xref: /dflybsd-src/sys/kern/vfs_subr.c (revision 97c14704c37c914dbd89b22465a421ffde7fe89d)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  * $DragonFly: src/sys/kern/vfs_subr.c,v 1.118 2008/09/17 21:44:18 dillon Exp $
41  */
42 
43 /*
44  * External virtual filesystem routines
45  */
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/file.h>
57 #include <sys/kernel.h>
58 #include <sys/kthread.h>
59 #include <sys/malloc.h>
60 #include <sys/mbuf.h>
61 #include <sys/mount.h>
62 #include <sys/proc.h>
63 #include <sys/reboot.h>
64 #include <sys/socket.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/unistd.h>
69 #include <sys/vmmeter.h>
70 #include <sys/vnode.h>
71 
72 #include <machine/limits.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_extern.h>
77 #include <vm/vm_kern.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_pager.h>
82 #include <vm/vnode_pager.h>
83 #include <vm/vm_zone.h>
84 
85 #include <sys/buf2.h>
86 #include <sys/thread2.h>
87 #include <sys/sysref2.h>
88 
89 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
90 
91 int numvnodes;
92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
93 int vfs_fastdev = 1;
94 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
95 
96 enum vtype iftovt_tab[16] = {
97 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
98 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
99 };
100 int vttoif_tab[9] = {
101 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
102 	S_IFSOCK, S_IFIFO, S_IFMT,
103 };
104 
105 static int reassignbufcalls;
106 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
107 		&reassignbufcalls, 0, "");
108 static int reassignbufloops;
109 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
110 		&reassignbufloops, 0, "");
111 static int reassignbufsortgood;
112 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
113 		&reassignbufsortgood, 0, "");
114 static int reassignbufsortbad;
115 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
116 		&reassignbufsortbad, 0, "");
117 static int reassignbufmethod = 1;
118 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
119 		&reassignbufmethod, 0, "");
120 
121 int	nfs_mount_type = -1;
122 static struct lwkt_token spechash_token;
123 struct nfs_public nfs_pub;	/* publicly exported FS */
124 
125 int desiredvnodes;
126 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
127 		&desiredvnodes, 0, "Maximum number of vnodes");
128 
129 static void	vfs_free_addrlist (struct netexport *nep);
130 static int	vfs_free_netcred (struct radix_node *rn, void *w);
131 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
132 				       const struct export_args *argp);
133 
134 extern int dev_ref_debug;
135 
136 /*
137  * Red black tree functions
138  */
139 static int rb_buf_compare(struct buf *b1, struct buf *b2);
140 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
141 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
142 
143 static int
144 rb_buf_compare(struct buf *b1, struct buf *b2)
145 {
146 	if (b1->b_loffset < b2->b_loffset)
147 		return(-1);
148 	if (b1->b_loffset > b2->b_loffset)
149 		return(1);
150 	return(0);
151 }
152 
153 /*
154  * Returns non-zero if the vnode is a candidate for lazy msyncing.
155  */
156 static __inline int
157 vshouldmsync(struct vnode *vp)
158 {
159 	if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0)
160 		return (0);		/* other holders */
161 	if (vp->v_object &&
162 	    (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
163 		return (0);
164 	}
165 	return (1);
166 }
167 
168 /*
169  * Initialize the vnode management data structures.
170  *
171  * Called from vfsinit()
172  */
173 void
174 vfs_subr_init(void)
175 {
176 	/*
177 	 * Desiredvnodes is kern.maxvnodes.  We want to scale it
178 	 * according to available system memory but we may also have
179 	 * to limit it based on available KVM, which is capped on 32 bit
180 	 * systems.
181 	 */
182 	desiredvnodes = min(maxproc + vmstats.v_page_count / 4,
183 			    KvaSize / (20 *
184 			    (sizeof(struct vm_object) + sizeof(struct vnode))));
185 
186 	lwkt_token_init(&spechash_token);
187 }
188 
189 /*
190  * Knob to control the precision of file timestamps:
191  *
192  *   0 = seconds only; nanoseconds zeroed.
193  *   1 = seconds and nanoseconds, accurate within 1/HZ.
194  *   2 = seconds and nanoseconds, truncated to microseconds.
195  * >=3 = seconds and nanoseconds, maximum precision.
196  */
197 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
198 
199 static int timestamp_precision = TSP_SEC;
200 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
201 		&timestamp_precision, 0, "");
202 
203 /*
204  * Get a current timestamp.
205  */
206 void
207 vfs_timestamp(struct timespec *tsp)
208 {
209 	struct timeval tv;
210 
211 	switch (timestamp_precision) {
212 	case TSP_SEC:
213 		tsp->tv_sec = time_second;
214 		tsp->tv_nsec = 0;
215 		break;
216 	case TSP_HZ:
217 		getnanotime(tsp);
218 		break;
219 	case TSP_USEC:
220 		microtime(&tv);
221 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
222 		break;
223 	case TSP_NSEC:
224 	default:
225 		nanotime(tsp);
226 		break;
227 	}
228 }
229 
230 /*
231  * Set vnode attributes to VNOVAL
232  */
233 void
234 vattr_null(struct vattr *vap)
235 {
236 	vap->va_type = VNON;
237 	vap->va_size = VNOVAL;
238 	vap->va_bytes = VNOVAL;
239 	vap->va_mode = VNOVAL;
240 	vap->va_nlink = VNOVAL;
241 	vap->va_uid = VNOVAL;
242 	vap->va_gid = VNOVAL;
243 	vap->va_fsid = VNOVAL;
244 	vap->va_fileid = VNOVAL;
245 	vap->va_blocksize = VNOVAL;
246 	vap->va_rmajor = VNOVAL;
247 	vap->va_rminor = VNOVAL;
248 	vap->va_atime.tv_sec = VNOVAL;
249 	vap->va_atime.tv_nsec = VNOVAL;
250 	vap->va_mtime.tv_sec = VNOVAL;
251 	vap->va_mtime.tv_nsec = VNOVAL;
252 	vap->va_ctime.tv_sec = VNOVAL;
253 	vap->va_ctime.tv_nsec = VNOVAL;
254 	vap->va_flags = VNOVAL;
255 	vap->va_gen = VNOVAL;
256 	vap->va_vaflags = 0;
257 	vap->va_fsmid = VNOVAL;
258 	/* va_*_uuid fields are only valid if related flags are set */
259 }
260 
261 /*
262  * Flush out and invalidate all buffers associated with a vnode.
263  *
264  * vp must be locked.
265  */
266 static int vinvalbuf_bp(struct buf *bp, void *data);
267 
268 struct vinvalbuf_bp_info {
269 	struct vnode *vp;
270 	int slptimeo;
271 	int lkflags;
272 	int flags;
273 };
274 
275 void
276 vupdatefsmid(struct vnode *vp)
277 {
278 	atomic_set_int(&vp->v_flag, VFSMID);
279 }
280 
281 int
282 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
283 {
284 	struct vinvalbuf_bp_info info;
285 	int error;
286 	vm_object_t object;
287 
288 	/*
289 	 * If we are being asked to save, call fsync to ensure that the inode
290 	 * is updated.
291 	 */
292 	if (flags & V_SAVE) {
293 		crit_enter();
294 		while (vp->v_track_write.bk_active) {
295 			vp->v_track_write.bk_waitflag = 1;
296 			error = tsleep(&vp->v_track_write, slpflag,
297 					"vinvlbuf", slptimeo);
298 			if (error) {
299 				crit_exit();
300 				return (error);
301 			}
302 		}
303 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
304 			crit_exit();
305 			if ((error = VOP_FSYNC(vp, MNT_WAIT)) != 0)
306 				return (error);
307 			crit_enter();
308 
309 			/*
310 			 * Dirty bufs may be left or generated via races
311 			 * in circumstances where vinvalbuf() is called on
312 			 * a vnode not undergoing reclamation.   Only
313 			 * panic if we are trying to reclaim the vnode.
314 			 */
315 			if ((vp->v_flag & VRECLAIMED) &&
316 			    (vp->v_track_write.bk_active > 0 ||
317 			    !RB_EMPTY(&vp->v_rbdirty_tree))) {
318 				panic("vinvalbuf: dirty bufs");
319 			}
320 		}
321 		crit_exit();
322   	}
323 	crit_enter();
324 	info.slptimeo = slptimeo;
325 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
326 	if (slpflag & PCATCH)
327 		info.lkflags |= LK_PCATCH;
328 	info.flags = flags;
329 	info.vp = vp;
330 
331 	/*
332 	 * Flush the buffer cache until nothing is left.
