1 /* 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $ 40 */ 41 42 /* 43 * External virtual filesystem routines 44 */ 45 #include "opt_ddb.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/buf.h> 50 #include <sys/conf.h> 51 #include <sys/dirent.h> 52 #include <sys/domain.h> 53 #include <sys/eventhandler.h> 54 #include <sys/fcntl.h> 55 #include <sys/file.h> 56 #include <sys/kernel.h> 57 #include <sys/kthread.h> 58 #include <sys/malloc.h> 59 #include <sys/mbuf.h> 60 #include <sys/mount.h> 61 #include <sys/priv.h> 62 #include <sys/proc.h> 63 #include <sys/reboot.h> 64 #include <sys/socket.h> 65 #include <sys/stat.h> 66 #include <sys/sysctl.h> 67 #include <sys/syslog.h> 68 #include <sys/unistd.h> 69 #include <sys/vmmeter.h> 70 #include <sys/vnode.h> 71 72 #include <machine/limits.h> 73 74 #include <vm/vm.h> 75 #include <vm/vm_object.h> 76 #include <vm/vm_extern.h> 77 #include <vm/vm_kern.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_page.h> 81 #include <vm/vm_pager.h> 82 #include <vm/vnode_pager.h> 83 #include <vm/vm_zone.h> 84 85 #include <sys/buf2.h> 86 #include <sys/thread2.h> 87 #include <sys/sysref2.h> 88 #include <sys/mplock2.h> 89 90 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure"); 91 92 int numvnodes; 93 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, 94 "Number of vnodes allocated"); 95 int verbose_reclaims; 96 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0, 97 "Output filename of reclaimed vnode(s)"); 98 99 enum vtype iftovt_tab[16] = { 100 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 101 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 102 }; 103 int vttoif_tab[9] = { 104 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 105 S_IFSOCK, S_IFIFO, S_IFMT, 106 }; 107 108 static int reassignbufcalls; 109 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 110 0, "Number of times buffers have been reassigned to the proper list"); 111 112 static int check_buf_overlap = 2; /* invasive check */ 113 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap, 114 0, "Enable overlapping buffer checks"); 115 116 int nfs_mount_type = -1; 117 static struct lwkt_token spechash_token; 118 struct nfs_public nfs_pub; /* publicly exported FS */ 119 120 int desiredvnodes; 121 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW, 122 &desiredvnodes, 0, "Maximum number of vnodes"); 123 124 static void vfs_free_addrlist (struct netexport *nep); 125 static int vfs_free_netcred (struct radix_node *rn, void *w); 126 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep, 127 const struct export_args *argp); 128 129 /* 130 * Red black tree functions 131 */ 132 static int rb_buf_compare(struct buf *b1, struct buf *b2); 133 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset); 134 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset); 135 136 static int 137 rb_buf_compare(struct buf *b1, struct buf *b2) 138 { 139 if (b1->b_loffset < b2->b_loffset) 140 return(-1); 141 if (b1->b_loffset > b2->b_loffset) 142 return(1); 143 return(0); 144 } 145 146 /* 147 * Returns non-zero if the vnode is a candidate for lazy msyncing. 148 * 149 * NOTE: v_object is not stable (this scan can race), however the 150 * mntvnodescan code holds vmobj_token so any VM object we 151 * do find will remain stable storage. 152 */ 153 static __inline int 154 vshouldmsync(struct vnode *vp) 155 { 156 vm_object_t object; 157 158 if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0) 159 return (0); /* other holders */ 160 object = vp->v_object; 161 cpu_ccfence(); 162 if (object && (object->ref_count || object->resident_page_count)) 163 return(0); 164 return (1); 165 } 166 167 /* 168 * Initialize the vnode management data structures. 169 * 170 * Called from vfsinit() 171 */ 172 void 173 vfs_subr_init(void) 174 { 175 int factor1; 176 int factor2; 177 178 /* 179 * Desiredvnodes is kern.maxvnodes. We want to scale it 180 * according to available system memory but we may also have 181 * to limit it based on available KVM, which is capped on 32 bit 182 * systems. 183 * 184 * WARNING! For machines with 64-256M of ram we have to be sure 185 * that the default limit scales down well due to HAMMER 186 * taking up significantly more memory per-vnode vs UFS. 187 * We want around ~5800 on a 128M machine. 188 */ 189 factor1 = 20 * (sizeof(struct vm_object) + sizeof(struct vnode)); 190 factor2 = 22 * (sizeof(struct vm_object) + sizeof(struct vnode)); 191 desiredvnodes = 192 imin((int64_t)vmstats.v_page_count * PAGE_SIZE / factor1, 193 KvaSize / factor2); 194 desiredvnodes = imax(desiredvnodes, maxproc * 8); 195 196 lwkt_token_init(&spechash_token, "spechash"); 197 } 198 199 /* 200 * Knob to control the precision of file timestamps: 201 * 202 * 0 = seconds only; nanoseconds zeroed. 203 * 1 = seconds and nanoseconds, accurate within 1/HZ. 204 * 2 = seconds and nanoseconds, truncated to microseconds. 205 * >=3 = seconds and nanoseconds, maximum precision. 206 */ 207 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 208 209 static int timestamp_precision = TSP_SEC; 210 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 211 ×tamp_precision, 0, "Precision of file timestamps"); 212 213 /* 214 * Get a current timestamp. 215 * 216 * MPSAFE 217 */ 218 void 219 vfs_timestamp(struct timespec *tsp) 220 { 221 struct timeval tv; 222 223 switch (timestamp_precision) { 224 case TSP_SEC: 225 tsp->tv_sec = time_second; 226 tsp->tv_nsec = 0; 227 break; 228 case TSP_HZ: 229 getnanotime(tsp); 230 break; 231 case TSP_USEC: 232 microtime(&tv); 233 TIMEVAL_TO_TIMESPEC(&tv, tsp); 234 break; 235 case TSP_NSEC: 236 default: 237 nanotime(tsp); 238 break; 239 } 240 } 241 242 /* 243 * Set vnode attributes to VNOVAL 244 */ 245 void 246 vattr_null(struct vattr *vap) 247 { 248 vap->va_type = VNON; 249 vap->va_size = VNOVAL; 250 vap->va_bytes = VNOVAL; 251 vap->va_mode = VNOVAL; 252 vap->va_nlink = VNOVAL; 253 vap->va_uid = VNOVAL; 254 vap->va_gid = VNOVAL; 255 vap->va_fsid = VNOVAL; 256 vap->va_fileid = VNOVAL; 257 vap->va_blocksize = VNOVAL; 258 vap->va_rmajor = VNOVAL; 259 vap->va_rminor = VNOVAL; 260 vap->va_atime.tv_sec = VNOVAL; 261 vap->va_atime.tv_nsec = VNOVAL; 262 vap->va_mtime.tv_sec = VNOVAL; 263 vap->va_mtime.tv_nsec = VNOVAL; 264 vap->va_ctime.tv_sec = VNOVAL; 265 vap->va_ctime.tv_nsec = VNOVAL; 266 vap->va_flags = VNOVAL; 267 vap->va_gen = VNOVAL; 268 vap->va_vaflags = 0; 269 /* va_*_uuid fields are only valid if related flags are set */ 270 } 271 272 /* 273 * Flush out and invalidate all buffers associated with a vnode. 274 * 275 * vp must be locked. 276 */ 277 static int vinvalbuf_bp(struct buf *bp, void *data); 278 279 struct vinvalbuf_bp_info { 280 struct vnode *vp; 281 int slptimeo; 282 int lkflags; 283 int flags; 284 int clean; 285 }; 286 287 int 288 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 289 { 290 struct vinvalbuf_bp_info info; 291 vm_object_t object; 292 int error; 293 294 lwkt_gettoken(&vp->v_token); 295 296 /* 297 * If we are being asked to save, call fsync to ensure that the inode 298 * is updated. 299 */ 300 if (flags & V_SAVE) { 301 error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo); 302 if (error) 303 goto done; 304 if (!RB_EMPTY(&vp->v_rbdirty_tree)) { 305 if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0) 306 goto done; 307 308 /* 309 * Dirty bufs may be left or generated via races 310 * in circumstances where vinvalbuf() is called on 311 * a vnode not undergoing reclamation. Only 312 * panic if we are trying to reclaim the vnode. 