1 /* 2 * Copyright (c) 2004,2013 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * (c) UNIX System Laboratories, Inc. 37 * All or some portions of this file are derived from material licensed 38 * to the University of California by American Telephone and Telegraph 39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 40 * the permission of UNIX System Laboratories, Inc. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 */ 66 67 /* 68 * External virtual filesystem routines 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/kernel.h> 74 #include <sys/malloc.h> 75 #include <sys/mount.h> 76 #include <sys/proc.h> 77 #include <sys/vnode.h> 78 #include <sys/buf.h> 79 #include <sys/eventhandler.h> 80 #include <sys/kthread.h> 81 #include <sys/sysctl.h> 82 83 #include <machine/limits.h> 84 85 #include <sys/buf2.h> 86 #include <sys/thread2.h> 87 #include <sys/sysref2.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_object.h> 91 92 struct mountscan_info { 93 TAILQ_ENTRY(mountscan_info) msi_entry; 94 int msi_how; 95 struct mount *msi_node; 96 }; 97 98 struct vmntvnodescan_info { 99 TAILQ_ENTRY(vmntvnodescan_info) entry; 100 struct vnode *vp; 101 }; 102 103 struct vnlru_info { 104 int pass; 105 }; 106 107 static int vnlru_nowhere = 0; 108 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD, 109 &vnlru_nowhere, 0, 110 "Number of times the vnlru process ran without success"); 111 112 113 static struct lwkt_token mntid_token; 114 static struct mount dummymount; 115 116 /* note: mountlist exported to pstat */ 117 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); 118 static TAILQ_HEAD(,mountscan_info) mountscan_list; 119 static struct lwkt_token mountlist_token; 120 121 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list); 122 123 /* 124 * Called from vfsinit() 125 */ 126 void 127 vfs_mount_init(void) 128 { 129 lwkt_token_init(&mountlist_token, "mntlist"); 130 lwkt_token_init(&mntid_token, "mntid"); 131 TAILQ_INIT(&mountscan_list); 132 mount_init(&dummymount); 133 dummymount.mnt_flag |= MNT_RDONLY; 134 dummymount.mnt_kern_flag |= MNTK_ALL_MPSAFE; 135 } 136 137 /* 138 * Support function called to remove a vnode from the mountlist and 139 * deal with side effects for scans in progress. 140 * 141 * Target mnt_token is held on call. 142 */ 143 static void 144 vremovevnodemnt(struct vnode *vp) 145 { 146 struct vmntvnodescan_info *info; 147 struct mount *mp = vp->v_mount; 148 149 TAILQ_FOREACH(info, &mp->mnt_vnodescan_list, entry) { 150 if (info->vp == vp) 151 info->vp = TAILQ_NEXT(vp, v_nmntvnodes); 152 } 153 TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes); 154 } 155 156 /* 157 * Allocate a new vnode and associate it with a tag, mount point, and 158 * operations vector. 159 * 160 * A VX locked and refd vnode is returned. The caller should setup the 161 * remaining fields and vx_put() or, if he wishes to leave a vref, 162 * vx_unlock() the vnode. 163 */ 164 int 165 getnewvnode(enum vtagtype tag, struct mount *mp, 166 struct vnode **vpp, int lktimeout, int lkflags) 167 { 168 struct vnode *vp; 169 170 KKASSERT(mp != NULL); 171 172 vp = allocvnode(lktimeout, lkflags); 173 vp->v_tag = tag; 174 vp->v_data = NULL; 175 176 /* 177 * By default the vnode is assigned the mount point's normal 178 * operations vector. 179 */ 180 vp->v_ops = &mp->mnt_vn_use_ops; 181 vp->v_pbuf_count = nswbuf_kva / NSWBUF_SPLIT; 182 183 /* 184 * Placing the vnode on the mount point's queue makes it visible. 185 * VNON prevents it from being messed with, however. 186 */ 187 insmntque(vp, mp); 188 189 /* 190 * A VX locked & refd vnode is returned. 191 */ 192 *vpp = vp; 193 return (0); 194 } 195 196 /* 197 * This function creates vnodes with special operations vectors. The 198 * mount point is optional. 