xref: /dflybsd-src/sys/kern/vfs_subr.c (revision 41871674d0079dec70d55eb824f39d07dc7b3310)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  * $DragonFly: src/sys/kern/vfs_subr.c,v 1.75 2006/04/07 06:38:27 dillon Exp $
41  */
42 
43 /*
44  * External virtual filesystem routines
45  */
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/limits.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
83 
84 #include <sys/buf2.h>
85 #include <sys/thread2.h>
86 
87 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88 
89 int numvnodes;
90 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
91 int vfs_fastdev = 1;
92 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
93 
94 enum vtype iftovt_tab[16] = {
95 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
96 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
97 };
98 int vttoif_tab[9] = {
99 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
100 	S_IFSOCK, S_IFIFO, S_IFMT,
101 };
102 
103 static int reassignbufcalls;
104 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
105 		&reassignbufcalls, 0, "");
106 static int reassignbufloops;
107 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
108 		&reassignbufloops, 0, "");
109 static int reassignbufsortgood;
110 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
111 		&reassignbufsortgood, 0, "");
112 static int reassignbufsortbad;
113 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
114 		&reassignbufsortbad, 0, "");
115 static int reassignbufmethod = 1;
116 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
117 		&reassignbufmethod, 0, "");
118 
119 int	nfs_mount_type = -1;
120 static struct lwkt_token spechash_token;
121 struct nfs_public nfs_pub;	/* publicly exported FS */
122 
123 int desiredvnodes;
124 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
125 		&desiredvnodes, 0, "Maximum number of vnodes");
126 
127 static void	vfs_free_addrlist (struct netexport *nep);
128 static int	vfs_free_netcred (struct radix_node *rn, void *w);
129 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
130 				       struct export_args *argp);
131 
132 extern int dev_ref_debug;
133 extern struct vnodeopv_entry_desc spec_vnodeop_entries[];
134 
135 /*
136  * Red black tree functions
137  */
138 static int rb_buf_compare(struct buf *b1, struct buf *b2);
139 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
140 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
141 
142 static int
143 rb_buf_compare(struct buf *b1, struct buf *b2)
144 {
145 	if (b1->b_loffset < b2->b_loffset)
146 		return(-1);
147 	if (b1->b_loffset > b2->b_loffset)
148 		return(1);
149 	return(0);
150 }
151 
152 /*
153  * Return 0 if the vnode is already on the free list or cannot be placed
154  * on the free list.  Return 1 if the vnode can be placed on the free list.
155  */
156 static __inline int
157 vshouldfree(struct vnode *vp, int usecount)
158 {
159 	if (vp->v_flag & VFREE)
160 		return (0);		/* already free */
161 	if (vp->v_holdcnt != 0 || vp->v_usecount != usecount)
162 		return (0);		/* other holderse */
163 	if (vp->v_object &&
164 	    (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
165 		return (0);
166 	}
167 	return (1);
168 }
169 
170 /*
171  * Initialize the vnode management data structures.
172  *
173  * Called from vfsinit()
174  */
175 void
176 vfs_subr_init(void)
177 {
178 	/*
179 	 * Desired vnodes is a result of the physical page count
180 	 * and the size of kernel's heap.  It scales in proportion
181 	 * to the amount of available physical memory.  This can
182 	 * cause trouble on 64-bit and large memory platforms.
183 	 */
184 	/* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
185 	desiredvnodes =
186 		min(maxproc + vmstats.v_page_count /4,
187 		    2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
188 		    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
189 
190 	lwkt_token_init(&spechash_token);
191 }
192 
193 /*
194  * Knob to control the precision of file timestamps:
195  *
196  *   0 = seconds only; nanoseconds zeroed.
197  *   1 = seconds and nanoseconds, accurate within 1/HZ.
198  *   2 = seconds and nanoseconds, truncated to microseconds.
199  * >=3 = seconds and nanoseconds, maximum precision.
200  */
201 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
202 
203 static int timestamp_precision = TSP_SEC;
204 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
205 		&timestamp_precision, 0, "");
206 
207 /*
208  * Get a current timestamp.
209  */
210 void
211 vfs_timestamp(struct timespec *tsp)
212 {
213 	struct timeval tv;
214 
215 	switch (timestamp_precision) {
216 	case TSP_SEC:
217 		tsp->tv_sec = time_second;
218 		tsp->tv_nsec = 0;
219 		break;
220 	case TSP_HZ:
221 		getnanotime(tsp);
222 		break;
223 	case TSP_USEC:
224 		microtime(&tv);
225 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
226 		break;
227 	case TSP_NSEC:
228 	default:
229 		nanotime(tsp);
230 		break;
231 	}
232 }
233 
234 /*
235  * Set vnode attributes to VNOVAL
236  */
237 void
238 vattr_null(struct vattr *vap)
239 {
240 	vap->va_type = VNON;
241 	vap->va_size = VNOVAL;
242 	vap->va_bytes = VNOVAL;
243 	vap->va_mode = VNOVAL;
244 	vap->va_nlink = VNOVAL;
245 	vap->va_uid = VNOVAL;
246 	vap->va_gid = VNOVAL;
247 	vap->va_fsid = VNOVAL;
248 	vap->va_fileid = VNOVAL;
249 	vap->va_blocksize = VNOVAL;
250 	vap->va_rdev = VNOVAL;
251 	vap->va_atime.tv_sec = VNOVAL;
252 	vap->va_atime.tv_nsec = VNOVAL;
253 	vap->va_mtime.tv_sec = VNOVAL;
254 	vap->va_mtime.tv_nsec = VNOVAL;
255 	vap->va_ctime.tv_sec = VNOVAL;
256 	vap->va_ctime.tv_nsec = VNOVAL;
257 	vap->va_flags = VNOVAL;
258 	vap->va_gen = VNOVAL;
259 	vap->va_vaflags = 0;
260 	vap->va_fsmid = VNOVAL;
261 }
262 
263 /*
264  * Flush out and invalidate all buffers associated with a vnode.
265  *
266  * vp must be locked.
267  */
268 static int vinvalbuf_bp(struct buf *bp, void *data);
269 
270 struct vinvalbuf_bp_info {
271 	struct vnode *vp;
272 	int slptimeo;
273 	int lkflags;
274 	int flags;
275 };
276 
277 int
278 vinvalbuf(struct vnode *vp, int flags, struct thread *td,
279 	int slpflag, int slptimeo)
280 {
281 	struct vinvalbuf_bp_info info;
282 	int error;
283 	vm_object_t object;
284 
285 	/*
286 	 * If we are being asked to save, call fsync to ensure that the inode
287 	 * is updated.
288 	 */
289 	if (flags & V_SAVE) {
290 		crit_enter();
291 		while (vp->v_track_write.bk_active) {
292 			vp->v_track_write.bk_waitflag = 1;
293 			error = tsleep(&vp->v_track_write, slpflag,
294 					"vinvlbuf", slptimeo);
295 			if (error) {
296 				crit_exit();
297 				return (error);
298 			}
299 		}
300 		if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
301 			crit_exit();
302 			if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
303 				return (error);
304 			crit_enter();
305 			if (vp->v_track_write.bk_active > 0 ||
306 			    !RB_EMPTY(&vp->v_rbdirty_tree))
307 				panic("vinvalbuf: dirty bufs");
308 		}
309 		crit_exit();
310   	}
311 	crit_enter();
312 	info.slptimeo = slptimeo;
313 	info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
314 	if (slpflag & PCATCH)
315 		info.lkflags |= LK_PCATCH;
316 	info.flags = flags;
317 	info.vp = vp;
318 
319 	/*
320 	 * Flush the buffer cache until nothing is left.