313 */ 314 if ((vp->v_flag & VRECLAIMED) && 315 (bio_track_active(&vp->v_track_write) || 316 !RB_EMPTY(&vp->v_rbdirty_tree))) { 317 panic("vinvalbuf: dirty bufs"); 318 } 319 } 320 } 321 info.slptimeo = slptimeo; 322 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 323 if (slpflag & PCATCH) 324 info.lkflags |= LK_PCATCH; 325 info.flags = flags; 326 info.vp = vp; 327 328 /* 329 * Flush the buffer cache until nothing is left. 330 */ 331 while (!RB_EMPTY(&vp->v_rbclean_tree) || 332 !RB_EMPTY(&vp->v_rbdirty_tree)) { 333 info.clean = 1; 334 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL, 335 vinvalbuf_bp, &info); 336 if (error == 0) { 337 info.clean = 0; 338 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, 339 vinvalbuf_bp, &info); 340 } 341 } 342 343 /* 344 * Wait for I/O completion. We may block in the pip code so we have 345 * to re-check. 346 */ 347 do { 348 bio_track_wait(&vp->v_track_write, 0, 0); 349 if ((object = vp->v_object) != NULL) { 350 while (object->paging_in_progress) 351 vm_object_pip_sleep(object, "vnvlbx"); 352 } 353 } while (bio_track_active(&vp->v_track_write)); 354 355 /* 356 * Destroy the copy in the VM cache, too. 357 */ 358 if ((object = vp->v_object) != NULL) { 359 vm_object_page_remove(object, 0, 0, 360 (flags & V_SAVE) ? TRUE : FALSE); 361 } 362 363 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree)) 364 panic("vinvalbuf: flush failed"); 365 if (!RB_EMPTY(&vp->v_rbhash_tree)) 366 panic("vinvalbuf: flush failed, buffers still present"); 367 error = 0; 368 done: 369 lwkt_reltoken(&vp->v_token); 370 return (error); 371 } 372 373 static int 374 vinvalbuf_bp(struct buf *bp, void *data) 375 { 376 struct vinvalbuf_bp_info *info = data; 377 int error; 378 379 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 380 atomic_add_int(&bp->b_refs, 1); 381 error = BUF_TIMELOCK(bp, info->lkflags, 382 "vinvalbuf", info->slptimeo); 383 atomic_subtract_int(&bp->b_refs, 1); 384 if (error == 0) { 385 BUF_UNLOCK(bp); 386 error = ENOLCK; 387 } 388 if (error == ENOLCK) 389 return(0); 390 return (-error); 391 } 392 KKASSERT(bp->b_vp == info->vp); 393 394 /* 395 * Must check clean/dirty status after successfully locking as 396 * it may race. 397 */ 398 if ((info->clean && (bp->b_flags & B_DELWRI)) || 399 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) { 400 BUF_UNLOCK(bp); 401 return(0); 402 } 403 404 /* 405 * Note that vfs_bio_awrite expects buffers to reside 406 * on a queue, while bwrite() and brelse() do not. 407 * 408 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite() 409 * check. This code will write out the buffer, period. 410 */ 411 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 412 (info->flags & V_SAVE)) { 413 if (bp->b_flags & B_CLUSTEROK) { 414 vfs_bio_awrite(bp); 415 } else { 416 bremfree(bp); 417 bawrite(bp); 418 } 419 } else if (info->flags & V_SAVE) { 420 /* 421 * Cannot set B_NOCACHE on a clean buffer as this will 422 * destroy the VM backing store which might actually 423 * be dirty (and unsynchronized). 424 */ 425 bremfree(bp); 426 bp->b_flags |= (B_INVAL | B_RELBUF); 427 brelse(bp); 428 } else { 429 bremfree(bp); 430 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF); 431 brelse(bp); 432 } 433 return(0); 434 } 435 436 /* 437 * Truncate a file's buffer and pages to a specified length. This 438 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 439 * sync activity. 440 * 441 * The vnode must be locked. 442 */ 443 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data); 444 static int vtruncbuf_bp_trunc(struct buf *bp, void *data); 445 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data); 446 static int vtruncbuf_bp_metasync(struct buf *bp, void *data); 447 448 struct vtruncbuf_info { 449 struct vnode *vp; 450 off_t truncloffset; 451 int clean; 452 }; 453 454 int 455 vtruncbuf(struct vnode *vp, off_t length, int blksize) 456 { 457 struct vtruncbuf_info info; 458 const char *filename; 459 int count; 460 461 /* 462 * Round up to the *next* block, then destroy the buffers in question. 463 * Since we are only removing some of the buffers we must rely on the 464 * scan count to determine whether a loop is necessary. 465 */ 466 if ((count = (int)(length % blksize)) != 0) 467 info.truncloffset = length + (blksize - count); 468 else 469 info.truncloffset = length; 470 info.vp = vp; 471 472 lwkt_gettoken(&vp->v_token); 473 do { 474 info.clean = 1; 475 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, 476 vtruncbuf_bp_trunc_cmp, 477 vtruncbuf_bp_trunc, &info); 478 info.clean = 0; 479 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, 480 vtruncbuf_bp_trunc_cmp, 481 vtruncbuf_bp_trunc, &info); 482 } while(count); 483 484 /* 485 * For safety, fsync any remaining metadata if the file is not being 486 * truncated to 0. Since the metadata does not represent the entire 487 * dirty list we have to rely on the hit count to ensure that we get 488 * all of it. 489 */ 490 if (length > 0) { 491 do { 492 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, 493 vtruncbuf_bp_metasync_cmp, 494 vtruncbuf_bp_metasync, &info); 495 } while (count); 496 } 497 498 /* 499 * Clean out any left over VM backing store. 500 * 501 * It is possible to have in-progress I/O from buffers that were 502 * not part of the truncation. This should not happen if we 503 * are truncating to 0-length. 504 */ 505 vnode_pager_setsize(vp, length); 506 bio_track_wait(&vp->v_track_write, 0, 0); 507 508 /* 509 * Debugging only 510 */ 511 spin_lock(&vp->v_spinlock); 512 filename = TAILQ_FIRST(&vp->v_namecache) ? 513 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"; 514 spin_unlock(&vp->v_spinlock); 515 516 /* 517 * Make sure no buffers were instantiated while we were trying 518 * to clean out the remaining VM pages. This could occur due 519 * to busy dirty VM pages being flushed out to disk. 520 */ 521 do { 522 info.clean = 1; 523 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, 524 vtruncbuf_bp_trunc_cmp, 525 vtruncbuf_bp_trunc, &info); 526 info.clean = 0; 527 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, 528 vtruncbuf_bp_trunc_cmp, 529 vtruncbuf_bp_trunc, &info); 530 if (count) { 531 kprintf("Warning: vtruncbuf(): Had to re-clean %d " 532 "left over buffers in %s\n", count, filename); 533 } 534 } while(count); 535 536 lwkt_reltoken(&vp->v_token); 537 538 return (0); 539 } 540 541 /* 542 * The callback buffer is beyond the new file EOF and must be destroyed. 543 * Note that the compare function must conform to the RB_SCAN's requirements. 544 */ 545 static 546 int 547 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data) 548 { 549 struct vtruncbuf_info *info = data; 550 551 if (bp->b_loffset >= info->truncloffset) 552 return(0); 553 return(-1); 554 } 555 556 static 557 int 558 vtruncbuf_bp_trunc(struct buf *bp, void *data) 559 { 560 struct vtruncbuf_info *info = data; 561 562 /* 563 * Do not try to use a buffer we cannot immediately lock, but sleep 564 * anyway to prevent a livelock. The code will loop until all buffers 565 * can be acted upon. 566 * 567 * We must always revalidate the buffer after locking it to deal 568 * with MP races. 569 */ 570 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 571 atomic_add_int(&bp->b_refs, 1); 572 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0) 573 BUF_UNLOCK(bp); 574 atomic_subtract_int(&bp->b_refs, 1); 575 } else if ((info->clean && (bp->b_flags & B_DELWRI)) || 576 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) || 577 bp->b_vp != info->vp || 578 vtruncbuf_bp_trunc_cmp(bp, data)) { 579 BUF_UNLOCK(bp); 580 } else { 581 bremfree(bp); 582 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE); 583 brelse(bp); 584 } 585 return(1); 586 } 587 588 /* 589 * Fsync all meta-data after truncating a file to be non-zero. Only metadata 590 * blocks (with a negative loffset) are scanned. 591 * Note that the compare function must conform to the RB_SCAN's requirements. 