 1525 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1, 1526 oldp, oldlenp, newp, newlen, p)); 1527 } 1528 #endif 1529 switch (name[1]) { 1530 case VFS_MAXTYPENUM: 1531 if (namelen != 2) 1532 return (ENOTDIR); 1533 maxtypenum = vfsconf_get_maxtypenum(); 1534 return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum))); 1535 case VFS_CONF: 1536 if (namelen != 3) 1537 return (ENOTDIR); /* overloaded */ 1538 vfsp = vfsconf_find_by_typenum(name[2]); 1539 if (vfsp == NULL) 1540 return (EOPNOTSUPP); 1541 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp)); 1542 } 1543 return (EOPNOTSUPP); 1544 } 1545 1546 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl, 1547 "Generic filesystem"); 1548 1549 #if 1 || defined(COMPAT_PRELITE2) 1550 1551 static int 1552 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data) 1553 { 1554 int error; 1555 struct ovfsconf ovfs; 1556 struct sysctl_req *req = (struct sysctl_req*) data; 1557 1558 bzero(&ovfs, sizeof(ovfs)); 1559 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 1560 strcpy(ovfs.vfc_name, vfsp->vfc_name); 1561 ovfs.vfc_index = vfsp->vfc_typenum; 1562 ovfs.vfc_refcount = vfsp->vfc_refcount; 1563 ovfs.vfc_flags = vfsp->vfc_flags; 1564 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 1565 if (error) 1566 return error; /* abort iteration with error code */ 1567 else 1568 return 0; /* continue iterating with next element */ 1569 } 1570 1571 static int 1572 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 1573 { 1574 return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req); 1575 } 1576 1577 #endif /* 1 || COMPAT_PRELITE2 */ 1578 1579 /* 1580 * Check to see if a filesystem is mounted on a block device. 1581 */ 1582 int 1583 vfs_mountedon(struct vnode *vp) 1584 { 1585 cdev_t dev; 1586 1587 if ((dev = vp->v_rdev) == NULL) { 1588 /* if (vp->v_type != VBLK) 1589 dev = get_dev(vp->v_uminor, vp->v_umajor); */ 1590 } 1591 if (dev != NULL && dev->si_mountpoint) 1592 return (EBUSY); 1593 return (0); 1594 } 1595 1596 /* 1597 * Unmount all filesystems. The list is traversed in reverse order 1598 * of mounting to avoid dependencies. 1599 */ 1600 1601 static int vfs_umountall_callback(struct mount *mp, void *data); 1602 1603 void 1604 vfs_unmountall(void) 1605 { 1606 int count; 1607 1608 do { 1609 count = mountlist_scan(vfs_umountall_callback, 1610 NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY); 1611 } while (count); 1612 } 1613 1614 static 1615 int 1616 vfs_umountall_callback(struct mount *mp, void *data) 1617 { 1618 int error; 1619 1620 error = dounmount(mp, MNT_FORCE); 1621 if (error) { 1622 mountlist_remove(mp); 1623 kprintf("unmount of filesystem mounted from %s failed (", 1624 mp->mnt_stat.f_mntfromname); 1625 if (error == EBUSY) 1626 kprintf("BUSY)\n"); 1627 else 1628 kprintf("%d)\n", error); 1629 } 1630 return(1); 1631 } 1632 1633 /* 1634 * Build hash lists of net addresses and hang them off the mount point. 1635 * Called by ufs_mount() to set up the lists of export addresses. 