321 	 */
322 	while (!RB_EMPTY(&vp->v_rbclean_tree) ||
323 	    !RB_EMPTY(&vp->v_rbdirty_tree)) {
324 		error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
325 				vinvalbuf_bp, &info);
326 		if (error == 0) {
327 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
328 					vinvalbuf_bp, &info);
329 		}
330 	}
331 
332 	/*
333 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
334 	 * have write I/O in-progress but if there is a VM object then the
335 	 * VM object can also have read-I/O in-progress.
336 	 */
337 	do {
338 		while (vp->v_track_write.bk_active > 0) {
339 			vp->v_track_write.bk_waitflag = 1;
340 			tsleep(&vp->v_track_write, 0, "vnvlbv", 0);
341 		}
342 		if ((object = vp->v_object) != NULL) {
343 			while (object->paging_in_progress)
344 				vm_object_pip_sleep(object, "vnvlbx");
345 		}
346 	} while (vp->v_track_write.bk_active > 0);
347 
348 	crit_exit();
349 
350 	/*
351 	 * Destroy the copy in the VM cache, too.
352 	 */
353 	if ((object = vp->v_object) != NULL) {
354 		vm_object_page_remove(object, 0, 0,
355 			(flags & V_SAVE) ? TRUE : FALSE);
356 	}
357 
358 	if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
359 		panic("vinvalbuf: flush failed");
360 	if (!RB_EMPTY(&vp->v_rbhash_tree))
361 		panic("vinvalbuf: flush failed, buffers still present");
362 	return (0);
363 }
364 
365 static int
366 vinvalbuf_bp(struct buf *bp, void *data)
367 {
368 	struct vinvalbuf_bp_info *info = data;
369 	int error;
370 
371 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
372 		error = BUF_TIMELOCK(bp, info->lkflags,
373 				     "vinvalbuf", info->slptimeo);
374 		if (error == 0) {
375 			BUF_UNLOCK(bp);
376 			error = ENOLCK;
377 		}
378 		if (error == ENOLCK)
379 			return(0);
380 		return (-error);
381 	}
382 
383 	KKASSERT(bp->b_vp == info->vp);
384 
385 	/*
386 	 * XXX Since there are no node locks for NFS, I
387 	 * believe there is a slight chance that a delayed
388 	 * write will occur while sleeping just above, so
389 	 * check for it.  Note that vfs_bio_awrite expects
390 	 * buffers to reside on a queue, while VOP_BWRITE and
391 	 * brelse do not.
392 	 */
393 	if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
394 	    (info->flags & V_SAVE)) {
395 		if (bp->b_vp == info->vp) {
396 			if (bp->b_flags & B_CLUSTEROK) {
397 				vfs_bio_awrite(bp);
398 			} else {
399 				bremfree(bp);
400 				bp->b_flags |= B_ASYNC;
401 				VOP_BWRITE(bp->b_vp, bp);
402 			}
403 		} else {
404 			bremfree(bp);
405 			VOP_BWRITE(bp->b_vp, bp);
406 		}
407 	} else {
408 		bremfree(bp);
409 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
410 		bp->b_flags &= ~B_ASYNC;
411 		brelse(bp);
412 	}
413 	return(0);
414 }
415 
416 /*
417  * Truncate a file's buffer and pages to a specified length.  This
418  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
419  * sync activity.
420  *
421  * The vnode must be locked.
422  */
423 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
424 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
425 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
426 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
427 
428 int
429 vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
430 {
431 	off_t truncloffset;
432 	int count;
433 
434 	/*
435 	 * Round up to the *next* block, then destroy the buffers in question.
436 	 * Since we are only removing some of the buffers we must rely on the
437 	 * scan count to determine whether a loop is necessary.
438 	 */
439 	if ((count = (int)(length % blksize)) != 0)
440 		truncloffset = length + (blksize - count);
441 	else
442 		truncloffset = length;
443 
444 	crit_enter();
445 	do {
446 		count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
447 				vtruncbuf_bp_trunc_cmp,
448 				vtruncbuf_bp_trunc, &truncloffset);
449 		count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
450 				vtruncbuf_bp_trunc_cmp,
451 				vtruncbuf_bp_trunc, &truncloffset);
452 	} while(count);
453 
454 	/*
455 	 * For safety, fsync any remaining metadata if the file is not being
456 	 * truncated to 0.  Since the metadata does not represent the entire
457 	 * dirty list we have to rely on the hit count to ensure that we get
458 	 * all of it.
459 	 */
460 	if (length > 0) {
461 		do {
462 			count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
463 					vtruncbuf_bp_metasync_cmp,
464 					vtruncbuf_bp_metasync, vp);
465 		} while (count);
466 	}
467 
468 	/*
469 	 * Wait for any in-progress I/O to complete before returning (why?)
470 	 */
471 	while (vp->v_track_write.bk_active > 0) {
472 		vp->v_track_write.bk_waitflag = 1;
473 		tsleep(&vp->v_track_write, 0, "vbtrunc", 0);
474 	}
475 
476 	crit_exit();
477 
478 	vnode_pager_setsize(vp, length);
479 
480 	return (0);
481 }
482 
483 /*
484  * The callback buffer is beyond the new file EOF and must be destroyed.
485  * Note that the compare function must conform to the RB_SCAN's requirements.
486  */
487 static
488 int
489 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
490 {
491 	if (bp->b_loffset >= *(off_t *)data)
492 		return(0);
493 	return(-1);
494 }
495 
496 static
497 int
498 vtruncbuf_bp_trunc(struct buf *bp, void *data)
499 {
500 	/*
501 	 * Do not try to use a buffer we cannot immediately lock, but sleep
502 	 * anyway to prevent a livelock.  The code will loop until all buffers
503 	 * can be acted upon.
504 	 */
505 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
506 		if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
507 			BUF_UNLOCK(bp);
508 	} else {
509 		bremfree(bp);
510 		bp->b_flags |= (B_INVAL | B_RELBUF);
511 		bp->b_flags &= ~B_ASYNC;
512 		brelse(bp);
513 	}
514 	return(1);
515 }
516 
517 /*
518  * Fsync all meta-data after truncating a file to be non-zero.  Only metadata
519  * blocks (with a negative loffset) are scanned.
520  * Note that the compare function must conform to the RB_SCAN's requirements.
521  */
522 static int
523 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
524 {
525 	if (bp->b_loffset < 0)
526 		return(0);
527 	return(1);
528 }
529 
530 static int
531 vtruncbuf_bp_metasync(struct buf *bp, void *data)
532 {
533 	struct vnode *vp = data;
534 
535 	if (bp->b_flags & B_DELWRI) {
536 		/*
537 		 * Do not try to use a buffer we cannot immediately lock,
538 		 * but sleep anyway to prevent a livelock.  The code will
539 		 * loop until all buffers can be acted upon.
540 		 */
541 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
542 			if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
543 				BUF_UNLOCK(bp);
544 		} else {
545 			bremfree(bp);
546 			if (bp->b_vp == vp) {
547 				bp->b_flags |= B_ASYNC;
548 			} else {
549 				bp->b_flags &= ~B_ASYNC;
550 			}
551 			VOP_BWRITE(bp->b_vp, bp);
552 		}
553 		return(1);
554 	} else {
555 		return(0);
556 	}
557 }
558 
559 /*
560  * vfsync - implements a multipass fsync on a file which understands
561  * dependancies and meta-data.  The passed vnode must be locked.  The
562  * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
563  *
564  * When fsyncing data asynchronously just do one consolidated pass starting
565  * with the most negative block number.  This may not get all the data due
566  * to dependancies.
567  *
568  * When fsyncing data synchronously do a data pass, then a metadata pass,
569  * then do additional data+metadata passes to try to get all the data out.
