xref: /dflybsd-src/sys/kern/vfs_subr.c (revision 10f84ad9e1cb939878f6c1ec7e73c30dd133a0f2)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40  * $DragonFly: src/sys/kern/vfs_subr.c,v 1.39 2004/09/04 23:12:54 dillon Exp $
41  */
42 
43 /*
44  * External virtual filesystem routines
45  */
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/mount.h>
61 #include <sys/proc.h>
62 #include <sys/namei.h>
63 #include <sys/reboot.h>
64 #include <sys/socket.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/limits.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
83 
84 #include <sys/buf2.h>
85 #include <sys/thread2.h>
86 
87 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88 
89 static void	insmntque (struct vnode *vp, struct mount *mp);
90 static void	vclean (struct vnode *vp, lwkt_tokref_t vlock,
91 			int flags, struct thread *td);
92 
93 static unsigned long numvnodes;
94 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
95 
96 enum vtype iftovt_tab[16] = {
97 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
98 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
99 };
100 int vttoif_tab[9] = {
101 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
102 	S_IFSOCK, S_IFIFO, S_IFMT,
103 };
104 
105 static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
106 
107 static u_long wantfreevnodes = 25;
108 SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
109 		&wantfreevnodes, 0, "");
110 static u_long freevnodes = 0;
111 SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD,
112 		&freevnodes, 0, "");
113 
114 static int reassignbufcalls;
115 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
116 		&reassignbufcalls, 0, "");
117 static int reassignbufloops;
118 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
119 		&reassignbufloops, 0, "");
120 static int reassignbufsortgood;
121 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
122 		&reassignbufsortgood, 0, "");
123 static int reassignbufsortbad;
124 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
125 		&reassignbufsortbad, 0, "");
126 static int reassignbufmethod = 1;
127 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
128 		&reassignbufmethod, 0, "");
129 
130 #ifdef ENABLE_VFS_IOOPT
131 int vfs_ioopt = 0;
132 SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
133 #endif
134 
135 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
136 struct lwkt_token mountlist_token;
137 struct lwkt_token mntvnode_token;
138 int	nfs_mount_type = -1;
139 static struct lwkt_token mntid_token;
140 static struct lwkt_token vnode_free_list_token;
141 static struct lwkt_token spechash_token;
142 struct nfs_public nfs_pub;	/* publicly exported FS */
143 static vm_zone_t vnode_zone;
144 
145 /*
146  * The workitem queue.
147  */
148 #define SYNCER_MAXDELAY		32
149 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
150 time_t syncdelay = 30;		/* max time to delay syncing data */
151 SYSCTL_INT(_kern, OID_AUTO, syncdelay, CTLFLAG_RW,
152 		&syncdelay, 0, "VFS data synchronization delay");
153 time_t filedelay = 30;		/* time to delay syncing files */
154 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
155 		&filedelay, 0, "File synchronization delay");
156 time_t dirdelay = 29;		/* time to delay syncing directories */
157 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
158 		&dirdelay, 0, "Directory synchronization delay");
159 time_t metadelay = 28;		/* time to delay syncing metadata */
160 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
161 		&metadelay, 0, "VFS metadata synchronization delay");
162 static int rushjob;			/* number of slots to run ASAP */
163 static int stat_rush_requests;	/* number of times I/O speeded up */
164 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
165 		&stat_rush_requests, 0, "");
166 
167 static int syncer_delayno = 0;
168 static long syncer_mask;
169 LIST_HEAD(synclist, vnode);
170 static struct synclist *syncer_workitem_pending;
171 
172 int desiredvnodes;
173 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
174 		&desiredvnodes, 0, "Maximum number of vnodes");
175 static int minvnodes;
176 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
177 		&minvnodes, 0, "Minimum number of vnodes");
178 static int vnlru_nowhere = 0;
179 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
180 		&vnlru_nowhere, 0,
181 		"Number of times the vnlru process ran without success");
182 
183 static void	vfs_free_addrlist (struct netexport *nep);
184 static int	vfs_free_netcred (struct radix_node *rn, void *w);
185 static int	vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
186 				       struct export_args *argp);
187 
188 #define VSHOULDFREE(vp) \
189 	(!((vp)->v_flag & (VFREE|VDOOMED)) && \
190 	 !(vp)->v_holdcnt && !(vp)->v_usecount && \
191 	 (!(vp)->v_object || \
192 	  !((vp)->v_object->ref_count || (vp)->v_object->resident_page_count)))
193 
194 #define VMIGHTFREE(vp) \
195 	(((vp)->v_flag & (VFREE|VDOOMED|VXLOCK)) == 0 &&   \
196 	 cache_leaf_test(vp) == 0 && (vp)->v_usecount == 0)
197 
198 #define VSHOULDBUSY(vp) \
199 	(((vp)->v_flag & VFREE) && \
200 	 ((vp)->v_holdcnt || (vp)->v_usecount))
201 
202 static void vbusy(struct vnode *vp);
203 static void vfree(struct vnode *vp);
204 static void vmaybefree(struct vnode *vp);
205 
206 extern int dev_ref_debug;
207 extern struct vnodeopv_entry_desc spec_vnodeop_entries[];
208 
209 /*
210  * NOTE: the vnode interlock must be held on call.
211  */
212 static __inline void
213 vmaybefree(struct vnode *vp)
214 {
215 	if (VSHOULDFREE(vp))
216 		vfree(vp);
217 }
218 
219 /*
220  * Initialize the vnode management data structures.
221  */
222 void
223 vntblinit(void)
224 {
225 	/*
226 	 * Desired vnodes is a result of the physical page count
227 	 * and the size of kernel's heap.  It scales in proportion
228 	 * to the amount of available physical memory.  This can
229 	 * cause trouble on 64-bit and large memory platforms.
230 	 */
231 	/* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
232 	desiredvnodes =
233 		min(maxproc + vmstats.v_page_count /4,
234 		    2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
235 		    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
236 
237 	minvnodes = desiredvnodes / 4;
238 	lwkt_token_init(&mountlist_token);
239 	lwkt_token_init(&mntvnode_token);
240 	lwkt_token_init(&mntid_token);
241 	lwkt_token_init(&spechash_token);
242 	TAILQ_INIT(&vnode_free_list);
243 	lwkt_token_init(&vnode_free_list_token);
244 	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
245 	/*
246 	 * Initialize the filesystem syncer.
247 	 */
248 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
249 		&syncer_mask);
250 	syncer_maxdelay = syncer_mask + 1;
251 }
252 
253 /*
254  * Mark a mount point as busy. Used to synchronize access and to delay
255  * unmounting. Interlock is not released on failure.
256  */
257 int
258 vfs_busy(struct mount *mp, int flags,
259 	lwkt_tokref_t interlkp, struct thread *td)
260 {
261 	int lkflags;
262 
263 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
264 		if (flags & LK_NOWAIT)
265 			return (ENOENT);
266 		mp->mnt_kern_flag |= MNTK_MWAIT;
267 		/*
268 		 * Since all busy locks are shared except the exclusive
269 		 * lock granted when unmounting, the only place that a
270 		 * wakeup needs to be done is at the release of the
271 		 * exclusive lock at the end of dounmount.
272 		 *
273 		 * note: interlkp is a serializer and thus can be safely
274 		 * held through any sleep
275 		 */
276 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
277 		return (ENOENT);
278 	}
279 	lkflags = LK_SHARED | LK_NOPAUSE;
280 	if (interlkp)
281 		lkflags |= LK_INTERLOCK;
282 	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
283 		panic("vfs_busy: unexpected lock failure");
284 	return (0);
285 }
286 
287 /*
288  * Free a busy filesystem.
289  */
290 void
291 vfs_unbusy(struct mount *mp, struct thread *td)
292 {
293 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
294 }
295 
296 /*
297  * Lookup a filesystem type, and if found allocate and initialize
298  * a mount structure for it.
299  *
300  * Devname is usually updated by mount(8) after booting.
301  */
302 int
303 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
304 {
305 	struct thread *td = curthread;	/* XXX */
306 	struct vfsconf *vfsp;
307 	struct mount *mp;
308 
309 	if (fstypename == NULL)
310 		return (ENODEV);
311 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
312 		if (!strcmp(vfsp->vfc_name, fstypename))
313 			break;
314 	}
315 	if (vfsp == NULL)
316 		return (ENODEV);
317 	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
318 	bzero((char *)mp, (u_long)sizeof(struct mount));
319 	lockinit(&mp->mnt_lock, 0, "vfslock", VLKTIMEOUT, LK_NOPAUSE);
320 	vfs_busy(mp, LK_NOWAIT, NULL, td);
321 	TAILQ_INIT(&mp->mnt_nvnodelist);
322 	TAILQ_INIT(&mp->mnt_reservedvnlist);
323 	mp->mnt_nvnodelistsize = 0;
324 	mp->mnt_vfc = vfsp;
325 	mp->mnt_op = vfsp->vfc_vfsops;
326 	mp->mnt_flag = MNT_RDONLY;
327 	mp->mnt_vnodecovered = NULLVP;
328 	vfsp->vfc_refcount++;
329 	mp->mnt_iosize_max = DFLTPHYS;
330 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
331 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
332 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
333 	mp->mnt_stat.f_mntonname[0] = '/';
334 	mp->mnt_stat.f_mntonname[1] = 0;
335 	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
336 	*mpp = mp;
337 	return (0);
338 }
339 
340 /*
341  * Lookup a mount point by filesystem identifier.
342  */
343 struct mount *
344 vfs_getvfs(fsid_t *fsid)
345 {
346 	struct mount *mp;
347 	lwkt_tokref ilock;
348 
349 	lwkt_gettoken(&ilock, &mountlist_token);
350 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
351 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
352 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
353 			break;
354 	    }
355 	}
356 	lwkt_reltoken(&ilock);
357 	return (mp);
358 }
359 
360 /*
361  * Get a new unique fsid.  Try to make its val[0] unique, since this value
362  * will be used to create fake device numbers for stat().  Also try (but
363  * not so hard) make its val[0] unique mod 2^16, since some emulators only
364  * support 16-bit device numbers.  We end up with unique val[0]'s for the
365  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
366  *
367  * Keep in mind that several mounts may be running in parallel.  Starting
368  * the search one past where the previous search terminated is both a
369  * micro-optimization and a defense against returning the same fsid to
370  * different mounts.
371  */
372 void
373 vfs_getnewfsid(struct mount *mp)
374 {
375 	static u_int16_t mntid_base;
376 	lwkt_tokref ilock;
377 	fsid_t tfsid;
378 	int mtype;
379 
380 	lwkt_gettoken(&ilock, &mntid_token);
381 	mtype = mp->mnt_vfc->vfc_typenum;
382 	tfsid.val[1] = mtype;
383 	mtype = (mtype & 0xFF) << 24;
384 	for (;;) {
385 		tfsid.val[0] = makeudev(255,
386 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
387 		mntid_base++;
388 		if (vfs_getvfs(&tfsid) == NULL)
389 			break;
390 	}
391 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
392 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
393 	lwkt_reltoken(&ilock);
394 }
395 
396 /*
397  * Knob to control the precision of file timestamps:
398  *
399  *   0 = seconds only; nanoseconds zeroed.
400  *   1 = seconds and nanoseconds, accurate within 1/HZ.
401  *   2 = seconds and nanoseconds, truncated to microseconds.
402  * >=3 = seconds and nanoseconds, maximum precision.
403  */
404 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
405 
406 static int timestamp_precision = TSP_SEC;
407 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
408 		&timestamp_precision, 0, "");
409 
410 /*
411  * Get a current timestamp.
412  */
413 void
414 vfs_timestamp(struct timespec *tsp)
415 {
416 	struct timeval tv;
417 
418 	switch (timestamp_precision) {
419 	case TSP_SEC:
420 		tsp->tv_sec = time_second;
421 		tsp->tv_nsec = 0;
422 		break;
423 	case TSP_HZ:
424 		getnanotime(tsp);
425 		break;
426 	case TSP_USEC:
427 		microtime(&tv);
428 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
429 		break;
430 	case TSP_NSEC:
431 	default:
432 		nanotime(tsp);
433 		break;
434 	}
435 }
436 
437 /*
438  * Set vnode attributes to VNOVAL
439  */
440 void
441 vattr_null(struct vattr *vap)
442 {
443 	vap->va_type = VNON;
444 	vap->va_size = VNOVAL;
445 	vap->va_bytes = VNOVAL;
446 	vap->va_mode = VNOVAL;
447 	vap->va_nlink = VNOVAL;
448 	vap->va_uid = VNOVAL;
449 	vap->va_gid = VNOVAL;
450 	vap->va_fsid = VNOVAL;
451 	vap->va_fileid = VNOVAL;
452 	vap->va_blocksize = VNOVAL;
453 	vap->va_rdev = VNOVAL;
454 	vap->va_atime.tv_sec = VNOVAL;
455 	vap->va_atime.tv_nsec = VNOVAL;
456 	vap->va_mtime.tv_sec = VNOVAL;
457 	vap->va_mtime.tv_nsec = VNOVAL;
458 	vap->va_ctime.tv_sec = VNOVAL;
459 	vap->va_ctime.tv_nsec = VNOVAL;
460 	vap->va_flags = VNOVAL;
461 	vap->va_gen = VNOVAL;
462 	vap->va_vaflags = 0;
463 }
464 
465 /*
466  * This routine is called when we have too many vnodes.  It attempts
467  * to free <count> vnodes and will potentially free vnodes that still
468  * have VM backing store (VM backing store is typically the cause
469  * of a vnode blowout so we want to do this).  Therefore, this operation
470  * is not considered cheap.
471  *
472  * A number of conditions may prevent a vnode from being reclaimed.