333 	 */
334 	while (!RB_EMPTY(&vp->v_rbclean_tree) ||
335 	    !RB_EMPTY(&vp->v_rbdirty_tree)) {
336 		error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
337 				vinvalbuf_bp, &info);
338 		if (error == 0) {
339 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
340 					vinvalbuf_bp, &info);
341 		}
342 	}
343 
344 	/*
345 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
346 	 * have write I/O in-progress but if there is a VM object then the
347 	 * VM object can also have read-I/O in-progress.
348 	 */
349 	do {
350 		while (vp->v_track_write.bk_active > 0) {
351 			vp->v_track_write.bk_waitflag = 1;
352 			tsleep(&vp->v_track_write, 0, "vnvlbv", 0);
353 		}
354 		if ((object = vp->v_object) != NULL) {
355 			while (object->paging_in_progress)
356 				vm_object_pip_sleep(object, "vnvlbx");
357 		}
358 	} while (vp->v_track_write.bk_active > 0);
359 
360 	crit_exit();
361 
362 	/*
363 	 * Destroy the copy in the VM cache, too.
364 	 */
365 	if ((object = vp->v_object) != NULL) {
366 		vm_object_page_remove(object, 0, 0,
367 			(flags & V_SAVE) ? TRUE : FALSE);
368 	}
369 
370 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
371 		panic("vinvalbuf: flush failed");
372 	if (!RB_EMPTY(&vp->v_rbhash_tree))
373 		panic("vinvalbuf: flush failed, buffers still present");
374 	return (0);
375 }
376 
377 static int
378 vinvalbuf_bp(struct buf *bp, void *data)
379 {
380 	struct vinvalbuf_bp_info *info = data;
381 	int error;
382 
383 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
384 		error = BUF_TIMELOCK(bp, info->lkflags,
385 				     "vinvalbuf", info->slptimeo);
386 		if (error == 0) {
387 			BUF_UNLOCK(bp);
388 			error = ENOLCK;
389 		}
390 		if (error == ENOLCK)
391 			return(0);
392 		return (-error);
393 	}
394 
395 	KKASSERT(bp->b_vp == info->vp);
396 
397 	/*
398 	 * XXX Since there are no node locks for NFS, I
399 	 * believe there is a slight chance that a delayed
400 	 * write will occur while sleeping just above, so
401 	 * check for it.  Note that vfs_bio_awrite expects
402 	 * buffers to reside on a queue, while bwrite() and
403 	 * brelse() do not.
404 	 *
405 	 * NOTE:  NO B_LOCKED CHECK.  Also no buf_checkwrite()
406 	 * check.  This code will write out the buffer, period.
407 	 */
408 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
409 	    (info->flags & V_SAVE)) {
410 		if (bp->b_vp == info->vp) {
411 			if (bp->b_flags & B_CLUSTEROK) {
412 				vfs_bio_awrite(bp);
413 			} else {
414 				bremfree(bp);
415 				bp->b_flags |= B_ASYNC;
416 				bwrite(bp);
417 			}
418 		} else {
419 			bremfree(bp);
420 			bwrite(bp);
421 		}
422 	} else if (info->flags & V_SAVE) {
423 		/*
424 		 * Cannot set B_NOCACHE on a clean buffer as this will
425 		 * destroy the VM backing store which might actually
426 		 * be dirty (and unsynchronized).
427 		 */
428 		bremfree(bp);
429 		bp->b_flags |= (B_INVAL | B_RELBUF);
430 		bp->b_flags &= ~B_ASYNC;
431 		brelse(bp);
432 	} else {
433 		bremfree(bp);
434 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
435 		bp->b_flags &= ~B_ASYNC;
436 		brelse(bp);
437 	}
438 	return(0);
439 }
440 
441 /*
442  * Truncate a file's buffer and pages to a specified length.  This
443  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
444  * sync activity.
445  *
446  * The vnode must be locked.
447  */
448 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
449 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
450 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
451 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
452 
453 int
454 vtruncbuf(struct vnode *vp, off_t length, int blksize)
455 {
456 	off_t truncloffset;
457 	int count;
458 	const char *filename;
459 
460 	/*
461 	 * Round up to the *next* block, then destroy the buffers in question.
462 	 * Since we are only removing some of the buffers we must rely on the
463 	 * scan count to determine whether a loop is necessary.
464 	 */
465 	if ((count = (int)(length % blksize)) != 0)
466 		truncloffset = length + (blksize - count);
467 	else
468 		truncloffset = length;
469 
470 	crit_enter();
471 	do {
472 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
473 				vtruncbuf_bp_trunc_cmp,
474 				vtruncbuf_bp_trunc, &truncloffset);
475 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
476 				vtruncbuf_bp_trunc_cmp,
477 				vtruncbuf_bp_trunc, &truncloffset);
478 	} while(count);
479 
480 	/*
481 	 * For safety, fsync any remaining metadata if the file is not being
482 	 * truncated to 0.  Since the metadata does not represent the entire
483 	 * dirty list we have to rely on the hit count to ensure that we get
484 	 * all of it.
485 	 */
486 	if (length > 0) {
487 		do {
488 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
489 					vtruncbuf_bp_metasync_cmp,
490 					vtruncbuf_bp_metasync, vp);
491 		} while (count);
492 	}
493 
494 	/*
495 	 * Clean out any left over VM backing store.
496 	 */
497 	crit_exit();
498 
499 	vnode_pager_setsize(vp, length);
500 
501 	crit_enter();
502 
503 	/*
504 	 * It is possible to have in-progress I/O from buffers that were
505 	 * not part of the truncation.  This should not happen if we
506 	 * are truncating to 0-length.
507 	 */
508 	filename = TAILQ_FIRST(&vp->v_namecache) ?
509 		   TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
510 
511 	while ((count = vp->v_track_write.bk_active) > 0) {
512 		vp->v_track_write.bk_waitflag = 1;
513 		tsleep(&vp->v_track_write, 0, "vbtrunc", 0);
514 		if (length == 0) {
515 			kprintf("Warning: vtruncbuf(): Had to wait for "
516 			       "%d buffer I/Os to finish in %s\n",
517 			       count, filename);
518 		}
519 	}
520 
521 	/*
522 	 * Make sure no buffers were instantiated while we were trying
523 	 * to clean out the remaining VM pages.  This could occur due
524 	 * to busy dirty VM pages being flushed out to disk.
525 	 */
526 	do {
527 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
528 				vtruncbuf_bp_trunc_cmp,
529 				vtruncbuf_bp_trunc, &truncloffset);
530 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
531 				vtruncbuf_bp_trunc_cmp,
532 				vtruncbuf_bp_trunc, &truncloffset);
533 		if (count) {
534 			kprintf("Warning: vtruncbuf():  Had to re-clean %d "
535 			       "left over buffers in %s\n", count, filename);
536 		}
537 	} while(count);
538 
539 	crit_exit();
540 
541 	return (0);
542 }
543 
544 /*
545  * The callback buffer is beyond the new file EOF and must be destroyed.
546  * Note that the compare function must conform to the RB_SCAN's requirements.
547  */
548 static
549 int
550 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
551 {
552 	if (bp->b_loffset >= *(off_t *)data)
553 		return(0);
554 	return(-1);
555 }
556 
557 static
558 int
559 vtruncbuf_bp_trunc(struct buf *bp, void *data)
560 {
561 	/*
562 	 * Do not try to use a buffer we cannot immediately lock, but sleep
563 	 * anyway to prevent a livelock.  The code will loop until all buffers
564 	 * can be acted upon.
565 	 */
566 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
567 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
568 			BUF_UNLOCK(bp);
569 	} else {
570 		bremfree(bp);
571 		bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
572 		bp->b_flags &= ~B_ASYNC;
573 		brelse(bp);
574 	}
575 	return(1);
576 }
577 
578 /*
579  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
580  * blocks (with a negative loffset) are scanned.
581  * Note that the compare function must conform to the RB_SCAN's requirements.
