xref: /dflybsd-src/sys/kern/vfs_mount.c (revision f603807b2c8b9b8ca8a7a99e36eeb70cd39b460d)
1 /*
2  * Copyright (c) 2004,2013 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 /*
68  * External virtual filesystem routines
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mount.h>
76 #include <sys/proc.h>
77 #include <sys/vnode.h>
78 #include <sys/buf.h>
79 #include <sys/eventhandler.h>
80 #include <sys/kthread.h>
81 #include <sys/sysctl.h>
82 
83 #include <machine/limits.h>
84 
85 #include <sys/buf2.h>
86 #include <sys/thread2.h>
87 #include <sys/sysref2.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_object.h>
91 
92 struct mountscan_info {
93 	TAILQ_ENTRY(mountscan_info) msi_entry;
94 	int msi_how;
95 	struct mount *msi_node;
96 };
97 
98 struct vmntvnodescan_info {
99 	TAILQ_ENTRY(vmntvnodescan_info) entry;
100 	struct vnode *vp;
101 };
102 
103 struct vnlru_info {
104 	int	pass;
105 };
106 
107 static int vnlru_nowhere = 0;
108 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
109 	    &vnlru_nowhere, 0,
110 	    "Number of times the vnlru process ran without success");
111 
112 
113 static struct lwkt_token mntid_token;
114 static struct mount dummymount;
115 
116 /* note: mountlist exported to pstat */
117 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
118 static TAILQ_HEAD(,mountscan_info) mountscan_list;
119 static struct lwkt_token mountlist_token;
120 
121 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
122 
123 /*
124  * Called from vfsinit()
125  */
126 void
127 vfs_mount_init(void)
128 {
129 	lwkt_token_init(&mountlist_token, "mntlist");
130 	lwkt_token_init(&mntid_token, "mntid");
131 	TAILQ_INIT(&mountscan_list);
132 	mount_init(&dummymount);
133 	dummymount.mnt_flag |= MNT_RDONLY;
134 	dummymount.mnt_kern_flag |= MNTK_ALL_MPSAFE;
135 }
136 
137 /*
138  * Support function called to remove a vnode from the mountlist and
139  * deal with side effects for scans in progress.
140  *
141  * Target mnt_token is held on call.
142  */
143 static void
144 vremovevnodemnt(struct vnode *vp)
145 {
146         struct vmntvnodescan_info *info;
147 	struct mount *mp = vp->v_mount;
148 
149 	TAILQ_FOREACH(info, &mp->mnt_vnodescan_list, entry) {
150 		if (info->vp == vp)
151 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
152 	}
153 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
154 }
155 
156 /*
157  * Allocate a new vnode and associate it with a tag, mount point, and
158  * operations vector.
159  *
160  * A VX locked and refd vnode is returned.  The caller should setup the
161  * remaining fields and vx_put() or, if he wishes to leave a vref,
162  * vx_unlock() the vnode.
163  */
164 int
165 getnewvnode(enum vtagtype tag, struct mount *mp,
166 		struct vnode **vpp, int lktimeout, int lkflags)
167 {
168 	struct vnode *vp;
169 
170 	KKASSERT(mp != NULL);
171 
172 	vp = allocvnode(lktimeout, lkflags);
173 	vp->v_tag = tag;
174 	vp->v_data = NULL;
175 
176 	/*
177 	 * By default the vnode is assigned the mount point's normal
178 	 * operations vector.
179 	 */
180 	vp->v_ops = &mp->mnt_vn_use_ops;
181 	vp->v_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
182 
183 	/*
184 	 * Placing the vnode on the mount point's queue makes it visible.
185 	 * VNON prevents it from being messed with, however.
186 	 */
187 	insmntque(vp, mp);
188 
189 	/*
190 	 * A VX locked & refd vnode is returned.
191 	 */
192 	*vpp = vp;
193 	return (0);
194 }
195 
196 /*
197  * This function creates vnodes with special operations vectors.  The
198  * mount point is optional.
199  *
200  * This routine is being phased out but is still used by vfs_conf to
201  * create vnodes for devices prior to the root mount (with mp == NULL).
202  */
203 int
204 getspecialvnode(enum vtagtype tag, struct mount *mp,
205 		struct vop_ops **ops,
206 		struct vnode **vpp, int lktimeout, int lkflags)
207 {
208 	struct vnode *vp;
209 
210 	vp = allocvnode(lktimeout, lkflags);
211 	vp->v_tag = tag;
212 	vp->v_data = NULL;
213 	vp->v_ops = ops;
214 
215 	if (mp == NULL)
216 		mp = &dummymount;
217 
218 	/*
219 	 * Placing the vnode on the mount point's queue makes it visible.
220 	 * VNON prevents it from being messed with, however.