199 * 200 * This routine is being phased out but is still used by vfs_conf to 201 * create vnodes for devices prior to the root mount (with mp == NULL). 202 */ 203 int 204 getspecialvnode(enum vtagtype tag, struct mount *mp, 205 struct vop_ops **ops, 206 struct vnode **vpp, int lktimeout, int lkflags) 207 { 208 struct vnode *vp; 209 210 vp = allocvnode(lktimeout, lkflags); 211 vp->v_tag = tag; 212 vp->v_data = NULL; 213 vp->v_ops = ops; 214 215 if (mp == NULL) 216 mp = &dummymount; 217 218 /* 219 * Placing the vnode on the mount point's queue makes it visible. 220 * VNON prevents it from being messed with, however. 221 */ 222 insmntque(vp, mp); 223 224 /* 225 * A VX locked & refd vnode is returned. 226 */ 227 *vpp = vp; 228 return (0); 229 } 230 231 /* 232 * Interlock against an unmount, return 0 on success, non-zero on failure. 233 * 234 * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount 235 * is in-progress. 236 * 237 * If no unmount is in-progress LK_NOWAIT is ignored. No other flag bits 238 * are used. A shared locked will be obtained and the filesystem will not 239 * be unmountable until the lock is released. 240 */ 241 int 242 vfs_busy(struct mount *mp, int flags) 243 { 244 int lkflags; 245 246 atomic_add_int(&mp->mnt_refs, 1); 247 lwkt_gettoken(&mp->mnt_token); 248 if (mp->mnt_kern_flag & MNTK_UNMOUNT) { 249 if (flags & LK_NOWAIT) { 250 lwkt_reltoken(&mp->mnt_token); 251 atomic_add_int(&mp->mnt_refs, -1); 252 return (ENOENT); 253 } 254 /* XXX not MP safe */ 255 mp->mnt_kern_flag |= MNTK_MWAIT; 256 /* 257 * Since all busy locks are shared except the exclusive 258 * lock granted when unmounting, the only place that a 259 * wakeup needs to be done is at the release of the 260 * exclusive lock at the end of dounmount. 261 */ 262 tsleep((caddr_t)mp, 0, "vfs_busy", 0); 263 lwkt_reltoken(&mp->mnt_token); 264 atomic_add_int(&mp->mnt_refs, -1); 265 return (ENOENT); 266 } 267 lkflags = LK_SHARED; 268 if (lockmgr(&mp->mnt_lock, lkflags)) 269 panic("vfs_busy: unexpected lock failure"); 270 lwkt_reltoken(&mp->mnt_token); 271 return (0); 272 } 273 274 /* 275 * Free a busy filesystem. 276 * 277 * Decrement refs before releasing the lock so e.g. a pending umount 278 * doesn't give us an unexpected busy error. 279 */ 280 void 281 vfs_unbusy(struct mount *mp) 282 { 283 atomic_add_int(&mp->mnt_refs, -1); 284 lockmgr(&mp->mnt_lock, LK_RELEASE); 285 } 286 287 /* 288 * Lookup a filesystem type, and if found allocate and initialize 289 * a mount structure for it. 290 * 291 * Devname is usually updated by mount(8) after booting. 292 */ 293 int 294 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp) 295 { 296 struct vfsconf *vfsp; 297 struct mount *mp; 298 299 if (fstypename == NULL) 300 return (ENODEV); 301 302 vfsp = vfsconf_find_by_name(fstypename); 303 if (vfsp == NULL) 304 return (ENODEV); 305 mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO); 306 mount_init(mp); 307 lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0); 308 309 vfs_busy(mp, 0); 310 mp->mnt_vfc = vfsp; 311 mp->mnt_op = vfsp->vfc_vfsops; 312 mp->mnt_pbuf_count = nswbuf_kva / NSWBUF_SPLIT; 313 vfsp->vfc_refcount++; 314 mp->mnt_stat.f_type = vfsp->vfc_typenum; 315 mp->mnt_flag |= MNT_RDONLY; 316 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK; 317 strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN); 318 copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0); 319 *mpp = mp; 320 return (0); 321 } 322 323 /* 324 * Basic mount structure initialization 325 */ 326 void 327 mount_init(struct mount *mp) 328 { 329 lockinit(&mp->mnt_lock, "vfslock", hz*5, 0); 