570  */
571 static int vfsync_wait_output(struct vnode *vp,
572 			    int (*waitoutput)(struct vnode *, struct thread *));
573 static int vfsync_data_only_cmp(struct buf *bp, void *data);
574 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
575 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
576 static int vfsync_bp(struct buf *bp, void *data);
577 
578 struct vfsync_info {
579 	struct vnode *vp;
580 	int synchronous;
581 	int syncdeps;
582 	int lazycount;
583 	int lazylimit;
584 	int skippedbufs;
585 	off_t loffset;
586 	int (*checkdef)(struct buf *);
587 };
588 
589 int
590 vfsync(struct vnode *vp, int waitfor, int passes, off_t loffset,
591 	int (*checkdef)(struct buf *),
592 	int (*waitoutput)(struct vnode *, struct thread *))
593 {
594 	struct vfsync_info info;
595 	int error;
596 
597 	bzero(&info, sizeof(info));
598 	info.vp = vp;
599 	info.loffset = loffset;
600 	if ((info.checkdef = checkdef) == NULL)
601 		info.syncdeps = 1;
602 
603 	crit_enter();
604 
605 	switch(waitfor) {
606 	case MNT_LAZY:
607 		/*
608 		 * Lazy (filesystem syncer typ) Asynchronous plus limit the
609 		 * number of data (not meta) pages we try to flush to 1MB.
610 		 * A non-zero return means that lazy limit was reached.
611 		 */
612 		info.lazylimit = 1024 * 1024;
613 		info.syncdeps = 1;
614 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
615 				vfsync_lazy_range_cmp, vfsync_bp, &info);
616 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
617 				vfsync_meta_only_cmp, vfsync_bp, &info);
618 		if (error == 0)
619 			vp->v_lazyw = 0;
620 		else if (!RB_EMPTY(&vp->v_rbdirty_tree))
621 			vn_syncer_add_to_worklist(vp, 1);
622 		error = 0;
623 		break;
624 	case MNT_NOWAIT:
625 		/*
626 		 * Asynchronous.  Do a data-only pass and a meta-only pass.
627 		 */
628 		info.syncdeps = 1;
629 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
630 			vfsync_bp, &info);
631 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
632 			vfsync_bp, &info);
633 		error = 0;
634 		break;
635 	default:
636 		/*
637 		 * Synchronous.  Do a data-only pass, then a meta-data+data
638 		 * pass, then additional integrated passes to try to get
639 		 * all the dependancies flushed.
640 		 */
641 		RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
642 			vfsync_bp, &info);
643 		error = vfsync_wait_output(vp, waitoutput);
644 		if (error == 0) {
645 			info.skippedbufs = 0;
646 			RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
647 				vfsync_bp, &info);
648 			error = vfsync_wait_output(vp, waitoutput);
649 			if (info.skippedbufs)
650 				printf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs);
651 		}
652 		while (error == 0 && passes > 0 &&
653 		    !RB_EMPTY(&vp->v_rbdirty_tree)) {
654 			if (--passes == 0) {
655 				info.synchronous = 1;
656 				info.syncdeps = 1;
657 			}
658 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
659 				vfsync_bp, &info);
660 			if (error < 0)
661 				error = -error;
662 			info.syncdeps = 1;
663 			if (error == 0)
664 				error = vfsync_wait_output(vp, waitoutput);
665 		}
666 		break;
667 	}
668 	crit_exit();
669 	return(error);
670 }
671 
672 static int
673 vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *))
674 {
675 	int error = 0;
676 
677 	while (vp->v_track_write.bk_active) {
678 		vp->v_track_write.bk_waitflag = 1;
679 		tsleep(&vp->v_track_write, 0, "fsfsn", 0);
680 	}
681 	if (waitoutput)
682 		error = waitoutput(vp, curthread);
683 	return(error);
684 }
685 
686 static int
687 vfsync_data_only_cmp(struct buf *bp, void *data)
688 {
689 	if (bp->b_loffset < 0)
690 		return(-1);
691 	return(0);
692 }
693 
694 static int
695 vfsync_meta_only_cmp(struct buf *bp, void *data)
696 {
697 	if (bp->b_loffset < 0)
698 		return(0);
699 	return(1);
700 }
701 
702 static int
703 vfsync_lazy_range_cmp(struct buf *bp, void *data)
704 {
705 	struct vfsync_info *info = data;
706 	if (bp->b_loffset < info->vp->v_lazyw)
707 		return(-1);
708 	return(0);
709 }
710 
711 static int
712 vfsync_bp(struct buf *bp, void *data)
713 {
714 	struct vfsync_info *info = data;
715 	struct vnode *vp = info->vp;
716 	int error;
717 
718 	/*
719 	 * if syncdeps is not set we do not try to write buffers which have
720 	 * dependancies.
721 	 */
722 	if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
723 		return(0);
724 
725 	/*
726 	 * Ignore buffers that we cannot immediately lock.  XXX
727 	 */
728 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
729 		printf("Warning: vfsync_bp skipping dirty buffer %p\n", bp);
730 		++info->skippedbufs;
731 		return(0);
732 	}
733 	if ((bp->b_flags & B_DELWRI) == 0)
734 		panic("vfsync_bp: buffer not dirty");
735 	if (vp != bp->b_vp)
736 		panic("vfsync_bp: buffer vp mismatch");
737 
738 	/*
739 	 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
740 	 * has been written but an additional handshake with the device
741 	 * is required before we can dispose of the buffer.  We have no idea
742 	 * how to do this so we have to skip these buffers.
743 	 */
744 	if (bp->b_flags & B_NEEDCOMMIT) {
745 		BUF_UNLOCK(bp);
746 		return(0);
747 	}
748 
749 	/*
750 	 * (LEGACY FROM UFS, REMOVE WHEN POSSIBLE) - invalidate any dirty
751 	 * buffers beyond the file EOF.
752 	 */
753 	if (info->loffset != NOOFFSET && vp->v_type == VREG &&
754 	    bp->b_loffset >= info->loffset) {
755 		bremfree(bp);
756 		bp->b_flags |= B_INVAL | B_NOCACHE;
757 		crit_exit();
758 		brelse(bp);
759 		crit_enter();
760 	}
761 
762 	if (info->synchronous) {
763 		/*
764 		 * Synchronous flushing.  An error may be returned.
765 		 */
766 		bremfree(bp);
767 		crit_exit();
768 		error = bwrite(bp);
769 		crit_enter();
770 	} else {
771 		/*
772 		 * Asynchronous flushing.  A negative return value simply
773 		 * stops the scan and is not considered an error.  We use
774 		 * this to support limited MNT_LAZY flushes.
775 		 */
776 		vp->v_lazyw = bp->b_loffset;
777 		if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
778 			info->lazycount += vfs_bio_awrite(bp);
779 		} else {
780 			info->lazycount += bp->b_bufsize;
781 			bremfree(bp);
782 			crit_exit();
783 			bawrite(bp);
784 			crit_enter();
785 		}
786 		if (info->lazylimit && info->lazycount >= info->lazylimit)
787 			error = 1;
788 		else
789 			error = 0;
790 	}
791 	return(-error);
792 }
793 
794 /*
795  * Associate a buffer with a vnode.
796  */
797 void
798 bgetvp(struct vnode *vp, struct buf *bp)
799 {
800 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
801 	KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI)) == 0);
802 	KKASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0);
803 
804 	vhold(vp);
805 	/*
806 	 * Insert onto list for new vnode.
807 	 */
808 	crit_enter();
809 	bp->b_vp = vp;
810 	bp->b_flags |= B_HASHED;
811 	if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp))
812 		panic("reassignbuf: dup lblk vp %p bp %p", vp, bp);
813 
814 	bp->b_xflags |= BX_VNCLEAN;
815 	if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
816 		panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
817 	crit_exit();
818 }
819 
820 /*
821  * Disassociate a buffer from a vnode.
822  */
823 void
824 brelvp(struct buf *bp)
825 {
826 	struct vnode *vp;
827 
828 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
829 
830 	/*
831 	 * Delete from old vnode list, if on one.