221 	 */
222 	insmntque(vp, mp);
223 
224 	/*
225 	 * A VX locked & refd vnode is returned.
226 	 */
227 	*vpp = vp;
228 	return (0);
229 }
230 
231 /*
232  * Interlock against an unmount, return 0 on success, non-zero on failure.
233  *
234  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
235  * is in-progress.
236  *
237  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
238  * are used.  A shared locked will be obtained and the filesystem will not
239  * be unmountable until the lock is released.
240  */
241 int
242 vfs_busy(struct mount *mp, int flags)
243 {
244 	int lkflags;
245 
246 	atomic_add_int(&mp->mnt_refs, 1);
247 	lwkt_gettoken(&mp->mnt_token);
248 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
249 		if (flags & LK_NOWAIT) {
250 			lwkt_reltoken(&mp->mnt_token);
251 			atomic_add_int(&mp->mnt_refs, -1);
252 			return (ENOENT);
253 		}
254 		/* XXX not MP safe */
255 		mp->mnt_kern_flag |= MNTK_MWAIT;
256 		/*
257 		 * Since all busy locks are shared except the exclusive
258 		 * lock granted when unmounting, the only place that a
259 		 * wakeup needs to be done is at the release of the
260 		 * exclusive lock at the end of dounmount.
261 		 */
262 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
263 		lwkt_reltoken(&mp->mnt_token);
264 		atomic_add_int(&mp->mnt_refs, -1);
265 		return (ENOENT);
266 	}
267 	lkflags = LK_SHARED;
268 	if (lockmgr(&mp->mnt_lock, lkflags))
269 		panic("vfs_busy: unexpected lock failure");
270 	lwkt_reltoken(&mp->mnt_token);
271 	return (0);
272 }
273 
274 /*
275  * Free a busy filesystem.
276  *
277  * Decrement refs before releasing the lock so e.g. a pending umount
278  * doesn't give us an unexpected busy error.
279  */
280 void
281 vfs_unbusy(struct mount *mp)
282 {
283 	atomic_add_int(&mp->mnt_refs, -1);
284 	lockmgr(&mp->mnt_lock, LK_RELEASE);
285 }
286 
287 /*
288  * Lookup a filesystem type, and if found allocate and initialize
289  * a mount structure for it.
290  *
291  * Devname is usually updated by mount(8) after booting.
292  */
293 int
294 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
295 {
296 	struct vfsconf *vfsp;
297 	struct mount *mp;
298 
299 	if (fstypename == NULL)
300 		return (ENODEV);
301 
302 	vfsp = vfsconf_find_by_name(fstypename);
303 	if (vfsp == NULL)
304 		return (ENODEV);
305 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
306 	mount_init(mp);
307 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
308 
309 	vfs_busy(mp, 0);
310 	mp->mnt_vfc = vfsp;
311 	mp->mnt_op = vfsp->vfc_vfsops;
312 	mp->mnt_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
313 	vfsp->vfc_refcount++;
314 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
315 	mp->mnt_flag |= MNT_RDONLY;
316 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
317 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
318 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
319 	*mpp = mp;
320 	return (0);
321 }
322 
323 /*
324  * Basic mount structure initialization
325  */
326 void
327 mount_init(struct mount *mp)
328 {
329 	lockinit(&mp->mnt_lock, "vfslock", hz*5, 0);
330 	lwkt_token_init(&mp->mnt_token, "permnt");
331 
332 	TAILQ_INIT(&mp->mnt_vnodescan_list);
333 	TAILQ_INIT(&mp->mnt_nvnodelist);
334 	TAILQ_INIT(&mp->mnt_reservedvnlist);
335 	TAILQ_INIT(&mp->mnt_jlist);
336 	mp->mnt_nvnodelistsize = 0;
337 	mp->mnt_flag = 0;
338 	mp->mnt_hold = 1;
339 	mp->mnt_iosize_max = MAXPHYS;
340 	vn_syncer_thr_create(mp);
341 }
342 
343 void
344 mount_hold(struct mount *mp)
345 {
346 	atomic_add_int(&mp->mnt_hold, 1);
347 }
348 
349 void
350 mount_drop(struct mount *mp)
351 {
352 	if (atomic_fetchadd_int(&mp->mnt_hold, -1) == 1)
353 		kfree(mp, M_MOUNT);
354 }
355 
356 /*
357  * Lookup a mount point by filesystem identifier.
358  */
359 struct mount *
360 vfs_getvfs(fsid_t *fsid)
361 {
362 	struct mount *mp;
363 
364 	lwkt_gettoken(&mountlist_token);
365 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
366 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
367 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
368 			break;
369 		}
370 	}
371 	lwkt_reltoken(&mountlist_token);
372 	return (mp);
373 }
374 
375 /*
376  * Get a new unique fsid.  Try to make its val[0] unique, since this value
377  * will be used to create fake device numbers for stat().  Also try (but
378  * not so hard) make its val[0] unique mod 2^16, since some emulators only
379  * support 16-bit device numbers.  We end up with unique val[0]'s for the
380  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
381  *
382  * Keep in mind that several mounts may be running in parallel.  Starting
383  * the search one past where the previous search terminated is both a
384  * micro-optimization and a defense against returning the same fsid to
385  * different mounts.