330 lwkt_token_init(&mp->mnt_token, "permnt"); 331 332 TAILQ_INIT(&mp->mnt_vnodescan_list); 333 TAILQ_INIT(&mp->mnt_nvnodelist); 334 TAILQ_INIT(&mp->mnt_reservedvnlist); 335 TAILQ_INIT(&mp->mnt_jlist); 336 mp->mnt_nvnodelistsize = 0; 337 mp->mnt_flag = 0; 338 mp->mnt_hold = 1; 339 mp->mnt_iosize_max = MAXPHYS; 340 vn_syncer_thr_create(mp); 341 } 342 343 void 344 mount_hold(struct mount *mp) 345 { 346 atomic_add_int(&mp->mnt_hold, 1); 347 } 348 349 void 350 mount_drop(struct mount *mp) 351 { 352 if (atomic_fetchadd_int(&mp->mnt_hold, -1) == 1) 353 kfree(mp, M_MOUNT); 354 } 355 356 /* 357 * Lookup a mount point by filesystem identifier. 358 */ 359 struct mount * 360 vfs_getvfs(fsid_t *fsid) 361 { 362 struct mount *mp; 363 364 lwkt_gettoken(&mountlist_token); 365 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 366 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 367 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 368 break; 369 } 370 } 371 lwkt_reltoken(&mountlist_token); 372 return (mp); 373 } 374 375 /* 376 * Get a new unique fsid. Try to make its val[0] unique, since this value 377 * will be used to create fake device numbers for stat(). Also try (but 378 * not so hard) make its val[0] unique mod 2^16, since some emulators only 379 * support 16-bit device numbers. We end up with unique val[0]'s for the 380 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 381 * 382 * Keep in mind that several mounts may be running in parallel. Starting 383 * the search one past where the previous search terminated is both a 384 * micro-optimization and a defense against returning the same fsid to 385 * different mounts. 386 */ 387 void 388 vfs_getnewfsid(struct mount *mp) 389 { 390 static u_int16_t mntid_base; 391 fsid_t tfsid; 392 int mtype; 393 394 lwkt_gettoken(&mntid_token); 395 mtype = mp->mnt_vfc->vfc_typenum; 396 tfsid.val[1] = mtype; 397 mtype = (mtype & 0xFF) << 24; 398 for (;;) { 399 tfsid.val[0] = makeudev(255, 400 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 401 mntid_base++; 402 if (vfs_getvfs(&tfsid) == NULL) 403 break; 404 } 405 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 406 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 407 lwkt_reltoken(&mntid_token); 408 } 409 410 /* 411 * Set the FSID for a new mount point to the template. Adjust 412 * the FSID to avoid collisions. 413 */ 414 int 415 vfs_setfsid(struct mount *mp, fsid_t *template) 416 { 417 int didmunge = 0; 418 419 bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid)); 420 for (;;) { 421 if (vfs_getvfs(template) == NULL) 422 break; 423 didmunge = 1; 424 ++template->val[1]; 425 } 426 mp->mnt_stat.f_fsid = *template; 427 return(didmunge); 428 } 429 430 /* 431 * This routine is called when we have too many vnodes. It attempts 432 * to free <count> vnodes and will potentially free vnodes that still 433 * have VM backing store (VM backing store is typically the cause 434 * of a vnode blowout so we want to do this). Therefore, this operation 435 * is not considered cheap. 436 * 437 * A number of conditions may prevent a vnode from being reclaimed. 438 * the buffer cache may have references on the vnode, a directory 439 * vnode may still have references due to the namei cache representing 440 * underlying files, or the vnode may be in active use. It is not 441 * desireable to reuse such vnodes. These conditions may cause the 442 * number of vnodes to reach some minimum value regardless of what 443 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 444 */ 445 446 /* 447 * Attempt to recycle vnodes in a context that is always safe to block. 448 * Calling vlrurecycle() from the bowels of file system code has some 449 * interesting deadlock problems. 