832 	 */
833 	vp = bp->b_vp;
834 	crit_enter();
835 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
836 		if (bp->b_xflags & BX_VNDIRTY)
837 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
838 		else
839 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
840 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
841 	}
842 	if (bp->b_flags & B_HASHED) {
843 		buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
844 		bp->b_flags &= ~B_HASHED;
845 	}
846 	if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
847 		vp->v_flag &= ~VONWORKLST;
848 		LIST_REMOVE(vp, v_synclist);
849 	}
850 	crit_exit();
851 	bp->b_vp = NULL;
852 	vdrop(vp);
853 }
854 
855 /*
856  * Associate a p-buffer with a vnode.
857  *
858  * Also sets B_PAGING flag to indicate that vnode is not fully associated
859  * with the buffer.  i.e. the bp has not been linked into the vnode or
860  * ref-counted.
861  */
862 void
863 pbgetvp(struct vnode *vp, struct buf *bp)
864 {
865 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
866 	KKASSERT((bp->b_flags & B_HASHED) == 0);
867 
868 	bp->b_vp = vp;
869 	bp->b_flags |= B_PAGING;
870 }
871 
872 /*
873  * Disassociate a p-buffer from a vnode.
874  */
875 void
876 pbrelvp(struct buf *bp)
877 {
878 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
879 	KKASSERT((bp->b_flags & B_HASHED) == 0);
880 
881 	bp->b_vp = NULL;
882 	bp->b_flags &= ~B_PAGING;
883 }
884 
885 /*
886  * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
887  * This routine is called when the state of the B_DELWRI bit is changed.
888  */
889 void
890 reassignbuf(struct buf *bp)
891 {
892 	struct vnode *vp = bp->b_vp;
893 	int delay;
894 
895 	KKASSERT(vp != NULL);
896 	++reassignbufcalls;
897 
898 	/*
899 	 * B_PAGING flagged buffers cannot be reassigned because their vp
900 	 * is not fully linked in.
901 	 */
902 	if (bp->b_flags & B_PAGING)
903 		panic("cannot reassign paging buffer");
904 
905 	crit_enter();
906 	if (bp->b_flags & B_DELWRI) {
907 		/*
908 		 * Move to the dirty list, add the vnode to the worklist
909 		 */
910 		if (bp->b_xflags & BX_VNCLEAN) {
911 			buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
912 			bp->b_xflags &= ~BX_VNCLEAN;
913 		}
914 		if ((bp->b_xflags & BX_VNDIRTY) == 0) {
915 			if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
916 				panic("reassignbuf: dup lblk vp %p bp %p",
917 				      vp, bp);
918 			}
919 			bp->b_xflags |= BX_VNDIRTY;
920 		}
921 		if ((vp->v_flag & VONWORKLST) == 0) {
922 			switch (vp->v_type) {
923 			case VDIR:
924 				delay = dirdelay;
925 				break;
926 			case VCHR:
927 			case VBLK:
928 				if (vp->v_rdev &&
929 				    vp->v_rdev->si_mountpoint != NULL) {
930 					delay = metadelay;
931 					break;
932 				}
933 				/* fall through */
934 			default:
935 				delay = filedelay;
936 			}
937 			vn_syncer_add_to_worklist(vp, delay);
938 		}
939 	} else {
940 		/*
941 		 * Move to the clean list, remove the vnode from the worklist
942 		 * if no dirty blocks remain.
943 		 */
944 		if (bp->b_xflags & BX_VNDIRTY) {
945 			buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
946 			bp->b_xflags &= ~BX_VNDIRTY;
947 		}
948 		if ((bp->b_xflags & BX_VNCLEAN) == 0) {
949 			if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
950 				panic("reassignbuf: dup lblk vp %p bp %p",
951 				      vp, bp);
952 			}
953 			bp->b_xflags |= BX_VNCLEAN;
954 		}
955 		if ((vp->v_flag & VONWORKLST) &&
956 		    RB_EMPTY(&vp->v_rbdirty_tree)) {
957 			vp->v_flag &= ~VONWORKLST;
958 			LIST_REMOVE(vp, v_synclist);
959 		}
960 	}
961 	crit_exit();
962 }
963 
964 /*
965  * Create a vnode for a block device.
966  * Used for mounting the root file system.
967  */
968 int
969 bdevvp(dev_t dev, struct vnode **vpp)
970 {
971 	struct vnode *vp;
972 	struct vnode *nvp;
973 	int error;
974 
975 	if (dev == NODEV) {
976 		*vpp = NULLVP;
977 		return (ENXIO);
978 	}
979 	error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops, &nvp, 0, 0);
980 	if (error) {
981 		*vpp = NULLVP;
982 		return (error);
983 	}
984 	vp = nvp;
985 	vp->v_type = VCHR;
986 	vp->v_udev = dev->si_udev;
987 	vx_unlock(vp);
988 	*vpp = vp;
989 	return (0);
990 }
991 
992 int
993 v_associate_rdev(struct vnode *vp, dev_t dev)
994 {
995 	lwkt_tokref ilock;
996 
997 	if (dev == NULL || dev == NODEV)
998 		return(ENXIO);
999 	if (dev_is_good(dev) == 0)
1000 		return(ENXIO);
1001 	KKASSERT(vp->v_rdev == NULL);
1002 	if (dev_ref_debug)
1003 		printf("Z1");
1004 	vp->v_rdev = reference_dev(dev);
1005 	lwkt_gettoken(&ilock, &spechash_token);
1006 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
1007 	lwkt_reltoken(&ilock);
1008 	return(0);
1009 }
1010 
1011 void
1012 v_release_rdev(struct vnode *vp)
1013 {
1014 	lwkt_tokref ilock;
1015 	dev_t dev;
1016 
1017 	if ((dev = vp->v_rdev) != NULL) {
1018 		lwkt_gettoken(&ilock, &spechash_token);
1019 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
1020 		vp->v_rdev = NULL;
1021 		release_dev(dev);
1022 		lwkt_reltoken(&ilock);
1023 	}
1024 }
1025 
1026 /*
1027  * Add a vnode to the alias list hung off the dev_t.  We only associate
1028  * the device number with the vnode.  The actual device is not associated
1029  * until the vnode is opened (usually in spec_open()), and will be
1030  * disassociated on last close.
1031  */
1032 void
1033 addaliasu(struct vnode *nvp, udev_t nvp_udev)
1034 {
1035 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1036 		panic("addaliasu on non-special vnode");
1037 	nvp->v_udev = nvp_udev;
1038 }
1039 
1040 /*
1041  * Disassociate a vnode from its underlying filesystem.
1042  *
1043  * The vnode must be VX locked and refd
1044  *
1045  * If there are v_usecount references to the vnode other then ours we have
1046  * to VOP_CLOSE the vnode before we can deactivate and reclaim it.
1047  */
1048 void
1049 vclean(struct vnode *vp, int flags, struct thread *td)
1050 {
1051 	int active;
1052 	int retflags = 0;
1053 	int n;
1054 	vm_object_t object;
1055 
1056 	/*
1057 	 * If the vnode has already been reclaimed we have nothing to do.
1058 	 */
1059 	if (vp->v_flag & VRECLAIMED)
1060 		return;
1061 	vp->v_flag |= VRECLAIMED;
1062 
1063 	/*
1064 	 * Scrap the vfs cache
1065 	 */
1066 	while (cache_inval_vp(vp, 0, &retflags) != 0) {
1067 		printf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1068 		tsleep(vp, 0, "vclninv", 2);
1069 	}
1070 
1071 	/*
1072 	 * Check to see if the vnode is in use. If so we have to reference it
1073 	 * before we clean it out so that its count cannot fall to zero and
1074 	 * generate a race against ourselves to recycle it.
1075 	 */
1076 	active = (vp->v_usecount > 1);
1077 
1078 	/*
1079 	 * Clean out any buffers associated with the vnode and destroy its
1080 	 * object, if it has one.