582  */
583 static int
584 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
585 {
586 	if (bp->b_loffset < 0)
587 		return(0);
588 	return(1);
589 }
590 
591 static int
592 vtruncbuf_bp_metasync(struct buf *bp, void *data)
593 {
594 	struct vnode *vp = data;
595 
596 	if (bp->b_flags & B_DELWRI) {
597 		/*
598 		 * Do not try to use a buffer we cannot immediately lock,
599 		 * but sleep anyway to prevent a livelock.  The code will
600 		 * loop until all buffers can be acted upon.
601 		 */
602 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
603 			if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
604 				BUF_UNLOCK(bp);
605 		} else {
606 			bremfree(bp);
607 			if (bp->b_vp == vp) {
608 				bp->b_flags |= B_ASYNC;
609 			} else {
610 				bp->b_flags &= ~B_ASYNC;
611 			}
612 			bwrite(bp);
613 		}
614 		return(1);
615 	} else {
616 		return(0);
617 	}
618 }
619 
620 /*
621  * vfsync - implements a multipass fsync on a file which understands
622  * dependancies and meta-data.  The passed vnode must be locked.  The
623  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
624  *
625  * When fsyncing data asynchronously just do one consolidated pass starting
626  * with the most negative block number.  This may not get all the data due
627  * to dependancies.
628  *
629  * When fsyncing data synchronously do a data pass, then a metadata pass,
630  * then do additional data+metadata passes to try to get all the data out.
631  */
632 static int vfsync_wait_output(struct vnode *vp,
633 			    int (*waitoutput)(struct vnode *, struct thread *));
634 static int vfsync_data_only_cmp(struct buf *bp, void *data);
635 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
636 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
637 static int vfsync_bp(struct buf *bp, void *data);
638 
639 struct vfsync_info {
640 	struct vnode *vp;
641 	int synchronous;
642 	int syncdeps;
643 	int lazycount;
644 	int lazylimit;
645 	int skippedbufs;
646 	int (*checkdef)(struct buf *);
647 };
648 
649 int
650 vfsync(struct vnode *vp, int waitfor, int passes,
651 	int (*checkdef)(struct buf *),
652 	int (*waitoutput)(struct vnode *, struct thread *))
653 {
654 	struct vfsync_info info;
655 	int error;
656 
657 	bzero(&info, sizeof(info));
658 	info.vp = vp;
659 	if ((info.checkdef = checkdef) == NULL)
660 		info.syncdeps = 1;
661 
662 	crit_enter_id("vfsync");
663 
664 	switch(waitfor) {
665 	case MNT_LAZY:
666 		/*
667 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
668 		 * number of data (not meta) pages we try to flush to 1MB.
669 		 * A non-zero return means that lazy limit was reached.
670 		 */
671 		info.lazylimit = 1024 * 1024;
672 		info.syncdeps = 1;
673 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
674 				vfsync_lazy_range_cmp, vfsync_bp, &info);
675 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
676 				vfsync_meta_only_cmp, vfsync_bp, &info);
677 		if (error == 0)
678 			vp->v_lazyw = 0;
679 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
680 			vn_syncer_add_to_worklist(vp, 1);
681 		error = 0;
682 		break;
683 	case MNT_NOWAIT:
684 		/*
685 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
686 		 */
687 		info.syncdeps = 1;
688 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
689 			vfsync_bp, &info);
690 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
691 			vfsync_bp, &info);
692 		error = 0;
693 		break;
694 	default:
695 		/*
696 		 * Synchronous.  Do a data-only pass, then a meta-data+data
697 		 * pass, then additional integrated passes to try to get
698 		 * all the dependancies flushed.
699 		 */
700 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
701 			vfsync_bp, &info);
702 		error = vfsync_wait_output(vp, waitoutput);
703 		if (error == 0) {
704 			info.skippedbufs = 0;
705 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
706 				vfsync_bp, &info);
707 			error = vfsync_wait_output(vp, waitoutput);
708 			if (info.skippedbufs)
709 				kprintf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs);
710 		}
711 		while (error == 0 && passes > 0 &&
712 		    !RB_EMPTY(&vp->v_rbdirty_tree)) {
713 			if (--passes == 0) {
714 				info.synchronous = 1;
715 				info.syncdeps = 1;
716 			}
717 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
718 				vfsync_bp, &info);
719 			if (error < 0)
720 				error = -error;
721 			info.syncdeps = 1;
722 			if (error == 0)
723 				error = vfsync_wait_output(vp, waitoutput);
724 		}
725 		break;
726 	}
727 	crit_exit_id("vfsync");
728 	return(error);
729 }
730 
731 static int
732 vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *))
733 {
734 	int error = 0;
735 
736 	while (vp->v_track_write.bk_active) {
737 		vp->v_track_write.bk_waitflag = 1;
738 		tsleep(&vp->v_track_write, 0, "fsfsn", 0);
739 	}
740 	if (waitoutput)
741 		error = waitoutput(vp, curthread);
742 	return(error);
743 }
744 
745 static int
746 vfsync_data_only_cmp(struct buf *bp, void *data)
747 {
748 	if (bp->b_loffset < 0)
749 		return(-1);
750 	return(0);
751 }
752 
753 static int
754 vfsync_meta_only_cmp(struct buf *bp, void *data)
755 {
756 	if (bp->b_loffset < 0)
757 		return(0);
758 	return(1);
759 }
760 
761 static int
762 vfsync_lazy_range_cmp(struct buf *bp, void *data)
763 {
764 	struct vfsync_info *info = data;
765 	if (bp->b_loffset < info->vp->v_lazyw)
766 		return(-1);
767 	return(0);
768 }
769 
770 static int
771 vfsync_bp(struct buf *bp, void *data)
772 {
773 	struct vfsync_info *info = data;
774 	struct vnode *vp = info->vp;
775 	int error;
776 
777 	/*
778 	 * if syncdeps is not set we do not try to write buffers which have
779 	 * dependancies.
780 	 */
781 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
782 		return(0);
783 
784 	/*
785 	 * Ignore buffers that we cannot immediately lock.  XXX
786 	 */
787 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
788 		kprintf("Warning: vfsync_bp skipping dirty buffer %p\n", bp);
789 		++info->skippedbufs;
790 		return(0);
791 	}
792 	if ((bp->b_flags & B_DELWRI) == 0)
793 		panic("vfsync_bp: buffer not dirty");
794 	if (vp != bp->b_vp)
795 		panic("vfsync_bp: buffer vp mismatch");
796 
797 	/*
798 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
799 	 * has been written but an additional handshake with the device
800 	 * is required before we can dispose of the buffer.  We have no idea
801 	 * how to do this so we have to skip these buffers.
802 	 */
803 	if (bp->b_flags & B_NEEDCOMMIT) {
804 		BUF_UNLOCK(bp);
805 		return(0);
806 	}
807 
808 	/*
809 	 * Ask bioops if it is ok to sync
810 	 */
811 	if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
812 		bremfree(bp);
813 		brelse(bp);
814 		return(0);
815 	}
816 
817 	if (info->synchronous) {
818 		/*
819 		 * Synchronous flushing.  An error may be returned.
820 		 */
821 		bremfree(bp);
822 		crit_exit_id("vfsync");
823 		error = bwrite(bp);
824 		crit_enter_id("vfsync");
825 	} else {
826 		/*
827 		 * Asynchronous flushing.  A negative return value simply
828 		 * stops the scan and is not considered an error.  We use
829 		 * this to support limited MNT_LAZY flushes.
830 		 */
831 		vp->v_lazyw = bp->b_loffset;
832 		if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
833 			info->lazycount += vfs_bio_awrite(bp);
834 		} else {
835 			info->lazycount += bp->b_bufsize;
836 			bremfree(bp);
837 			crit_exit_id("vfsync");
838 			bawrite(bp);
839 			crit_enter_id("vfsync");
840 		}
841 		if (info->lazylimit && info->lazycount >= info->lazylimit)
842 			error = 1;
843 		else
844 			error = 0;
845 	}
846 	return(-error);
847 }
848 
849 /*
850  * Associate a buffer with a vnode.
851  */
852 void
853 bgetvp(struct vnode *vp, struct buf *bp)
854 {
855 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
856 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
857 
858 	vhold(vp);
859 	/*
860 	 * Insert onto list for new vnode.