592 */ 593 static int 594 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused) 595 { 596 if (bp->b_loffset < 0) 597 return(0); 598 return(1); 599 } 600 601 static int 602 vtruncbuf_bp_metasync(struct buf *bp, void *data) 603 { 604 struct vtruncbuf_info *info = data; 605 606 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 607 atomic_add_int(&bp->b_refs, 1); 608 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0) 609 BUF_UNLOCK(bp); 610 atomic_subtract_int(&bp->b_refs, 1); 611 } else if ((bp->b_flags & B_DELWRI) == 0 || 612 bp->b_vp != info->vp || 613 vtruncbuf_bp_metasync_cmp(bp, data)) { 614 BUF_UNLOCK(bp); 615 } else { 616 bremfree(bp); 617 if (bp->b_vp == info->vp) 618 bawrite(bp); 619 else 620 bwrite(bp); 621 } 622 return(1); 623 } 624 625 /* 626 * vfsync - implements a multipass fsync on a file which understands 627 * dependancies and meta-data. The passed vnode must be locked. The 628 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY. 629 * 630 * When fsyncing data asynchronously just do one consolidated pass starting 631 * with the most negative block number. This may not get all the data due 632 * to dependancies. 633 * 634 * When fsyncing data synchronously do a data pass, then a metadata pass, 635 * then do additional data+metadata passes to try to get all the data out. 636 */ 637 static int vfsync_wait_output(struct vnode *vp, 638 int (*waitoutput)(struct vnode *, struct thread *)); 639 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused); 640 static int vfsync_data_only_cmp(struct buf *bp, void *data); 641 static int vfsync_meta_only_cmp(struct buf *bp, void *data); 642 static int vfsync_lazy_range_cmp(struct buf *bp, void *data); 643 static int vfsync_bp(struct buf *bp, void *data); 644 645 struct vfsync_info { 646 struct vnode *vp; 647 int synchronous; 648 int syncdeps; 649 int lazycount; 650 int lazylimit; 651 int skippedbufs; 652 int (*checkdef)(struct buf *); 653 int (*cmpfunc)(struct buf *, void *); 654 }; 655 656 int 657 vfsync(struct vnode *vp, int waitfor, int passes, 658 int (*checkdef)(struct buf *), 659 int (*waitoutput)(struct vnode *, struct thread *)) 660 { 661 struct vfsync_info info; 662 int error; 663 664 bzero(&info, sizeof(info)); 665 info.vp = vp; 666 if ((info.checkdef = checkdef) == NULL) 667 info.syncdeps = 1; 668 669 lwkt_gettoken(&vp->v_token); 670 671 switch(waitfor) { 672 case MNT_LAZY | MNT_NOWAIT: 673 case MNT_LAZY: 674 /* 675 * Lazy (filesystem syncer typ) Asynchronous plus limit the 676 * number of data (not meta) pages we try to flush to 1MB. 677 * A non-zero return means that lazy limit was reached. 678 */ 679 info.lazylimit = 1024 * 1024; 680 info.syncdeps = 1; 681 info.cmpfunc = vfsync_lazy_range_cmp; 682 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, 683 vfsync_lazy_range_cmp, vfsync_bp, &info); 684 info.cmpfunc = vfsync_meta_only_cmp; 685 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, 686 vfsync_meta_only_cmp, vfsync_bp, &info); 687 if (error == 0) 688 vp->v_lazyw = 0; 689 else if (!RB_EMPTY(&vp->v_rbdirty_tree)) 690 vn_syncer_add(vp, 1); 691 error = 0; 692 break; 693 case MNT_NOWAIT: 694 /* 695 * Asynchronous. Do a data-only pass and a meta-only pass. 696 */ 697 info.syncdeps = 1; 698 info.cmpfunc = vfsync_data_only_cmp; 699 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp, 700 vfsync_bp, &info); 701 info.cmpfunc = vfsync_meta_only_cmp; 702 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp, 703 vfsync_bp, &info); 704 error = 0; 705 break; 706 default: 707 /* 708 * Synchronous. Do a data-only pass, then a meta-data+data 709 * pass, then additional integrated passes to try to get 710 * all the dependancies flushed. 711 */ 712 info.cmpfunc = vfsync_data_only_cmp; 713 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp, 714 vfsync_bp, &info); 715 error = vfsync_wait_output(vp, waitoutput); 716 if (error == 0) { 717 info.skippedbufs = 0; 718 info.cmpfunc = vfsync_dummy_cmp; 719 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, 720 vfsync_bp, &info); 721 error = vfsync_wait_output(vp, waitoutput); 722 if (info.skippedbufs) { 723 kprintf("Warning: vfsync skipped %d dirty " 724 "bufs in pass2!\n", info.skippedbufs); 725 } 726 } 727 while (error == 0 && passes > 0 && 728 !RB_EMPTY(&vp->v_rbdirty_tree) 729 ) { 730 if (--passes == 0) { 731 info.synchronous = 1; 732 info.syncdeps = 1; 733 } 734 info.cmpfunc = vfsync_dummy_cmp; 735 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, 736 vfsync_bp, &info); 737 if (error < 0) 738 error = -error; 739 info.syncdeps = 1; 740 if (error == 0) 741 error = vfsync_wait_output(vp, waitoutput); 742 } 743 break; 744 } 745 lwkt_reltoken(&vp->v_token); 746 return(error); 747 } 748 749 static int 750 vfsync_wait_output(struct vnode *vp, 751 int (*waitoutput)(struct vnode *, struct thread *)) 752 { 753 int error; 754 755 error = bio_track_wait(&vp->v_track_write, 0, 0); 756 if (waitoutput) 757 error = waitoutput(vp, curthread); 758 return(error); 759 } 760 761 static int 762 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused) 763 { 764 return(0); 765 } 766 767 static int 768 vfsync_data_only_cmp(struct buf *bp, void *data) 769 { 770 if (bp->b_loffset < 0) 771 return(-1); 772 return(0); 773 } 774 775 static int 776 vfsync_meta_only_cmp(struct buf *bp, void *data) 777 { 778 if (bp->b_loffset < 0) 779 return(0); 780 return(1); 781 } 782 783 static int 784 vfsync_lazy_range_cmp(struct buf *bp, void *data) 785 { 786 struct vfsync_info *info = data; 787 788 if (bp->b_loffset < info->vp->v_lazyw) 789 return(-1); 790 return(0); 791 } 792 793 static int 794 vfsync_bp(struct buf *bp, void *data) 795 { 796 struct vfsync_info *info = data; 797 struct vnode *vp = info->vp; 798 int error; 799 800 /* 801 * Ignore buffers that we cannot immediately lock. 802 */ 803 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 804 ++info->skippedbufs; 805 return(0); 806 } 807 808 /* 809 * We must revalidate the buffer after locking. 810 */ 811 if ((bp->b_flags & B_DELWRI) == 0 || 812 bp->b_vp != info->vp || 813 info->cmpfunc(bp, data)) { 814 BUF_UNLOCK(bp); 815 return(0); 816 } 817 818 /* 819 * If syncdeps is not set we do not try to write buffers which have 820 * dependancies. 821 */ 822 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) { 823 BUF_UNLOCK(bp); 824 return(0); 825 } 826 827 /* 828 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer 829 * has been written but an additional handshake with the device 830 * is required before we can dispose of the buffer. We have no idea 831 * how to do this so we have to skip these buffers. 832 */ 833 if (bp->b_flags & B_NEEDCOMMIT) { 834 BUF_UNLOCK(bp); 835 return(0); 836 } 837 838 /* 839 * Ask bioops if it is ok to sync. If not the VFS may have 840 * set B_LOCKED so we have to cycle the buffer. 841 */ 842 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) { 843 bremfree(bp); 844 brelse(bp); 845 return(0); 846 } 847 848 if (info->synchronous) { 849 /* 850 * Synchronous flushing. An error may be returned. 851 */ 852 bremfree(bp); 853 error = bwrite(bp); 854 } else { 855 /* 856 * Asynchronous flushing. A negative return value simply 857 * stops the scan and is not considered an error. We use 858 * this to support limited MNT_LAZY flushes. 859 */ 860 vp->v_lazyw = bp->b_loffset; 861 if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) { 862 info->lazycount += vfs_bio_awrite(bp); 863 } else { 864 info->lazycount += bp->b_bufsize; 865 bremfree(bp); 866 bawrite(bp); 867 } 868 waitrunningbufspace(); 869 if (info->lazylimit && info->lazycount >= info->lazylimit) 870 error = 1; 871 else 872 error = 0; 873 } 874 return(-error); 875 } 876 877 /* 878 * Associate a buffer with a vnode. 879 * 880 * MPSAFE 881 */ 882 int 883 bgetvp(struct vnode *vp, struct buf *bp, int testsize) 884 { 885 KASSERT(bp->b_vp == NULL, ("bgetvp: not free")); 886 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0); 887 888 /* 889 * Insert onto list for new vnode. 