1081 	 */
1082 	vinvalbuf(vp, V_SAVE, td, 0, 0);
1083 
1084 	if ((object = vp->v_object) != NULL) {
1085 		if (object->ref_count == 0) {
1086 			if ((object->flags & OBJ_DEAD) == 0)
1087 				vm_object_terminate(object);
1088 		} else {
1089 			vm_pager_deallocate(object);
1090 		}
1091 		vp->v_flag &= ~VOBJBUF;
1092 	}
1093 	KKASSERT((vp->v_flag & VOBJBUF) == 0);
1094 
1095 	/*
1096 	 * If purging an active vnode (typically during a forced unmount
1097 	 * or reboot), it must be closed and deactivated before being
1098 	 * reclaimed.  This isn't really all that safe, but what can
1099 	 * we do? XXX.
1100 	 *
1101 	 * Note that neither of these routines unlocks the vnode.
1102 	 */
1103 	if (active && (flags & DOCLOSE)) {
1104 		while ((n = vp->v_opencount) != 0) {
1105 			if (vp->v_writecount)
1106 				VOP_CLOSE(vp, FWRITE|FNONBLOCK, td);
1107 			else
1108 				VOP_CLOSE(vp, FNONBLOCK, td);
1109 			if (vp->v_opencount == n) {
1110 				printf("Warning: unable to force-close"
1111 				       " vnode %p\n", vp);
1112 				break;
1113 			}
1114 		}
1115 	}
1116 
1117 	/*
1118 	 * If the vnode has not be deactivated, deactivated it.
1119 	 */
1120 	if ((vp->v_flag & VINACTIVE) == 0) {
1121 		vp->v_flag |= VINACTIVE;
1122 		VOP_INACTIVE(vp, td);
1123 	}
1124 
1125 	/*
1126 	 * Reclaim the vnode.
1127 	 */
1128 	if (VOP_RECLAIM(vp, retflags, td))
1129 		panic("vclean: cannot reclaim");
1130 
1131 	/*
1132 	 * Done with purge, notify sleepers of the grim news.
1133 	 */
1134 	vp->v_ops = &dead_vnode_vops;
1135 	vn_pollgone(vp);
1136 	vp->v_tag = VT_NON;
1137 }
1138 
1139 /*
1140  * Eliminate all activity associated with the requested vnode
1141  * and with all vnodes aliased to the requested vnode.
1142  *
1143  * The vnode must be referenced and vx_lock()'d
1144  *
1145  * revoke { struct vnode *a_vp, int a_flags }
1146  */
1147 int
1148 vop_stdrevoke(struct vop_revoke_args *ap)
1149 {
1150 	struct vnode *vp, *vq;
1151 	lwkt_tokref ilock;
1152 	dev_t dev;
1153 
1154 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1155 
1156 	vp = ap->a_vp;
1157 
1158 	/*
1159 	 * If the vnode is already dead don't try to revoke it
1160 	 */
1161 	if (vp->v_flag & VRECLAIMED)
1162 		return (0);
1163 
1164 	/*
1165 	 * If the vnode has a device association, scrap all vnodes associated
1166 	 * with the device.  Don't let the device disappear on us while we
1167 	 * are scrapping the vnodes.
1168 	 *
1169 	 * The passed vp will probably show up in the list, do not VX lock
1170 	 * it twice!
1171 	 */
1172 	if (vp->v_type != VCHR && vp->v_type != VBLK)
1173 		return(0);
1174 	if ((dev = vp->v_rdev) == NULL) {
1175 		if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
1176 			return(0);
1177 	}
1178 	reference_dev(dev);
1179 	lwkt_gettoken(&ilock, &spechash_token);
1180 	while ((vq = SLIST_FIRST(&dev->si_hlist)) != NULL) {
1181 		if (vp == vq || vx_get(vq) == 0) {
1182 			if (vq == SLIST_FIRST(&dev->si_hlist))
1183 				vgone(vq);
1184 			if (vp != vq)
1185 				vx_put(vq);
1186 		}
1187 	}
1188 	lwkt_reltoken(&ilock);
1189 	release_dev(dev);
1190 	return (0);
1191 }
1192 
1193 /*
1194  * Recycle an unused vnode to the front of the free list.
1195  *
1196  * Returns 1 if we were successfully able to recycle the vnode,
1197  * 0 otherwise.
1198  */
1199 int
1200 vrecycle(struct vnode *vp, struct thread *td)
1201 {
1202 	if (vp->v_usecount == 1) {
1203 		vgone(vp);
1204 		return (1);
1205 	}
1206 	return (0);
1207 }
1208 
1209 /*
1210  * Eliminate all activity associated with a vnode in preparation for reuse.
1211  *
1212  * The vnode must be VX locked and refd and will remain VX locked and refd
1213  * on return.  This routine may be called with the vnode in any state, as
1214  * long as it is VX locked.  The vnode will be cleaned out and marked
1215  * VRECLAIMED but will not actually be reused until all existing refs and
1216  * holds go away.
1217  *
1218  * NOTE: This routine may be called on a vnode which has not yet been
1219  * already been deactivated (VOP_INACTIVE), or on a vnode which has
1220  * already been reclaimed.
1221  *
1222  * This routine is not responsible for placing us back on the freelist.
1223  * Instead, it happens automatically when the caller releases the VX lock
1224  * (assuming there aren't any other references).
1225  */
1226 void
1227 vgone(struct vnode *vp)
1228 {
1229 	/*
1230 	 * assert that the VX lock is held.  This is an absolute requirement
1231 	 * now for vgone() to be called.
1232 	 */
1233 	KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1234 
1235 	/*
1236 	 * Clean out the filesystem specific data and set the VRECLAIMED
1237 	 * bit.  Also deactivate the vnode if necessary.
1238 	 */
1239 	vclean(vp, DOCLOSE, curthread);
1240 
1241 	/*
1242 	 * Delete from old mount point vnode list, if on one.
1243 	 */
1244 	if (vp->v_mount != NULL)
1245 		insmntque(vp, NULL);
1246 
1247 	/*
1248 	 * If special device, remove it from special device alias list
1249 	 * if it is on one.  This should normally only occur if a vnode is
1250 	 * being revoked as the device should otherwise have been released
1251 	 * naturally.
1252 	 */
1253 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1254 		v_release_rdev(vp);
1255 	}
1256 
1257 	/*
1258 	 * Set us to VBAD
1259 	 */
1260 	vp->v_type = VBAD;
1261 }
1262 
1263 /*
1264  * Lookup a vnode by device number.
1265  */
1266 int
1267 vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
1268 {
1269 	lwkt_tokref ilock;
1270 	struct vnode *vp;
1271 
1272 	lwkt_gettoken(&ilock, &spechash_token);
1273 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1274 		if (type == vp->v_type) {
1275 			*vpp = vp;
1276 			lwkt_reltoken(&ilock);
1277 			return (1);
1278 		}
1279 	}
1280 	lwkt_reltoken(&ilock);
1281 	return (0);
1282 }
1283 
1284 /*
1285  * Calculate the total number of references to a special device.  This
1286  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1287  * an overloaded field.  Since udev2dev can now return NODEV, we have
1288  * to check for a NULL v_rdev.
1289  */
1290 int
1291 count_dev(dev_t dev)
1292 {
1293 	lwkt_tokref ilock;
1294 	struct vnode *vp;
1295 	int count = 0;
1296 
1297 	if (SLIST_FIRST(&dev->si_hlist)) {
1298 		lwkt_gettoken(&ilock, &spechash_token);
1299 		SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1300 			count += vp->v_usecount;
1301 		}
1302 		lwkt_reltoken(&ilock);
1303 	}
1304 	return(count);
1305 }
1306 
1307 int
1308 count_udev(udev_t udev)
1309 {
1310 	dev_t dev;
1311 
1312 	if ((dev = udev2dev(udev, 0)) == NODEV)
1313 		return(0);
1314 	return(count_dev(dev));
1315 }
1316 
1317 int
1318 vcount(struct vnode *vp)
1319 {
1320 	if (vp->v_rdev == NULL)
1321 		return(0);
1322 	return(count_dev(vp->v_rdev));
1323 }
1324 
1325 /*
1326  * Initialize VMIO for a vnode.  This routine MUST be called before a
1327  * VFS can issue buffer cache ops on a vnode.  It is typically called
1328  * when a vnode is initialized from its inode.