861 	 */
862 	crit_enter();
863 	bp->b_vp = vp;
864 	bp->b_flags |= B_HASHED;
865 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp))
866 		panic("reassignbuf: dup lblk vp %p bp %p", vp, bp);
867 
868 	bp->b_flags |= B_VNCLEAN;
869 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
870 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
871 	crit_exit();
872 }
873 
874 /*
875  * Disassociate a buffer from a vnode.
876  */
877 void
878 brelvp(struct buf *bp)
879 {
880 	struct vnode *vp;
881 
882 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
883 
884 	/*
885 	 * Delete from old vnode list, if on one.
886 	 */
887 	vp = bp->b_vp;
888 	crit_enter();
889 	if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
890 		if (bp->b_flags & B_VNDIRTY)
891 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
892 		else
893 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
894 		bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
895 	}
896 	if (bp->b_flags & B_HASHED) {
897 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
898 		bp->b_flags &= ~B_HASHED;
899 	}
900 	if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
901 		vp->v_flag &= ~VONWORKLST;
902 		LIST_REMOVE(vp, v_synclist);
903 	}
904 	crit_exit();
905 	bp->b_vp = NULL;
906 	vdrop(vp);
907 }
908 
909 /*
910  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
911  * This routine is called when the state of the B_DELWRI bit is changed.
912  */
913 void
914 reassignbuf(struct buf *bp)
915 {
916 	struct vnode *vp = bp->b_vp;
917 	int delay;
918 
919 	KKASSERT(vp != NULL);
920 	++reassignbufcalls;
921 
922 	/*
923 	 * B_PAGING flagged buffers cannot be reassigned because their vp
924 	 * is not fully linked in.
925 	 */
926 	if (bp->b_flags & B_PAGING)
927 		panic("cannot reassign paging buffer");
928 
929 	crit_enter();
930 	if (bp->b_flags & B_DELWRI) {
931 		/*
932 		 * Move to the dirty list, add the vnode to the worklist
933 		 */
934 		if (bp->b_flags & B_VNCLEAN) {
935 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
936 			bp->b_flags &= ~B_VNCLEAN;
937 		}
938 		if ((bp->b_flags & B_VNDIRTY) == 0) {
939 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
940 				panic("reassignbuf: dup lblk vp %p bp %p",
941 				      vp, bp);
942 			}
943 			bp->b_flags |= B_VNDIRTY;
944 		}
945 		if ((vp->v_flag & VONWORKLST) == 0) {
946 			switch (vp->v_type) {
947 			case VDIR:
948 				delay = dirdelay;
949 				break;
950 			case VCHR:
951 			case VBLK:
952 				if (vp->v_rdev &&
953 				    vp->v_rdev->si_mountpoint != NULL) {
954 					delay = metadelay;
955 					break;
956 				}
957 				/* fall through */
958 			default:
959 				delay = filedelay;
960 			}
961 			vn_syncer_add_to_worklist(vp, delay);
962 		}
963 	} else {
964 		/*
965 		 * Move to the clean list, remove the vnode from the worklist
966 		 * if no dirty blocks remain.
967 		 */
968 		if (bp->b_flags & B_VNDIRTY) {
969 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
970 			bp->b_flags &= ~B_VNDIRTY;
971 		}
972 		if ((bp->b_flags & B_VNCLEAN) == 0) {
973 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
974 				panic("reassignbuf: dup lblk vp %p bp %p",
975 				      vp, bp);
976 			}
977 			bp->b_flags |= B_VNCLEAN;
978 		}
979 		if ((vp->v_flag & VONWORKLST) &&
980 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
981 			vp->v_flag &= ~VONWORKLST;
982 			LIST_REMOVE(vp, v_synclist);
983 		}
984 	}
985 	crit_exit();
986 }
987 
988 /*
989  * Create a vnode for a block device.
990  * Used for mounting the root file system.
991  */
992 int
993 bdevvp(cdev_t dev, struct vnode **vpp)
994 {
995 	struct vnode *vp;
996 	struct vnode *nvp;
997 	int error;
998 
999 	if (dev == NULL) {
1000 		*vpp = NULLVP;
1001 		return (ENXIO);
1002 	}
1003 	error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops_p, &nvp, 0, 0);
1004 	if (error) {
1005 		*vpp = NULLVP;
1006 		return (error);
1007 	}
1008 	vp = nvp;
1009 	vp->v_type = VCHR;
1010 	vp->v_umajor = dev->si_umajor;
1011 	vp->v_uminor = dev->si_uminor;
1012 	vx_unlock(vp);
1013 	*vpp = vp;
1014 	return (0);
1015 }
1016 
1017 int
1018 v_associate_rdev(struct vnode *vp, cdev_t dev)
1019 {
1020 	lwkt_tokref ilock;
1021 
1022 	if (dev == NULL)
1023 		return(ENXIO);
1024 	if (dev_is_good(dev) == 0)
1025 		return(ENXIO);
1026 	KKASSERT(vp->v_rdev == NULL);
1027 	if (dev_ref_debug)
1028 		kprintf("Z1");
1029 	vp->v_rdev = reference_dev(dev);
1030 	lwkt_gettoken(&ilock, &spechash_token);
1031 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1032 	lwkt_reltoken(&ilock);
1033 	return(0);
1034 }
1035 
1036 void
1037 v_release_rdev(struct vnode *vp)
1038 {
1039 	lwkt_tokref ilock;
1040 	cdev_t dev;
1041 
1042 	if ((dev = vp->v_rdev) != NULL) {
1043 		lwkt_gettoken(&ilock, &spechash_token);
1044 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1045 		vp->v_rdev = NULL;
1046 		release_dev(dev);
1047 		lwkt_reltoken(&ilock);
1048 	}
1049 }
1050 
1051 /*
1052  * Add a vnode to the alias list hung off the cdev_t.  We only associate
1053  * the device number with the vnode.  The actual device is not associated
1054  * until the vnode is opened (usually in spec_open()), and will be
1055  * disassociated on last close.
1056  */
1057 void
1058 addaliasu(struct vnode *nvp, int x, int y)
1059 {
1060 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1061 		panic("addaliasu on non-special vnode");
1062 	nvp->v_umajor = x;
1063 	nvp->v_uminor = y;
1064 }
1065 
1066 /*
1067  * Simple call that a filesystem can make to try to get rid of a
1068  * vnode.  It will fail if anyone is referencing the vnode (including
1069  * the caller).
1070  *
1071  * The filesystem can check whether its in-memory inode structure still
1072  * references the vp on return.
1073  */
1074 void
1075 vclean_unlocked(struct vnode *vp)
1076 {
1077 	vx_get(vp);
1078 	if (sysref_isactive(&vp->v_sysref) == 0)
1079 		vgone_vxlocked(vp);
1080 	vx_put(vp);
1081 }
1082 
1083 /*
1084  * Disassociate a vnode from its underlying filesystem.
1085  *
1086  * The vnode must be VX locked and referenced.  In all normal situations
1087  * there are no active references.  If vclean_vxlocked() is called while
1088  * there are active references, the vnode is being ripped out and we have
1089  * to call VOP_CLOSE() as appropriate before we can reclaim it.
1090  */
1091 void
1092 vclean_vxlocked(struct vnode *vp, int flags)
1093 {
1094 	int active;
1095 	int n;
1096 	vm_object_t object;
1097 
1098 	/*
1099 	 * If the vnode has already been reclaimed we have nothing to do.
1100 	 */
1101 	if (vp->v_flag & VRECLAIMED)
1102 		return;
1103 	vp->v_flag |= VRECLAIMED;
1104 
1105 	/*
1106 	 * Scrap the vfs cache
1107 	 */
1108 	while (cache_inval_vp(vp, 0) != 0) {
1109 		kprintf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1110 		tsleep(vp, 0, "vclninv", 2);
1111 	}
1112 
1113 	/*
1114 	 * Check to see if the vnode is in use. If so we have to reference it
1115 	 * before we clean it out so that its count cannot fall to zero and
1116 	 * generate a race against ourselves to recycle it.
1117 	 */
1118 	active = sysref_isactive(&vp->v_sysref);
1119 
1120 	/*
1121 	 * Clean out any buffers associated with the vnode and destroy its
1122 	 * object, if it has one.