450 */ 451 static struct thread *vnlruthread; 452 453 static void 454 vnlru_proc(void) 455 { 456 struct thread *td = curthread; 457 458 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td, 459 SHUTDOWN_PRI_FIRST); 460 461 for (;;) { 462 kproc_suspend_loop(); 463 464 /* 465 * Try to free some vnodes if we have too many. Trigger based 466 * on potentially freeable vnodes but calculate the count 467 * based on total vnodes. 468 * 469 * (long) -> deal with 64 bit machines, intermediate overflow 470 */ 471 if (numvnodes >= maxvnodes * 9 / 10 && 472 cachedvnodes + inactivevnodes >= maxvnodes * 5 / 10) { 473 int count = numvnodes - maxvnodes * 9 / 10; 474 475 if (count > (cachedvnodes + inactivevnodes) / 100) 476 count = (cachedvnodes + inactivevnodes) / 100; 477 if (count < 5) 478 count = 5; 479 freesomevnodes(count); 480 } 481 482 /* 483 * Do non-critical-path (more robust) cache cleaning, 484 * even if vnode counts are nominal, to try to avoid 485 * having to do it in the critical path. 486 */ 487 cache_hysteresis(0); 488 489 /* 490 * Nothing to do if most of our vnodes are already on 491 * the free list. 492 */ 493 if (numvnodes <= maxvnodes * 9 / 10 || 494 cachedvnodes + inactivevnodes <= maxvnodes * 5 / 10) { 495 tsleep(vnlruthread, 0, "vlruwt", hz); 496 continue; 497 } 498 } 499 } 500 501 /* 502 * MOUNTLIST FUNCTIONS 503 */ 504 505 /* 506 * mountlist_insert (MP SAFE) 507 * 508 * Add a new mount point to the mount list. 509 */ 510 void 511 mountlist_insert(struct mount *mp, int how) 512 { 513 lwkt_gettoken(&mountlist_token); 514 if (how == MNTINS_FIRST) 515 TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list); 516 else 517 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list); 518 lwkt_reltoken(&mountlist_token); 519 } 520 521 /* 522 * mountlist_interlock (MP SAFE) 523 * 524 * Execute the specified interlock function with the mountlist token 525 * held. The function will be called in a serialized fashion verses 526 * other functions called through this mechanism. 527 */ 528 int 529 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp) 530 { 531 int error; 532 533 lwkt_gettoken(&mountlist_token); 534 error = callback(mp); 535 lwkt_reltoken(&mountlist_token); 536 return (error); 537 } 538 539 /* 540 * mountlist_boot_getfirst (DURING BOOT ONLY) 541 * 542 * This function returns the first mount on the mountlist, which is 543 * expected to be the root mount. Since no interlocks are obtained 544 * this function is only safe to use during booting. 545 */ 546 547 struct mount * 548 mountlist_boot_getfirst(void) 549 { 550 return(TAILQ_FIRST(&mountlist)); 551 } 552 553 /* 554 * mountlist_remove (MP SAFE) 555 * 556 * Remove a node from the mountlist. If this node is the next scan node 557 * for any active mountlist scans, the active mountlist scan will be 558 * adjusted to skip the node, thus allowing removals during mountlist 559 * scans. 560 */ 561 void 562 mountlist_remove(struct mount *mp) 563 { 564 struct mountscan_info *msi; 565 566 lwkt_gettoken(&mountlist_token); 567 TAILQ_FOREACH(msi, &mountscan_list, msi_entry) { 568 if (msi->msi_node == mp) { 569 if (msi->msi_how & MNTSCAN_FORWARD) 570 msi->msi_node = TAILQ_NEXT(mp, mnt_list); 571 else 572 msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list); 573 } 574 } 575 TAILQ_REMOVE(&mountlist, mp, mnt_list); 576 lwkt_reltoken(&mountlist_token); 577 } 578 579 /* 580 * mountlist_exists (MP SAFE) 581 * 582 * Checks if a node exists in the mountlist. 