473  * the buffer cache may have references on the vnode, a directory
474  * vnode may still have references due to the namei cache representing
475  * underlying files, or the vnode may be in active use.   It is not
476  * desireable to reuse such vnodes.  These conditions may cause the
477  * number of vnodes to reach some minimum value regardless of what
478  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
479  */
480 static int
481 vlrureclaim(struct mount *mp)
482 {
483 	struct vnode *vp;
484 	lwkt_tokref ilock;
485 	lwkt_tokref vlock;
486 	int done;
487 	int trigger;
488 	int usevnodes;
489 	int count;
490 
491 	/*
492 	 * Calculate the trigger point, don't allow user
493 	 * screwups to blow us up.   This prevents us from
494 	 * recycling vnodes with lots of resident pages.  We
495 	 * aren't trying to free memory, we are trying to
496 	 * free vnodes.
497 	 */
498 	usevnodes = desiredvnodes;
499 	if (usevnodes <= 0)
500 		usevnodes = 1;
501 	trigger = vmstats.v_page_count * 2 / usevnodes;
502 
503 	done = 0;
504 	lwkt_gettoken(&ilock, &mntvnode_token);
505 	count = mp->mnt_nvnodelistsize / 10 + 1;
506 	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
507 		/*
508 		 * __VNODESCAN__
509 		 *
510 		 * The VP will stick around while we hold mntvnode_token,
511 		 * at least until we block, so we can safely do an initial
512 		 * check.  But we have to check again after obtaining
513 		 * the vnode interlock.  vp->v_interlock points to stable
514 		 * storage so it's ok if the vp gets ripped out from
515 		 * under us while we are blocked.
516 		 */
517 		if (vp->v_type == VNON ||
518 		    vp->v_type == VBAD ||
519 		    !VMIGHTFREE(vp) ||		/* critical path opt */
520 		    (vp->v_object &&
521 		     vp->v_object->resident_page_count >= trigger)
522 		) {
523 			TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
524 			TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist,vp, v_nmntvnodes);
525 			--count;
526 			continue;
527 		}
528 
529 		/*
530 		 * Get the interlock, delay moving the node to the tail so
531 		 * we don't race against new additions to the mountlist.
532 		 */
533 		lwkt_gettoken(&vlock, vp->v_interlock);
534 		if (TAILQ_FIRST(&mp->mnt_nvnodelist) != vp) {
535 			lwkt_reltoken(&vlock);
536 			continue;
537 		}
538 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
539 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist,vp, v_nmntvnodes);
540 
541 		/*
542 		 * Must check again
543 		 */
544 		if (vp->v_type == VNON ||
545 		    vp->v_type == VBAD ||
546 		    !VMIGHTFREE(vp) ||		/* critical path opt */
547 		    (vp->v_object &&
548 		     vp->v_object->resident_page_count >= trigger)
549 		) {
550 			lwkt_reltoken(&vlock);
551 			--count;
552 			continue;
553 		}
554 		vgonel(vp, &vlock, curthread);
555 		++done;
556 		--count;
557 	}
558 	lwkt_reltoken(&ilock);
559 	return done;
560 }
561 
562 /*
563  * Attempt to recycle vnodes in a context that is always safe to block.
564  * Calling vlrurecycle() from the bowels of file system code has some
565  * interesting deadlock problems.
566  */
567 static struct thread *vnlruthread;
568 static int vnlruproc_sig;
569 
570 static void
571 vnlru_proc(void)
572 {
573 	struct mount *mp, *nmp;
574 	lwkt_tokref ilock;
575 	int s;
576 	int done;
577 	struct thread *td = curthread;
578 
579 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
580 	    SHUTDOWN_PRI_FIRST);
581 
582 	s = splbio();
583 	for (;;) {
584 		kproc_suspend_loop();
585 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
586 			vnlruproc_sig = 0;
587 			wakeup(&vnlruproc_sig);
588 			tsleep(td, 0, "vlruwt", hz);
589 			continue;
590 		}
591 		done = 0;
592 		lwkt_gettoken(&ilock, &mountlist_token);
593 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
594 			if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
595 				nmp = TAILQ_NEXT(mp, mnt_list);
596 				continue;
597 			}
598 			done += vlrureclaim(mp);
599 			lwkt_gettokref(&ilock);
600 			nmp = TAILQ_NEXT(mp, mnt_list);
601 			vfs_unbusy(mp, td);
602 		}
603 		lwkt_reltoken(&ilock);
604 		if (done == 0) {
605 			vnlru_nowhere++;
606 			tsleep(td, 0, "vlrup", hz * 3);
607 		}
608 	}
609 	splx(s);
610 }
611 
612 static struct kproc_desc vnlru_kp = {
613 	"vnlru",
614 	vnlru_proc,
615 	&vnlruthread
616 };
617 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
618 
619 /*
620  * Routines having to do with the management of the vnode table.
621  */
622 
623 /*
624  * Return the next vnode from the free list.
625  */
626 int
627 getnewvnode(enum vtagtype tag, struct mount *mp, struct vop_ops *ops,
628 		struct vnode **vpp, int lktimeout, int lkflags)
629 {
630 	int s;
631 	struct thread *td = curthread;	/* XXX */
632 	struct vnode *vp = NULL;
633 	struct vnode *xvp;
634 	vm_object_t object;
635 	lwkt_tokref ilock;
636 	lwkt_tokref vlock;
637 
638 	s = splbio();	/* YYY remove me */
639 
640 	/*
641 	 * Try to reuse vnodes if we hit the max.  This situation only
642 	 * occurs in certain large-memory (2G+) situations.  We cannot
643 	 * attempt to directly reclaim vnodes due to nasty recursion
644 	 * problems.
645 	 */
646 	while (numvnodes - freevnodes > desiredvnodes) {
647 		if (vnlruproc_sig == 0) {
648 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
649 			wakeup(vnlruthread);
650 		}
651 		tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
652 	}
653 
654 
655 	/*
656 	 * Attempt to reuse a vnode already on the free list, allocating
657 	 * a new vnode if we can't find one or if we have not reached a
658 	 * good minimum for good LRU performance.
659 	 */
660 	lwkt_gettoken(&ilock, &vnode_free_list_token);
661 	if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
662 		int count;
663 
664 		for (count = 0; count < freevnodes; count++) {
665 			/*
666 			 * __VNODESCAN__
667 			 *
668 			 * Pull the next vnode off the free list and do some
669 			 * sanity checks.  Note that regardless of how we
670 			 * block, if freevnodes is non-zero there had better
671 			 * be something on the list.
672 			 */
673 			vp = TAILQ_FIRST(&vnode_free_list);
674 			if (vp == NULL)
675 				panic("getnewvnode: free vnode isn't");
676 
677 			/*
678 			 * Move the vnode to the end of the list so other
679 			 * processes do not double-block trying to recycle
680 			 * the same vnode (as an optimization), then get
681 			 * the interlock.
682 			 */
683 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
684 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
685 
686 			/*
687 			 * Skip vnodes that are in the process of being
688 			 * held or referenced.  Since the act of adding or
689 			 * removing a vnode on the freelist requires a token
690 			 * and may block, the ref count may be adjusted
691 			 * prior to its addition or removal.
692 			 */
693 			if (VSHOULDBUSY(vp)) {
694 				vp = NULL;
695 				continue;
696 			}
697 
698 
699 			/*
700 			 * Obtain the vnode interlock and check that the
701 			 * vnode is still on the free list.
702 			 *
703 			 * This normally devolves into a degenerate case so
704 			 * it is optimal.   Loop up if it isn't.  Note that
705 			 * the vnode could be in the middle of being moved
706 			 * off the free list (the VSHOULDBUSY() check) and
707 			 * must be skipped if so.
708 			 */
709 			lwkt_gettoken(&vlock, vp->v_interlock);
710 			TAILQ_FOREACH_REVERSE(xvp, &vnode_free_list,
711 			    freelst, v_freelist) {
712 				if (vp == xvp)
713 					break;
714 			}
715 			if (vp != xvp || VSHOULDBUSY(vp)) {
716 				vp = NULL;
717 				continue;
718 			}
719 
720 			/*
721 			 * We now safely own the vnode.  If the vnode has
722 			 * an object do not recycle it if its VM object
723 			 * has resident pages or references.
724 			 */
725 			if ((VOP_GETVOBJECT(vp, &object) == 0 &&
726 			    (object->resident_page_count || object->ref_count))
727 			) {
728 				lwkt_reltoken(&vlock);
729 				vp = NULL;
730 				continue;
731 			}
732 
733 			/*
734 			 * We can almost reuse this vnode.  But we don't want
735 			 * to recycle it if the vnode has children in the
736 			 * namecache because that breaks the namecache's
737 			 * path element chain.  (YYY use nc_refs for the
738 			 * check?)
739 			 */
740 			KKASSERT(vp->v_flag & VFREE);
741 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
742 
743 			if (TAILQ_FIRST(&vp->v_namecache) == NULL ||
744 			    cache_leaf_test(vp) >= 0) {
745 				/* ok, we can reuse this vnode */
746 				break;
747 			}
748 			lwkt_reltoken(&vlock);
749 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
750 			vp = NULL;
751 		}
752 	}
753 
754 	/*
755 	 * If vp is non-NULL we hold it's interlock.
756 	 */
757 	if (vp) {
758 		vp->v_flag |= VDOOMED;
759 		vp->v_flag &= ~VFREE;
760 		freevnodes--;
761 		lwkt_reltoken(&ilock);
762 		cache_purge(vp);	/* YYY may block */
763 		vp->v_lease = NULL;
764 		if (vp->v_type != VBAD) {
765 			vgonel(vp, &vlock, td);
766 		} else {
767 			lwkt_reltoken(&vlock);
768 		}
769 
770 #ifdef INVARIANTS
771 		{
772 			int s;
773 
774 			if (vp->v_data)
775 				panic("cleaned vnode isn't");
776 			s = splbio();
777 			if (vp->v_numoutput)
778 				panic("Clean vnode has pending I/O's");
779 			splx(s);
780 		}
781 #endif
782 		vp->v_flag = 0;
783 		vp->v_lastw = 0;
784 		vp->v_lasta = 0;
785 		vp->v_cstart = 0;
786 		vp->v_clen = 0;
787 		vp->v_socket = 0;
788 		vp->v_writecount = 0;	/* XXX */
789 		lockreinit(&vp->v_lock, 0, "vnode", lktimeout, lkflags);
790 	} else {
791 		/*
792 		 * A brand-new vnode (we could use malloc() here I think) XXX
793 		 */
794 		lwkt_reltoken(&ilock);
795 		vp = zalloc(vnode_zone);
796 		bzero(vp, sizeof(*vp));
797 		vp->v_interlock = lwkt_token_pool_get(vp);
798 		lwkt_token_init(&vp->v_pollinfo.vpi_token);
799 		lockinit(&vp->v_lock, 0, "vnode", lktimeout, lkflags);
800 		cache_purge(vp);
801 		TAILQ_INIT(&vp->v_namecache);
802 		numvnodes++;
803 	}
804 
805 	TAILQ_INIT(&vp->v_cleanblkhd);
806 	TAILQ_INIT(&vp->v_dirtyblkhd);
807 	vp->v_type = VNON;
808 	vp->v_tag = tag;
809 	vp->v_ops = ops;
810 	*vpp = vp;
811 	vp->v_usecount = 1;
812 	vp->v_data = NULL;
813 	splx(s);
814 
815 	/*
816 	 * Placing the vnode on the mount point's queue makes it visible.
817 	 * We had better already have a ref on it.
818 	 */
819 	insmntque(vp, mp);
820 
821 	vfs_object_create(vp, td);
822 	return (0);
823 }
824 
825 /*
826  * Move a vnode from one mount queue to another.
827  */
828 static void
829 insmntque(struct vnode *vp, struct mount *mp)
830 {
831 	lwkt_tokref ilock;
832 
833 	lwkt_gettoken(&ilock, &mntvnode_token);
834 	/*
835 	 * Delete from old mount point vnode list, if on one.
836 	 */
837 	if (vp->v_mount != NULL) {
838 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
839 			("bad mount point vnode list size"));
840 		TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
841 		vp->v_mount->mnt_nvnodelistsize--;
842 	}
843 	/*
844 	 * Insert into list of vnodes for the new mount point, if available.
845 	 */
846 	if ((vp->v_mount = mp) == NULL) {
847 		lwkt_reltoken(&ilock);
848 		return;
849 	}
850 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
851 	mp->mnt_nvnodelistsize++;
852 	lwkt_reltoken(&ilock);
853 }
854 
855 /*
856  * Update outstanding I/O count and do wakeup if requested.
857  */
858 void
859 vwakeup(struct buf *bp)
860 {
861 	struct vnode *vp;
862 
863 	bp->b_flags &= ~B_WRITEINPROG;
864 	if ((vp = bp->b_vp)) {
865 		vp->v_numoutput--;
866 		if (vp->v_numoutput < 0)
867 			panic("vwakeup: neg numoutput");
868 		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
869 			vp->v_flag &= ~VBWAIT;
870 			wakeup((caddr_t) &vp->v_numoutput);
871 		}
872 	}
873 }
874 
875 /*
876  * Flush out and invalidate all buffers associated with a vnode.
877  * Called with the underlying object locked.
878  */
879 int
880 vinvalbuf(struct vnode *vp, int flags, struct thread *td,
881 	int slpflag, int slptimeo)
882 {
883 	struct buf *bp;
884 	struct buf *nbp, *blist;
885 	int s, error;
886 	vm_object_t object;
887 	lwkt_tokref vlock;
888 
889 	if (flags & V_SAVE) {
890 		s = splbio();
891 		while (vp->v_numoutput) {
892 			vp->v_flag |= VBWAIT;
893 			error = tsleep((caddr_t)&vp->v_numoutput,
894 			    slpflag, "vinvlbuf", slptimeo);
895 			if (error) {
896 				splx(s);
897 				return (error);
898 			}
899 		}
900 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
901 			splx(s);
902 			if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
903 				return (error);
904 			s = splbio();
905 			if (vp->v_numoutput > 0 ||
906 			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
907 				panic("vinvalbuf: dirty bufs");
908 		}
909 		splx(s);
910   	}
911 	s = splbio();
912 	for (;;) {
913 		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
914 		if (!blist)
915 			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
916 		if (!blist)
917 			break;
918 
919 		for (bp = blist; bp; bp = nbp) {
920 			nbp = TAILQ_NEXT(bp, b_vnbufs);
921 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
922 				error = BUF_TIMELOCK(bp,
923 				    LK_EXCLUSIVE | LK_SLEEPFAIL,
924 				    "vinvalbuf", slpflag, slptimeo);
925 				if (error == ENOLCK)
926 					break;
927 				splx(s);
928 				return (error);
929 			}
930 			/*
931 			 * XXX Since there are no node locks for NFS, I
932 			 * believe there is a slight chance that a delayed
933 			 * write will occur while sleeping just above, so
934 			 * check for it.  Note that vfs_bio_awrite expects
935 			 * buffers to reside on a queue, while VOP_BWRITE and
936 			 * brelse do not.