1636 */ 1637 static int 1638 vfs_hang_addrlist(struct mount *mp, struct netexport *nep, 1639 const struct export_args *argp) 1640 { 1641 struct netcred *np; 1642 struct radix_node_head *rnh; 1643 int i; 1644 struct radix_node *rn; 1645 struct sockaddr *saddr, *smask = 0; 1646 struct domain *dom; 1647 int error; 1648 1649 if (argp->ex_addrlen == 0) { 1650 if (mp->mnt_flag & MNT_DEFEXPORTED) 1651 return (EPERM); 1652 np = &nep->ne_defexported; 1653 np->netc_exflags = argp->ex_flags; 1654 np->netc_anon = argp->ex_anon; 1655 np->netc_anon.cr_ref = 1; 1656 mp->mnt_flag |= MNT_DEFEXPORTED; 1657 return (0); 1658 } 1659 1660 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN) 1661 return (EINVAL); 1662 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN) 1663 return (EINVAL); 1664 1665 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen; 1666 np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO); 1667 saddr = (struct sockaddr *) (np + 1); 1668 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen))) 1669 goto out; 1670 if (saddr->sa_len > argp->ex_addrlen) 1671 saddr->sa_len = argp->ex_addrlen; 1672 if (argp->ex_masklen) { 1673 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen); 1674 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen); 1675 if (error) 1676 goto out; 1677 if (smask->sa_len > argp->ex_masklen) 1678 smask->sa_len = argp->ex_masklen; 1679 } 1680 i = saddr->sa_family; 1681 if ((rnh = nep->ne_rtable[i]) == 0) { 1682 /* 1683 * Seems silly to initialize every AF when most are not used, 1684 * do so on demand here 1685 */ 1686 SLIST_FOREACH(dom, &domains, dom_next) 1687 if (dom->dom_family == i && dom->dom_rtattach) { 1688 dom->dom_rtattach((void **) &nep->ne_rtable[i], 1689 dom->dom_rtoffset); 1690 break; 1691 } 1692 if ((rnh = nep->ne_rtable[i]) == 0) { 1693 error = ENOBUFS; 1694 goto out; 1695 } 1696 } 1697 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh, 1698 np->netc_rnodes); 1699 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */ 1700 error = EPERM; 1701 goto out; 1702 } 1703 np->netc_exflags = argp->ex_flags; 1704 np->netc_anon = argp->ex_anon; 1705 np->netc_anon.cr_ref = 1; 1706 return (0); 1707 out: 1708 kfree(np, M_NETADDR); 1709 return (error); 1710 } 1711 1712 /* ARGSUSED */ 1713 static int 1714 vfs_free_netcred(struct radix_node *rn, void *w) 1715 { 1716 struct radix_node_head *rnh = (struct radix_node_head *) w; 1717 1718 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh); 1719 kfree((caddr_t) rn, M_NETADDR); 1720 return (0); 1721 } 1722 1723 /* 1724 * Free the net address hash lists that are hanging off the mount points. 1725 */ 1726 static void 1727 vfs_free_addrlist(struct netexport *nep) 1728 { 1729 int i; 1730 struct radix_node_head *rnh; 1731 1732 for (i = 0; i <= AF_MAX; i++) 1733 if ((rnh = nep->ne_rtable[i])) { 1734 (*rnh->rnh_walktree) (rnh, vfs_free_netcred, 1735 (caddr_t) rnh); 1736 kfree((caddr_t) rnh, M_RTABLE); 1737 nep->ne_rtable[i] = 0; 1738 } 1739 } 1740 1741 int 1742 vfs_export(struct mount *mp, struct netexport *nep, 1743 const struct export_args *argp) 1744 { 1745 int error; 1746 1747 if (argp->ex_flags & MNT_DELEXPORT) { 1748 if (mp->mnt_flag & MNT_EXPUBLIC) { 1749 vfs_setpublicfs(NULL, NULL, NULL); 1750 mp->mnt_flag &= ~MNT_EXPUBLIC; 1751 } 1752 vfs_free_addrlist(nep); 1753 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED); 1754 } 1755 if (argp->ex_flags & MNT_EXPORTED) { 1756 if (argp->ex_flags & MNT_EXPUBLIC) { 1757 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0) 1758 return (error); 1759 mp->mnt_flag |= MNT_EXPUBLIC; 1760 } 1761 if ((error = vfs_hang_addrlist(mp, nep, argp))) 1762 return (error); 1763 mp->mnt_flag |= MNT_EXPORTED; 1764 } 1765 return (0); 1766 } 1767 1768 1769 /* 1770 * Set the publicly exported filesystem (WebNFS). Currently, only 1771 * one public filesystem is possible in the spec (RFC 2054 and 2055) 1772 */ 1773 int 1774 vfs_setpublicfs(struct mount *mp, struct netexport *nep, 1775 const struct export_args *argp) 1776 { 1777 int error; 1778 struct vnode *rvp; 1779 char *cp; 1780 1781 /* 1782 * mp == NULL -> invalidate the current info, the FS is 1783 * no longer exported. May be called from either vfs_export 1784 * or unmount, so check if it hasn't already been done. 1785 */ 1786 if (mp == NULL) { 1787 if (nfs_pub.np_valid) { 1788 nfs_pub.np_valid = 0; 1789 if (nfs_pub.np_index != NULL) { 1790 FREE(nfs_pub.np_index, M_TEMP); 1791 nfs_pub.np_index = NULL; 1792 } 1793 } 1794 return (0); 1795 } 1796 1797 /* 1798 * Only one allowed at a time. 1799 */ 1800 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount) 1801 return (EBUSY); 1802 1803 /* 1804 * Get real filehandle for root of exported FS. 1805 */ 1806 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle)); 1807 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid; 1808 1809 if ((error = VFS_ROOT(mp, &rvp))) 1810 return (error); 1811 1812 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid))) 1813 return (error); 1814 1815 vput(rvp); 1816 1817 /* 1818 * If an indexfile was specified, pull it in. 1819 */ 1820 if (argp->ex_indexfile != NULL) { 1821 int namelen; 1822 1823 error = vn_get_namelen(rvp, &namelen); 1824 if (error) 1825 return (error); 1826 MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP, 1827 M_WAITOK); 1828 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index, 1829 namelen, NULL); 1830 if (!error) { 1831 /* 1832 * Check for illegal filenames. 1833 */ 1834 for (cp = nfs_pub.np_index; *cp; cp++) { 1835 if (*cp == '/') { 1836 error = EINVAL; 1837 break; 1838 } 1839 } 1840 } 1841 if (error) { 1842 FREE(nfs_pub.np_index, M_TEMP); 1843 return (error); 1844 } 1845 } 1846 1847 nfs_pub.np_mount = mp; 1848 nfs_pub.np_valid = 1; 1849 return (0); 1850 } 1851 1852 struct netcred * 1853 vfs_export_lookup(struct mount *mp, struct netexport *nep, 1854 struct sockaddr *nam) 1855 { 1856 struct netcred *np; 1857 struct radix_node_head *rnh; 1858 struct sockaddr *saddr; 1859 1860 np = NULL; 1861 if (mp->mnt_flag & MNT_EXPORTED) { 1862 /* 1863 * Lookup in the export list first. 1864 */ 1865 if (nam != NULL) { 1866 saddr = nam; 1867 rnh = nep->ne_rtable[saddr->sa_family]; 1868 if (rnh != NULL) { 1869 np = (struct netcred *) 1870 (*rnh->rnh_matchaddr)((char *)saddr, 1871 rnh); 1872 if (np && np->netc_rnodes->rn_flags & RNF_ROOT) 1873 np = NULL; 1874 } 1875 } 1876 /* 1877 * If no address match, use the default if it exists. 1878 */ 1879 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED) 1880 np = &nep->ne_defexported; 1881 } 1882 return (np); 1883 } 1884 1885 /* 1886 * perform msync on all vnodes under a mount point. The mount point must 1887 * be locked. This code is also responsible for lazy-freeing unreferenced 1888 * vnodes whos VM objects no longer contain pages. 1889 * 1890 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state. 