583 * This function is mainly used by VFS quota code to check if a 584 * cached nullfs struct mount pointer is still valid at use time 585 * 586 * FIXME: there is no warranty the mp passed to that function 587 * will be the same one used by VFS_ACCOUNT() later 588 */ 589 int 590 mountlist_exists(struct mount *mp) 591 { 592 int node_exists = 0; 593 struct mount* lmp; 594 595 lwkt_gettoken(&mountlist_token); 596 TAILQ_FOREACH(lmp, &mountlist, mnt_list) { 597 if (lmp == mp) { 598 node_exists = 1; 599 break; 600 } 601 } 602 lwkt_reltoken(&mountlist_token); 603 return(node_exists); 604 } 605 606 /* 607 * mountlist_scan (MP SAFE) 608 * 609 * Safely scan the mount points on the mount list. Unless otherwise 610 * specified each mount point will be busied prior to the callback and 611 * unbusied afterwords. The callback may safely remove any mount point 612 * without interfering with the scan. If the current callback 613 * mount is removed the scanner will not attempt to unbusy it. 614 * 615 * If a mount node cannot be busied it is silently skipped. 616 * 617 * The callback return value is aggregated and a total is returned. A return 618 * value of < 0 is not aggregated and will terminate the scan. 619 * 620 * MNTSCAN_FORWARD - the mountlist is scanned in the forward direction 621 * MNTSCAN_REVERSE - the mountlist is scanned in reverse 622 * MNTSCAN_NOBUSY - the scanner will make the callback without busying 623 * the mount node. 624 * 625 * NOTE: mount_hold()/mount_drop() sequence primarily helps us avoid 626 * confusion for the unbusy check, particularly if a kfree/kmalloc 627 * occurs quickly (lots of processes mounting and unmounting at the 628 * same time). 629 */ 630 int 631 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how) 632 { 633 struct mountscan_info info; 634 struct mount *mp; 635 int count; 636 int res; 637 638 lwkt_gettoken(&mountlist_token); 639 640 info.msi_how = how; 641 info.msi_node = NULL; /* paranoia */ 642 TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry); 643 644 res = 0; 645 646 if (how & MNTSCAN_FORWARD) { 647 info.msi_node = TAILQ_FIRST(&mountlist); 648 while ((mp = info.msi_node) != NULL) { 649 mount_hold(mp); 650 if (how & MNTSCAN_NOBUSY) { 651 count = callback(mp, data); 652 } else if (vfs_busy(mp, LK_NOWAIT) == 0) { 653 count = callback(mp, data); 654 if (mp == info.msi_node) 655 vfs_unbusy(mp); 656 } else { 657 count = 0; 658 } 659 mount_drop(mp); 660 if (count < 0) 661 break; 662 res += count; 663 if (mp == info.msi_node) 664 info.msi_node = TAILQ_NEXT(mp, mnt_list); 665 } 666 } else if (how & MNTSCAN_REVERSE) { 667 info.msi_node = TAILQ_LAST(&mountlist, mntlist); 668 while ((mp = info.msi_node) != NULL) { 669 mount_hold(mp); 670 if (how & MNTSCAN_NOBUSY) { 671 count = callback(mp, data); 672 } else if (vfs_busy(mp, LK_NOWAIT) == 0) { 673 count = callback(mp, data); 674 if (mp == info.msi_node) 675 vfs_unbusy(mp); 676 } else { 677 count = 0; 678 } 679 mount_drop(mp); 680 if (count < 0) 681 break; 682 res += count; 683 if (mp == info.msi_node) 684 info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list); 685 } 686 } 687 TAILQ_REMOVE(&mountscan_list, &info, msi_entry); 688 lwkt_reltoken(&mountlist_token); 689 return(res); 690 } 691 692 /* 693 * MOUNT RELATED VNODE FUNCTIONS 694 */ 695 696 static struct kproc_desc vnlru_kp = { 697 "vnlru", 698 vnlru_proc, 699 &vnlruthread 700 }; 701 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp); 702 703 /* 704 * Move a vnode from one mount queue to another. 705 */ 706 void 707 insmntque(struct vnode *vp, struct mount *mp) 708 { 709 struct mount *omp; 710 711 /* 712 * Delete from old mount point vnode list, if on one. 713 */ 714 if ((omp = vp->v_mount) != NULL) { 715 lwkt_gettoken(&omp->mnt_token); 716 KKASSERT(omp == vp->v_mount); 717 KASSERT(omp->mnt_nvnodelistsize > 0, 718 ("bad mount point vnode list size")); 719 vremovevnodemnt(vp); 720 omp->mnt_nvnodelistsize--; 721 lwkt_reltoken(&omp->mnt_token); 722 } 723 724 /* 725 * Insert into list of vnodes for the new mount point, if available. 