890 */ 891 lwkt_gettoken(&vp->v_token); 892 893 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) { 894 lwkt_reltoken(&vp->v_token); 895 return (EEXIST); 896 } 897 898 /* 899 * Diagnostics (mainly for HAMMER debugging). Check for 900 * overlapping buffers. 901 */ 902 if (check_buf_overlap) { 903 struct buf *bx; 904 bx = buf_rb_hash_RB_PREV(bp); 905 if (bx) { 906 if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) { 907 kprintf("bgetvp: overlapl %016jx/%d %016jx " 908 "bx %p bp %p\n", 909 (intmax_t)bx->b_loffset, 910 bx->b_bufsize, 911 (intmax_t)bp->b_loffset, 912 bx, bp); 913 if (check_buf_overlap > 1) 914 panic("bgetvp - overlapping buffer"); 915 } 916 } 917 bx = buf_rb_hash_RB_NEXT(bp); 918 if (bx) { 919 if (bp->b_loffset + testsize > bx->b_loffset) { 920 kprintf("bgetvp: overlapr %016jx/%d %016jx " 921 "bp %p bx %p\n", 922 (intmax_t)bp->b_loffset, 923 testsize, 924 (intmax_t)bx->b_loffset, 925 bp, bx); 926 if (check_buf_overlap > 1) 927 panic("bgetvp - overlapping buffer"); 928 } 929 } 930 } 931 bp->b_vp = vp; 932 bp->b_flags |= B_HASHED; 933 bp->b_flags |= B_VNCLEAN; 934 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) 935 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp); 936 vhold(vp); 937 lwkt_reltoken(&vp->v_token); 938 return(0); 939 } 940 941 /* 942 * Disassociate a buffer from a vnode. 943 * 944 * MPSAFE 945 */ 946 void 947 brelvp(struct buf *bp) 948 { 949 struct vnode *vp; 950 951 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 952 953 /* 954 * Delete from old vnode list, if on one. 955 */ 956 vp = bp->b_vp; 957 lwkt_gettoken(&vp->v_token); 958 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) { 959 if (bp->b_flags & B_VNDIRTY) 960 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp); 961 else 962 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp); 963 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN); 964 } 965 if (bp->b_flags & B_HASHED) { 966 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp); 967 bp->b_flags &= ~B_HASHED; 968 } 969 if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) 970 vn_syncer_remove(vp); 971 bp->b_vp = NULL; 972 973 lwkt_reltoken(&vp->v_token); 974 975 vdrop(vp); 976 } 977 978 /* 979 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI. 980 * This routine is called when the state of the B_DELWRI bit is changed. 981 * 982 * Must be called with vp->v_token held. 983 * MPSAFE 984 */ 985 void 986 reassignbuf(struct buf *bp) 987 { 988 struct vnode *vp = bp->b_vp; 989 int delay; 990 991 ASSERT_LWKT_TOKEN_HELD(&vp->v_token); 992 ++reassignbufcalls; 993 994 /* 995 * B_PAGING flagged buffers cannot be reassigned because their vp 996 * is not fully linked in. 997 */ 998 if (bp->b_flags & B_PAGING) 999 panic("cannot reassign paging buffer"); 1000 1001 if (bp->b_flags & B_DELWRI) { 1002 /* 1003 * Move to the dirty list, add the vnode to the worklist 1004 */ 1005 if (bp->b_flags & B_VNCLEAN) { 1006 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp); 1007 bp->b_flags &= ~B_VNCLEAN; 1008 } 1009 if ((bp->b_flags & B_VNDIRTY) == 0) { 1010 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) { 1011 panic("reassignbuf: dup lblk vp %p bp %p", 1012 vp, bp); 1013 } 1014 bp->b_flags |= B_VNDIRTY; 1015 } 1016 if ((vp->v_flag & VONWORKLST) == 0) { 1017 switch (vp->v_type) { 1018 case VDIR: 1019 delay = dirdelay; 1020 break; 1021 case VCHR: 1022 case VBLK: 1023 if (vp->v_rdev && 1024 vp->v_rdev->si_mountpoint != NULL) { 1025 delay = metadelay; 1026 break; 1027 } 1028 /* fall through */ 1029 default: 1030 delay = filedelay; 1031 } 1032 vn_syncer_add(vp, delay); 1033 } 1034 } else { 1035 /* 1036 * Move to the clean list, remove the vnode from the worklist 1037 * if no dirty blocks remain. 1038 */ 1039 if (bp->b_flags & B_VNDIRTY) { 1040 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp); 1041 bp->b_flags &= ~B_VNDIRTY; 1042 } 1043 if ((bp->b_flags & B_VNCLEAN) == 0) { 1044 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) { 1045 panic("reassignbuf: dup lblk vp %p bp %p", 1046 vp, bp); 1047 } 1048 bp->b_flags |= B_VNCLEAN; 1049 } 1050 if ((vp->v_flag & VONWORKLST) && 1051 RB_EMPTY(&vp->v_rbdirty_tree)) { 1052 vn_syncer_remove(vp); 1053 } 1054 } 1055 } 1056 1057 /* 1058 * Create a vnode for a block device. Used for mounting the root file 1059 * system. 1060 * 1061 * A vref()'d vnode is returned. 1062 */ 1063 extern struct vop_ops *devfs_vnode_dev_vops_p; 1064 int 1065 bdevvp(cdev_t dev, struct vnode **vpp) 1066 { 1067 struct vnode *vp; 1068 struct vnode *nvp; 1069 int error; 1070 1071 if (dev == NULL) { 1072 *vpp = NULLVP; 1073 return (ENXIO); 1074 } 1075 error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p, 1076 &nvp, 0, 0); 1077 if (error) { 1078 *vpp = NULLVP; 1079 return (error); 1080 } 1081 vp = nvp; 1082 vp->v_type = VCHR; 1083 #if 0 1084 vp->v_rdev = dev; 1085 #endif 1086 v_associate_rdev(vp, dev); 1087 vp->v_umajor = dev->si_umajor; 1088 vp->v_uminor = dev->si_uminor; 1089 vx_unlock(vp); 1090 *vpp = vp; 1091 return (0); 1092 } 1093 1094 int 1095 v_associate_rdev(struct vnode *vp, cdev_t dev) 1096 { 1097 if (dev == NULL) 1098 return(ENXIO); 1099 if (dev_is_good(dev) == 0) 1100 return(ENXIO); 1101 KKASSERT(vp->v_rdev == NULL); 1102 vp->v_rdev = reference_dev(dev); 1103 lwkt_gettoken(&spechash_token); 1104 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext); 1105 lwkt_reltoken(&spechash_token); 1106 return(0); 1107 } 1108 1109 void 1110 v_release_rdev(struct vnode *vp) 1111 { 1112 cdev_t dev; 1113 1114 if ((dev = vp->v_rdev) != NULL) { 1115 lwkt_gettoken(&spechash_token); 1116 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext); 1117 vp->v_rdev = NULL; 1118 release_dev(dev); 1119 lwkt_reltoken(&spechash_token); 1120 } 1121 } 1122 1123 /* 1124 * Add a vnode to the alias list hung off the cdev_t. We only associate 1125 * the device number with the vnode. The actual device is not associated 1126 * until the vnode is opened (usually in spec_open()), and will be 1127 * disassociated on last close. 1128 */ 1129 void 1130 addaliasu(struct vnode *nvp, int x, int y) 1131 { 1132 if (nvp->v_type != VBLK && nvp->v_type != VCHR) 1133 panic("addaliasu on non-special vnode"); 1134 nvp->v_umajor = x; 1135 nvp->v_uminor = y; 1136 } 1137 1138 /* 1139 * Simple call that a filesystem can make to try to get rid of a 1140 * vnode. It will fail if anyone is referencing the vnode (including 1141 * the caller). 1142 * 1143 * The filesystem can check whether its in-memory inode structure still 1144 * references the vp on return. 1145 */ 1146 void 1147 vclean_unlocked(struct vnode *vp) 1148 { 1149 vx_get(vp); 1150 if (sysref_isactive(&vp->v_sysref) == 0) 1151 vgone_vxlocked(vp); 1152 vx_put(vp); 1153 } 1154 1155 /* 1156 * Disassociate a vnode from its underlying filesystem. 1157 * 1158 * The vnode must be VX locked and referenced. In all normal situations 1159 * there are no active references. If vclean_vxlocked() is called while 1160 * there are active references, the vnode is being ripped out and we have 1161 * to call VOP_CLOSE() as appropriate before we can reclaim it. 1162 */ 1163 void 1164 vclean_vxlocked(struct vnode *vp, int flags) 1165 { 1166 int active; 1167 int n; 1168 vm_object_t object; 1169 struct namecache *ncp; 1170 1171 /* 1172 * If the vnode has already been reclaimed we have nothing to do. 1173 */ 1174 if (vp->v_flag & VRECLAIMED) 1175 return; 1176 vsetflags(vp, VRECLAIMED); 1177 1178 if (verbose_reclaims) { 1179 if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL) 1180 kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name); 1181 } 1182 1183 /* 1184 * Scrap the vfs cache 1185 */ 1186 while (cache_inval_vp(vp, 0) != 0) { 1187 kprintf("Warning: vnode %p clean/cache_resolution " 1188 "race detected\n", vp); 1189 tsleep(vp, 0, "vclninv", 2); 1190 } 1191 1192 /* 1193 * Check to see if the vnode is in use. If so we have to reference it 1194 * before we clean it out so that its count cannot fall to zero and 1195 * generate a race against ourselves to recycle it. 1196 */ 1197 active = sysref_isactive(&vp->v_sysref); 1198 1199 /* 1200 * Clean out any buffers associated with the vnode and destroy its 1201 * object, if it has one. 1202 */ 1203 vinvalbuf(vp, V_SAVE, 0, 0); 1204 1205 /* 1206 * If purging an active vnode (typically during a forced unmount 1207 * or reboot), it must be closed and deactivated before being 1208 * reclaimed. This isn't really all that safe, but what can 1209 * we do? XXX. 1210 * 1211 * Note that neither of these routines unlocks the vnode. 