1123 	 */
1124 	vinvalbuf(vp, V_SAVE, 0, 0);
1125 
1126 	/*
1127 	 * If purging an active vnode (typically during a forced unmount
1128 	 * or reboot), it must be closed and deactivated before being
1129 	 * reclaimed.  This isn't really all that safe, but what can
1130 	 * we do? XXX.
1131 	 *
1132 	 * Note that neither of these routines unlocks the vnode.
1133 	 */
1134 	if (active && (flags & DOCLOSE)) {
1135 		while ((n = vp->v_opencount) != 0) {
1136 			if (vp->v_writecount)
1137 				VOP_CLOSE(vp, FWRITE|FNONBLOCK);
1138 			else
1139 				VOP_CLOSE(vp, FNONBLOCK);
1140 			if (vp->v_opencount == n) {
1141 				kprintf("Warning: unable to force-close"
1142 				       " vnode %p\n", vp);
1143 				break;
1144 			}
1145 		}
1146 	}
1147 
1148 	/*
1149 	 * If the vnode has not been deactivated, deactivated it.  Deactivation
1150 	 * can create new buffers and VM pages so we have to call vinvalbuf()
1151 	 * again to make sure they all get flushed.
1152 	 *
1153 	 * This can occur if a file with a link count of 0 needs to be
1154 	 * truncated.
1155 	 */
1156 	if ((vp->v_flag & VINACTIVE) == 0) {
1157 		vp->v_flag |= VINACTIVE;
1158 		VOP_INACTIVE(vp);
1159 		vinvalbuf(vp, V_SAVE, 0, 0);
1160 	}
1161 
1162 	/*
1163 	 * If the vnode has an object, destroy it.
1164 	 */
1165 	if ((object = vp->v_object) != NULL) {
1166 		if (object->ref_count == 0) {
1167 			if ((object->flags & OBJ_DEAD) == 0)
1168 				vm_object_terminate(object);
1169 		} else {
1170 			vm_pager_deallocate(object);
1171 		}
1172 		vp->v_flag &= ~VOBJBUF;
1173 	}
1174 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1175 
1176 	/*
1177 	 * Reclaim the vnode.
1178 	 */
1179 	if (VOP_RECLAIM(vp))
1180 		panic("vclean: cannot reclaim");
1181 
1182 	/*
1183 	 * Done with purge, notify sleepers of the grim news.
1184 	 */
1185 	vp->v_ops = &dead_vnode_vops_p;
1186 	vn_pollgone(vp);
1187 	vp->v_tag = VT_NON;
1188 
1189 	/*
1190 	 * If we are destroying an active vnode, reactivate it now that
1191 	 * we have reassociated it with deadfs.  This prevents the system
1192 	 * from crashing on the vnode due to it being unexpectedly marked
1193 	 * as inactive or reclaimed.
1194 	 */
1195 	if (active && (flags & DOCLOSE)) {
1196 		vp->v_flag &= ~(VINACTIVE|VRECLAIMED);
1197 	}
1198 }
1199 
1200 /*
1201  * Eliminate all activity associated with the requested vnode
1202  * and with all vnodes aliased to the requested vnode.
1203  *
1204  * The vnode must be referenced but should not be locked.
1205  */
1206 int
1207 vrevoke(struct vnode *vp, struct ucred *cred)
1208 {
1209 	struct vnode *vq;
1210 	struct vnode *vqn;
1211 	lwkt_tokref ilock;
1212 	cdev_t dev;
1213 	int error;
1214 
1215 	/*
1216 	 * If the vnode has a device association, scrap all vnodes associated
1217 	 * with the device.  Don't let the device disappear on us while we
1218 	 * are scrapping the vnodes.
1219 	 *
1220 	 * The passed vp will probably show up in the list, do not VX lock
1221 	 * it twice!
1222 	 *
1223 	 * Releasing the vnode's rdev here can mess up specfs's call to
1224 	 * device close, so don't do it.  The vnode has been disassociated
1225 	 * and the device will be closed after the last ref on the related
1226 	 * fp goes away (if not still open by e.g. the kernel).
1227 	 */
1228 	if (vp->v_type != VCHR) {
1229 		error = fdrevoke(vp, DTYPE_VNODE, cred);
1230 		return (error);
1231 	}
1232 	if ((dev = vp->v_rdev) == NULL) {
1233 		if ((dev = get_dev(vp->v_umajor, vp->v_uminor)) == NULL)
1234 			return(0);
1235 	}
1236 	reference_dev(dev);
1237 	lwkt_gettoken(&ilock, &spechash_token);
1238 
1239 	vqn = SLIST_FIRST(&dev->si_hlist);
1240 	if (vqn)
1241 		vref(vqn);
1242 	while ((vq = vqn) != NULL) {
1243 		vqn = SLIST_NEXT(vqn, v_cdevnext);
1244 		if (vqn)
1245 			vref(vqn);
1246 		fdrevoke(vq, DTYPE_VNODE, cred);
1247 		/*v_release_rdev(vq);*/
1248 		vrele(vq);
1249 	}
1250 	lwkt_reltoken(&ilock);
1251 	dev_drevoke(dev);
1252 	release_dev(dev);
1253 	return (0);
1254 }
1255 
1256 /*
1257  * This is called when the object underlying a vnode is being destroyed,
1258  * such as in a remove().  Try to recycle the vnode immediately if the
1259  * only active reference is our reference.
1260  *
1261  * Directory vnodes in the namecache with children cannot be immediately
1262  * recycled because numerous VOP_N*() ops require them to be stable.
1263  */
1264 int
1265 vrecycle(struct vnode *vp)
1266 {
1267 	if (vp->v_sysref.refcnt <= 1) {
1268 		if (cache_inval_vp_nonblock(vp))
1269 			return(0);
1270 		vgone_vxlocked(vp);
1271 		return (1);
1272 	}
1273 	return (0);
1274 }
1275 
1276 /*
1277  * Return the maximum I/O size allowed for strategy calls on VP.
1278  *
1279  * If vp is VCHR or VBLK we dive the device, otherwise we use
1280  * the vp's mount info.
1281  */
1282 int
1283 vmaxiosize(struct vnode *vp)
1284 {
1285 	if (vp->v_type == VBLK || vp->v_type == VCHR) {
1286 		return(vp->v_rdev->si_iosize_max);
1287 	} else {
1288 		return(vp->v_mount->mnt_iosize_max);
1289 	}
1290 }
1291 
1292 /*
1293  * Eliminate all activity associated with a vnode in preparation for reuse.
1294  *
1295  * The vnode must be VX locked and refd and will remain VX locked and refd
1296  * on return.  This routine may be called with the vnode in any state, as
1297  * long as it is VX locked.  The vnode will be cleaned out and marked
1298  * VRECLAIMED but will not actually be reused until all existing refs and
1299  * holds go away.
1300  *
1301  * NOTE: This routine may be called on a vnode which has not yet been
1302  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1303  * already been reclaimed.
1304  *
1305  * This routine is not responsible for placing us back on the freelist.
1306  * Instead, it happens automatically when the caller releases the VX lock
1307  * (assuming there aren't any other references).
1308  */
1309 
1310 void
1311 vgone_vxlocked(struct vnode *vp)
1312 {
1313 	/*
1314 	 * assert that the VX lock is held.  This is an absolute requirement
1315 	 * now for vgone_vxlocked() to be called.
1316 	 */
1317 	KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1318 
1319 	/*
1320 	 * Clean out the filesystem specific data and set the VRECLAIMED
1321 	 * bit.  Also deactivate the vnode if necessary.
1322 	 */
1323 	vclean_vxlocked(vp, DOCLOSE);
1324 
1325 	/*
1326 	 * Delete from old mount point vnode list, if on one.
1327 	 */
1328 	if (vp->v_mount != NULL)
1329 		insmntque(vp, NULL);
1330 
1331 	/*
1332 	 * If special device, remove it from special device alias list
1333 	 * if it is on one.  This should normally only occur if a vnode is
1334 	 * being revoked as the device should otherwise have been released
1335 	 * naturally.
1336 	 */
1337 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1338 		v_release_rdev(vp);
1339 	}
1340 
1341 	/*
1342 	 * Set us to VBAD
1343 	 */
1344 	vp->v_type = VBAD;
1345 }
1346 
1347 /*
1348  * Lookup a vnode by device number.
1349  *
1350  * Returns non-zero and *vpp set to a vref'd vnode on success.
1351  * Returns zero on failure.