726 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer. 727 */ 728 if (mp == NULL) { 729 vp->v_mount = NULL; 730 return; 731 } 732 lwkt_gettoken(&mp->mnt_token); 733 vp->v_mount = mp; 734 if (mp->mnt_syncer) { 735 TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes); 736 } else { 737 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 738 } 739 mp->mnt_nvnodelistsize++; 740 lwkt_reltoken(&mp->mnt_token); 741 } 742 743 744 /* 745 * Scan the vnodes under a mount point and issue appropriate callbacks. 746 * 747 * The fastfunc() callback is called with just the mountlist token held 748 * (no vnode lock). It may not block and the vnode may be undergoing 749 * modifications while the caller is processing it. The vnode will 750 * not be entirely destroyed, however, due to the fact that the mountlist 751 * token is held. A return value < 0 skips to the next vnode without calling 752 * the slowfunc(), a return value > 0 terminates the loop. 753 * 754 * WARNING! The fastfunc() should not indirect through vp->v_object, the vp 755 * data structure is unstable when called from fastfunc(). 756 * 757 * The slowfunc() callback is called after the vnode has been successfully 758 * locked based on passed flags. The vnode is skipped if it gets rearranged 759 * or destroyed while blocking on the lock. A non-zero return value from 760 * the slow function terminates the loop. The slow function is allowed to 761 * arbitrarily block. The scanning code guarentees consistency of operation 762 * even if the slow function deletes or moves the node, or blocks and some 763 * other thread deletes or moves the node. 764 */ 765 int 766 vmntvnodescan( 767 struct mount *mp, 768 int flags, 769 int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data), 770 int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data), 771 void *data 772 ) { 773 struct vmntvnodescan_info info; 774 struct vnode *vp; 775 int r = 0; 776 int maxcount = mp->mnt_nvnodelistsize * 2; 777 int stopcount = 0; 778 int count = 0; 779 780 lwkt_gettoken(&mp->mnt_token); 781 782 /* 783 * If asked to do one pass stop after iterating available vnodes. 784 * Under heavy loads new vnodes can be added while we are scanning, 785 * so this isn't perfect. Create a slop factor of 2x. 786 */ 787 if (flags & VMSC_ONEPASS) 788 stopcount = mp->mnt_nvnodelistsize; 789 790 info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist); 791 TAILQ_INSERT_TAIL(&mp->mnt_vnodescan_list, &info, entry); 792 793 while ((vp = info.vp) != NULL) { 794 if (--maxcount == 0) { 795 kprintf("Warning: excessive fssync iteration\n"); 796 maxcount = mp->mnt_nvnodelistsize * 2; 797 } 798 799 /* 800 * Skip if visible but not ready, or special (e.g. 801 * mp->mnt_syncer) 802 */ 803 if (vp->v_type == VNON) 804 goto next; 805 KKASSERT(vp->v_mount == mp); 806 807 /* 808 * Quick test. A negative return continues the loop without 809 * calling the slow test. 0 continues onto the slow test. 810 * A positive number aborts the loop. 811 */ 812 if (fastfunc) { 813 if ((r = fastfunc(mp, vp, data)) < 0) { 814 r = 0; 815 goto next; 816 } 817 if (r) 818 break; 819 } 820 821 /* 822 * Get a vxlock on the vnode, retry if it has moved or isn't 823 * in the mountlist where we expect it. 824 */ 825 if (slowfunc) { 826 int error; 827 828 switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) { 829 case VMSC_GETVP: 830 error = vget(vp, LK_EXCLUSIVE); 831 break; 832 case VMSC_GETVP|VMSC_NOWAIT: 833 error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT); 834 break; 835 case VMSC_GETVX: 836 vx_get(vp); 837 error = 0; 838 break; 839 default: 840 error = 0; 841 break; 842 } 843 if (error) 844 goto next; 845 /* 846 * Do not call the slow function if the vnode is 847 * invalid or if it was ripped out from under us 848 * while we (potentially) blocked. 