1212 */ 1213 if (active && (flags & DOCLOSE)) { 1214 while ((n = vp->v_opencount) != 0) { 1215 if (vp->v_writecount) 1216 VOP_CLOSE(vp, FWRITE|FNONBLOCK); 1217 else 1218 VOP_CLOSE(vp, FNONBLOCK); 1219 if (vp->v_opencount == n) { 1220 kprintf("Warning: unable to force-close" 1221 " vnode %p\n", vp); 1222 break; 1223 } 1224 } 1225 } 1226 1227 /* 1228 * If the vnode has not been deactivated, deactivated it. Deactivation 1229 * can create new buffers and VM pages so we have to call vinvalbuf() 1230 * again to make sure they all get flushed. 1231 * 1232 * This can occur if a file with a link count of 0 needs to be 1233 * truncated. 1234 * 1235 * If the vnode is already dead don't try to deactivate it. 1236 */ 1237 if ((vp->v_flag & VINACTIVE) == 0) { 1238 vsetflags(vp, VINACTIVE); 1239 if (vp->v_mount) 1240 VOP_INACTIVE(vp); 1241 vinvalbuf(vp, V_SAVE, 0, 0); 1242 } 1243 1244 /* 1245 * If the vnode has an object, destroy it. 1246 */ 1247 lwkt_gettoken(&vmobj_token); 1248 object = vp->v_object; 1249 if (object != NULL) { 1250 /* 1251 * Use vm_object_lock() rather than vm_object_hold to avoid 1252 * creating an extra (self-)hold on the object. 1253 */ 1254 vm_object_lock(object); 1255 KKASSERT(object == vp->v_object); 1256 if (object->ref_count == 0) { 1257 if ((object->flags & OBJ_DEAD) == 0) 1258 vm_object_terminate(object); 1259 } else { 1260 vm_pager_deallocate(object); 1261 } 1262 vclrflags(vp, VOBJBUF); 1263 vm_object_unlock(object); 1264 } 1265 lwkt_reltoken(&vmobj_token); 1266 KKASSERT((vp->v_flag & VOBJBUF) == 0); 1267 1268 /* 1269 * Reclaim the vnode if not already dead. 1270 */ 1271 if (vp->v_mount && VOP_RECLAIM(vp)) 1272 panic("vclean: cannot reclaim"); 1273 1274 /* 1275 * Done with purge, notify sleepers of the grim news. 1276 */ 1277 vp->v_ops = &dead_vnode_vops_p; 1278 vn_gone(vp); 1279 vp->v_tag = VT_NON; 1280 1281 /* 1282 * If we are destroying an active vnode, reactivate it now that 1283 * we have reassociated it with deadfs. This prevents the system 1284 * from crashing on the vnode due to it being unexpectedly marked 1285 * as inactive or reclaimed. 1286 */ 1287 if (active && (flags & DOCLOSE)) { 1288 vclrflags(vp, VINACTIVE | VRECLAIMED); 1289 } 1290 } 1291 1292 /* 1293 * Eliminate all activity associated with the requested vnode 1294 * and with all vnodes aliased to the requested vnode. 1295 * 1296 * The vnode must be referenced but should not be locked. 1297 */ 1298 int 1299 vrevoke(struct vnode *vp, struct ucred *cred) 1300 { 1301 struct vnode *vq; 1302 struct vnode *vqn; 1303 cdev_t dev; 1304 int error; 1305 1306 /* 1307 * If the vnode has a device association, scrap all vnodes associated 1308 * with the device. Don't let the device disappear on us while we 1309 * are scrapping the vnodes. 1310 * 1311 * The passed vp will probably show up in the list, do not VX lock 1312 * it twice! 1313 * 1314 * Releasing the vnode's rdev here can mess up specfs's call to 1315 * device close, so don't do it. The vnode has been disassociated 1316 * and the device will be closed after the last ref on the related 1317 * fp goes away (if not still open by e.g. the kernel). 1318 */ 1319 if (vp->v_type != VCHR) { 1320 error = fdrevoke(vp, DTYPE_VNODE, cred); 1321 return (error); 1322 } 1323 if ((dev = vp->v_rdev) == NULL) { 1324 return(0); 1325 } 1326 reference_dev(dev); 1327 lwkt_gettoken(&spechash_token); 1328 1329 vqn = SLIST_FIRST(&dev->si_hlist); 1330 if (vqn) 1331 vref(vqn); 1332 while ((vq = vqn) != NULL) { 1333 vqn = SLIST_NEXT(vqn, v_cdevnext); 1334 if (vqn) 1335 vref(vqn); 1336 fdrevoke(vq, DTYPE_VNODE, cred); 1337 /*v_release_rdev(vq);*/ 1338 vrele(vq); 1339 } 1340 lwkt_reltoken(&spechash_token); 1341 dev_drevoke(dev); 1342 release_dev(dev); 1343 return (0); 1344 } 1345 1346 /* 1347 * This is called when the object underlying a vnode is being destroyed, 1348 * such as in a remove(). Try to recycle the vnode immediately if the 1349 * only active reference is our reference. 1350 * 1351 * Directory vnodes in the namecache with children cannot be immediately 1352 * recycled because numerous VOP_N*() ops require them to be stable. 1353 * 1354 * To avoid recursive recycling from VOP_INACTIVE implemenetations this 1355 * function is a NOP if VRECLAIMED is already set. 1356 */ 1357 int 1358 vrecycle(struct vnode *vp) 1359 { 1360 if (vp->v_sysref.refcnt <= 1 && (vp->v_flag & VRECLAIMED) == 0) { 1361 if (cache_inval_vp_nonblock(vp)) 1362 return(0); 1363 vgone_vxlocked(vp); 1364 return (1); 1365 } 1366 return (0); 1367 } 1368 1369 /* 1370 * Return the maximum I/O size allowed for strategy calls on VP. 1371 * 1372 * If vp is VCHR or VBLK we dive the device, otherwise we use 1373 * the vp's mount info. 1374 */ 1375 int 1376 vmaxiosize(struct vnode *vp) 1377 { 1378 if (vp->v_type == VBLK || vp->v_type == VCHR) { 1379 return(vp->v_rdev->si_iosize_max); 1380 } else { 1381 return(vp->v_mount->mnt_iosize_max); 1382 } 1383 } 1384 1385 /* 1386 * Eliminate all activity associated with a vnode in preparation for reuse. 1387 * 1388 * The vnode must be VX locked and refd and will remain VX locked and refd 1389 * on return. This routine may be called with the vnode in any state, as 1390 * long as it is VX locked. The vnode will be cleaned out and marked 1391 * VRECLAIMED but will not actually be reused until all existing refs and 1392 * holds go away. 1393 * 1394 * NOTE: This routine may be called on a vnode which has not yet been 1395 * already been deactivated (VOP_INACTIVE), or on a vnode which has 1396 * already been reclaimed. 1397 * 1398 * This routine is not responsible for placing us back on the freelist. 1399 * Instead, it happens automatically when the caller releases the VX lock 1400 * (assuming there aren't any other references). 1401 */ 1402 void 1403 vgone_vxlocked(struct vnode *vp) 1404 { 1405 /* 1406 * assert that the VX lock is held. This is an absolute requirement 1407 * now for vgone_vxlocked() to be called. 1408 */ 1409 KKASSERT(vp->v_lock.lk_exclusivecount == 1); 1410 1411 get_mplock(); 1412 1413 /* 1414 * Clean out the filesystem specific data and set the VRECLAIMED 1415 * bit. Also deactivate the vnode if necessary. 1416 */ 1417 vclean_vxlocked(vp, DOCLOSE); 1418 1419 /* 1420 * Delete from old mount point vnode list, if on one. 1421 */ 1422 if (vp->v_mount != NULL) { 1423 KKASSERT(vp->v_data == NULL); 1424 insmntque(vp, NULL); 1425 } 1426 1427 /* 1428 * If special device, remove it from special device alias list 1429 * if it is on one. This should normally only occur if a vnode is 1430 * being revoked as the device should otherwise have been released 1431 * naturally. 1432 */ 1433 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) { 1434 v_release_rdev(vp); 1435 } 1436 1437 /* 1438 * Set us to VBAD 1439 */ 1440 vp->v_type = VBAD; 1441 rel_mplock(); 1442 } 1443 1444 /* 1445 * Lookup a vnode by device number. 1446 * 1447 * Returns non-zero and *vpp set to a vref'd vnode on success. 1448 * Returns zero on failure. 