937 			 */
938 			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
939 				(flags & V_SAVE)) {
940 
941 				if (bp->b_vp == vp) {
942 					if (bp->b_flags & B_CLUSTEROK) {
943 						BUF_UNLOCK(bp);
944 						vfs_bio_awrite(bp);
945 					} else {
946 						bremfree(bp);
947 						bp->b_flags |= B_ASYNC;
948 						VOP_BWRITE(bp->b_vp, bp);
949 					}
950 				} else {
951 					bremfree(bp);
952 					(void) VOP_BWRITE(bp->b_vp, bp);
953 				}
954 				break;
955 			}
956 			bremfree(bp);
957 			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
958 			bp->b_flags &= ~B_ASYNC;
959 			brelse(bp);
960 		}
961 	}
962 
963 	/*
964 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
965 	 * have write I/O in-progress but if there is a VM object then the
966 	 * VM object can also have read-I/O in-progress.
967 	 */
968 	do {
969 		while (vp->v_numoutput > 0) {
970 			vp->v_flag |= VBWAIT;
971 			tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
972 		}
973 		if (VOP_GETVOBJECT(vp, &object) == 0) {
974 			while (object->paging_in_progress)
975 				vm_object_pip_sleep(object, "vnvlbx");
976 		}
977 	} while (vp->v_numoutput > 0);
978 
979 	splx(s);
980 
981 	/*
982 	 * Destroy the copy in the VM cache, too.
983 	 */
984 	lwkt_gettoken(&vlock, vp->v_interlock);
985 	if (VOP_GETVOBJECT(vp, &object) == 0) {
986 		vm_object_page_remove(object, 0, 0,
987 			(flags & V_SAVE) ? TRUE : FALSE);
988 	}
989 	lwkt_reltoken(&vlock);
990 
991 	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
992 		panic("vinvalbuf: flush failed");
993 	return (0);
994 }
995 
996 /*
997  * Truncate a file's buffer and pages to a specified length.  This
998  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
999  * sync activity.
1000  */
1001 int
1002 vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
1003 {
1004 	struct buf *bp;
1005 	struct buf *nbp;
1006 	int s, anyfreed;
1007 	int trunclbn;
1008 
1009 	/*
1010 	 * Round up to the *next* lbn.
1011 	 */
1012 	trunclbn = (length + blksize - 1) / blksize;
1013 
1014 	s = splbio();
1015 restart:
1016 	anyfreed = 1;
1017 	for (;anyfreed;) {
1018 		anyfreed = 0;
1019 		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1020 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1021 			if (bp->b_lblkno >= trunclbn) {
1022 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1023 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1024 					goto restart;
1025 				} else {
1026 					bremfree(bp);
1027 					bp->b_flags |= (B_INVAL | B_RELBUF);
1028 					bp->b_flags &= ~B_ASYNC;
1029 					brelse(bp);
1030 					anyfreed = 1;
1031 				}
1032 				if (nbp &&
1033 				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1034 				    (nbp->b_vp != vp) ||
1035 				    (nbp->b_flags & B_DELWRI))) {
1036 					goto restart;
1037 				}
1038 			}
1039 		}
1040 
1041 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1042 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1043 			if (bp->b_lblkno >= trunclbn) {
1044 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1045 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1046 					goto restart;
1047 				} else {
1048 					bremfree(bp);
1049 					bp->b_flags |= (B_INVAL | B_RELBUF);
1050 					bp->b_flags &= ~B_ASYNC;
1051 					brelse(bp);
1052 					anyfreed = 1;
1053 				}
1054 				if (nbp &&
1055 				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1056 				    (nbp->b_vp != vp) ||
1057 				    (nbp->b_flags & B_DELWRI) == 0)) {
1058 					goto restart;
1059 				}
1060 			}
1061 		}
1062 	}
1063 
1064 	if (length > 0) {
1065 restartsync:
1066 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1067 			nbp = TAILQ_NEXT(bp, b_vnbufs);
1068 			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1069 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1070 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1071 					goto restart;
1072 				} else {
1073 					bremfree(bp);
1074 					if (bp->b_vp == vp) {
1075 						bp->b_flags |= B_ASYNC;
1076 					} else {
1077 						bp->b_flags &= ~B_ASYNC;
1078 					}
1079 					VOP_BWRITE(bp->b_vp, bp);
1080 				}
1081 				goto restartsync;
1082 			}
1083 
1084 		}
1085 	}
1086 
1087 	while (vp->v_numoutput > 0) {
1088 		vp->v_flag |= VBWAIT;
1089 		tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
1090 	}
1091 
1092 	splx(s);
1093 
1094 	vnode_pager_setsize(vp, length);
1095 
1096 	return (0);
1097 }
1098 
1099 /*
1100  * Associate a buffer with a vnode.
1101  */
1102 void
1103 bgetvp(struct vnode *vp, struct buf *bp)
1104 {
1105 	int s;
1106 
1107 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1108 
1109 	vhold(vp);
1110 	bp->b_vp = vp;
1111 	bp->b_dev = vn_todev(vp);
1112 	/*
1113 	 * Insert onto list for new vnode.
1114 	 */
1115 	s = splbio();
1116 	bp->b_xflags |= BX_VNCLEAN;
1117 	bp->b_xflags &= ~BX_VNDIRTY;
1118 	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1119 	splx(s);
1120 }
1121 
1122 /*
1123  * Disassociate a buffer from a vnode.
1124  */
1125 void
1126 brelvp(struct buf *bp)
1127 {
1128 	struct vnode *vp;
1129 	struct buflists *listheadp;
1130 	int s;
1131 
1132 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1133 
1134 	/*
1135 	 * Delete from old vnode list, if on one.
1136 	 */
1137 	vp = bp->b_vp;
1138 	s = splbio();
1139 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1140 		if (bp->b_xflags & BX_VNDIRTY)
1141 			listheadp = &vp->v_dirtyblkhd;
1142 		else
1143 			listheadp = &vp->v_cleanblkhd;
1144 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1145 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1146 	}
1147 	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1148 		vp->v_flag &= ~VONWORKLST;
1149 		LIST_REMOVE(vp, v_synclist);
1150 	}
1151 	splx(s);
1152 	bp->b_vp = (struct vnode *) 0;
1153 	vdrop(vp);
1154 }
1155 
1156 /*
1157  * The workitem queue.
1158  *
1159  * It is useful to delay writes of file data and filesystem metadata
1160  * for tens of seconds so that quickly created and deleted files need
1161  * not waste disk bandwidth being created and removed. To realize this,
1162  * we append vnodes to a "workitem" queue. When running with a soft
1163  * updates implementation, most pending metadata dependencies should
1164  * not wait for more than a few seconds. Thus, mounted on block devices
1165  * are delayed only about a half the time that file data is delayed.
1166  * Similarly, directory updates are more critical, so are only delayed
1167  * about a third the time that file data is delayed. Thus, there are
1168  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
1169  * one each second (driven off the filesystem syncer process). The
1170  * syncer_delayno variable indicates the next queue that is to be processed.
1171  * Items that need to be processed soon are placed in this queue:
1172  *
1173  *	syncer_workitem_pending[syncer_delayno]
1174  *
1175  * A delay of fifteen seconds is done by placing the request fifteen
1176  * entries later in the queue:
1177  *
1178  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
1179  *
1180  */
1181 
1182 /*
1183  * Add an item to the syncer work queue.
1184  */
1185 static void
1186 vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1187 {
1188 	int s, slot;
1189 
1190 	s = splbio();
1191 
1192 	if (vp->v_flag & VONWORKLST) {
1193 		LIST_REMOVE(vp, v_synclist);
1194 	}
1195 
1196 	if (delay > syncer_maxdelay - 2)
1197 		delay = syncer_maxdelay - 2;
1198 	slot = (syncer_delayno + delay) & syncer_mask;
1199 
1200 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1201 	vp->v_flag |= VONWORKLST;
1202 	splx(s);
1203 }
1204 
1205 struct  thread *updatethread;
1206 static void sched_sync (void);
1207 static struct kproc_desc up_kp = {
1208 	"syncer",
1209 	sched_sync,
1210 	&updatethread
1211 };
1212 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1213 
1214 /*
1215  * System filesystem synchronizer daemon.
1216  */
1217 void
1218 sched_sync(void)
1219 {
1220 	struct synclist *slp;
1221 	struct vnode *vp;
1222 	long starttime;
1223 	int s;
1224 	struct thread *td = curthread;
1225 
1226 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
1227 	    SHUTDOWN_PRI_LAST);
1228 
1229 	for (;;) {
1230 		kproc_suspend_loop();
1231 
1232 		starttime = time_second;
1233 
1234 		/*
1235 		 * Push files whose dirty time has expired.  Be careful
1236 		 * of interrupt race on slp queue.
1237 		 */
1238 		s = splbio();
1239 		slp = &syncer_workitem_pending[syncer_delayno];
1240 		syncer_delayno += 1;
1241 		if (syncer_delayno == syncer_maxdelay)
1242 			syncer_delayno = 0;
1243 		splx(s);
1244 
1245 		while ((vp = LIST_FIRST(slp)) != NULL) {
1246 			if (VOP_ISLOCKED(vp, NULL) == 0) {
1247 				vn_lock(vp, NULL, LK_EXCLUSIVE | LK_RETRY, td);
1248 				(void) VOP_FSYNC(vp, MNT_LAZY, td);
1249 				VOP_UNLOCK(vp, NULL, 0, td);
1250 			}
1251 			s = splbio();
1252 			if (LIST_FIRST(slp) == vp) {
1253 				/*
1254 				 * Note: v_tag VT_VFS vps can remain on the
1255 				 * worklist too with no dirty blocks, but
1256 				 * since sync_fsync() moves it to a different
1257 				 * slot we are safe.
1258 				 */
1259 				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1260 				    !vn_isdisk(vp, NULL))
1261 					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1262 				/*
1263 				 * Put us back on the worklist.  The worklist
1264 				 * routine will remove us from our current
1265 				 * position and then add us back in at a later
1266 				 * position.
1267 				 */
1268 				vn_syncer_add_to_worklist(vp, syncdelay);
1269 			}
1270 			splx(s);
1271 		}
1272 
1273 		/*
1274 		 * Do soft update processing.
1275 		 */
1276 		if (bioops.io_sync)
1277 			(*bioops.io_sync)(NULL);
1278 
1279 		/*
1280 		 * The variable rushjob allows the kernel to speed up the
1281 		 * processing of the filesystem syncer process. A rushjob
1282 		 * value of N tells the filesystem syncer to process the next
1283 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1284 		 * is used by the soft update code to speed up the filesystem
1285 		 * syncer process when the incore state is getting so far
1286 		 * ahead of the disk that the kernel memory pool is being
1287 		 * threatened with exhaustion.
1288 		 */
1289 		if (rushjob > 0) {
1290 			rushjob -= 1;
1291 			continue;
1292 		}
1293 		/*
1294 		 * If it has taken us less than a second to process the
1295 		 * current work, then wait. Otherwise start right over
1296 		 * again. We can still lose time if any single round
1297 		 * takes more than two seconds, but it does not really
1298 		 * matter as we are just trying to generally pace the
1299 		 * filesystem activity.
1300 		 */
1301 		if (time_second == starttime)
1302 			tsleep(&lbolt, 0, "syncer", 0);
1303 	}
1304 }
1305 
1306 /*
1307  * Request the syncer daemon to speed up its work.
1308  * We never push it to speed up more than half of its
1309  * normal turn time, otherwise it could take over the cpu.
1310  *
1311  * YYY wchan field protected by the BGL.
1312  */
1313 int
1314 speedup_syncer(void)
1315 {
1316 	crit_enter();
1317 	if (updatethread->td_wchan == &lbolt) { /* YYY */
1318 		unsleep(updatethread);
1319 		lwkt_schedule(updatethread);
1320 	}
1321 	crit_exit();
1322 	if (rushjob < syncdelay / 2) {
1323 		rushjob += 1;
1324 		stat_rush_requests += 1;
1325 		return (1);
1326 	}
1327 	return(0);
1328 }
1329 
1330 /*
1331  * Associate a p-buffer with a vnode.
1332  *
1333  * Also sets B_PAGING flag to indicate that vnode is not fully associated
1334  * with the buffer.  i.e. the bp has not been linked into the vnode or
1335  * ref-counted.
1336  */
1337 void
1338 pbgetvp(struct vnode *vp, struct buf *bp)
1339 {
1340 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1341 
1342 	bp->b_vp = vp;
1343 	bp->b_flags |= B_PAGING;
1344 	bp->b_dev = vn_todev(vp);
1345 }
1346 
1347 /*
1348  * Disassociate a p-buffer from a vnode.
1349  */
1350 void
1351 pbrelvp(struct buf *bp)
1352 {
1353 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1354 
1355 	/* XXX REMOVE ME */
1356 	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1357 		panic(
1358 		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1359 		    bp,
1360 		    (int)bp->b_flags
1361 		);
1362 	}
1363 	bp->b_vp = (struct vnode *) 0;
1364 	bp->b_flags &= ~B_PAGING;
1365 }
1366 
1367 void
1368 pbreassignbuf(struct buf *bp, struct vnode *newvp)
1369 {
1370 	if ((bp->b_flags & B_PAGING) == 0) {
1371 		panic(
1372 		    "pbreassignbuf() on non phys bp %p",
1373 		    bp
1374 		);
1375 	}
1376 	bp->b_vp = newvp;
1377 }
1378 
1379 /*
1380  * Reassign a buffer from one vnode to another.