849 */ 850 if (info.vp == vp && vp->v_type != VNON) 851 r = slowfunc(mp, vp, data); 852 853 /* 854 * Cleanup 855 */ 856 switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) { 857 case VMSC_GETVP: 858 case VMSC_GETVP|VMSC_NOWAIT: 859 vput(vp); 860 break; 861 case VMSC_GETVX: 862 vx_put(vp); 863 break; 864 default: 865 break; 866 } 867 if (r != 0) 868 break; 869 } 870 871 next: 872 /* 873 * Yield after some processing. Depending on the number 874 * of vnodes, we might wind up running for a long time. 875 * Because threads are not preemptable, time critical 876 * userland processes might starve. Give them a chance 877 * now and then. 878 */ 879 if (++count == 10000) { 880 /* 881 * We really want to yield a bit, so we simply 882 * sleep a tick 883 */ 884 tsleep(mp, 0, "vnodescn", 1); 885 count = 0; 886 } 887 888 /* 889 * If doing one pass this decrements to zero. If it starts 890 * at zero it is effectively unlimited for the purposes of 891 * this loop. 892 */ 893 if (--stopcount == 0) 894 break; 895 896 /* 897 * Iterate. If the vnode was ripped out from under us 898 * info.vp will already point to the next vnode, otherwise 899 * we have to obtain the next valid vnode ourselves. 900 */ 901 if (info.vp == vp) 902 info.vp = TAILQ_NEXT(vp, v_nmntvnodes); 903 } 904 905 TAILQ_REMOVE(&mp->mnt_vnodescan_list, &info, entry); 906 lwkt_reltoken(&mp->mnt_token); 907 return(r); 908 } 909 910 /* 911 * Remove any vnodes in the vnode table belonging to mount point mp. 912 * 913 * If FORCECLOSE is not specified, there should not be any active ones, 914 * return error if any are found (nb: this is a user error, not a 915 * system error). If FORCECLOSE is specified, detach any active vnodes 916 * that are found. 917 * 918 * If WRITECLOSE is set, only flush out regular file vnodes open for 919 * writing. 920 * 921 * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped. 922 * 923 * `rootrefs' specifies the base reference count for the root vnode 924 * of this filesystem. The root vnode is considered busy if its 925 * v_refcnt exceeds this value. On a successful return, vflush() 926 * will call vrele() on the root vnode exactly rootrefs times. 927 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 928 * be zero. 929 */ 930 #ifdef DIAGNOSTIC 931 static int busyprt = 0; /* print out busy vnodes */ 932 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, ""); 933 #endif 934 935 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data); 936 937 struct vflush_info { 938 int flags; 939 int busy; 940 thread_t td; 941 }; 942 943 int 944 vflush(struct mount *mp, int rootrefs, int flags) 945 { 946 struct thread *td = curthread; /* XXX */ 947 struct vnode *rootvp = NULL; 948 int error; 949 struct vflush_info vflush_info; 950 951 if (rootrefs > 0) { 952 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 953 ("vflush: bad args")); 954 /* 955 * Get the filesystem root vnode. We can vput() it 956 * immediately, since with rootrefs > 0, it won't go away. 957 */ 958 if ((error = VFS_ROOT(mp, &rootvp)) != 0) { 959 if ((flags & FORCECLOSE) == 0) 960 return (error); 961 rootrefs = 0; 962 /* continue anyway */ 963 } 964 if (rootrefs) 965 vput(rootvp); 966 } 967 968 vflush_info.busy = 0; 969 vflush_info.flags = flags; 970 vflush_info.td = td; 971 vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info); 972 973 