1449 */ 1450 int 1451 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp) 1452 { 1453 struct vnode *vp; 1454 1455 lwkt_gettoken(&spechash_token); 1456 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) { 1457 if (type == vp->v_type) { 1458 *vpp = vp; 1459 vref(vp); 1460 lwkt_reltoken(&spechash_token); 1461 return (1); 1462 } 1463 } 1464 lwkt_reltoken(&spechash_token); 1465 return (0); 1466 } 1467 1468 /* 1469 * Calculate the total number of references to a special device. This 1470 * routine may only be called for VBLK and VCHR vnodes since v_rdev is 1471 * an overloaded field. Since udev2dev can now return NULL, we have 1472 * to check for a NULL v_rdev. 1473 */ 1474 int 1475 count_dev(cdev_t dev) 1476 { 1477 struct vnode *vp; 1478 int count = 0; 1479 1480 if (SLIST_FIRST(&dev->si_hlist)) { 1481 lwkt_gettoken(&spechash_token); 1482 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) { 1483 count += vp->v_opencount; 1484 } 1485 lwkt_reltoken(&spechash_token); 1486 } 1487 return(count); 1488 } 1489 1490 int 1491 vcount(struct vnode *vp) 1492 { 1493 if (vp->v_rdev == NULL) 1494 return(0); 1495 return(count_dev(vp->v_rdev)); 1496 } 1497 1498 /* 1499 * Initialize VMIO for a vnode. This routine MUST be called before a 1500 * VFS can issue buffer cache ops on a vnode. It is typically called 1501 * when a vnode is initialized from its inode. 1502 */ 1503 int 1504 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff) 1505 { 1506 vm_object_t object; 1507 int error = 0; 1508 1509 lwkt_gettoken(&vmobj_token); 1510 retry: 1511 if ((object = vp->v_object) == NULL) { 1512 object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff); 1513 /* 1514 * Dereference the reference we just created. This assumes 1515 * that the object is associated with the vp. 1516 */ 1517 object->ref_count--; 1518 vrele(vp); 1519 } else { 1520 if (object->flags & OBJ_DEAD) { 1521 vn_unlock(vp); 1522 if (vp->v_object == object) 1523 vm_object_dead_sleep(object, "vodead"); 1524 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1525 goto retry; 1526 } 1527 } 1528 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object")); 1529 vsetflags(vp, VOBJBUF); 1530 lwkt_reltoken(&vmobj_token); 1531 1532 return (error); 1533 } 1534 1535 1536 /* 1537 * Print out a description of a vnode. 1538 */ 1539 static char *typename[] = 1540 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"}; 1541 1542 void 1543 vprint(char *label, struct vnode *vp) 1544 { 1545 char buf[96]; 1546 1547 if (label != NULL) 1548 kprintf("%s: %p: ", label, (void *)vp); 1549 else 1550 kprintf("%p: ", (void *)vp); 1551 kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,", 1552 typename[vp->v_type], 1553 vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs); 1554 buf[0] = '\0'; 1555 if (vp->v_flag & VROOT) 1556 strcat(buf, "|VROOT"); 1557 if (vp->v_flag & VPFSROOT) 1558 strcat(buf, "|VPFSROOT"); 1559 if (vp->v_flag & VTEXT) 1560 strcat(buf, "|VTEXT"); 1561 if (vp->v_flag & VSYSTEM) 1562 strcat(buf, "|VSYSTEM"); 1563 if (vp->v_flag & VFREE) 1564 strcat(buf, "|VFREE"); 1565 if (vp->v_flag & VOBJBUF) 1566 strcat(buf, "|VOBJBUF"); 1567 if (buf[0] != '\0') 1568 kprintf(" flags (%s)", &buf[1]); 1569 if (vp->v_data == NULL) { 1570 kprintf("\n"); 1571 } else { 1572 kprintf("\n\t"); 1573 VOP_PRINT(vp); 1574 } 1575 } 1576 1577 /* 1578 * Do the usual access checking. 1579 * file_mode, uid and gid are from the vnode in question, 1580 * while acc_mode and cred are from the VOP_ACCESS parameter list 1581 */ 1582 int 1583 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid, 1584 mode_t acc_mode, struct ucred *cred) 1585 { 1586 mode_t mask; 1587 int ismember; 1588 1589 /* 1590 * Super-user always gets read/write access, but execute access depends 1591 * on at least one execute bit being set. 1592 */ 1593 if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) { 1594 if ((acc_mode & VEXEC) && type != VDIR && 1595 (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0) 1596 return (EACCES); 1597 return (0); 1598 } 1599 1600 mask = 0; 1601 1602 /* Otherwise, check the owner. */ 1603 if (cred->cr_uid == uid) { 1604 if (acc_mode & VEXEC) 1605 mask |= S_IXUSR; 1606 if (acc_mode & VREAD) 1607 mask |= S_IRUSR; 1608 if (acc_mode & VWRITE) 1609 mask |= S_IWUSR; 1610 return ((file_mode & mask) == mask ? 0 : EACCES); 1611 } 1612 1613 /* Otherwise, check the groups. */ 1614 ismember = groupmember(gid, cred); 1615 if (cred->cr_svgid == gid || ismember) { 1616 if (acc_mode & VEXEC) 1617 mask |= S_IXGRP; 1618 if (acc_mode & VREAD) 1619 mask |= S_IRGRP; 1620 if (acc_mode & VWRITE) 1621 mask |= S_IWGRP; 1622 return ((file_mode & mask) == mask ? 0 : EACCES); 1623 } 1624 1625 /* Otherwise, check everyone else. */ 1626 if (acc_mode & VEXEC) 1627 mask |= S_IXOTH; 1628 if (acc_mode & VREAD) 1629 mask |= S_IROTH; 1630 if (acc_mode & VWRITE) 1631 mask |= S_IWOTH; 1632 return ((file_mode & mask) == mask ? 0 : EACCES); 1633 } 1634 1635 #ifdef DDB 1636 #include <ddb/ddb.h> 1637 1638 static int db_show_locked_vnodes(struct mount *mp, void *data); 1639 1640 /* 1641 * List all of the locked vnodes in the system. 1642 * Called when debugging the kernel. 1643 */ 1644 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes) 1645 { 1646 kprintf("Locked vnodes\n"); 1647 mountlist_scan(db_show_locked_vnodes, NULL, 1648 MNTSCAN_FORWARD|MNTSCAN_NOBUSY); 1649 } 1650 1651 static int 1652 db_show_locked_vnodes(struct mount *mp, void *data __unused) 1653 { 1654 struct vnode *vp; 1655 1656 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 1657 if (vn_islocked(vp)) 1658 vprint(NULL, vp); 1659 } 1660 return(0); 1661 } 1662 #endif 1663 1664 /* 1665 * Top level filesystem related information gathering. 1666 */ 1667 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS); 1668 1669 static int 1670 vfs_sysctl(SYSCTL_HANDLER_ARGS) 1671 { 1672 int *name = (int *)arg1 - 1; /* XXX */ 1673 u_int namelen = arg2 + 1; /* XXX */ 1674 struct vfsconf *vfsp; 1675 int maxtypenum; 1676 1677 #if 1 || defined(COMPAT_PRELITE2) 1678 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 1679 if (namelen == 1) 1680 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 1681 #endif 1682 1683 #ifdef notyet 1684 /* all sysctl names at this level are at least name and field */ 1685 if (namelen < 2) 1686 return (ENOTDIR); /* overloaded */ 1687 if (name[0] != VFS_GENERIC) { 1688 vfsp = vfsconf_find_by_typenum(name[0]); 1689 if (vfsp == NULL) 1690 return (EOPNOTSUPP); 1691 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1, 1692 oldp, oldlenp, newp, newlen, p)); 1693 } 1694 #endif 1695 switch (name[1]) { 1696 case VFS_MAXTYPENUM: 1697 if (namelen != 2) 1698 return (ENOTDIR); 1699 maxtypenum = vfsconf_get_maxtypenum(); 1700 return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum))); 1701 case VFS_CONF: 1702 if (namelen != 3) 1703 return (ENOTDIR); /* overloaded */ 1704 vfsp = vfsconf_find_by_typenum(name[2]); 1705 if (vfsp == NULL) 1706 return (EOPNOTSUPP); 1707 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp)); 1708 } 1709 return (EOPNOTSUPP); 1710 } 1711 1712 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl, 1713 "Generic filesystem"); 1714 1715 #if 1 || defined(COMPAT_PRELITE2) 1716 1717 static int 1718 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data) 1719 { 1720 int error; 1721 struct ovfsconf ovfs; 1722 struct sysctl_req *req = (struct sysctl_req*) data; 1723 1724 bzero(&ovfs, sizeof(ovfs)); 1725 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 1726 strcpy(ovfs.vfc_name, vfsp->vfc_name); 1727 ovfs.vfc_index = vfsp->vfc_typenum; 1728 ovfs.vfc_refcount = vfsp->vfc_refcount; 1729 ovfs.vfc_flags = vfsp->vfc_flags; 1730 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 1731 if (error) 1732 return error; /* abort iteration with error code */ 1733 else 1734 return 0; /* continue iterating with next element */ 1735 } 1736 1737 static int 1738 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 1739 { 1740 return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req); 1741 } 1742 1743 #endif /* 1 || COMPAT_PRELITE2 */ 1744 1745 /* 1746 * Check to see if a filesystem is mounted on a block device. 