1381  * Used to assign file specific control information
1382  * (indirect blocks) to the vnode to which they belong.
1383  */
1384 void
1385 reassignbuf(struct buf *bp, struct vnode *newvp)
1386 {
1387 	struct buflists *listheadp;
1388 	int delay;
1389 	int s;
1390 
1391 	if (newvp == NULL) {
1392 		printf("reassignbuf: NULL");
1393 		return;
1394 	}
1395 	++reassignbufcalls;
1396 
1397 	/*
1398 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1399 	 * is not fully linked in.
1400 	 */
1401 	if (bp->b_flags & B_PAGING)
1402 		panic("cannot reassign paging buffer");
1403 
1404 	s = splbio();
1405 	/*
1406 	 * Delete from old vnode list, if on one.
1407 	 */
1408 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1409 		if (bp->b_xflags & BX_VNDIRTY)
1410 			listheadp = &bp->b_vp->v_dirtyblkhd;
1411 		else
1412 			listheadp = &bp->b_vp->v_cleanblkhd;
1413 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1414 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1415 		if (bp->b_vp != newvp) {
1416 			vdrop(bp->b_vp);
1417 			bp->b_vp = NULL;	/* for clarification */
1418 		}
1419 	}
1420 	/*
1421 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1422 	 * of clean buffers.
1423 	 */
1424 	if (bp->b_flags & B_DELWRI) {
1425 		struct buf *tbp;
1426 
1427 		listheadp = &newvp->v_dirtyblkhd;
1428 		if ((newvp->v_flag & VONWORKLST) == 0) {
1429 			switch (newvp->v_type) {
1430 			case VDIR:
1431 				delay = dirdelay;
1432 				break;
1433 			case VCHR:
1434 			case VBLK:
1435 				if (newvp->v_rdev &&
1436 				    newvp->v_rdev->si_mountpoint != NULL) {
1437 					delay = metadelay;
1438 					break;
1439 				}
1440 				/* fall through */
1441 			default:
1442 				delay = filedelay;
1443 			}
1444 			vn_syncer_add_to_worklist(newvp, delay);
1445 		}
1446 		bp->b_xflags |= BX_VNDIRTY;
1447 		tbp = TAILQ_FIRST(listheadp);
1448 		if (tbp == NULL ||
1449 		    bp->b_lblkno == 0 ||
1450 		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1451 		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1452 			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1453 			++reassignbufsortgood;
1454 		} else if (bp->b_lblkno < 0) {
1455 			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1456 			++reassignbufsortgood;
1457 		} else if (reassignbufmethod == 1) {
1458 			/*
1459 			 * New sorting algorithm, only handle sequential case,
1460 			 * otherwise append to end (but before metadata)
1461 			 */
1462 			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1463 			    (tbp->b_xflags & BX_VNDIRTY)) {
1464 				/*
1465 				 * Found the best place to insert the buffer
1466 				 */
1467 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1468 				++reassignbufsortgood;
1469 			} else {
1470 				/*
1471 				 * Missed, append to end, but before meta-data.
1472 				 * We know that the head buffer in the list is
1473 				 * not meta-data due to prior conditionals.
1474 				 *
1475 				 * Indirect effects:  NFS second stage write
1476 				 * tends to wind up here, giving maximum
1477 				 * distance between the unstable write and the
1478 				 * commit rpc.
1479 				 */
1480 				tbp = TAILQ_LAST(listheadp, buflists);
1481 				while (tbp && tbp->b_lblkno < 0)
1482 					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1483 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1484 				++reassignbufsortbad;
1485 			}
1486 		} else {
1487 			/*
1488 			 * Old sorting algorithm, scan queue and insert
1489 			 */
1490 			struct buf *ttbp;
1491 			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1492 			    (ttbp->b_lblkno < bp->b_lblkno)) {
1493 				++reassignbufloops;
1494 				tbp = ttbp;
1495 			}
1496 			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1497 		}
1498 	} else {
1499 		bp->b_xflags |= BX_VNCLEAN;
1500 		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1501 		if ((newvp->v_flag & VONWORKLST) &&
1502 		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1503 			newvp->v_flag &= ~VONWORKLST;
1504 			LIST_REMOVE(newvp, v_synclist);
1505 		}
1506 	}
1507 	if (bp->b_vp != newvp) {
1508 		bp->b_vp = newvp;
1509 		vhold(bp->b_vp);
1510 	}
1511 	splx(s);
1512 }
1513 
1514 /*
1515  * Create a vnode for a block device.
1516  * Used for mounting the root file system.
1517  */
1518 int
1519 bdevvp(dev_t dev, struct vnode **vpp)
1520 {
1521 	struct vnode *vp;
1522 	struct vnode *nvp;
1523 	int error;
1524 
1525 	if (dev == NODEV) {
1526 		*vpp = NULLVP;
1527 		return (ENXIO);
1528 	}
1529 	error = getnewvnode(VT_NON, NULL, spec_vnode_vops, &nvp, 0, 0);
1530 	if (error) {
1531 		*vpp = NULLVP;
1532 		return (error);
1533 	}
1534 	vp = nvp;
1535 	vp->v_type = VCHR;
1536 	vp->v_udev = dev->si_udev;
1537 	*vpp = vp;
1538 	return (0);
1539 }
1540 
1541 int
1542 v_associate_rdev(struct vnode *vp, dev_t dev)
1543 {
1544 	lwkt_tokref ilock;
1545 
1546 	if (dev == NULL || dev == NODEV)
1547 		return(ENXIO);
1548 	if (dev_is_good(dev) == 0)
1549 		return(ENXIO);
1550 	KKASSERT(vp->v_rdev == NULL);
1551 	if (dev_ref_debug)
1552 		printf("Z1");
1553 	vp->v_rdev = reference_dev(dev);
1554 	lwkt_gettoken(&ilock, &spechash_token);
1555 	SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
1556 	lwkt_reltoken(&ilock);
1557 	return(0);
1558 }
1559 
1560 void
1561 v_release_rdev(struct vnode *vp)
1562 {
1563 	lwkt_tokref ilock;
1564 	dev_t dev;
1565 
1566 	if ((dev = vp->v_rdev) != NULL) {
1567 		lwkt_gettoken(&ilock, &spechash_token);
1568 		SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
1569 		if (dev_ref_debug && vp->v_opencount != 0) {
1570 			printf("releasing rdev with non-0 "
1571 				"v_opencount(%d) (revoked?)\n",
1572 				vp->v_opencount);
1573 		}
1574 		vp->v_rdev = NULL;
1575 		vp->v_opencount = 0;
1576 		release_dev(dev);
1577 		lwkt_reltoken(&ilock);
1578 	}
1579 }
1580 
1581 /*
1582  * Add a vnode to the alias list hung off the dev_t.  We only associate
1583  * the device number with the vnode.  The actual device is not associated
1584  * until the vnode is opened (usually in spec_open()), and will be
1585  * disassociated on last close.
1586  */
1587 void
1588 addaliasu(struct vnode *nvp, udev_t nvp_udev)
1589 {
1590 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1591 		panic("addaliasu on non-special vnode");
1592 	nvp->v_udev = nvp_udev;
1593 }
1594 
1595 /*
1596  * Grab a particular vnode from the free list, increment its
1597  * reference count and lock it. The vnode lock bit is set if the
1598  * vnode is being eliminated in vgone. The process is awakened
1599  * when the transition is completed, and an error returned to
1600  * indicate that the vnode is no longer usable (possibly having
1601  * been changed to a new file system type).
1602  *
1603  * This code is very sensitive.  We are depending on the vnode interlock
1604  * to be maintained through to the vn_lock() call, which means that we
1605  * cannot block which means that we cannot call vbusy() until after vn_lock().
1606  * If the interlock is not maintained, the VXLOCK check will not properly
1607  * interlock against a vclean()'s LK_DRAIN operation on the lock.
1608  */
1609 int
1610 vget(struct vnode *vp, lwkt_tokref_t vlock, int flags, thread_t td)
1611 {
1612 	int error;
1613 	lwkt_tokref vvlock;
1614 
1615 	/*
1616 	 * We need the interlock to safely modify the v_ fields.  ZZZ it is
1617 	 * only legal to pass (1) the vnode's interlock and (2) only pass
1618 	 * NULL w/o LK_INTERLOCK if the vnode is *ALREADY* referenced or
1619 	 * held.
1620 	 */
1621 	if ((flags & LK_INTERLOCK) == 0) {
1622 		lwkt_gettoken(&vvlock, vp->v_interlock);
1623 		vlock = &vvlock;
1624 	}
1625 
1626 	/*
1627 	 * If the vnode is in the process of being cleaned out for
1628 	 * another use, we wait for the cleaning to finish and then
1629 	 * return failure. Cleaning is determined by checking that
1630 	 * the VXLOCK flag is set.  It is possible for the vnode to be
1631 	 * self-referenced during the cleaning operation.
1632 	 */
1633 	if (vp->v_flag & VXLOCK) {
1634 		if (vp->v_vxthread == curthread) {
1635 #if 0
1636 			/* this can now occur in normal operation */
1637 			log(LOG_INFO, "VXLOCK interlock avoided\n");
1638 #endif
1639 		} else {
1640 			vp->v_flag |= VXWANT;
1641 			lwkt_reltoken(vlock);
1642 			tsleep((caddr_t)vp, 0, "vget", 0);
1643 			return (ENOENT);
1644 		}
1645 	}
1646 
1647 	/*
1648 	 * Bump v_usecount to prevent the vnode from being recycled.  The
1649 	 * usecount needs to be bumped before we successfully get our lock.
1650 	 */
1651 	vp->v_usecount++;
1652 	if (flags & LK_TYPE_MASK) {
1653 		if ((error = vn_lock(vp, vlock, flags | LK_INTERLOCK, td)) != 0) {
1654 			/*
1655 			 * must expand vrele here because we do not want
1656 			 * to call VOP_INACTIVE if the reference count
1657 			 * drops back to zero since it was never really
1658 			 * active. We must remove it from the free list
1659 			 * before sleeping so that multiple processes do
1660 			 * not try to recycle it.
1661 			 */
1662 			lwkt_gettokref(vlock);
1663 			vp->v_usecount--;
1664 			vmaybefree(vp);
1665 			lwkt_reltoken(vlock);
1666 		}
1667 		return (error);
1668 	}
1669 	if (VSHOULDBUSY(vp))
1670 		vbusy(vp);	/* interlock must be held on call */
1671 	lwkt_reltoken(vlock);
1672 	return (0);
1673 }
1674 
1675 void
1676 vref(struct vnode *vp)
1677 {
1678 	crit_enter();	/* YYY use crit section for moment / BGL protected */
1679 	vp->v_usecount++;
1680 	crit_exit();
1681 }
1682 
1683 /*
1684  * Release a usecount on a vnode.  This routine does not call unlock on the
1685  * vnode.
1686  *
1687  * If the usecount drops to zero, call the inactive routine and return the
1688  * vnode to the freelist.
1689  */
1690 void
1691 vrele(struct vnode *vp)
1692 {
1693 	struct thread *td = curthread;	/* XXX */
1694 	lwkt_tokref vlock;
1695 
1696 	KASSERT(vp != NULL && vp->v_usecount >= 0,
1697 	    ("vrele: null vp or <=0 v_usecount"));
1698 
1699 	lwkt_gettoken(&vlock, vp->v_interlock);
1700 
1701 	if (vp->v_usecount > 1) {
1702 		vp->v_usecount--;
1703 		lwkt_reltoken(&vlock);
1704 		return;
1705 	}
1706 
1707 	if (vp->v_usecount == 1) {
1708 		vp->v_usecount--;
1709 		/*
1710 		 * We must call VOP_INACTIVE with the node locked and the
1711 		 * usecount 0.  If we are doing a vpu, the node is already
1712 		 * locked, but, in the case of vrele, we must explicitly lock
1713 		 * the vnode before calling VOP_INACTIVE.
1714 		 */
1715 
1716 		if (vn_lock(vp, NULL, LK_EXCLUSIVE, td) == 0)
1717 			VOP_INACTIVE(vp, td);
1718 		vmaybefree(vp);
1719 		lwkt_reltoken(&vlock);
1720 	} else {
1721 #ifdef DIAGNOSTIC
1722 		vprint("vrele: negative ref count", vp);
1723 #endif
1724 		lwkt_reltoken(&vlock);
1725 		panic("vrele: negative ref cnt");
1726 	}
1727 }
1728 
1729 /*
1730  * Release a usecount on a vnode.  This routine does not call unlock on the
1731  * vnode.   No action is taken if the usecount drops to zero.  This routine
1732  * is typically called only from within a *_inactive() procedure to avoid
1733  * recursing the procedure.
1734  */
1735 void
1736 vrele_noinactive(struct vnode *vp)
1737 {
1738 	struct thread *td = curthread;	/* XXX */
1739 	lwkt_tokref vlock;
1740 
1741 	KASSERT(vp != NULL && vp->v_usecount >= 0,
1742 	    ("vrele: null vp or <=0 v_usecount"));
1743 
1744 	lwkt_gettoken(&vlock, vp->v_interlock);
1745 	vp->v_usecount--;
1746 	lwkt_reltoken(&vlock);
1747 }
1748 
1749 /*
1750  * Unlock a vnode and release a usecount on it, inactivating the vnode if
1751  * the count drops to 0.