1329  */
1330 int
1331 vinitvmio(struct vnode *vp, off_t filesize)
1332 {
1333 	thread_t td = curthread;
1334 	vm_object_t object;
1335 	int error = 0;
1336 
1337 retry:
1338 	if ((object = vp->v_object) == NULL) {
1339 		object = vnode_pager_alloc(vp, filesize, 0, 0);
1340 		/*
1341 		 * Dereference the reference we just created.  This assumes
1342 		 * that the object is associated with the vp.
1343 		 */
1344 		object->ref_count--;
1345 		vp->v_usecount--;
1346 	} else {
1347 		if (object->flags & OBJ_DEAD) {
1348 			VOP_UNLOCK(vp, 0, td);
1349 			tsleep(object, 0, "vodead", 0);
1350 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1351 			goto retry;
1352 		}
1353 	}
1354 	KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1355 	vp->v_flag |= VOBJBUF;
1356 retn:
1357 	return (error);
1358 }
1359 
1360 
1361 /*
1362  * Print out a description of a vnode.
1363  */
1364 static char *typename[] =
1365 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1366 
1367 void
1368 vprint(char *label, struct vnode *vp)
1369 {
1370 	char buf[96];
1371 
1372 	if (label != NULL)
1373 		printf("%s: %p: ", label, (void *)vp);
1374 	else
1375 		printf("%p: ", (void *)vp);
1376 	printf("type %s, usecount %d, writecount %d, refcount %d,",
1377 	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1378 	    vp->v_holdcnt);
1379 	buf[0] = '\0';
1380 	if (vp->v_flag & VROOT)
1381 		strcat(buf, "|VROOT");
1382 	if (vp->v_flag & VTEXT)
1383 		strcat(buf, "|VTEXT");
1384 	if (vp->v_flag & VSYSTEM)
1385 		strcat(buf, "|VSYSTEM");
1386 	if (vp->v_flag & VFREE)
1387 		strcat(buf, "|VFREE");
1388 	if (vp->v_flag & VOBJBUF)
1389 		strcat(buf, "|VOBJBUF");
1390 	if (buf[0] != '\0')
1391 		printf(" flags (%s)", &buf[1]);
1392 	if (vp->v_data == NULL) {
1393 		printf("\n");
1394 	} else {
1395 		printf("\n\t");
1396 		VOP_PRINT(vp);
1397 	}
1398 }
1399 
1400 #ifdef DDB
1401 #include <ddb/ddb.h>
1402 
1403 static int db_show_locked_vnodes(struct mount *mp, void *data);
1404 
1405 /*
1406  * List all of the locked vnodes in the system.
1407  * Called when debugging the kernel.
1408  */
1409 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1410 {
1411 	printf("Locked vnodes\n");
1412 	mountlist_scan(db_show_locked_vnodes, NULL,
1413 			MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1414 }
1415 
1416 static int
1417 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1418 {
1419 	struct vnode *vp;
1420 
1421 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1422 		if (VOP_ISLOCKED(vp, NULL))
1423 			vprint((char *)0, vp);
1424 	}
1425 	return(0);
1426 }
1427 #endif
1428 
1429 /*
1430  * Top level filesystem related information gathering.
1431  */
1432 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1433 
1434 static int
1435 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1436 {
1437 	int *name = (int *)arg1 - 1;	/* XXX */
1438 	u_int namelen = arg2 + 1;	/* XXX */
1439 	struct vfsconf *vfsp;
1440 
1441 #if 1 || defined(COMPAT_PRELITE2)
1442 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1443 	if (namelen == 1)
1444 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1445 #endif
1446 
1447 #ifdef notyet
1448 	/* all sysctl names at this level are at least name and field */
1449 	if (namelen < 2)
1450 		return (ENOTDIR);		/* overloaded */
1451 	if (name[0] != VFS_GENERIC) {
1452 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1453 			if (vfsp->vfc_typenum == name[0])
1454 				break;
1455 		if (vfsp == NULL)
1456 			return (EOPNOTSUPP);
1457 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1458 		    oldp, oldlenp, newp, newlen, p));
1459 	}
1460 #endif
1461 	switch (name[1]) {
1462 	case VFS_MAXTYPENUM:
1463 		if (namelen != 2)
1464 			return (ENOTDIR);
1465 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
1466 	case VFS_CONF:
1467 		if (namelen != 3)
1468 			return (ENOTDIR);	/* overloaded */
1469 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1470 			if (vfsp->vfc_typenum == name[2])
1471 				break;
1472 		if (vfsp == NULL)
1473 			return (EOPNOTSUPP);
1474 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1475 	}
1476 	return (EOPNOTSUPP);
1477 }
1478 
1479 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1480 	"Generic filesystem");
1481 
1482 #if 1 || defined(COMPAT_PRELITE2)
1483 
1484 static int
1485 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1486 {
1487 	int error;
1488 	struct vfsconf *vfsp;
1489 	struct ovfsconf ovfs;
1490 
1491 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1492 		bzero(&ovfs, sizeof(ovfs));
1493 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
1494 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
1495 		ovfs.vfc_index = vfsp->vfc_typenum;
1496 		ovfs.vfc_refcount = vfsp->vfc_refcount;
1497 		ovfs.vfc_flags = vfsp->vfc_flags;
1498 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1499 		if (error)
1500 			return error;
1501 	}
1502 	return 0;
1503 }
1504 
1505 #endif /* 1 || COMPAT_PRELITE2 */
1506 
1507 /*
1508  * Check to see if a filesystem is mounted on a block device.
1509  */
1510 int
1511 vfs_mountedon(struct vnode *vp)
1512 {
1513 	dev_t dev;
1514 
1515 	if ((dev = vp->v_rdev) == NULL)
1516 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1517 	if (dev != NODEV && dev->si_mountpoint)
1518 		return (EBUSY);
1519 	return (0);
1520 }
1521 
1522 /*
1523  * Unmount all filesystems. The list is traversed in reverse order
1524  * of mounting to avoid dependencies.
1525  */
1526 
1527 static int vfs_umountall_callback(struct mount *mp, void *data);
1528 
1529 void
1530 vfs_unmountall(void)
1531 {
1532 	struct thread *td = curthread;
1533 	int count;
1534 
1535 	if (td->td_proc == NULL)
1536 		td = initproc->p_thread;	/* XXX XXX use proc0 instead? */
1537 
1538 	do {
1539 		count = mountlist_scan(vfs_umountall_callback,
1540 					&td, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1541 	} while (count);
1542 }
1543 
1544 static
1545 int
1546 vfs_umountall_callback(struct mount *mp, void *data)
1547 {
1548 	struct thread *td = *(struct thread **)data;
1549 	int error;
1550 
1551 	error = dounmount(mp, MNT_FORCE, td);
1552 	if (error) {
1553 		mountlist_remove(mp);
1554 		printf("unmount of filesystem mounted from %s failed (",
1555 			mp->mnt_stat.f_mntfromname);
1556 		if (error == EBUSY)
1557 			printf("BUSY)\n");
1558 		else
1559 			printf("%d)\n", error);
1560 	}
1561 	return(1);
1562 }
1563 
1564 /*
1565  * Build hash lists of net addresses and hang them off the mount point.
1566  * Called by ufs_mount() to set up the lists of export addresses.