1891 * 1892 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked, 1893 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it 1894 * way up in this high level function. 1895 */ 1896 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data); 1897 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data); 1898 1899 void 1900 vfs_msync(struct mount *mp, int flags) 1901 { 1902 int vmsc_flags; 1903 1904 vmsc_flags = VMSC_GETVP; 1905 if (flags != MNT_WAIT) 1906 vmsc_flags |= VMSC_NOWAIT; 1907 vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2, 1908 (void *)(intptr_t)flags); 1909 } 1910 1911 /* 1912 * scan1 is a fast pre-check. There could be hundreds of thousands of 1913 * vnodes, we cannot afford to do anything heavy weight until we have a 1914 * fairly good indication that there is work to do. 1915 */ 1916 static 1917 int 1918 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data) 1919 { 1920 int flags = (int)(intptr_t)data; 1921 1922 if ((vp->v_flag & VRECLAIMED) == 0) { 1923 if (vshouldmsync(vp)) 1924 return(0); /* call scan2 */ 1925 if ((mp->mnt_flag & MNT_RDONLY) == 0 && 1926 (vp->v_flag & VOBJDIRTY) && 1927 (flags == MNT_WAIT || vn_islocked(vp) == 0)) { 1928 return(0); /* call scan2 */ 1929 } 1930 } 1931 1932 /* 1933 * do not call scan2, continue the loop 1934 */ 1935 return(-1); 1936 } 1937 1938 /* 1939 * This callback is handed a locked vnode. 1940 */ 1941 static 1942 int 1943 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data) 1944 { 1945 vm_object_t obj; 1946 int flags = (int)(intptr_t)data; 1947 1948 if (vp->v_flag & VRECLAIMED) 1949 return(0); 1950 1951 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) { 1952 if ((obj = vp->v_object) != NULL) { 1953 vm_object_page_clean(obj, 0, 0, 1954 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC); 1955 } 1956 } 1957 return(0); 1958 } 1959 1960 /* 1961 * Record a process's interest in events which might happen to 1962 * a vnode. Because poll uses the historic select-style interface 1963 * internally, this routine serves as both the ``check for any 1964 * pending events'' and the ``record my interest in future events'' 1965 * functions. (These are done together, while the lock is held, 1966 * to avoid race conditions.) 1967 */ 1968 int 1969 vn_pollrecord(struct vnode *vp, int events) 1970 { 1971 lwkt_tokref vlock; 1972 1973 KKASSERT(curthread->td_proc != NULL); 1974 1975 lwkt_gettoken(&vlock, &vp->v_token); 1976 if (vp->v_pollinfo.vpi_revents & events) { 1977 /* 1978 * This leaves events we are not interested 1979 * in available for the other process which 1980 * which presumably had requested them 1981 * (otherwise they would never have been 1982 * recorded). 1983 */ 1984 events &= vp->v_pollinfo.vpi_revents; 1985 vp->v_pollinfo.vpi_revents &= ~events; 1986 1987 lwkt_reltoken(&vlock); 1988 return events; 1989 } 1990 vp->v_pollinfo.vpi_events |= events; 1991 selrecord(curthread, &vp->v_pollinfo.vpi_selinfo); 1992 lwkt_reltoken(&vlock); 1993 return 0; 1994 } 1995 1996 /* 1997 * Note the occurrence of an event. If the VN_POLLEVENT macro is used, 1998 * it is possible for us to miss an event due to race conditions, but 1999 * that condition is expected to be rare, so for the moment it is the 2000 * preferred interface. 