1752  */
1753 void
1754 vput(struct vnode *vp)
1755 {
1756 	struct thread *td = curthread;	/* XXX */
1757 	lwkt_tokref vlock;
1758 
1759 	KASSERT(vp != NULL, ("vput: null vp"));
1760 
1761 	lwkt_gettoken(&vlock, vp->v_interlock);
1762 
1763 	if (vp->v_usecount > 1) {
1764 		vp->v_usecount--;
1765 		VOP_UNLOCK(vp, &vlock, LK_INTERLOCK, td);
1766 		return;
1767 	}
1768 
1769 	if (vp->v_usecount == 1) {
1770 		vp->v_usecount--;
1771 		/*
1772 		 * We must call VOP_INACTIVE with the node locked.
1773 		 * If we are doing a vpu, the node is already locked,
1774 		 * so we just need to release the vnode mutex.
1775 		 */
1776 		VOP_INACTIVE(vp, td);
1777 		vmaybefree(vp);
1778 		lwkt_reltoken(&vlock);
1779 	} else {
1780 #ifdef DIAGNOSTIC
1781 		vprint("vput: negative ref count", vp);
1782 #endif
1783 		lwkt_reltoken(&vlock);
1784 		panic("vput: negative ref cnt");
1785 	}
1786 }
1787 
1788 /*
1789  * Somebody doesn't want the vnode recycled. ZZZ vnode interlock should
1790  * be held but isn't.
1791  */
1792 void
1793 vhold(struct vnode *vp)
1794 {
1795 	int s;
1796 
1797   	s = splbio();
1798 	vp->v_holdcnt++;
1799 	if (VSHOULDBUSY(vp))
1800 		vbusy(vp);	/* interlock must be held on call */
1801 	splx(s);
1802 }
1803 
1804 /*
1805  * One less who cares about this vnode.
1806  */
1807 void
1808 vdrop(struct vnode *vp)
1809 {
1810 	lwkt_tokref vlock;
1811 
1812 	lwkt_gettoken(&vlock, vp->v_interlock);
1813 	if (vp->v_holdcnt <= 0)
1814 		panic("vdrop: holdcnt");
1815 	vp->v_holdcnt--;
1816 	vmaybefree(vp);
1817 	lwkt_reltoken(&vlock);
1818 }
1819 
1820 int
1821 vmntvnodescan(
1822     struct mount *mp,
1823     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
1824     int (*slowfunc)(struct mount *mp, struct vnode *vp,
1825 		    lwkt_tokref_t vlock, void *data),
1826     void *data
1827 ) {
1828 	lwkt_tokref ilock;
1829 	lwkt_tokref vlock;
1830 	struct vnode *pvp;
1831 	struct vnode *vp;
1832 	int r = 0;
1833 
1834 	/*
1835 	 * Scan the vnodes on the mount's vnode list.  Use a placemarker
1836 	 */
1837 	pvp = zalloc(vnode_zone);
1838 	pvp->v_flag |= VPLACEMARKER;
1839 
1840 	lwkt_gettoken(&ilock, &mntvnode_token);
1841 	TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1842 
1843 	while ((vp = TAILQ_NEXT(pvp, v_nmntvnodes)) != NULL) {
1844 		/*
1845 		 * Move the placemarker and skip other placemarkers we
1846 		 * encounter.  The nothing can get in our way so the
1847 		 * mount point on the vp must be valid.
1848 		 */
1849 		TAILQ_REMOVE(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1850 		TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, pvp, v_nmntvnodes);
1851 		if (vp->v_flag & VPLACEMARKER)
1852 			continue;
1853 		KKASSERT(vp->v_mount == mp);
1854 
1855 		/*
1856 		 * Quick test
1857 		 */
1858 		if (fastfunc) {
1859 			if ((r = fastfunc(mp, vp, data)) < 0)
1860 				continue;
1861 			if (r)
1862 				break;
1863 		}
1864 
1865 		/*
1866 		 * Get the vnodes interlock and make sure it is still on the
1867 		 * mount list.  Skip it if it has moved (we may encounter it
1868 		 * later).  Then do the with-interlock test.  The callback
1869 		 * is responsible for releasing the vnode interlock.
1870 		 *
1871 		 * The interlock is type-stable.
1872 		 */
1873 		if (slowfunc) {
1874 			lwkt_gettoken(&vlock, vp->v_interlock);
1875 			if (vp != TAILQ_PREV(pvp, vnodelst, v_nmntvnodes)) {
1876 				printf("vmntvnodescan (debug info only): f=%p vp=%p vnode ripped out from under us\n", slowfunc, vp);
1877 				lwkt_reltoken(&vlock);
1878 				continue;
1879 			}
1880 			if ((r = slowfunc(mp, vp, &vlock, data)) != 0) {
1881 				KKASSERT(lwkt_havetokref(&vlock) == 0);
1882 				break;
1883 			}
1884 			KKASSERT(lwkt_havetokref(&vlock) == 0);
1885 		}
1886 	}
1887 	TAILQ_REMOVE(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1888 	zfree(vnode_zone, pvp);
1889 	lwkt_reltoken(&ilock);
1890 	return(r);
1891 }
1892 
1893 /*
1894  * Remove any vnodes in the vnode table belonging to mount point mp.
1895  *
1896  * If FORCECLOSE is not specified, there should not be any active ones,
1897  * return error if any are found (nb: this is a user error, not a
1898  * system error). If FORCECLOSE is specified, detach any active vnodes
1899  * that are found.
1900  *
1901  * If WRITECLOSE is set, only flush out regular file vnodes open for
1902  * writing.
1903  *
1904  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1905  *
1906  * `rootrefs' specifies the base reference count for the root vnode
1907  * of this filesystem. The root vnode is considered busy if its
1908  * v_usecount exceeds this value. On a successful return, vflush()
1909  * will call vrele() on the root vnode exactly rootrefs times.
1910  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1911  * be zero.
1912  */
1913 #ifdef DIAGNOSTIC
1914 static int busyprt = 0;		/* print out busy vnodes */
1915 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1916 #endif
1917 
1918 static int vflush_scan(struct mount *mp, struct vnode *vp,
1919 			lwkt_tokref_t vlock, void *data);
1920 
1921 struct vflush_info {
1922 	int flags;
1923 	int busy;
1924 	thread_t td;
1925 };
1926 
1927 int
1928 vflush(struct mount *mp, int rootrefs, int flags)
1929 {
1930 	struct thread *td = curthread;	/* XXX */
1931 	struct vnode *rootvp = NULL;
1932 	int error;
1933 	lwkt_tokref vlock;
1934 	struct vflush_info vflush_info;
1935 
1936 	if (rootrefs > 0) {
1937 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1938 		    ("vflush: bad args"));
1939 		/*
1940 		 * Get the filesystem root vnode. We can vput() it
1941 		 * immediately, since with rootrefs > 0, it won't go away.
1942 		 */
1943 		if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1944 			return (error);
1945 		vput(rootvp);
1946 	}
1947 
1948 	vflush_info.busy = 0;
1949 	vflush_info.flags = flags;
1950 	vflush_info.td = td;
1951 	vmntvnodescan(mp, NULL, vflush_scan, &vflush_info);
1952 
1953 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1954 		/*
1955 		 * If just the root vnode is busy, and if its refcount
1956 		 * is equal to `rootrefs', then go ahead and kill it.
1957 		 */
1958 		lwkt_gettoken(&vlock, rootvp->v_interlock);
1959 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1960 		KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
1961 		if (vflush_info.busy == 1 && rootvp->v_usecount == rootrefs) {
1962 			vgonel(rootvp, &vlock, td);
1963 			vflush_info.busy = 0;
1964 		} else {
1965 			lwkt_reltoken(&vlock);
1966 		}
1967 	}
1968 	if (vflush_info.busy)
1969 		return (EBUSY);
1970 	for (; rootrefs > 0; rootrefs--)
1971 		vrele(rootvp);
1972 	return (0);
1973 }
1974 
1975 /*
1976  * The scan callback is made with an interlocked vnode.
1977  */
1978 static int
1979 vflush_scan(struct mount *mp, struct vnode *vp,
1980 	    lwkt_tokref_t vlock, void *data)
1981 {
1982 	struct vflush_info *info = data;
1983 	struct vattr vattr;
1984 
1985 	/*
1986 	 * Skip over a vnodes marked VSYSTEM.
1987 	 */
1988 	if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1989 		lwkt_reltoken(vlock);
1990 		return(0);
1991 	}
1992 
1993 	/*
1994 	 * If WRITECLOSE is set, flush out unlinked but still open
1995 	 * files (even if open only for reading) and regular file
1996 	 * vnodes open for writing.
1997 	 */
1998 	if ((info->flags & WRITECLOSE) &&
1999 	    (vp->v_type == VNON ||
2000 	    (VOP_GETATTR(vp, &vattr, info->td) == 0 &&
2001 	    vattr.va_nlink > 0)) &&
2002 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2003 		lwkt_reltoken(vlock);
2004 		return(0);
2005 	}
2006 
2007 	/*
2008 	 * With v_usecount == 0, all we need to do is clear out the
2009 	 * vnode data structures and we are done.
2010 	 */
2011 	if (vp->v_usecount == 0) {
2012 		vgonel(vp, vlock, info->td);
2013 		return(0);
2014 	}
2015 
2016 	/*
2017 	 * If FORCECLOSE is set, forcibly close the vnode. For block
2018 	 * or character devices, revert to an anonymous device. For
2019 	 * all other files, just kill them.
2020 	 */
2021 	if (info->flags & FORCECLOSE) {
2022 		if (vp->v_type != VBLK && vp->v_type != VCHR) {
2023 			vgonel(vp, vlock, info->td);
2024 		} else {
2025 			vclean(vp, vlock, 0, info->td);
2026 			vp->v_ops = spec_vnode_vops;
2027 			insmntque(vp, (struct mount *) 0);
2028 		}
2029 		return(0);
2030 	}
2031 #ifdef DIAGNOSTIC
2032 	if (busyprt)
2033 		vprint("vflush: busy vnode", vp);
2034 #endif
2035 	lwkt_reltoken(vlock);
2036 	++info->busy;
2037 	return(0);
2038 }
2039 
2040 /*
2041  * Disassociate the underlying file system from a vnode.
2042  */
2043 static void
2044 vclean(struct vnode *vp, lwkt_tokref_t vlock, int flags, struct thread *td)
2045 {
2046 	int active;
2047 
2048 	/*
2049 	 * Check to see if the vnode is in use. If so we have to reference it
2050 	 * before we clean it out so that its count cannot fall to zero and
2051 	 * generate a race against ourselves to recycle it.
2052 	 */
2053 	if ((active = vp->v_usecount))
2054 		vp->v_usecount++;
2055 
2056 	/*
2057 	 * Prevent the vnode from being recycled or brought into use while we
2058 	 * clean it out.
2059 	 */
2060 	if (vp->v_flag & VXLOCK)
2061 		panic("vclean: deadlock");
2062 	vp->v_flag |= VXLOCK;
2063 	vp->v_vxthread = curthread;
2064 
2065 	/*
2066 	 * Even if the count is zero, the VOP_INACTIVE routine may still
2067 	 * have the object locked while it cleans it out. The VOP_LOCK
2068 	 * ensures that the VOP_INACTIVE routine is done with its work.
2069 	 * For active vnodes, it ensures that no other activity can
2070 	 * occur while the underlying object is being cleaned out.
2071 	 *
2072 	 * NOTE: we continue to hold the vnode interlock through to the
2073 	 * end of vclean().
2074 	 */
2075 	VOP_LOCK(vp, NULL, LK_DRAIN, td);
2076 
2077 	/*
2078 	 * Clean out any buffers associated with the vnode.
2079 	 */
2080 	vinvalbuf(vp, V_SAVE, td, 0, 0);
2081 	VOP_DESTROYVOBJECT(vp);
2082 
2083 	/*
2084 	 * If purging an active vnode, it must be closed and
2085 	 * deactivated before being reclaimed. Note that the
2086 	 * VOP_INACTIVE will unlock the vnode.
2087 	 */
2088 	if (active) {
2089 		if (flags & DOCLOSE)
2090 			VOP_CLOSE(vp, FNONBLOCK, td);
2091 		VOP_INACTIVE(vp, td);
2092 	} else {
2093 		/*
2094 		 * Any other processes trying to obtain this lock must first
2095 		 * wait for VXLOCK to clear, then call the new lock operation.
2096 		 */
2097 		VOP_UNLOCK(vp, NULL, 0, td);
2098 	}
2099 	/*
2100 	 * Reclaim the vnode.
2101 	 */
2102 	if (VOP_RECLAIM(vp, td))
2103 		panic("vclean: cannot reclaim");
2104 
2105 	if (active) {
2106 		/*
2107 		 * Inline copy of vrele() since VOP_INACTIVE
2108 		 * has already been called.
2109 		 */
2110 		if (--vp->v_usecount <= 0) {
2111 #ifdef DIAGNOSTIC
2112 			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2113 				vprint("vclean: bad ref count", vp);
2114 				panic("vclean: ref cnt");
2115 			}
2116 #endif
2117 			vfree(vp);
2118 		}
2119 	}
2120 
2121 	cache_purge(vp);
2122 	vmaybefree(vp);
2123 
2124 	/*
2125 	 * Done with purge, notify sleepers of the grim news.
2126 	 */
2127 	vp->v_ops = dead_vnode_vops;
2128 	vn_pollgone(vp);
2129 	vp->v_tag = VT_NON;
2130 	vp->v_flag &= ~VXLOCK;
2131 	vp->v_vxthread = NULL;
2132 	if (vp->v_flag & VXWANT) {
2133 		vp->v_flag &= ~VXWANT;
2134 		wakeup((caddr_t) vp);
2135 	}
2136 	lwkt_reltoken(vlock);
2137 }
2138 
2139 /*
2140  * Eliminate all activity associated with the requested vnode
2141  * and with all vnodes aliased to the requested vnode.
2142  *
2143  * revoke { struct vnode *a_vp, int a_flags }
2144  */
2145 int
2146 vop_stdrevoke(struct vop_revoke_args *ap)
2147 {
2148 	struct vnode *vp, *vq;
2149 	lwkt_tokref ilock;
2150 	dev_t dev;
2151 
2152 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2153 
2154 	vp = ap->a_vp;
2155 	/*
2156 	 * If a vgone (or vclean) is already in progress,
2157 	 * wait until it is done and return.