1747 */ 1748 int 1749 vfs_mountedon(struct vnode *vp) 1750 { 1751 cdev_t dev; 1752 1753 if ((dev = vp->v_rdev) == NULL) { 1754 /* if (vp->v_type != VBLK) 1755 dev = get_dev(vp->v_uminor, vp->v_umajor); */ 1756 } 1757 if (dev != NULL && dev->si_mountpoint) 1758 return (EBUSY); 1759 return (0); 1760 } 1761 1762 /* 1763 * Unmount all filesystems. The list is traversed in reverse order 1764 * of mounting to avoid dependencies. 1765 */ 1766 1767 static int vfs_umountall_callback(struct mount *mp, void *data); 1768 1769 void 1770 vfs_unmountall(void) 1771 { 1772 int count; 1773 1774 do { 1775 count = mountlist_scan(vfs_umountall_callback, 1776 NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY); 1777 } while (count); 1778 } 1779 1780 static 1781 int 1782 vfs_umountall_callback(struct mount *mp, void *data) 1783 { 1784 int error; 1785 1786 error = dounmount(mp, MNT_FORCE); 1787 if (error) { 1788 mountlist_remove(mp); 1789 kprintf("unmount of filesystem mounted from %s failed (", 1790 mp->mnt_stat.f_mntfromname); 1791 if (error == EBUSY) 1792 kprintf("BUSY)\n"); 1793 else 1794 kprintf("%d)\n", error); 1795 } 1796 return(1); 1797 } 1798 1799 /* 1800 * Checks the mount flags for parameter mp and put the names comma-separated 1801 * into a string buffer buf with a size limit specified by len. 1802 * 1803 * It returns the number of bytes written into buf, and (*errorp) will be 1804 * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was 1805 * not large enough). The buffer will be 0-terminated if len was not 0. 1806 */ 1807 size_t 1808 vfs_flagstostr(int flags, const struct mountctl_opt *optp, 1809 char *buf, size_t len, int *errorp) 1810 { 1811 static const struct mountctl_opt optnames[] = { 1812 { MNT_ASYNC, "asynchronous" }, 1813 { MNT_EXPORTED, "NFS exported" }, 1814 { MNT_LOCAL, "local" }, 1815 { MNT_NOATIME, "noatime" }, 1816 { MNT_NODEV, "nodev" }, 1817 { MNT_NOEXEC, "noexec" }, 1818 { MNT_NOSUID, "nosuid" }, 1819 { MNT_NOSYMFOLLOW, "nosymfollow" }, 1820 { MNT_QUOTA, "with-quotas" }, 1821 { MNT_RDONLY, "read-only" }, 1822 { MNT_SYNCHRONOUS, "synchronous" }, 1823 { MNT_UNION, "union" }, 1824 { MNT_NOCLUSTERR, "noclusterr" }, 1825 { MNT_NOCLUSTERW, "noclusterw" }, 1826 { MNT_SUIDDIR, "suiddir" }, 1827 { MNT_SOFTDEP, "soft-updates" }, 1828 { MNT_IGNORE, "ignore" }, 1829 { 0, NULL} 1830 }; 1831 int bwritten; 1832 int bleft; 1833 int optlen; 1834 int actsize; 1835 1836 *errorp = 0; 1837 bwritten = 0; 1838 bleft = len - 1; /* leave room for trailing \0 */ 1839 1840 /* 1841 * Checks the size of the string. If it contains 1842 * any data, then we will append the new flags to 1843 * it. 1844 */ 1845 actsize = strlen(buf); 1846 if (actsize > 0) 1847 buf += actsize; 1848 1849 /* Default flags if no flags passed */ 1850 if (optp == NULL) 1851 optp = optnames; 1852 1853 if (bleft < 0) { /* degenerate case, 0-length buffer */ 1854 *errorp = EINVAL; 1855 return(0); 1856 } 1857 1858 for (; flags && optp->o_opt; ++optp) { 1859 if ((flags & optp->o_opt) == 0) 1860 continue; 1861 optlen = strlen(optp->o_name); 1862 if (bwritten || actsize > 0) { 1863 if (bleft < 2) { 1864 *errorp = ENOSPC; 1865 break; 1866 } 1867 buf[bwritten++] = ','; 1868 buf[bwritten++] = ' '; 1869 bleft -= 2; 1870 } 1871 if (bleft < optlen) { 1872 *errorp = ENOSPC; 1873 break; 1874 } 1875 bcopy(optp->o_name, buf + bwritten, optlen); 1876 bwritten += optlen; 1877 bleft -= optlen; 1878 flags &= ~optp->o_opt; 1879 } 1880 1881 /* 1882 * Space already reserved for trailing \0 1883 */ 1884 buf[bwritten] = 0; 1885 return (bwritten); 1886 } 1887 1888 /* 1889 * Build hash lists of net addresses and hang them off the mount point. 1890 * Called by ufs_mount() to set up the lists of export addresses. 1891 */ 1892 static int 1893 vfs_hang_addrlist(struct mount *mp, struct netexport *nep, 1894 const struct export_args *argp) 1895 { 1896 struct netcred *np; 1897 struct radix_node_head *rnh; 1898 int i; 1899 struct radix_node *rn; 1900 struct sockaddr *saddr, *smask = 0; 1901 struct domain *dom; 1902 int error; 1903 1904 if (argp->ex_addrlen == 0) { 1905 if (mp->mnt_flag & MNT_DEFEXPORTED) 1906 return (EPERM); 1907 np = &nep->ne_defexported; 1908 np->netc_exflags = argp->ex_flags; 1909 np->netc_anon = argp->ex_anon; 1910 np->netc_anon.cr_ref = 1; 1911 mp->mnt_flag |= MNT_DEFEXPORTED; 1912 return (0); 1913 } 1914 1915 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN) 1916 return (EINVAL); 1917 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN) 1918 return (EINVAL); 1919 1920 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen; 1921 np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO); 1922 saddr = (struct sockaddr *) (np + 1); 1923 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen))) 1924 goto out; 1925 if (saddr->sa_len > argp->ex_addrlen) 1926 saddr->sa_len = argp->ex_addrlen; 1927 if (argp->ex_masklen) { 1928 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen); 1929 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen); 1930 if (error) 1931 goto out; 1932 if (smask->sa_len > argp->ex_masklen) 1933 smask->sa_len = argp->ex_masklen; 1934 } 1935 i = saddr->sa_family; 1936 if ((rnh = nep->ne_rtable[i]) == 0) { 1937 /* 1938 * Seems silly to initialize every AF when most are not used, 1939 * do so on demand here 1940 */ 1941 SLIST_FOREACH(dom, &domains, dom_next) 1942 if (dom->dom_family == i && dom->dom_rtattach) { 1943 dom->dom_rtattach((void **) &nep->ne_rtable[i], 1944 dom->dom_rtoffset); 1945 break; 1946 } 1947 if ((rnh = nep->ne_rtable[i]) == 0) { 1948 error = ENOBUFS; 1949 goto out; 1950 } 1951 } 1952 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh, 1953 np->netc_rnodes); 1954 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */ 1955 error = EPERM; 1956 goto out; 1957 } 1958 np->netc_exflags = argp->ex_flags; 1959 np->netc_anon = argp->ex_anon; 1960 np->netc_anon.cr_ref = 1; 1961 return (0); 1962 out: 1963 kfree(np, M_NETADDR); 1964 return (error); 1965 } 1966 1967 /* ARGSUSED */ 1968 static int 1969 vfs_free_netcred(struct radix_node *rn, void *w) 1970 { 1971 struct radix_node_head *rnh = (struct radix_node_head *) w; 1972 1973 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh); 1974 kfree((caddr_t) rn, M_NETADDR); 1975 return (0); 1976 } 1977 1978 /* 1979 * Free the net address hash lists that are hanging off the mount points. 