1567  */
1568 static int
1569 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1570 		struct export_args *argp)
1571 {
1572 	struct netcred *np;
1573 	struct radix_node_head *rnh;
1574 	int i;
1575 	struct radix_node *rn;
1576 	struct sockaddr *saddr, *smask = 0;
1577 	struct domain *dom;
1578 	int error;
1579 
1580 	if (argp->ex_addrlen == 0) {
1581 		if (mp->mnt_flag & MNT_DEFEXPORTED)
1582 			return (EPERM);
1583 		np = &nep->ne_defexported;
1584 		np->netc_exflags = argp->ex_flags;
1585 		np->netc_anon = argp->ex_anon;
1586 		np->netc_anon.cr_ref = 1;
1587 		mp->mnt_flag |= MNT_DEFEXPORTED;
1588 		return (0);
1589 	}
1590 
1591 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1592 		return (EINVAL);
1593 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1594 		return (EINVAL);
1595 
1596 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1597 	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
1598 	bzero((caddr_t) np, i);
1599 	saddr = (struct sockaddr *) (np + 1);
1600 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1601 		goto out;
1602 	if (saddr->sa_len > argp->ex_addrlen)
1603 		saddr->sa_len = argp->ex_addrlen;
1604 	if (argp->ex_masklen) {
1605 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1606 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1607 		if (error)
1608 			goto out;
1609 		if (smask->sa_len > argp->ex_masklen)
1610 			smask->sa_len = argp->ex_masklen;
1611 	}
1612 	i = saddr->sa_family;
1613 	if ((rnh = nep->ne_rtable[i]) == 0) {
1614 		/*
1615 		 * Seems silly to initialize every AF when most are not used,
1616 		 * do so on demand here
1617 		 */
1618 		SLIST_FOREACH(dom, &domains, dom_next)
1619 			if (dom->dom_family == i && dom->dom_rtattach) {
1620 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
1621 				    dom->dom_rtoffset);
1622 				break;
1623 			}
1624 		if ((rnh = nep->ne_rtable[i]) == 0) {
1625 			error = ENOBUFS;
1626 			goto out;
1627 		}
1628 	}
1629 	rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1630 	    np->netc_rnodes);
1631 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
1632 		error = EPERM;
1633 		goto out;
1634 	}
1635 	np->netc_exflags = argp->ex_flags;
1636 	np->netc_anon = argp->ex_anon;
1637 	np->netc_anon.cr_ref = 1;
1638 	return (0);
1639 out:
1640 	free(np, M_NETADDR);
1641 	return (error);
1642 }
1643 
1644 /* ARGSUSED */
1645 static int
1646 vfs_free_netcred(struct radix_node *rn, void *w)
1647 {
1648 	struct radix_node_head *rnh = (struct radix_node_head *) w;
1649 
1650 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1651 	free((caddr_t) rn, M_NETADDR);
1652 	return (0);
1653 }
1654 
1655 /*
1656  * Free the net address hash lists that are hanging off the mount points.
1657  */
1658 static void
1659 vfs_free_addrlist(struct netexport *nep)
1660 {
1661 	int i;
1662 	struct radix_node_head *rnh;
1663 
1664 	for (i = 0; i <= AF_MAX; i++)
1665 		if ((rnh = nep->ne_rtable[i])) {
1666 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1667 			    (caddr_t) rnh);
1668 			free((caddr_t) rnh, M_RTABLE);
1669 			nep->ne_rtable[i] = 0;
1670 		}
1671 }
1672 
1673 int
1674 vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
1675 {
1676 	int error;
1677 
1678 	if (argp->ex_flags & MNT_DELEXPORT) {
1679 		if (mp->mnt_flag & MNT_EXPUBLIC) {
1680 			vfs_setpublicfs(NULL, NULL, NULL);
1681 			mp->mnt_flag &= ~MNT_EXPUBLIC;
1682 		}
1683 		vfs_free_addrlist(nep);
1684 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1685 	}
1686 	if (argp->ex_flags & MNT_EXPORTED) {
1687 		if (argp->ex_flags & MNT_EXPUBLIC) {
1688 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1689 				return (error);
1690 			mp->mnt_flag |= MNT_EXPUBLIC;
1691 		}
1692 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
1693 			return (error);
1694 		mp->mnt_flag |= MNT_EXPORTED;
1695 	}
1696 	return (0);
1697 }
1698 
1699 
1700 /*
1701  * Set the publicly exported filesystem (WebNFS). Currently, only
1702  * one public filesystem is possible in the spec (RFC 2054 and 2055)
1703  */
1704 int
1705 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1706 		struct export_args *argp)
1707 {
1708 	int error;
1709 	struct vnode *rvp;
1710 	char *cp;
1711 
1712 	/*
1713 	 * mp == NULL -> invalidate the current info, the FS is
1714 	 * no longer exported. May be called from either vfs_export
1715 	 * or unmount, so check if it hasn't already been done.
1716 	 */
1717 	if (mp == NULL) {
1718 		if (nfs_pub.np_valid) {
1719 			nfs_pub.np_valid = 0;
1720 			if (nfs_pub.np_index != NULL) {
1721 				FREE(nfs_pub.np_index, M_TEMP);
1722 				nfs_pub.np_index = NULL;
1723 			}
1724 		}
1725 		return (0);
1726 	}
1727 
1728 	/*
1729 	 * Only one allowed at a time.
1730 	 */
1731 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1732 		return (EBUSY);
1733 
1734 	/*
1735 	 * Get real filehandle for root of exported FS.
1736 	 */
1737 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1738 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1739 
1740 	if ((error = VFS_ROOT(mp, &rvp)))
1741 		return (error);
1742 
1743 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1744 		return (error);
1745 
1746 	vput(rvp);
1747 
1748 	/*
1749 	 * If an indexfile was specified, pull it in.
1750 	 */
1751 	if (argp->ex_indexfile != NULL) {
1752 		int namelen;
1753 
1754 		error = vn_get_namelen(rvp, &namelen);
1755 		if (error)
1756 			return (error);
1757 		MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1758 		    M_WAITOK);
1759 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1760 		    namelen, (size_t *)0);
1761 		if (!error) {
1762 			/*
1763 			 * Check for illegal filenames.
1764 			 */
1765 			for (cp = nfs_pub.np_index; *cp; cp++) {
1766 				if (*cp == '/') {
1767 					error = EINVAL;
1768 					break;
1769 				}
1770 			}
1771 		}
1772 		if (error) {
1773 			FREE(nfs_pub.np_index, M_TEMP);
1774 			return (error);
1775 		}
1776 	}
1777 
1778 	nfs_pub.np_mount = mp;
1779 	nfs_pub.np_valid = 1;
1780 	return (0);
1781 }
1782 
1783 struct netcred *
1784 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1785 		struct sockaddr *nam)
1786 {
1787 	struct netcred *np;
1788 	struct radix_node_head *rnh;
1789 	struct sockaddr *saddr;
1790 
1791 	np = NULL;
1792 	if (mp->mnt_flag & MNT_EXPORTED) {
1793 		/*
1794 		 * Lookup in the export list first.
1795 		 */
1796 		if (nam != NULL) {
1797 			saddr = nam;
1798 			rnh = nep->ne_rtable[saddr->sa_family];
1799 			if (rnh != NULL) {
1800 				np = (struct netcred *)
1801 					(*rnh->rnh_matchaddr)((char *)saddr,
1802 							      rnh);
1803 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1804 					np = NULL;
1805 			}
1806 		}
1807 		/*
1808 		 * If no address match, use the default if it exists.
1809 		 */
1810 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1811 			np = &nep->ne_defexported;
1812 	}
1813 	return (np);
1814 }
1815 
1816 /*
1817  * perform msync on all vnodes under a mount point.  The mount point must
1818  * be locked.  This code is also responsible for lazy-freeing unreferenced
1819  * vnodes whos VM objects no longer contain pages.
1820  *
1821  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1822  *
1823  * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
1824  * but vnode_pager_putpages() doesn't lock the vnode.  We have to do it
1825  * way up in this high level function.