2158 	 */
2159 	if (vp->v_flag & VXLOCK) {
2160 		vp->v_flag |= VXWANT;
2161 		/*lwkt_reltoken(vlock); ZZZ */
2162 		tsleep((caddr_t)vp, 0, "vop_revokeall", 0);
2163 		return (0);
2164 	}
2165 
2166 	/*
2167 	 * If the vnode has a device association, scrap all vnodes associated
2168 	 * with the device.  Don't let the device disappear on us while we
2169 	 * are scrapping the vnodes.
2170 	 */
2171 	if (vp->v_type != VCHR && vp->v_type != VBLK)
2172 		return(0);
2173 	if ((dev = vp->v_rdev) == NULL) {
2174 		if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
2175 			return(0);
2176 	}
2177 	reference_dev(dev);
2178 	for (;;) {
2179 		lwkt_gettoken(&ilock, &spechash_token);
2180 		vq = SLIST_FIRST(&dev->si_hlist);
2181 		lwkt_reltoken(&ilock);
2182 		if (vq == NULL)
2183 			break;
2184 		vgone(vq);
2185 	}
2186 	release_dev(dev);
2187 	return (0);
2188 }
2189 
2190 /*
2191  * Recycle an unused vnode to the front of the free list.
2192  * Release the passed interlock if the vnode will be recycled.
2193  */
2194 int
2195 vrecycle(struct vnode *vp, lwkt_tokref_t inter_lkp, struct thread *td)
2196 {
2197 	lwkt_tokref vlock;
2198 
2199 	lwkt_gettoken(&vlock, vp->v_interlock);
2200 	if (vp->v_usecount == 0) {
2201 		if (inter_lkp)
2202 			lwkt_reltoken(inter_lkp);
2203 		vgonel(vp, &vlock, td);
2204 		return (1);
2205 	}
2206 	lwkt_reltoken(&vlock);
2207 	return (0);
2208 }
2209 
2210 /*
2211  * Eliminate all activity associated with a vnode
2212  * in preparation for reuse.
2213  */
2214 void
2215 vgone(struct vnode *vp)
2216 {
2217 	struct thread *td = curthread;	/* XXX */
2218 	lwkt_tokref vlock;
2219 
2220 	lwkt_gettoken(&vlock, vp->v_interlock);
2221 	vgonel(vp, &vlock, td);
2222 }
2223 
2224 /*
2225  * vgone, with the vp interlock held.
2226  */
2227 void
2228 vgonel(struct vnode *vp, lwkt_tokref_t vlock, struct thread *td)
2229 {
2230 	lwkt_tokref ilock;
2231 	int s;
2232 
2233 	/*
2234 	 * If a vgone (or vclean) is already in progress,
2235 	 * wait until it is done and return.
2236 	 */
2237 	if (vp->v_flag & VXLOCK) {
2238 		vp->v_flag |= VXWANT;
2239 		lwkt_reltoken(vlock);
2240 		tsleep((caddr_t)vp, 0, "vgone", 0);
2241 		return;
2242 	}
2243 
2244 	/*
2245 	 * Clean out the filesystem specific data.
2246 	 */
2247 	vclean(vp, vlock, DOCLOSE, td);
2248 	lwkt_gettokref(vlock);
2249 
2250 	/*
2251 	 * Delete from old mount point vnode list, if on one.
2252 	 */
2253 	if (vp->v_mount != NULL)
2254 		insmntque(vp, (struct mount *)0);
2255 
2256 	/*
2257 	 * If special device, remove it from special device alias list
2258 	 * if it is on one.  This should normally only occur if a vnode is
2259 	 * being revoked as the device should otherwise have been released
2260 	 * naturally.
2261 	 */
2262 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
2263 		v_release_rdev(vp);
2264 	}
2265 
2266 	/*
2267 	 * If it is on the freelist and not already at the head,
2268 	 * move it to the head of the list. The test of the
2269 	 * VDOOMED flag and the reference count of zero is because
2270 	 * it will be removed from the free list by getnewvnode,
2271 	 * but will not have its reference count incremented until
2272 	 * after calling vgone. If the reference count were
2273 	 * incremented first, vgone would (incorrectly) try to
2274 	 * close the previous instance of the underlying object.
2275 	 */
2276 	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2277 		s = splbio();
2278 		lwkt_gettoken(&ilock, &vnode_free_list_token);
2279 		if (vp->v_flag & VFREE)
2280 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2281 		else
2282 			freevnodes++;
2283 		vp->v_flag |= VFREE;
2284 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2285 		lwkt_reltoken(&ilock);
2286 		splx(s);
2287 	}
2288 	vp->v_type = VBAD;
2289 	lwkt_reltoken(vlock);
2290 }
2291 
2292 /*
2293  * Lookup a vnode by device number.
2294  */
2295 int
2296 vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
2297 {
2298 	lwkt_tokref ilock;
2299 	struct vnode *vp;
2300 
2301 	lwkt_gettoken(&ilock, &spechash_token);
2302 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2303 		if (type == vp->v_type) {
2304 			*vpp = vp;
2305 			lwkt_reltoken(&ilock);
2306 			return (1);
2307 		}
2308 	}
2309 	lwkt_reltoken(&ilock);
2310 	return (0);
2311 }
2312 
2313 /*
2314  * Calculate the total number of references to a special device.  This
2315  * routine may only be called for VBLK and VCHR vnodes since v_rdev is
2316  * an overloaded field.  Since udev2dev can now return NODEV, we have
2317  * to check for a NULL v_rdev.
2318  */
2319 int
2320 count_dev(dev_t dev)
2321 {
2322 	lwkt_tokref ilock;
2323 	struct vnode *vp;
2324 	int count = 0;
2325 
2326 	if (SLIST_FIRST(&dev->si_hlist)) {
2327 		lwkt_gettoken(&ilock, &spechash_token);
2328 		SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2329 			count += vp->v_usecount;
2330 		}
2331 		lwkt_reltoken(&ilock);
2332 	}
2333 	return(count);
2334 }
2335 
2336 int
2337 count_udev(udev_t udev)
2338 {
2339 	dev_t dev;
2340 
2341 	if ((dev = udev2dev(udev, 0)) == NODEV)
2342 		return(0);
2343 	return(count_dev(dev));
2344 }
2345 
2346 int
2347 vcount(struct vnode *vp)
2348 {
2349 	if (vp->v_rdev == NULL)
2350 		return(0);
2351 	return(count_dev(vp->v_rdev));
2352 }
2353 
2354 /*
2355  * Print out a description of a vnode.
2356  */
2357 static char *typename[] =
2358 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2359 
2360 void
2361 vprint(char *label, struct vnode *vp)
2362 {
2363 	char buf[96];
2364 
2365 	if (label != NULL)
2366 		printf("%s: %p: ", label, (void *)vp);
2367 	else
2368 		printf("%p: ", (void *)vp);
2369 	printf("type %s, usecount %d, writecount %d, refcount %d,",
2370 	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2371 	    vp->v_holdcnt);
2372 	buf[0] = '\0';
2373 	if (vp->v_flag & VROOT)
2374 		strcat(buf, "|VROOT");
2375 	if (vp->v_flag & VTEXT)
2376 		strcat(buf, "|VTEXT");
2377 	if (vp->v_flag & VSYSTEM)
2378 		strcat(buf, "|VSYSTEM");
2379 	if (vp->v_flag & VXLOCK)
2380 		strcat(buf, "|VXLOCK");
2381 	if (vp->v_flag & VXWANT)
2382 		strcat(buf, "|VXWANT");
2383 	if (vp->v_flag & VBWAIT)
2384 		strcat(buf, "|VBWAIT");
2385 	if (vp->v_flag & VDOOMED)
2386 		strcat(buf, "|VDOOMED");
2387 	if (vp->v_flag & VFREE)
2388 		strcat(buf, "|VFREE");
2389 	if (vp->v_flag & VOBJBUF)
2390 		strcat(buf, "|VOBJBUF");
2391 	if (buf[0] != '\0')
2392 		printf(" flags (%s)", &buf[1]);
2393 	if (vp->v_data == NULL) {
2394 		printf("\n");
2395 	} else {
2396 		printf("\n\t");
2397 		VOP_PRINT(vp);
2398 	}
2399 }
2400 
2401 #ifdef DDB
2402 #include <ddb/ddb.h>
2403 /*
2404  * List all of the locked vnodes in the system.
2405  * Called when debugging the kernel.
2406  */
2407 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2408 {
2409 	struct thread *td = curthread;	/* XXX */
2410 	lwkt_tokref ilock;
2411 	struct mount *mp, *nmp;
2412 	struct vnode *vp;
2413 
2414 	printf("Locked vnodes\n");
2415 	lwkt_gettoken(&ilock, &mountlist_token);
2416 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2417 		if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
2418 			nmp = TAILQ_NEXT(mp, mnt_list);
2419 			continue;
2420 		}
2421 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2422 			if (VOP_ISLOCKED(vp, NULL))
2423 				vprint((char *)0, vp);
2424 		}
2425 		lwkt_gettokref(&ilock);
2426 		nmp = TAILQ_NEXT(mp, mnt_list);
2427 		vfs_unbusy(mp, td);
2428 	}
2429 	lwkt_reltoken(&ilock);
2430 }
2431 #endif
2432 
2433 /*
2434  * Top level filesystem related information gathering.
2435  */
2436 static int	sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
2437 
2438 static int
2439 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2440 {
2441 	int *name = (int *)arg1 - 1;	/* XXX */
2442 	u_int namelen = arg2 + 1;	/* XXX */
2443 	struct vfsconf *vfsp;
2444 
2445 #if 1 || defined(COMPAT_PRELITE2)
2446 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2447 	if (namelen == 1)
2448 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2449 #endif
2450 
2451 #ifdef notyet
2452 	/* all sysctl names at this level are at least name and field */
2453 	if (namelen < 2)
2454 		return (ENOTDIR);		/* overloaded */
2455 	if (name[0] != VFS_GENERIC) {
2456 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2457 			if (vfsp->vfc_typenum == name[0])
2458 				break;
2459 		if (vfsp == NULL)
2460 			return (EOPNOTSUPP);
2461 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2462 		    oldp, oldlenp, newp, newlen, p));
2463 	}
2464 #endif
2465 	switch (name[1]) {
2466 	case VFS_MAXTYPENUM:
2467 		if (namelen != 2)
2468 			return (ENOTDIR);
2469 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2470 	case VFS_CONF:
2471 		if (namelen != 3)
2472 			return (ENOTDIR);	/* overloaded */
2473 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2474 			if (vfsp->vfc_typenum == name[2])
2475 				break;
2476 		if (vfsp == NULL)
2477 			return (EOPNOTSUPP);
2478 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2479 	}
2480 	return (EOPNOTSUPP);
2481 }
2482 
2483 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2484 	"Generic filesystem");
2485 
2486 #if 1 || defined(COMPAT_PRELITE2)
2487 
2488 static int
2489 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2490 {
2491 	int error;
2492 	struct vfsconf *vfsp;
2493 	struct ovfsconf ovfs;
2494 
2495 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2496 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2497 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2498 		ovfs.vfc_index = vfsp->vfc_typenum;
2499 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2500 		ovfs.vfc_flags = vfsp->vfc_flags;
2501 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2502 		if (error)
2503 			return error;
2504 	}
2505 	return 0;
2506 }
2507 
2508 #endif /* 1 || COMPAT_PRELITE2 */
2509 
2510 #if 0
2511 #define KINFO_VNODESLOP	10
2512 /*
2513  * Dump vnode list (via sysctl).
2514  * Copyout address of vnode followed by vnode.
2515  */
2516 /* ARGSUSED */
2517 static int
2518 sysctl_vnode(SYSCTL_HANDLER_ARGS)
2519 {
2520 	struct proc *p = curproc;	/* XXX */
2521 	struct mount *mp, *nmp;
2522 	struct vnode *nvp, *vp;
2523 	lwkt_tokref ilock;
2524 	lwkt_tokref jlock;
2525 	int error;
2526 
2527 #define VPTRSZ	sizeof (struct vnode *)
2528 #define VNODESZ	sizeof (struct vnode)
2529 
2530 	req->lock = 0;
2531 	if (!req->oldptr) /* Make an estimate */
2532 		return (SYSCTL_OUT(req, 0,
2533 			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2534 
2535 	lwkt_gettoken(&ilock, &mountlist_token);
2536 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2537 		if (vfs_busy(mp, LK_NOWAIT, &ilock, p)) {
2538 			nmp = TAILQ_NEXT(mp, mnt_list);
2539 			continue;
2540 		}
2541 		lwkt_gettoken(&jlock, &mntvnode_token);
2542 again:
2543 		for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
2544 		     vp != NULL;
2545 		     vp = nvp) {
2546 			/*
2547 			 * Check that the vp is still associated with
2548 			 * this filesystem.  RACE: could have been
2549 			 * recycled onto the same filesystem.
2550 			 */
2551 			if (vp->v_mount != mp)
2552 				goto again;
2553 			nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2554 			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2555 			    (error = SYSCTL_OUT(req, vp, VNODESZ))) {
2556 				lwkt_reltoken(&jlock);
2557 				return (error);
2558 			}
2559 		}
2560 		lwkt_reltoken(&jlock);
2561 		lwkt_gettokref(&ilock);
2562 		nmp = TAILQ_NEXT(mp, mnt_list);	/* ZZZ */
2563 		vfs_unbusy(mp, p);
2564 	}
2565 	lwkt_reltoken(&ilock);
2566 
2567 	return (0);
2568 }
2569 #endif
2570 
2571 /*
2572  * XXX
2573  * Exporting the vnode list on large systems causes them to crash.
2574  * Exporting the vnode list on medium systems causes sysctl to coredump.
2575  */
2576 #if 0
2577 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2578 	0, 0, sysctl_vnode, "S,vnode", "");
2579 #endif
2580 
2581 /*
2582  * Check to see if a filesystem is mounted on a block device.