1352  */
1353 int
1354 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1355 {
1356 	lwkt_tokref ilock;
1357 	struct vnode *vp;
1358 
1359 	lwkt_gettoken(&ilock, &spechash_token);
1360 	SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1361 		if (type == vp->v_type) {
1362 			*vpp = vp;
1363 			vref(vp);
1364 			lwkt_reltoken(&ilock);
1365 			return (1);
1366 		}
1367 	}
1368 	lwkt_reltoken(&ilock);
1369 	return (0);
1370 }
1371 
1372 /*
1373  * Calculate the total number of references to a special device.  This
1374  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1375  * an overloaded field.  Since udev2dev can now return NULL, we have
1376  * to check for a NULL v_rdev.
1377  */
1378 int
1379 count_dev(cdev_t dev)
1380 {
1381 	lwkt_tokref ilock;
1382 	struct vnode *vp;
1383 	int count = 0;
1384 
1385 	if (SLIST_FIRST(&dev->si_hlist)) {
1386 		lwkt_gettoken(&ilock, &spechash_token);
1387 		SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1388 			if (vp->v_sysref.refcnt > 0)
1389 				count += vp->v_sysref.refcnt;
1390 		}
1391 		lwkt_reltoken(&ilock);
1392 	}
1393 	return(count);
1394 }
1395 
1396 int
1397 count_udev(int x, int y)
1398 {
1399 	cdev_t dev;
1400 
1401 	if ((dev = get_dev(x, y)) == NULL)
1402 		return(0);
1403 	return(count_dev(dev));
1404 }
1405 
1406 int
1407 vcount(struct vnode *vp)
1408 {
1409 	if (vp->v_rdev == NULL)
1410 		return(0);
1411 	return(count_dev(vp->v_rdev));
1412 }
1413 
1414 /*
1415  * Initialize VMIO for a vnode.  This routine MUST be called before a
1416  * VFS can issue buffer cache ops on a vnode.  It is typically called
1417  * when a vnode is initialized from its inode.
1418  */
1419 int
1420 vinitvmio(struct vnode *vp, off_t filesize)
1421 {
1422 	vm_object_t object;
1423 	int error = 0;
1424 
1425 retry:
1426 	if ((object = vp->v_object) == NULL) {
1427 		object = vnode_pager_alloc(vp, filesize, 0, 0);
1428 		/*
1429 		 * Dereference the reference we just created.  This assumes
1430 		 * that the object is associated with the vp.
1431 		 */
1432 		object->ref_count--;
1433 		vrele(vp);
1434 	} else {
1435 		if (object->flags & OBJ_DEAD) {
1436 			vn_unlock(vp);
1437 			vm_object_dead_sleep(object, "vodead");
1438 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1439 			goto retry;
1440 		}
1441 	}
1442 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1443 	vp->v_flag |= VOBJBUF;
1444 	return (error);
1445 }
1446 
1447 
1448 /*
1449  * Print out a description of a vnode.
1450  */
1451 static char *typename[] =
1452 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1453 
1454 void
1455 vprint(char *label, struct vnode *vp)
1456 {
1457 	char buf[96];
1458 
1459 	if (label != NULL)
1460 		kprintf("%s: %p: ", label, (void *)vp);
1461 	else
1462 		kprintf("%p: ", (void *)vp);
1463 	kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,",
1464 		typename[vp->v_type],
1465 		vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs);
1466 	buf[0] = '\0';
1467 	if (vp->v_flag & VROOT)
1468 		strcat(buf, "|VROOT");
1469 	if (vp->v_flag & VPFSROOT)
1470 		strcat(buf, "|VPFSROOT");
1471 	if (vp->v_flag & VTEXT)
1472 		strcat(buf, "|VTEXT");
1473 	if (vp->v_flag & VSYSTEM)
1474 		strcat(buf, "|VSYSTEM");
1475 	if (vp->v_flag & VFREE)
1476 		strcat(buf, "|VFREE");
1477 	if (vp->v_flag & VOBJBUF)
1478 		strcat(buf, "|VOBJBUF");
1479 	if (buf[0] != '\0')
1480 		kprintf(" flags (%s)", &buf[1]);
1481 	if (vp->v_data == NULL) {
1482 		kprintf("\n");
1483 	} else {
1484 		kprintf("\n\t");
1485 		VOP_PRINT(vp);
1486 	}
1487 }
1488 
1489 #ifdef DDB
1490 #include <ddb/ddb.h>
1491 
1492 static int db_show_locked_vnodes(struct mount *mp, void *data);
1493 
1494 /*
1495  * List all of the locked vnodes in the system.
1496  * Called when debugging the kernel.
1497  */
1498 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1499 {
1500 	kprintf("Locked vnodes\n");
1501 	mountlist_scan(db_show_locked_vnodes, NULL,
1502 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1503 }
1504 
1505 static int
1506 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1507 {
1508 	struct vnode *vp;
1509 
1510 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1511 		if (vn_islocked(vp))
1512 			vprint(NULL, vp);
1513 	}
1514 	return(0);
1515 }
1516 #endif
1517 
1518 /*
1519  * Top level filesystem related information gathering.
1520  */
1521 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1522 
1523 static int
1524 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1525 {
1526 	int *name = (int *)arg1 - 1;	/* XXX */
1527 	u_int namelen = arg2 + 1;	/* XXX */
1528 	struct vfsconf *vfsp;
1529 	int maxtypenum;
1530 
1531 #if 1 || defined(COMPAT_PRELITE2)
1532 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1533 	if (namelen == 1)
1534 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1535 #endif
1536 
1537 #ifdef notyet
1538 	/* all sysctl names at this level are at least name and field */
1539 	if (namelen < 2)
1540 		return (ENOTDIR);		/* overloaded */
1541 	if (name[0] != VFS_GENERIC) {
1542 		vfsp = vfsconf_find_by_typenum(name[0]);
1543 		if (vfsp == NULL)
1544 			return (EOPNOTSUPP);
1545 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1546 		    oldp, oldlenp, newp, newlen, p));
1547 	}
1548 #endif
1549 	switch (name[1]) {
1550 	case VFS_MAXTYPENUM:
1551 		if (namelen != 2)
1552 			return (ENOTDIR);
1553 		maxtypenum = vfsconf_get_maxtypenum();
1554 		return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1555 	case VFS_CONF:
1556 		if (namelen != 3)
1557 			return (ENOTDIR);	/* overloaded */
1558 		vfsp = vfsconf_find_by_typenum(name[2]);
1559 		if (vfsp == NULL)
1560 			return (EOPNOTSUPP);
1561 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1562 	}
1563 	return (EOPNOTSUPP);
1564 }
1565 
1566 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1567 	"Generic filesystem");
1568 
1569 #if 1 || defined(COMPAT_PRELITE2)
1570 
1571 static int
1572 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1573 {
1574 	int error;
1575 	struct ovfsconf ovfs;
1576 	struct sysctl_req *req = (struct sysctl_req*) data;
1577 
1578 	bzero(&ovfs, sizeof(ovfs));
1579 	ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1580 	strcpy(ovfs.vfc_name, vfsp->vfc_name);
1581 	ovfs.vfc_index = vfsp->vfc_typenum;
1582 	ovfs.vfc_refcount = vfsp->vfc_refcount;
1583 	ovfs.vfc_flags = vfsp->vfc_flags;
1584 	error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1585 	if (error)
1586 		return error; /* abort iteration with error code */
1587 	else
1588 		return 0; /* continue iterating with next element */
1589 }
1590 
1591 static int
1592 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1593 {
1594 	return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1595 }
1596 
1597 #endif /* 1 || COMPAT_PRELITE2 */
1598 
1599 /*
1600  * Check to see if a filesystem is mounted on a block device.
1601  */
1602 int
1603 vfs_mountedon(struct vnode *vp)
1604 {
1605 	cdev_t dev;
1606 
1607 	if ((dev = vp->v_rdev) == NULL) {
1608 		if (vp->v_type != VBLK)
1609 			dev = get_dev(vp->v_uminor, vp->v_umajor);
1610 	}
1611 	if (dev != NULL && dev->si_mountpoint)
1612 		return (EBUSY);
1613 	return (0);
1614 }
1615 
1616 /*
1617  * Unmount all filesystems. The list is traversed in reverse order
1618  * of mounting to avoid dependencies.