1826  */
1827 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1828 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1829 
1830 void
1831 vfs_msync(struct mount *mp, int flags)
1832 {
1833 	int vmsc_flags;
1834 
1835 	vmsc_flags = VMSC_GETVP;
1836 	if (flags != MNT_WAIT)
1837 		vmsc_flags |= VMSC_NOWAIT;
1838 	vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
1839 			(void *)flags);
1840 }
1841 
1842 /*
1843  * scan1 is a fast pre-check.  There could be hundreds of thousands of
1844  * vnodes, we cannot afford to do anything heavy weight until we have a
1845  * fairly good indication that there is work to do.
1846  */
1847 static
1848 int
1849 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1850 {
1851 	int flags = (int)data;
1852 
1853 	if ((vp->v_flag & VRECLAIMED) == 0) {
1854 		if (vshouldfree(vp, 0))
1855 			return(0);	/* call scan2 */
1856 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1857 		    (vp->v_flag & VOBJDIRTY) &&
1858 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
1859 			return(0);	/* call scan2 */
1860 		}
1861 	}
1862 
1863 	/*
1864 	 * do not call scan2, continue the loop
1865 	 */
1866 	return(-1);
1867 }
1868 
1869 /*
1870  * This callback is handed a locked vnode.
1871  */
1872 static
1873 int
1874 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1875 {
1876 	vm_object_t obj;
1877 	int flags = (int)data;
1878 
1879 	if (vp->v_flag & VRECLAIMED)
1880 		return(0);
1881 
1882 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
1883 		if ((obj = vp->v_object) != NULL) {
1884 			vm_object_page_clean(obj, 0, 0,
1885 			 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1886 		}
1887 	}
1888 	return(0);
1889 }
1890 
1891 /*
1892  * Record a process's interest in events which might happen to
1893  * a vnode.  Because poll uses the historic select-style interface
1894  * internally, this routine serves as both the ``check for any
1895  * pending events'' and the ``record my interest in future events''
1896  * functions.  (These are done together, while the lock is held,
1897  * to avoid race conditions.)
1898  */
1899 int
1900 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
1901 {
1902 	lwkt_tokref ilock;
1903 
1904 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1905 	if (vp->v_pollinfo.vpi_revents & events) {
1906 		/*
1907 		 * This leaves events we are not interested
1908 		 * in available for the other process which
1909 		 * which presumably had requested them
1910 		 * (otherwise they would never have been
1911 		 * recorded).
1912 		 */
1913 		events &= vp->v_pollinfo.vpi_revents;
1914 		vp->v_pollinfo.vpi_revents &= ~events;
1915 
1916 		lwkt_reltoken(&ilock);
1917 		return events;
1918 	}
1919 	vp->v_pollinfo.vpi_events |= events;
1920 	selrecord(td, &vp->v_pollinfo.vpi_selinfo);
1921 	lwkt_reltoken(&ilock);
1922 	return 0;
1923 }
1924 
1925 /*
1926  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
1927  * it is possible for us to miss an event due to race conditions, but
1928  * that condition is expected to be rare, so for the moment it is the
1929  * preferred interface.
1930  */
1931 void
1932 vn_pollevent(struct vnode *vp, int events)
1933 {
1934 	lwkt_tokref ilock;
1935 
1936 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1937 	if (vp->v_pollinfo.vpi_events & events) {
1938 		/*
1939 		 * We clear vpi_events so that we don't
1940 		 * call selwakeup() twice if two events are
1941 		 * posted before the polling process(es) is
1942 		 * awakened.  This also ensures that we take at
1943 		 * most one selwakeup() if the polling process
1944 		 * is no longer interested.  However, it does
1945 		 * mean that only one event can be noticed at
1946 		 * a time.  (Perhaps we should only clear those
1947 		 * event bits which we note?) XXX
1948 		 */
1949 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
1950 		vp->v_pollinfo.vpi_revents |= events;
1951 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
1952 	}
1953 	lwkt_reltoken(&ilock);
1954 }
1955 
1956 /*
1957  * Wake up anyone polling on vp because it is being revoked.
1958  * This depends on dead_poll() returning POLLHUP for correct
1959  * behavior.
1960  */
1961 void
1962 vn_pollgone(struct vnode *vp)
1963 {
1964 	lwkt_tokref ilock;
1965 
1966 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1967 	if (vp->v_pollinfo.vpi_events) {
1968 		vp->v_pollinfo.vpi_events = 0;
1969 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
1970 	}
1971 	lwkt_reltoken(&ilock);
1972 }
1973 
1974 /*
1975  * extract the dev_t from a VBLK or VCHR.  The vnode must have been opened
1976  * (or v_rdev might be NULL).
1977  */
1978 dev_t
1979 vn_todev(struct vnode *vp)
1980 {
1981 	if (vp->v_type != VBLK && vp->v_type != VCHR)
1982 		return (NODEV);
1983 	KKASSERT(vp->v_rdev != NULL);
1984 	return (vp->v_rdev);
1985 }
1986 
1987 /*
1988  * Check if vnode represents a disk device.  The vnode does not need to be
1989  * opened.
1990  */
1991 int
1992 vn_isdisk(struct vnode *vp, int *errp)
1993 {
1994 	dev_t dev;
1995 
1996 	if (vp->v_type != VBLK && vp->v_type != VCHR) {
1997 		if (errp != NULL)
1998 			*errp = ENOTBLK;
1999 		return (0);
2000 	}
2001 
2002 	if ((dev = vp->v_rdev) == NULL)
2003 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
2004 	if (dev == NULL || dev == NODEV) {
2005 		if (errp != NULL)
2006 			*errp = ENXIO;
2007 		return (0);
2008 	}
2009 	if (dev_is_good(dev) == 0) {
2010 		if (errp != NULL)
2011 			*errp = ENXIO;
2012 		return (0);
2013 	}
2014 	if ((dev_dflags(dev) & D_DISK) == 0) {
2015 		if (errp != NULL)
2016 			*errp = ENOTBLK;
2017 		return (0);
2018 	}
2019 	if (errp != NULL)
2020 		*errp = 0;
2021 	return (1);
2022 }
2023 
2024 #ifdef DEBUG_VFS_LOCKS
2025 
2026 void
2027 assert_vop_locked(struct vnode *vp, const char *str)
2028 {
2029 	if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
2030 		panic("%s: %p is not locked shared but should be", str, vp);
2031 	}
2032 }
2033 
2034 void
2035 assert_vop_unlocked(struct vnode *vp, const char *str)
2036 {
2037 	if (vp && IS_LOCKING_VFS(vp)) {
2038 		if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
2039 			panic("%s: %p is locked but should not be", str, vp);
2040 		}
2041 	}
2042 }
2043 
2044 #endif
2045 
2046 int
2047 vn_get_namelen(struct vnode *vp, int *namelen)
2048 {
2049 	int error, retval[2];
2050 
2051 	error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2052 	if (error)
2053 		return (error);
2054 	*namelen = *retval;
2055 	return (0);
2056 }
2057 
2058 int
2059 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2060 		uint16_t d_namlen, const char *d_name)
2061 {
2062 	struct dirent *dp;
2063 	size_t len;
2064 
2065 	len = _DIRENT_RECLEN(d_namlen);
2066 	if (len > uio->uio_resid)
2067 		return(1);
2068 
2069 	dp = malloc(len, M_TEMP, M_WAITOK | M_ZERO);
2070 
2071 	dp->d_ino = d_ino;
2072 	dp->d_namlen = d_namlen;
2073 	dp->d_type = d_type;
2074 	bcopy(d_name, dp->d_name, d_namlen);
2075 
2076 	*error = uiomove((caddr_t)dp, len, uio);
2077 
2078 	free(dp, M_TEMP);
2079 
2080 	return(0);
2081 }
2082 
2083