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 974 /* 975 * If just the root vnode is busy, and if its refcount 976 * is equal to `rootrefs', then go ahead and kill it. 977 */ 978 KASSERT(vflush_info.busy > 0, ("vflush: not busy")); 979 KASSERT(VREFCNT(rootvp) >= rootrefs, ("vflush: rootrefs")); 980 if (vflush_info.busy == 1 && VREFCNT(rootvp) == rootrefs) { 981 vx_lock(rootvp); 982 vgone_vxlocked(rootvp); 983 vx_unlock(rootvp); 984 vflush_info.busy = 0; 985 } 986 } 987 if (vflush_info.busy) 988 return (EBUSY); 989 for (; rootrefs > 0; rootrefs--) 990 vrele(rootvp); 991 return (0); 992 } 993 994 /* 995 * The scan callback is made with an VX locked vnode. 996 */ 997 static int 998 vflush_scan(struct mount *mp, struct vnode *vp, void *data) 999 { 1000 struct vflush_info *info = data; 1001 struct vattr vattr; 1002 int flags = info->flags; 1003 1004 /* 1005 * Generally speaking try to deactivate on 0 refs (catch-all) 1006 */ 1007 atomic_set_int(&vp->v_refcnt, VREF_FINALIZE); 1008 1009 /* 1010 * Skip over a vnodes marked VSYSTEM. 1011 */ 1012 if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) { 1013 return(0); 1014 } 1015 1016 /* 1017 * Do not force-close VCHR or VBLK vnodes 1018 */ 1019 if (vp->v_type == VCHR || vp->v_type == VBLK) 1020 flags &= ~(WRITECLOSE|FORCECLOSE); 1021 1022 /* 1023 * If WRITECLOSE is set, flush out unlinked but still open 1024 * files (even if open only for reading) and regular file 1025 * vnodes open for writing. 1026 */ 1027 if ((flags & WRITECLOSE) && 1028 (vp->v_type == VNON || 1029 (VOP_GETATTR(vp, &vattr) == 0 && 1030 vattr.va_nlink > 0)) && 1031 (vp->v_writecount == 0 || vp->v_type != VREG)) { 1032 return(0); 1033 } 1034 1035 /* 1036 * If we are the only holder (refcnt of 1) or the vnode is in 1037 * termination (refcnt < 0), we can vgone the vnode. 1038 */ 1039 if (VREFCNT(vp) <= 1) { 1040 vgone_vxlocked(vp); 1041 return(0); 1042 } 1043 1044 /* 1045 * If FORCECLOSE is set, forcibly destroy the vnode and then move 1046 * it to a dummymount structure so vop_*() functions don't deref 1047 * a NULL pointer. 1048 */ 1049 if (flags & FORCECLOSE) { 1050 vhold(vp); 1051 vgone_vxlocked(vp); 1052 if (vp->v_mount == NULL) 1053 insmntque(vp, &dummymount); 1054 vdrop(vp); 1055 return(0); 1056 } 1057 if (vp->v_type == VCHR || vp->v_type == VBLK) 1058 kprintf("vflush: Warning, cannot destroy busy device vnode\n"); 1059 #ifdef DIAGNOSTIC 1060 if (busyprt) 1061 vprint("vflush: busy vnode", vp); 1062 #endif 1063 ++info->busy; 1064 return(0); 1065 } 1066 1067 void 1068 add_bio_ops(struct bio_ops *ops) 1069 { 1070 TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry); 1071 } 1072 1073 void 1074 rem_bio_ops(struct bio_ops *ops) 1075 { 1076 TAILQ_REMOVE(&bio_ops_list, ops, entry); 1077 } 1078 1079 /* 1080 * This calls the bio_ops io_sync function either for a mount point 1081 * or generally. 1082 * 1083 * WARNING: softdeps is weirdly coded and just isn't happy unless 1084 * io_sync is called with a NULL mount from the general syncing code. 1085 */ 1086 void 1087 bio_ops_sync(struct mount *mp) 1088 { 1089 struct bio_ops *ops; 1090 1091 if (mp) { 1092 if ((ops = mp->mnt_bioops) != NULL) 1093 ops->io_sync(mp); 1094 } else { 1095 TAILQ_FOREACH(ops, &bio_ops_list, entry) { 1096 ops->io_sync(NULL); 1097 } 1098 } 1099 } 1100 1101 /* 1102 * Lookup a mount point by nch 1103 */ 1104 struct mount * 1105 mount_get_by_nc(struct namecache *ncp) 1106 { 1107 struct mount *mp = NULL; 1108 1109 lwkt_gettoken(&mountlist_token); 1110 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 1111 if (ncp == mp->mnt_ncmountpt.ncp) 1112 break; 1113 } 1114 lwkt_reltoken(&mountlist_token); 1115 return (mp); 1116 } 1117 1118