1619  */
1620 
1621 static int vfs_umountall_callback(struct mount *mp, void *data);
1622 
1623 void
1624 vfs_unmountall(void)
1625 {
1626 	int count;
1627 
1628 	do {
1629 		count = mountlist_scan(vfs_umountall_callback,
1630 					NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1631 	} while (count);
1632 }
1633 
1634 static
1635 int
1636 vfs_umountall_callback(struct mount *mp, void *data)
1637 {
1638 	int error;
1639 
1640 	error = dounmount(mp, MNT_FORCE);
1641 	if (error) {
1642 		mountlist_remove(mp);
1643 		kprintf("unmount of filesystem mounted from %s failed (",
1644 			mp->mnt_stat.f_mntfromname);
1645 		if (error == EBUSY)
1646 			kprintf("BUSY)\n");
1647 		else
1648 			kprintf("%d)\n", error);
1649 	}
1650 	return(1);
1651 }
1652 
1653 /*
1654  * Build hash lists of net addresses and hang them off the mount point.
1655  * Called by ufs_mount() to set up the lists of export addresses.
1656  */
1657 static int
1658 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1659 		const struct export_args *argp)
1660 {
1661 	struct netcred *np;
1662 	struct radix_node_head *rnh;
1663 	int i;
1664 	struct radix_node *rn;
1665 	struct sockaddr *saddr, *smask = 0;
1666 	struct domain *dom;
1667 	int error;
1668 
1669 	if (argp->ex_addrlen == 0) {
1670 		if (mp->mnt_flag & MNT_DEFEXPORTED)
1671 			return (EPERM);
1672 		np = &nep->ne_defexported;
1673 		np->netc_exflags = argp->ex_flags;
1674 		np->netc_anon = argp->ex_anon;
1675 		np->netc_anon.cr_ref = 1;
1676 		mp->mnt_flag |= MNT_DEFEXPORTED;
1677 		return (0);
1678 	}
1679 
1680 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1681 		return (EINVAL);
1682 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1683 		return (EINVAL);
1684 
1685 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1686 	np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO);
1687 	saddr = (struct sockaddr *) (np + 1);
1688 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1689 		goto out;
1690 	if (saddr->sa_len > argp->ex_addrlen)
1691 		saddr->sa_len = argp->ex_addrlen;
1692 	if (argp->ex_masklen) {
1693 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1694 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1695 		if (error)
1696 			goto out;
1697 		if (smask->sa_len > argp->ex_masklen)
1698 			smask->sa_len = argp->ex_masklen;
1699 	}
1700 	i = saddr->sa_family;
1701 	if ((rnh = nep->ne_rtable[i]) == 0) {
1702 		/*
1703 		 * Seems silly to initialize every AF when most are not used,
1704 		 * do so on demand here
1705 		 */
1706 		SLIST_FOREACH(dom, &domains, dom_next)
1707 			if (dom->dom_family == i && dom->dom_rtattach) {
1708 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
1709 				    dom->dom_rtoffset);
1710 				break;
1711 			}
1712 		if ((rnh = nep->ne_rtable[i]) == 0) {
1713 			error = ENOBUFS;
1714 			goto out;
1715 		}
1716 	}
1717 	rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1718 	    np->netc_rnodes);
1719 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
1720 		error = EPERM;
1721 		goto out;
1722 	}
1723 	np->netc_exflags = argp->ex_flags;
1724 	np->netc_anon = argp->ex_anon;
1725 	np->netc_anon.cr_ref = 1;
1726 	return (0);
1727 out:
1728 	kfree(np, M_NETADDR);
1729 	return (error);
1730 }
1731 
1732 /* ARGSUSED */
1733 static int
1734 vfs_free_netcred(struct radix_node *rn, void *w)
1735 {
1736 	struct radix_node_head *rnh = (struct radix_node_head *) w;
1737 
1738 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1739 	kfree((caddr_t) rn, M_NETADDR);
1740 	return (0);
1741 }
1742 
1743 /*
1744  * Free the net address hash lists that are hanging off the mount points.
1745  */
1746 static void
1747 vfs_free_addrlist(struct netexport *nep)
1748 {
1749 	int i;
1750 	struct radix_node_head *rnh;
1751 
1752 	for (i = 0; i <= AF_MAX; i++)
1753 		if ((rnh = nep->ne_rtable[i])) {
1754 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1755 			    (caddr_t) rnh);
1756 			kfree((caddr_t) rnh, M_RTABLE);
1757 			nep->ne_rtable[i] = 0;
1758 		}
1759 }
1760 
1761 int
1762 vfs_export(struct mount *mp, struct netexport *nep,
1763 	   const struct export_args *argp)
1764 {
1765 	int error;
1766 
1767 	if (argp->ex_flags & MNT_DELEXPORT) {
1768 		if (mp->mnt_flag & MNT_EXPUBLIC) {
1769 			vfs_setpublicfs(NULL, NULL, NULL);
1770 			mp->mnt_flag &= ~MNT_EXPUBLIC;
1771 		}
1772 		vfs_free_addrlist(nep);
1773 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1774 	}
1775 	if (argp->ex_flags & MNT_EXPORTED) {
1776 		if (argp->ex_flags & MNT_EXPUBLIC) {
1777 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1778 				return (error);
1779 			mp->mnt_flag |= MNT_EXPUBLIC;
1780 		}
1781 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
1782 			return (error);
1783 		mp->mnt_flag |= MNT_EXPORTED;
1784 	}
1785 	return (0);
1786 }
1787 
1788 
1789 /*
1790  * Set the publicly exported filesystem (WebNFS). Currently, only
1791  * one public filesystem is possible in the spec (RFC 2054 and 2055)
1792  */
1793 int
1794 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1795 		const struct export_args *argp)
1796 {
1797 	int error;
1798 	struct vnode *rvp;
1799 	char *cp;
1800 
1801 	/*
1802 	 * mp == NULL -> invalidate the current info, the FS is
1803 	 * no longer exported. May be called from either vfs_export
1804 	 * or unmount, so check if it hasn't already been done.
1805 	 */
1806 	if (mp == NULL) {
1807 		if (nfs_pub.np_valid) {
1808 			nfs_pub.np_valid = 0;
1809 			if (nfs_pub.np_index != NULL) {
1810 				FREE(nfs_pub.np_index, M_TEMP);
1811 				nfs_pub.np_index = NULL;
1812 			}
1813 		}
1814 		return (0);
1815 	}
1816 
1817 	/*
1818 	 * Only one allowed at a time.
1819 	 */
1820 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1821 		return (EBUSY);
1822 
1823 	/*
1824 	 * Get real filehandle for root of exported FS.
1825 	 */
1826 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1827 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1828 
1829 	if ((error = VFS_ROOT(mp, &rvp)))
1830 		return (error);
1831 
1832 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1833 		return (error);
1834 
1835 	vput(rvp);
1836 
1837 	/*
1838 	 * If an indexfile was specified, pull it in.
1839 	 */
1840 	if (argp->ex_indexfile != NULL) {
1841 		int namelen;
1842 
1843 		error = vn_get_namelen(rvp, &namelen);
1844 		if (error)
1845 			return (error);
1846 		MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1847 		    M_WAITOK);
1848 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1849 		    namelen, NULL);
1850 		if (!error) {
1851 			/*
1852 			 * Check for illegal filenames.
1853 			 */
1854 			for (cp = nfs_pub.np_index; *cp; cp++) {
1855 				if (*cp == '/') {
1856 					error = EINVAL;
1857 					break;
1858 				}
1859 			}
1860 		}
1861 		if (error) {
1862 			FREE(nfs_pub.np_index, M_TEMP);
1863 			return (error);
1864 		}
1865 	}
1866 
1867 	nfs_pub.np_mount = mp;
1868 	nfs_pub.np_valid = 1;
1869 	return (0);
1870 }
1871 
1872 struct netcred *
1873 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1874 		struct sockaddr *nam)
1875 {
1876 	struct netcred *np;
1877 	struct radix_node_head *rnh;
1878 	struct sockaddr *saddr;
1879 
1880 	np = NULL;
1881 	if (mp->mnt_flag & MNT_EXPORTED) {
1882 		/*
1883 		 * Lookup in the export list first.