2001 */ 2002 void 2003 vn_pollevent(struct vnode *vp, int events) 2004 { 2005 lwkt_tokref vlock; 2006 2007 lwkt_gettoken(&vlock, &vp->v_token); 2008 if (vp->v_pollinfo.vpi_events & events) { 2009 /* 2010 * We clear vpi_events so that we don't 2011 * call selwakeup() twice if two events are 2012 * posted before the polling process(es) is 2013 * awakened. This also ensures that we take at 2014 * most one selwakeup() if the polling process 2015 * is no longer interested. However, it does 2016 * mean that only one event can be noticed at 2017 * a time. (Perhaps we should only clear those 2018 * event bits which we note?) XXX 2019 */ 2020 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */ 2021 vp->v_pollinfo.vpi_revents |= events; 2022 selwakeup(&vp->v_pollinfo.vpi_selinfo); 2023 } 2024 lwkt_reltoken(&vlock); 2025 } 2026 2027 /* 2028 * Wake up anyone polling on vp because it is being revoked. 2029 * This depends on dead_poll() returning POLLHUP for correct 2030 * behavior. 2031 */ 2032 void 2033 vn_pollgone(struct vnode *vp) 2034 { 2035 lwkt_tokref vlock; 2036 2037 lwkt_gettoken(&vlock, &vp->v_token); 2038 if (vp->v_pollinfo.vpi_events) { 2039 vp->v_pollinfo.vpi_events = 0; 2040 selwakeup(&vp->v_pollinfo.vpi_selinfo); 2041 } 2042 lwkt_reltoken(&vlock); 2043 } 2044 2045 /* 2046 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened 2047 * (or v_rdev might be NULL). 2048 */ 2049 cdev_t 2050 vn_todev(struct vnode *vp) 2051 { 2052 if (vp->v_type != VBLK && vp->v_type != VCHR) 2053 return (NULL); 2054 KKASSERT(vp->v_rdev != NULL); 2055 return (vp->v_rdev); 2056 } 2057 2058 /* 2059 * Check if vnode represents a disk device. The vnode does not need to be 2060 * opened. 2061 * 2062 * MPALMOSTSAFE 2063 */ 2064 int 2065 vn_isdisk(struct vnode *vp, int *errp) 2066 { 2067 cdev_t dev; 2068 2069 if (vp->v_type != VCHR) { 2070 if (errp != NULL) 2071 *errp = ENOTBLK; 2072 return (0); 2073 } 2074 2075 dev = vp->v_rdev; 2076 2077 if (dev == NULL) { 2078 if (errp != NULL) 2079 *errp = ENXIO; 2080 return (0); 2081 } 2082 if (dev_is_good(dev) == 0) { 2083 if (errp != NULL) 2084 *errp = ENXIO; 2085 return (0); 2086 } 2087 if ((dev_dflags(dev) & D_DISK) == 0) { 2088 if (errp != NULL) 2089 *errp = ENOTBLK; 2090 return (0); 2091 } 2092 if (errp != NULL) 2093 *errp = 0; 2094 return (1); 2095 } 2096 2097 int 2098 vn_get_namelen(struct vnode *vp, int *namelen) 2099 { 2100 int error; 2101 register_t retval[2]; 2102 2103 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval); 2104 if (error) 2105 return (error); 2106 *namelen = (int)retval[0]; 2107 return (0); 2108 } 2109 2110 int 2111 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type, 2112 uint16_t d_namlen, const char *d_name) 2113 { 2114 struct dirent *dp; 2115 size_t len; 2116 2117 len = _DIRENT_RECLEN(d_namlen); 2118 if (len > uio->uio_resid) 2119 return(1); 2120 2121 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO); 2122 2123 dp->d_ino = d_ino; 2124 dp->d_namlen = d_namlen; 2125 dp->d_type = d_type; 2126 bcopy(d_name, dp->d_name, d_namlen); 2127 2128 *error = uiomove((caddr_t)dp, len, uio); 2129 2130 kfree(dp, M_TEMP); 2131 2132 return(0); 2133 } 2134 2135 void 2136 vn_mark_atime(struct vnode *vp, struct thread *td) 2137 { 2138 struct proc *p = td->td_proc; 2139 struct ucred *cred = p ? p->p_ucred : proc0.p_ucred; 2140 2141 if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) { 2142 VOP_MARKATIME(vp, cred); 2143 } 2144 } 2145