2583  */
2584 int
2585 vfs_mountedon(struct vnode *vp)
2586 {
2587 	dev_t dev;
2588 
2589 	if ((dev = vp->v_rdev) == NULL)
2590 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
2591 	if (dev != NODEV && dev->si_mountpoint)
2592 		return (EBUSY);
2593 	return (0);
2594 }
2595 
2596 /*
2597  * Unmount all filesystems. The list is traversed in reverse order
2598  * of mounting to avoid dependencies.
2599  */
2600 void
2601 vfs_unmountall(void)
2602 {
2603 	struct mount *mp;
2604 	struct thread *td = curthread;
2605 	int error;
2606 
2607 	if (td->td_proc == NULL)
2608 		td = initproc->p_thread;	/* XXX XXX use proc0 instead? */
2609 
2610 	/*
2611 	 * Since this only runs when rebooting, it is not interlocked.
2612 	 */
2613 	while(!TAILQ_EMPTY(&mountlist)) {
2614 		mp = TAILQ_LAST(&mountlist, mntlist);
2615 		error = dounmount(mp, MNT_FORCE, td);
2616 		if (error) {
2617 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2618 			printf("unmount of %s failed (",
2619 			    mp->mnt_stat.f_mntonname);
2620 			if (error == EBUSY)
2621 				printf("BUSY)\n");
2622 			else
2623 				printf("%d)\n", error);
2624 		} else {
2625 			/* The unmount has removed mp from the mountlist */
2626 		}
2627 	}
2628 }
2629 
2630 /*
2631  * Build hash lists of net addresses and hang them off the mount point.
2632  * Called by ufs_mount() to set up the lists of export addresses.
2633  */
2634 static int
2635 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2636 		struct export_args *argp)
2637 {
2638 	struct netcred *np;
2639 	struct radix_node_head *rnh;
2640 	int i;
2641 	struct radix_node *rn;
2642 	struct sockaddr *saddr, *smask = 0;
2643 	struct domain *dom;
2644 	int error;
2645 
2646 	if (argp->ex_addrlen == 0) {
2647 		if (mp->mnt_flag & MNT_DEFEXPORTED)
2648 			return (EPERM);
2649 		np = &nep->ne_defexported;
2650 		np->netc_exflags = argp->ex_flags;
2651 		np->netc_anon = argp->ex_anon;
2652 		np->netc_anon.cr_ref = 1;
2653 		mp->mnt_flag |= MNT_DEFEXPORTED;
2654 		return (0);
2655 	}
2656 
2657 	if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2658 		return (EINVAL);
2659 	if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2660 		return (EINVAL);
2661 
2662 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2663 	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2664 	bzero((caddr_t) np, i);
2665 	saddr = (struct sockaddr *) (np + 1);
2666 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2667 		goto out;
2668 	if (saddr->sa_len > argp->ex_addrlen)
2669 		saddr->sa_len = argp->ex_addrlen;
2670 	if (argp->ex_masklen) {
2671 		smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2672 		error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
2673 		if (error)
2674 			goto out;
2675 		if (smask->sa_len > argp->ex_masklen)
2676 			smask->sa_len = argp->ex_masklen;
2677 	}
2678 	i = saddr->sa_family;
2679 	if ((rnh = nep->ne_rtable[i]) == 0) {
2680 		/*
2681 		 * Seems silly to initialize every AF when most are not used,
2682 		 * do so on demand here
2683 		 */
2684 		for (dom = domains; dom; dom = dom->dom_next)
2685 			if (dom->dom_family == i && dom->dom_rtattach) {
2686 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2687 				    dom->dom_rtoffset);
2688 				break;
2689 			}
2690 		if ((rnh = nep->ne_rtable[i]) == 0) {
2691 			error = ENOBUFS;
2692 			goto out;
2693 		}
2694 	}
2695 	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2696 	    np->netc_rnodes);
2697 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2698 		error = EPERM;
2699 		goto out;
2700 	}
2701 	np->netc_exflags = argp->ex_flags;
2702 	np->netc_anon = argp->ex_anon;
2703 	np->netc_anon.cr_ref = 1;
2704 	return (0);
2705 out:
2706 	free(np, M_NETADDR);
2707 	return (error);
2708 }
2709 
2710 /* ARGSUSED */
2711 static int
2712 vfs_free_netcred(struct radix_node *rn, void *w)
2713 {
2714 	struct radix_node_head *rnh = (struct radix_node_head *) w;
2715 
2716 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2717 	free((caddr_t) rn, M_NETADDR);
2718 	return (0);
2719 }
2720 
2721 /*
2722  * Free the net address hash lists that are hanging off the mount points.
2723  */
2724 static void
2725 vfs_free_addrlist(struct netexport *nep)
2726 {
2727 	int i;
2728 	struct radix_node_head *rnh;
2729 
2730 	for (i = 0; i <= AF_MAX; i++)
2731 		if ((rnh = nep->ne_rtable[i])) {
2732 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2733 			    (caddr_t) rnh);
2734 			free((caddr_t) rnh, M_RTABLE);
2735 			nep->ne_rtable[i] = 0;
2736 		}
2737 }
2738 
2739 int
2740 vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
2741 {
2742 	int error;
2743 
2744 	if (argp->ex_flags & MNT_DELEXPORT) {
2745 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2746 			vfs_setpublicfs(NULL, NULL, NULL);
2747 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2748 		}
2749 		vfs_free_addrlist(nep);
2750 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2751 	}
2752 	if (argp->ex_flags & MNT_EXPORTED) {
2753 		if (argp->ex_flags & MNT_EXPUBLIC) {
2754 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2755 				return (error);
2756 			mp->mnt_flag |= MNT_EXPUBLIC;
2757 		}
2758 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2759 			return (error);
2760 		mp->mnt_flag |= MNT_EXPORTED;
2761 	}
2762 	return (0);
2763 }
2764 
2765 
2766 /*
2767  * Set the publicly exported filesystem (WebNFS). Currently, only
2768  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2769  */
2770 int
2771 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2772 		struct export_args *argp)
2773 {
2774 	int error;
2775 	struct vnode *rvp;
2776 	char *cp;
2777 
2778 	/*
2779 	 * mp == NULL -> invalidate the current info, the FS is
2780 	 * no longer exported. May be called from either vfs_export
2781 	 * or unmount, so check if it hasn't already been done.
2782 	 */
2783 	if (mp == NULL) {
2784 		if (nfs_pub.np_valid) {
2785 			nfs_pub.np_valid = 0;
2786 			if (nfs_pub.np_index != NULL) {
2787 				FREE(nfs_pub.np_index, M_TEMP);
2788 				nfs_pub.np_index = NULL;
2789 			}
2790 		}
2791 		return (0);
2792 	}
2793 
2794 	/*
2795 	 * Only one allowed at a time.
2796 	 */
2797 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2798 		return (EBUSY);
2799 
2800 	/*
2801 	 * Get real filehandle for root of exported FS.
2802 	 */
2803 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2804 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2805 
2806 	if ((error = VFS_ROOT(mp, &rvp)))
2807 		return (error);
2808 
2809 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2810 		return (error);
2811 
2812 	vput(rvp);
2813 
2814 	/*
2815 	 * If an indexfile was specified, pull it in.
2816 	 */
2817 	if (argp->ex_indexfile != NULL) {
2818 		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2819 		    M_WAITOK);
2820 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2821 		    MAXNAMLEN, (size_t *)0);
2822 		if (!error) {
2823 			/*
2824 			 * Check for illegal filenames.
2825 			 */
2826 			for (cp = nfs_pub.np_index; *cp; cp++) {
2827 				if (*cp == '/') {
2828 					error = EINVAL;
2829 					break;
2830 				}
2831 			}
2832 		}
2833 		if (error) {
2834 			FREE(nfs_pub.np_index, M_TEMP);
2835 			return (error);
2836 		}
2837 	}
2838 
2839 	nfs_pub.np_mount = mp;
2840 	nfs_pub.np_valid = 1;
2841 	return (0);
2842 }
2843 
2844 struct netcred *
2845 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2846 		struct sockaddr *nam)
2847 {
2848 	struct netcred *np;
2849 	struct radix_node_head *rnh;
2850 	struct sockaddr *saddr;
2851 
2852 	np = NULL;
2853 	if (mp->mnt_flag & MNT_EXPORTED) {
2854 		/*
2855 		 * Lookup in the export list first.
2856 		 */
2857 		if (nam != NULL) {
2858 			saddr = nam;
2859 			rnh = nep->ne_rtable[saddr->sa_family];
2860 			if (rnh != NULL) {
2861 				np = (struct netcred *)
2862 					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2863 							      rnh);
2864 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2865 					np = NULL;
2866 			}
2867 		}
2868 		/*
2869 		 * If no address match, use the default if it exists.
2870 		 */
2871 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2872 			np = &nep->ne_defexported;
2873 	}
2874 	return (np);
2875 }
2876 
2877 /*
2878  * perform msync on all vnodes under a mount point.  The mount point must
2879  * be locked.  This code is also responsible for lazy-freeing unreferenced
2880  * vnodes whos VM objects no longer contain pages.
2881  *
2882  * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2883  */
2884 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2885 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp,
2886 			    lwkt_tokref_t vlock, void *data);
2887 
2888 void
2889 vfs_msync(struct mount *mp, int flags)
2890 {
2891 	vmntvnodescan(mp, vfs_msync_scan1, vfs_msync_scan2, (void *)flags);
2892 }
2893 
2894 /*
2895  * scan1 is a fast pre-check.  There could be hundreds of thousands of
2896  * vnodes, we cannot afford to do anything heavy weight until we have a
2897  * fairly good indication that there is work to do.
2898  */
2899 static
2900 int
2901 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2902 {
2903 	int flags = (int)data;
2904 
2905 	if ((vp->v_flag & VXLOCK) == 0) {
2906 		if (VSHOULDFREE(vp))
2907 			return(0);
2908 		if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2909 		    (vp->v_flag & VOBJDIRTY) &&
2910 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2911 			return(0);
2912 		}
2913 	}
2914 	return(-1);
2915 }
2916 
2917 static
2918 int
2919 vfs_msync_scan2(struct mount *mp, struct vnode *vp,
2920 		lwkt_tokref_t vlock, void *data)
2921 {
2922 	vm_object_t obj;
2923 	int error;
2924 	int flags = (int)data;
2925 
2926 	if (vp->v_flag & VXLOCK)
2927 		return(0);
2928 
2929 	if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2930 	    (vp->v_flag & VOBJDIRTY) &&
2931 	    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2932 		error = vget(vp, vlock, LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ | LK_INTERLOCK, curthread);
2933 		if (error == 0) {
2934 			if (VOP_GETVOBJECT(vp, &obj) == 0) {
2935 				vm_object_page_clean(obj, 0, 0,
2936 				 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2937 			}
2938 			vput(vp);
2939 		}
2940 		return(0);
2941 	}
2942 	vmaybefree(vp);
2943 	lwkt_reltoken(vlock);
2944 	return(0);
2945 }
2946 
2947 /*
2948  * Create the VM object needed for VMIO and mmap support.  This
2949  * is done for all VREG files in the system.  Some filesystems might
2950  * afford the additional metadata buffering capability of the
2951  * VMIO code by making the device node be VMIO mode also.
2952  *
2953  * vp must be locked when vfs_object_create is called.
2954  */
2955 int
2956 vfs_object_create(struct vnode *vp, struct thread *td)
2957 {
2958 	return (VOP_CREATEVOBJECT(vp, td));
2959 }
2960 
2961 /*
2962  * NOTE: the vnode interlock must be held during the call.  We have to recheck
2963  * the VFREE flag since the vnode may have been removed from the free list
2964  * while we were blocked on vnode_free_list_token.  The use or hold count
2965  * must have already been bumped by the caller.
2966  */
2967 static void
2968 vbusy(struct vnode *vp)
2969 {
2970 	lwkt_tokref ilock;
2971 
2972 	lwkt_gettoken(&ilock, &vnode_free_list_token);
2973 	if ((vp->v_flag & VFREE) != 0) {
2974 	    TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2975 	    freevnodes--;
2976 	    vp->v_flag &= ~(VFREE|VAGE);
2977 	}
2978 	lwkt_reltoken(&ilock);
2979 }
2980 
2981 /*
2982  * NOTE: the vnode interlock must be held during the call.  The use or hold
2983  * count must have already been bumped by the caller.  We use a VINFREE to
2984  * interlock against other calls to vfree() which might occur while we
2985  * are blocked.  The vnode cannot be reused until it has actually been
2986  * placed on the free list, so there are no other races even though the
2987  * use and hold counts are 0.
2988  */
2989 static void
2990 vfree(struct vnode *vp)
2991 {
2992 	lwkt_tokref ilock;
2993 
2994 	if ((vp->v_flag & VINFREE) == 0) {
2995 		vp->v_flag |= VINFREE;
2996 		lwkt_gettoken(&ilock, &vnode_free_list_token); /* can block */
2997 		KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2998 		if (vp->v_flag & VAGE) {
2999 			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
3000 		} else {
3001 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
3002 		}
3003 		freevnodes++;
3004 		vp->v_flag &= ~(VAGE|VINFREE);
3005 		vp->v_flag |= VFREE;
3006 		lwkt_reltoken(&ilock);	/* can block */
3007 	}
3008 }
3009 
3010 
3011 /*
3012  * Record a process's interest in events which might happen to
3013  * a vnode.  Because poll uses the historic select-style interface
3014  * internally, this routine serves as both the ``check for any
3015  * pending events'' and the ``record my interest in future events''
3016  * functions.  (These are done together, while the lock is held,
3017  * to avoid race conditions.)
3018  */
3019 int
3020 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3021 {
3022 	lwkt_tokref ilock;
3023 
3024 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
3025 	if (vp->v_pollinfo.vpi_revents & events) {
3026 		/*
3027 		 * This leaves events we are not interested
3028 		 * in available for the other process which
3029 		 * which presumably had requested them
3030 		 * (otherwise they would never have been
3031 		 * recorded).