1884 		 */
1885 		if (nam != NULL) {
1886 			saddr = nam;
1887 			rnh = nep->ne_rtable[saddr->sa_family];
1888 			if (rnh != NULL) {
1889 				np = (struct netcred *)
1890 					(*rnh->rnh_matchaddr)((char *)saddr,
1891 							      rnh);
1892 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1893 					np = NULL;
1894 			}
1895 		}
1896 		/*
1897 		 * If no address match, use the default if it exists.
1898 		 */
1899 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1900 			np = &nep->ne_defexported;
1901 	}
1902 	return (np);
1903 }
1904 
1905 /*
1906  * perform msync on all vnodes under a mount point.  The mount point must
1907  * be locked.  This code is also responsible for lazy-freeing unreferenced
1908  * vnodes whos VM objects no longer contain pages.
1909  *
1910  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1911  *
1912  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
1913  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
1914  * way up in this high level function.
1915  */
1916 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1917 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1918 
1919 void
1920 vfs_msync(struct mount *mp, int flags)
1921 {
1922 	int vmsc_flags;
1923 
1924 	vmsc_flags = VMSC_GETVP;
1925 	if (flags != MNT_WAIT)
1926 		vmsc_flags |= VMSC_NOWAIT;
1927 	vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
1928 			(void *)(intptr_t)flags);
1929 }
1930 
1931 /*
1932  * scan1 is a fast pre-check.  There could be hundreds of thousands of
1933  * vnodes, we cannot afford to do anything heavy weight until we have a
1934  * fairly good indication that there is work to do.
1935  */
1936 static
1937 int
1938 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1939 {
1940 	int flags = (int)(intptr_t)data;
1941 
1942 	if ((vp->v_flag & VRECLAIMED) == 0) {
1943 		if (vshouldmsync(vp))
1944 			return(0);	/* call scan2 */
1945 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1946 		    (vp->v_flag & VOBJDIRTY) &&
1947 		    (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
1948 			return(0);	/* call scan2 */
1949 		}
1950 	}
1951 
1952 	/*
1953 	 * do not call scan2, continue the loop
1954 	 */
1955 	return(-1);
1956 }
1957 
1958 /*
1959  * This callback is handed a locked vnode.
1960  */
1961 static
1962 int
1963 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1964 {
1965 	vm_object_t obj;
1966 	int flags = (int)(intptr_t)data;
1967 
1968 	if (vp->v_flag & VRECLAIMED)
1969 		return(0);
1970 
1971 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
1972 		if ((obj = vp->v_object) != NULL) {
1973 			vm_object_page_clean(obj, 0, 0,
1974 			 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1975 		}
1976 	}
1977 	return(0);
1978 }
1979 
1980 /*
1981  * Record a process's interest in events which might happen to
1982  * a vnode.  Because poll uses the historic select-style interface
1983  * internally, this routine serves as both the ``check for any
1984  * pending events'' and the ``record my interest in future events''
1985  * functions.  (These are done together, while the lock is held,
1986  * to avoid race conditions.)
1987  */
1988 int
1989 vn_pollrecord(struct vnode *vp, int events)
1990 {
1991 	lwkt_tokref ilock;
1992 
1993 	KKASSERT(curthread->td_proc != NULL);
1994 
1995 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1996 	if (vp->v_pollinfo.vpi_revents & events) {
1997 		/*
1998 		 * This leaves events we are not interested
1999 		 * in available for the other process which
2000 		 * which presumably had requested them
2001 		 * (otherwise they would never have been
2002 		 * recorded).
2003 		 */
2004 		events &= vp->v_pollinfo.vpi_revents;
2005 		vp->v_pollinfo.vpi_revents &= ~events;
2006 
2007 		lwkt_reltoken(&ilock);
2008 		return events;
2009 	}
2010 	vp->v_pollinfo.vpi_events |= events;
2011 	selrecord(curthread, &vp->v_pollinfo.vpi_selinfo);
2012 	lwkt_reltoken(&ilock);
2013 	return 0;
2014 }
2015 
2016 /*
2017  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2018  * it is possible for us to miss an event due to race conditions, but
2019  * that condition is expected to be rare, so for the moment it is the
2020  * preferred interface.
2021  */
2022 void
2023 vn_pollevent(struct vnode *vp, int events)
2024 {
2025 	lwkt_tokref ilock;
2026 
2027 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
2028 	if (vp->v_pollinfo.vpi_events & events) {
2029 		/*
2030 		 * We clear vpi_events so that we don't
2031 		 * call selwakeup() twice if two events are
2032 		 * posted before the polling process(es) is
2033 		 * awakened.  This also ensures that we take at
2034 		 * most one selwakeup() if the polling process
2035 		 * is no longer interested.  However, it does
2036 		 * mean that only one event can be noticed at
2037 		 * a time.  (Perhaps we should only clear those
2038 		 * event bits which we note?) XXX
2039 		 */
2040 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2041 		vp->v_pollinfo.vpi_revents |= events;
2042 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2043 	}
2044 	lwkt_reltoken(&ilock);
2045 }
2046 
2047 /*
2048  * Wake up anyone polling on vp because it is being revoked.
2049  * This depends on dead_poll() returning POLLHUP for correct
2050  * behavior.
2051  */
2052 void
2053 vn_pollgone(struct vnode *vp)
2054 {
2055 	lwkt_tokref ilock;
2056 
2057 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
2058 	if (vp->v_pollinfo.vpi_events) {
2059 		vp->v_pollinfo.vpi_events = 0;
2060 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2061 	}
2062 	lwkt_reltoken(&ilock);
2063 }
2064 
2065 /*
2066  * extract the cdev_t from a VBLK or VCHR.  The vnode must have been opened
2067  * (or v_rdev might be NULL).
2068  */
2069 cdev_t
2070 vn_todev(struct vnode *vp)
2071 {
2072 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2073 		return (NULL);
2074 	KKASSERT(vp->v_rdev != NULL);
2075 	return (vp->v_rdev);
2076 }
2077 
2078 /*
2079  * Check if vnode represents a disk device.  The vnode does not need to be
2080  * opened.
2081  */
2082 int
2083 vn_isdisk(struct vnode *vp, int *errp)
2084 {
2085 	cdev_t dev;
2086 
2087 	if (vp->v_type != VCHR) {
2088 		if (errp != NULL)
2089 			*errp = ENOTBLK;
2090 		return (0);
2091 	}
2092 
2093 	if ((dev = vp->v_rdev) == NULL)
2094 		dev = get_dev(vp->v_umajor, vp->v_uminor);
2095 
2096 	if (dev == NULL) {
2097 		if (errp != NULL)
2098 			*errp = ENXIO;
2099 		return (0);
2100 	}
2101 	if (dev_is_good(dev) == 0) {
2102 		if (errp != NULL)
2103 			*errp = ENXIO;
2104 		return (0);
2105 	}
2106 	if ((dev_dflags(dev) & D_DISK) == 0) {
2107 		if (errp != NULL)
2108 			*errp = ENOTBLK;
2109 		return (0);
2110 	}
2111 	if (errp != NULL)
2112 		*errp = 0;
2113 	return (1);
2114 }
2115 
2116 int
2117 vn_get_namelen(struct vnode *vp, int *namelen)
2118 {
2119 	int error;
2120 	register_t retval[2];
2121 
2122 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2123 	if (error)
2124 		return (error);
2125 	*namelen = (int)retval[0];
2126 	return (0);
2127 }
2128 
2129 int
2130 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2131 		uint16_t d_namlen, const char *d_name)
2132 {
2133 	struct dirent *dp;
2134 	size_t len;
2135 
2136 	len = _DIRENT_RECLEN(d_namlen);
2137 	if (len > uio->uio_resid)
2138 		return(1);
2139 
2140 	dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2141 
2142 	dp->d_ino = d_ino;
2143 	dp->d_namlen = d_namlen;
2144 	dp->d_type = d_type;
2145 	bcopy(d_name, dp->d_name, d_namlen);
2146 
2147 	*error = uiomove((caddr_t)dp, len, uio);
2148 
2149 	kfree(dp, M_TEMP);
2150 
2151 	return(0);
2152 }
2153 
2154 void
2155 vn_mark_atime(struct vnode *vp, struct thread *td)
2156 {
2157 	struct proc *p = td->td_proc;
2158 	struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2159 
2160 	if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2161 		VOP_MARKATIME(vp, cred);
2162 	}
2163 }
2164