1980 */ 1981 static void 1982 vfs_free_addrlist(struct netexport *nep) 1983 { 1984 int i; 1985 struct radix_node_head *rnh; 1986 1987 for (i = 0; i <= AF_MAX; i++) 1988 if ((rnh = nep->ne_rtable[i])) { 1989 (*rnh->rnh_walktree) (rnh, vfs_free_netcred, 1990 (caddr_t) rnh); 1991 kfree((caddr_t) rnh, M_RTABLE); 1992 nep->ne_rtable[i] = 0; 1993 } 1994 } 1995 1996 int 1997 vfs_export(struct mount *mp, struct netexport *nep, 1998 const struct export_args *argp) 1999 { 2000 int error; 2001 2002 if (argp->ex_flags & MNT_DELEXPORT) { 2003 if (mp->mnt_flag & MNT_EXPUBLIC) { 2004 vfs_setpublicfs(NULL, NULL, NULL); 2005 mp->mnt_flag &= ~MNT_EXPUBLIC; 2006 } 2007 vfs_free_addrlist(nep); 2008 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED); 2009 } 2010 if (argp->ex_flags & MNT_EXPORTED) { 2011 if (argp->ex_flags & MNT_EXPUBLIC) { 2012 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0) 2013 return (error); 2014 mp->mnt_flag |= MNT_EXPUBLIC; 2015 } 2016 if ((error = vfs_hang_addrlist(mp, nep, argp))) 2017 return (error); 2018 mp->mnt_flag |= MNT_EXPORTED; 2019 } 2020 return (0); 2021 } 2022 2023 2024 /* 2025 * Set the publicly exported filesystem (WebNFS). Currently, only 2026 * one public filesystem is possible in the spec (RFC 2054 and 2055) 2027 */ 2028 int 2029 vfs_setpublicfs(struct mount *mp, struct netexport *nep, 2030 const struct export_args *argp) 2031 { 2032 int error; 2033 struct vnode *rvp; 2034 char *cp; 2035 2036 /* 2037 * mp == NULL -> invalidate the current info, the FS is 2038 * no longer exported. May be called from either vfs_export 2039 * or unmount, so check if it hasn't already been done. 2040 */ 2041 if (mp == NULL) { 2042 if (nfs_pub.np_valid) { 2043 nfs_pub.np_valid = 0; 2044 if (nfs_pub.np_index != NULL) { 2045 FREE(nfs_pub.np_index, M_TEMP); 2046 nfs_pub.np_index = NULL; 2047 } 2048 } 2049 return (0); 2050 } 2051 2052 /* 2053 * Only one allowed at a time. 2054 */ 2055 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount) 2056 return (EBUSY); 2057 2058 /* 2059 * Get real filehandle for root of exported FS. 2060 */ 2061 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle)); 2062 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid; 2063 2064 if ((error = VFS_ROOT(mp, &rvp))) 2065 return (error); 2066 2067 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid))) 2068 return (error); 2069 2070 vput(rvp); 2071 2072 /* 2073 * If an indexfile was specified, pull it in. 2074 */ 2075 if (argp->ex_indexfile != NULL) { 2076 int namelen; 2077 2078 error = vn_get_namelen(rvp, &namelen); 2079 if (error) 2080 return (error); 2081 MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP, 2082 M_WAITOK); 2083 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index, 2084 namelen, NULL); 2085 if (!error) { 2086 /* 2087 * Check for illegal filenames. 2088 */ 2089 for (cp = nfs_pub.np_index; *cp; cp++) { 2090 if (*cp == '/') { 2091 error = EINVAL; 2092 break; 2093 } 2094 } 2095 } 2096 if (error) { 2097 FREE(nfs_pub.np_index, M_TEMP); 2098 return (error); 2099 } 2100 } 2101 2102 nfs_pub.np_mount = mp; 2103 nfs_pub.np_valid = 1; 2104 return (0); 2105 } 2106 2107 struct netcred * 2108 vfs_export_lookup(struct mount *mp, struct netexport *nep, 2109 struct sockaddr *nam) 2110 { 2111 struct netcred *np; 2112 struct radix_node_head *rnh; 2113 struct sockaddr *saddr; 2114 2115 np = NULL; 2116 if (mp->mnt_flag & MNT_EXPORTED) { 2117 /* 2118 * Lookup in the export list first. 2119 */ 2120 if (nam != NULL) { 2121 saddr = nam; 2122 rnh = nep->ne_rtable[saddr->sa_family]; 2123 if (rnh != NULL) { 2124 np = (struct netcred *) 2125 (*rnh->rnh_matchaddr)((char *)saddr, 2126 rnh); 2127 if (np && np->netc_rnodes->rn_flags & RNF_ROOT) 2128 np = NULL; 2129 } 2130 } 2131 /* 2132 * If no address match, use the default if it exists. 2133 */ 2134 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED) 2135 np = &nep->ne_defexported; 2136 } 2137 return (np); 2138 } 2139 2140 /* 2141 * perform msync on all vnodes under a mount point. The mount point must 2142 * be locked. This code is also responsible for lazy-freeing unreferenced 2143 * vnodes whos VM objects no longer contain pages. 2144 * 2145 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state. 2146 * 2147 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked, 2148 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it 2149 * way up in this high level function. 2150 */ 2151 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data); 2152 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data); 2153 2154 void 2155 vfs_msync(struct mount *mp, int flags) 2156 { 2157 int vmsc_flags; 2158 2159 /* 2160 * tmpfs sets this flag to prevent msync(), sync, and the 2161 * filesystem periodic syncer from trying to flush VM pages 2162 * to swap. Only pure memory pressure flushes tmpfs VM pages 2163 * to swap. 2164 */ 2165 if (mp->mnt_kern_flag & MNTK_NOMSYNC) 2166 return; 2167 2168 /* 2169 * Ok, scan the vnodes for work. 2170 */ 2171 vmsc_flags = VMSC_GETVP; 2172 if (flags != MNT_WAIT) 2173 vmsc_flags |= VMSC_NOWAIT; 2174 vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2, 2175 (void *)(intptr_t)flags); 2176 } 2177 2178 /* 2179 * scan1 is a fast pre-check. There could be hundreds of thousands of 2180 * vnodes, we cannot afford to do anything heavy weight until we have a 2181 * fairly good indication that there is work to do. 2182 */ 2183 static 2184 int 2185 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data) 2186 { 2187 int flags = (int)(intptr_t)data; 2188 2189 if ((vp->v_flag & VRECLAIMED) == 0) { 2190 if (vshouldmsync(vp)) 2191 return(0); /* call scan2 */ 2192 if ((mp->mnt_flag & MNT_RDONLY) == 0 && 2193 (vp->v_flag & VOBJDIRTY) && 2194 (flags == MNT_WAIT || vn_islocked(vp) == 0)) { 2195 return(0); /* call scan2 */ 2196 } 2197 } 2198 2199 /* 2200 * do not call scan2, continue the loop 2201 */ 2202 return(-1); 2203 } 2204 2205 /* 2206 * This callback is handed a locked vnode. 2207 */ 2208 static 2209 int 2210 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data) 2211 { 2212 vm_object_t obj; 2213 int flags = (int)(intptr_t)data; 2214 2215 if (vp->v_flag & VRECLAIMED) 2216 return(0); 2217 2218 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) { 2219 if ((obj = vp->v_object) != NULL) { 2220 vm_object_page_clean(obj, 0, 0, 2221 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC); 2222 } 2223 } 2224 return(0); 2225 } 2226 2227 /* 2228 * Wake up anyone interested in vp because it is being revoked. 2229 */ 2230 void 2231 vn_gone(struct vnode *vp) 2232 { 2233 lwkt_gettoken(&vp->v_token); 2234 KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE); 2235 lwkt_reltoken(&vp->v_token); 2236 } 2237 2238 /* 2239 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened 2240 * (or v_rdev might be NULL). 2241 */ 2242 cdev_t 2243 vn_todev(struct vnode *vp) 2244 { 2245 if (vp->v_type != VBLK && vp->v_type != VCHR) 2246 return (NULL); 2247 KKASSERT(vp->v_rdev != NULL); 2248 return (vp->v_rdev); 2249 } 2250 2251 /* 2252 * Check if vnode represents a disk device. The vnode does not need to be 2253 * opened. 2254 * 2255 * MPALMOSTSAFE 2256 */ 2257 int 2258 vn_isdisk(struct vnode *vp, int *errp) 2259 { 2260 cdev_t dev; 2261 2262 if (vp->v_type != VCHR) { 2263 if (errp != NULL) 2264 *errp = ENOTBLK; 2265 return (0); 2266 } 2267 2268 dev = vp->v_rdev; 2269 2270 if (dev == NULL) { 2271 if (errp != NULL) 2272 *errp = ENXIO; 2273 return (0); 2274 } 2275 if (dev_is_good(dev) == 0) { 2276 if (errp != NULL) 2277 *errp = ENXIO; 2278 return (0); 2279 } 2280 if ((dev_dflags(dev) & D_DISK) == 0) { 2281 if (errp != NULL) 2282 *errp = ENOTBLK; 2283 return (0); 2284 } 2285 if (errp != NULL) 2286 *errp = 0; 2287 return (1); 2288 } 2289 2290 int 2291 vn_get_namelen(struct vnode *vp, int *namelen) 2292 { 2293 int error; 2294 register_t retval[2]; 2295 2296 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval); 2297 if (error) 2298 return (error); 2299 *namelen = (int)retval[0]; 2300 return (0); 2301 } 2302 2303 int 2304 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type, 2305 uint16_t d_namlen, const char *d_name) 2306 { 2307 struct dirent *dp; 2308 size_t len; 2309 2310 len = _DIRENT_RECLEN(d_namlen); 2311 if (len > uio->uio_resid) 2312 return(1); 2313 2314 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO); 2315 2316 dp->d_ino = d_ino; 2317 dp->d_namlen = d_namlen; 2318 dp->d_type = d_type; 2319 bcopy(d_name, dp->d_name, d_namlen); 2320 2321 *error = uiomove((caddr_t)dp, len, uio); 2322 2323 kfree(dp, M_TEMP); 2324 2325 return(0); 2326 } 2327 2328 void 2329 vn_mark_atime(struct vnode *vp, struct thread *td) 2330 { 2331 struct proc *p = td->td_proc; 2332 struct ucred *cred = p ? p->p_ucred : proc0.p_ucred; 2333 2334 if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) { 2335 VOP_MARKATIME(vp, cred); 2336 } 2337 } 2338