3032 		 */
3033 		events &= vp->v_pollinfo.vpi_revents;
3034 		vp->v_pollinfo.vpi_revents &= ~events;
3035 
3036 		lwkt_reltoken(&ilock);
3037 		return events;
3038 	}
3039 	vp->v_pollinfo.vpi_events |= events;
3040 	selrecord(td, &vp->v_pollinfo.vpi_selinfo);
3041 	lwkt_reltoken(&ilock);
3042 	return 0;
3043 }
3044 
3045 /*
3046  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
3047  * it is possible for us to miss an event due to race conditions, but
3048  * that condition is expected to be rare, so for the moment it is the
3049  * preferred interface.
3050  */
3051 void
3052 vn_pollevent(struct vnode *vp, int events)
3053 {
3054 	lwkt_tokref ilock;
3055 
3056 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
3057 	if (vp->v_pollinfo.vpi_events & events) {
3058 		/*
3059 		 * We clear vpi_events so that we don't
3060 		 * call selwakeup() twice if two events are
3061 		 * posted before the polling process(es) is
3062 		 * awakened.  This also ensures that we take at
3063 		 * most one selwakeup() if the polling process
3064 		 * is no longer interested.  However, it does
3065 		 * mean that only one event can be noticed at
3066 		 * a time.  (Perhaps we should only clear those
3067 		 * event bits which we note?) XXX
3068 		 */
3069 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
3070 		vp->v_pollinfo.vpi_revents |= events;
3071 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
3072 	}
3073 	lwkt_reltoken(&ilock);
3074 }
3075 
3076 /*
3077  * Wake up anyone polling on vp because it is being revoked.
3078  * This depends on dead_poll() returning POLLHUP for correct
3079  * behavior.
3080  */
3081 void
3082 vn_pollgone(struct vnode *vp)
3083 {
3084 	lwkt_tokref ilock;
3085 
3086 	lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
3087 	if (vp->v_pollinfo.vpi_events) {
3088 		vp->v_pollinfo.vpi_events = 0;
3089 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
3090 	}
3091 	lwkt_reltoken(&ilock);
3092 }
3093 
3094 
3095 
3096 /*
3097  * Routine to create and manage a filesystem syncer vnode.
3098  */
3099 #define sync_close ((int (*) (struct  vop_close_args *))nullop)
3100 static int	sync_fsync (struct  vop_fsync_args *);
3101 static int	sync_inactive (struct  vop_inactive_args *);
3102 static int	sync_reclaim  (struct  vop_reclaim_args *);
3103 #define sync_lock ((int (*) (struct  vop_lock_args *))vop_stdlock)
3104 #define sync_unlock ((int (*) (struct  vop_unlock_args *))vop_stdunlock)
3105 static int	sync_print (struct vop_print_args *);
3106 #define sync_islocked ((int(*) (struct vop_islocked_args *))vop_stdislocked)
3107 
3108 static struct vop_ops *sync_vnode_vops;
3109 static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3110 	{ &vop_default_desc,	vop_eopnotsupp },
3111 	{ &vop_close_desc,	(void *) sync_close },		/* close */
3112 	{ &vop_fsync_desc,	(void *) sync_fsync },		/* fsync */
3113 	{ &vop_inactive_desc,	(void *) sync_inactive },	/* inactive */
3114 	{ &vop_reclaim_desc,	(void *) sync_reclaim },	/* reclaim */
3115 	{ &vop_lock_desc,	(void *) sync_lock },		/* lock */
3116 	{ &vop_unlock_desc,	(void *) sync_unlock },		/* unlock */
3117 	{ &vop_print_desc,	(void *) sync_print },		/* print */
3118 	{ &vop_islocked_desc,	(void *) sync_islocked },	/* islocked */
3119 	{ NULL, NULL }
3120 };
3121 
3122 static struct vnodeopv_desc sync_vnodeop_opv_desc =
3123 	{ &sync_vnode_vops, sync_vnodeop_entries };
3124 
3125 VNODEOP_SET(sync_vnodeop_opv_desc);
3126 
3127 /*
3128  * Create a new filesystem syncer vnode for the specified mount point.
3129  * This vnode is placed on the worklist and is responsible for sync'ing
3130  * the filesystem.
3131  *
3132  * NOTE: read-only mounts are also placed on the worklist.  The filesystem
3133  * sync code is also responsible for cleaning up vnodes.
3134  */
3135 int
3136 vfs_allocate_syncvnode(struct mount *mp)
3137 {
3138 	struct vnode *vp;
3139 	static long start, incr, next;
3140 	int error;
3141 
3142 	/* Allocate a new vnode */
3143 	error = getnewvnode(VT_VFS, mp, sync_vnode_vops, &vp, 0, 0);
3144 	if (error) {
3145 		mp->mnt_syncer = NULL;
3146 		return (error);
3147 	}
3148 	vp->v_type = VNON;
3149 	/*
3150 	 * Place the vnode onto the syncer worklist. We attempt to
3151 	 * scatter them about on the list so that they will go off
3152 	 * at evenly distributed times even if all the filesystems
3153 	 * are mounted at once.
3154 	 */
3155 	next += incr;
3156 	if (next == 0 || next > syncer_maxdelay) {
3157 		start /= 2;
3158 		incr /= 2;
3159 		if (start == 0) {
3160 			start = syncer_maxdelay / 2;
3161 			incr = syncer_maxdelay;
3162 		}
3163 		next = start;
3164 	}
3165 	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3166 	mp->mnt_syncer = vp;
3167 	return (0);
3168 }
3169 
3170 /*
3171  * Do a lazy sync of the filesystem.
3172  *
3173  * sync_fsync { struct vnode *a_vp, struct ucred *a_cred, int a_waitfor,
3174  *		struct thread *a_td }
3175  */
3176 static int
3177 sync_fsync(struct vop_fsync_args *ap)
3178 {
3179 	struct vnode *syncvp = ap->a_vp;
3180 	struct mount *mp = syncvp->v_mount;
3181 	struct thread *td = ap->a_td;
3182 	lwkt_tokref ilock;
3183 	int asyncflag;
3184 
3185 	/*
3186 	 * We only need to do something if this is a lazy evaluation.
3187 	 */
3188 	if (ap->a_waitfor != MNT_LAZY)
3189 		return (0);
3190 
3191 	/*
3192 	 * Move ourselves to the back of the sync list.
3193 	 */
3194 	vn_syncer_add_to_worklist(syncvp, syncdelay);
3195 
3196 	/*
3197 	 * Walk the list of vnodes pushing all that are dirty and
3198 	 * not already on the sync list, and freeing vnodes which have
3199 	 * no refs and whos VM objects are empty.  vfs_msync() handles
3200 	 * the VM issues and must be called whether the mount is readonly
3201 	 * or not.
3202 	 */
3203 	lwkt_gettoken(&ilock, &mountlist_token);
3204 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &ilock, td) != 0) {
3205 		lwkt_reltoken(&ilock);
3206 		return (0);
3207 	}
3208 	if (mp->mnt_flag & MNT_RDONLY) {
3209 		vfs_msync(mp, MNT_NOWAIT);
3210 	} else {
3211 		asyncflag = mp->mnt_flag & MNT_ASYNC;
3212 		mp->mnt_flag &= ~MNT_ASYNC;	/* ZZZ hack */
3213 		vfs_msync(mp, MNT_NOWAIT);
3214 		VFS_SYNC(mp, MNT_LAZY, td);
3215 		if (asyncflag)
3216 			mp->mnt_flag |= MNT_ASYNC;
3217 	}
3218 	vfs_unbusy(mp, td);
3219 	return (0);
3220 }
3221 
3222 /*
3223  * The syncer vnode is no referenced.
3224  *
3225  * sync_inactive { struct vnode *a_vp, struct proc *a_p }
3226  */
3227 static int
3228 sync_inactive(struct vop_inactive_args *ap)
3229 {
3230 	VOP_UNLOCK(ap->a_vp, NULL, 0, ap->a_td);
3231 	vgone(ap->a_vp);
3232 	return (0);
3233 }
3234 
3235 /*
3236  * The syncer vnode is no longer needed and is being decommissioned.
3237  *
3238  * Modifications to the worklist must be protected at splbio().
3239  *
3240  *	sync_reclaim { struct vnode *a_vp }
3241  */
3242 static int
3243 sync_reclaim(struct vop_reclaim_args *ap)
3244 {
3245 	struct vnode *vp = ap->a_vp;
3246 	int s;
3247 
3248 	s = splbio();
3249 	vp->v_mount->mnt_syncer = NULL;
3250 	if (vp->v_flag & VONWORKLST) {
3251 		LIST_REMOVE(vp, v_synclist);
3252 		vp->v_flag &= ~VONWORKLST;
3253 	}
3254 	splx(s);
3255 
3256 	return (0);
3257 }
3258 
3259 /*
3260  * Print out a syncer vnode.
3261  *
3262  *	sync_print { struct vnode *a_vp }
3263  */
3264 static int
3265 sync_print(struct vop_print_args *ap)
3266 {
3267 	struct vnode *vp = ap->a_vp;
3268 
3269 	printf("syncer vnode");
3270 	lockmgr_printinfo(&vp->v_lock);
3271 	printf("\n");
3272 	return (0);
3273 }
3274 
3275 /*
3276  * extract the dev_t from a VBLK or VCHR.  The vnode must have been opened
3277  * (or v_rdev might be NULL).
3278  */
3279 dev_t
3280 vn_todev(struct vnode *vp)
3281 {
3282 	if (vp->v_type != VBLK && vp->v_type != VCHR)
3283 		return (NODEV);
3284 	KKASSERT(vp->v_rdev != NULL);
3285 	return (vp->v_rdev);
3286 }
3287 
3288 /*
3289  * Check if vnode represents a disk device.  The vnode does not need to be
3290  * opened.
3291  */
3292 int
3293 vn_isdisk(struct vnode *vp, int *errp)
3294 {
3295 	dev_t dev;
3296 
3297 	if (vp->v_type != VBLK && vp->v_type != VCHR) {
3298 		if (errp != NULL)
3299 			*errp = ENOTBLK;
3300 		return (0);
3301 	}
3302 
3303 	if ((dev = vp->v_rdev) == NULL)
3304 		dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
3305 	if (dev == NULL || dev == NODEV) {
3306 		if (errp != NULL)
3307 			*errp = ENXIO;
3308 		return (0);
3309 	}
3310 	if (dev_is_good(dev) == 0) {
3311 		if (errp != NULL)
3312 			*errp = ENXIO;
3313 		return (0);
3314 	}
3315 	if ((dev_dflags(dev) & D_DISK) == 0) {
3316 		if (errp != NULL)
3317 			*errp = ENOTBLK;
3318 		return (0);
3319 	}
3320 	if (errp != NULL)
3321 		*errp = 0;
3322 	return (1);
3323 }
3324 
3325 void
3326 NDFREE(struct nameidata *ndp, const uint flags)
3327 {
3328 	if (!(flags & NDF_NO_FREE_PNBUF) &&
3329 	    (ndp->ni_cnd.cn_flags & CNP_HASBUF)) {
3330 		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3331 		ndp->ni_cnd.cn_flags &= ~CNP_HASBUF;
3332 	}
3333 	if (!(flags & NDF_NO_DNCP_RELE) &&
3334 	    (ndp->ni_cnd.cn_flags & CNP_WANTDNCP) &&
3335 	    ndp->ni_dncp) {
3336 		cache_drop(ndp->ni_dncp);
3337 		ndp->ni_dncp = NULL;
3338 	}
3339 	if (!(flags & NDF_NO_NCP_RELE) &&
3340 	    (ndp->ni_cnd.cn_flags & CNP_WANTNCP) &&
3341 	    ndp->ni_ncp) {
3342 		cache_drop(ndp->ni_ncp);
3343 		ndp->ni_ncp = NULL;
3344 	}
3345 	if (!(flags & NDF_NO_DVP_UNLOCK) &&
3346 	    (ndp->ni_cnd.cn_flags & CNP_LOCKPARENT) &&
3347 	    ndp->ni_dvp != ndp->ni_vp) {
3348 		VOP_UNLOCK(ndp->ni_dvp, NULL, 0, ndp->ni_cnd.cn_td);
3349 	}
3350 	if (!(flags & NDF_NO_DVP_RELE) &&
3351 	    (ndp->ni_cnd.cn_flags & (CNP_LOCKPARENT|CNP_WANTPARENT))) {
3352 		vrele(ndp->ni_dvp);
3353 		ndp->ni_dvp = NULL;
3354 	}
3355 	if (!(flags & NDF_NO_VP_UNLOCK) &&
3356 	    (ndp->ni_cnd.cn_flags & CNP_LOCKLEAF) && ndp->ni_vp) {
3357 		VOP_UNLOCK(ndp->ni_vp, NULL, 0, ndp->ni_cnd.cn_td);
3358 	}
3359 	if (!(flags & NDF_NO_VP_RELE) &&
3360 	    ndp->ni_vp) {
3361 		vrele(ndp->ni_vp);
3362 		ndp->ni_vp = NULL;
3363 	}
3364 	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3365 	    (ndp->ni_cnd.cn_flags & CNP_SAVESTART)) {
3366 		vrele(ndp->ni_startdir);
3367 		ndp->ni_startdir = NULL;
3368 	}
3369 }
3370 
3371 #ifdef DEBUG_VFS_LOCKS
3372 
3373 void
3374 assert_vop_locked(struct vnode *vp, const char *str)
3375 {
3376 	if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
3377 		panic("%s: %p is not locked shared but should be", str, vp);
3378 	}
3379 }
3380 
3381 void
3382 assert_vop_unlocked(struct vnode *vp, const char *str)
3383 {
3384 	if (vp && IS_LOCKING_VFS(vp)) {
3385 		if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
3386 			panic("%s: %p is locked but should not be", str, vp);
3387 		}
3388 	}
3389 }
3390 
3391 #endif
3392