386  */
387 void
388 vfs_getnewfsid(struct mount *mp)
389 {
390 	static u_int16_t mntid_base;
391 	fsid_t tfsid;
392 	int mtype;
393 
394 	lwkt_gettoken(&mntid_token);
395 	mtype = mp->mnt_vfc->vfc_typenum;
396 	tfsid.val[1] = mtype;
397 	mtype = (mtype & 0xFF) << 24;
398 	for (;;) {
399 		tfsid.val[0] = makeudev(255,
400 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
401 		mntid_base++;
402 		if (vfs_getvfs(&tfsid) == NULL)
403 			break;
404 	}
405 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
406 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
407 	lwkt_reltoken(&mntid_token);
408 }
409 
410 /*
411  * Set the FSID for a new mount point to the template.  Adjust
412  * the FSID to avoid collisions.
413  */
414 int
415 vfs_setfsid(struct mount *mp, fsid_t *template)
416 {
417 	int didmunge = 0;
418 
419 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
420 	for (;;) {
421 		if (vfs_getvfs(template) == NULL)
422 			break;
423 		didmunge = 1;
424 		++template->val[1];
425 	}
426 	mp->mnt_stat.f_fsid = *template;
427 	return(didmunge);
428 }
429 
430 /*
431  * This routine is called when we have too many vnodes.  It attempts
432  * to free <count> vnodes and will potentially free vnodes that still
433  * have VM backing store (VM backing store is typically the cause
434  * of a vnode blowout so we want to do this).  Therefore, this operation
435  * is not considered cheap.
436  *
437  * A number of conditions may prevent a vnode from being reclaimed.
438  * the buffer cache may have references on the vnode, a directory
439  * vnode may still have references due to the namei cache representing
440  * underlying files, or the vnode may be in active use.   It is not
441  * desireable to reuse such vnodes.  These conditions may cause the
442  * number of vnodes to reach some minimum value regardless of what
443  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
444  */
445 
446 /*
447  * Attempt to recycle vnodes in a context that is always safe to block.
448  * Calling vlrurecycle() from the bowels of file system code has some
449  * interesting deadlock problems.
450  */
451 static struct thread *vnlruthread;
452 
453 static void
454 vnlru_proc(void)
455 {
456 	struct thread *td = curthread;
457 
458 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
459 			      SHUTDOWN_PRI_FIRST);
460 
461 	for (;;) {
462 		kproc_suspend_loop();
463 
464 		/*
465 		 * Try to free some vnodes if we have too many.  Trigger based
466 		 * on potentially freeable vnodes but calculate the count
467 		 * based on total vnodes.
468 		 *
469 		 * (long) -> deal with 64 bit machines, intermediate overflow
470 		 */
471 		if (numvnodes >= maxvnodes * 9 / 10 &&
472 		    cachedvnodes + inactivevnodes >= maxvnodes * 5 / 10) {
473 			int count = numvnodes - maxvnodes * 9 / 10;
474 
475 			if (count > (cachedvnodes + inactivevnodes) / 100)
476 				count = (cachedvnodes + inactivevnodes) / 100;
477 			if (count < 5)
478 				count = 5;
479 			freesomevnodes(count);
480 		}
481 
482 		/*
483 		 * Do non-critical-path (more robust) cache cleaning,
484 		 * even if vnode counts are nominal, to try to avoid
485 		 * having to do it in the critical path.
486 		 */
487 		cache_hysteresis(0);
488 
489 		/*
490 		 * Nothing to do if most of our vnodes are already on
491 		 * the free list.
492 		 */
493 		if (numvnodes <= maxvnodes * 9 / 10 ||
494 		    cachedvnodes + inactivevnodes <= maxvnodes * 5 / 10) {
495 			tsleep(vnlruthread, 0, "vlruwt", hz);
496 			continue;
497 		}
498 	}
499 }
500 
501 /*
502  * MOUNTLIST FUNCTIONS
503  */
504 
505 /*
506  * mountlist_insert (MP SAFE)
507  *
508  * Add a new mount point to the mount list.
509  */
510 void
511 mountlist_insert(struct mount *mp, int how)
512 {
513 	lwkt_gettoken(&mountlist_token);
514 	if (how == MNTINS_FIRST)
515 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
516 	else
517 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
518 	lwkt_reltoken(&mountlist_token);
519 }
520 
521 /*
522  * mountlist_interlock (MP SAFE)
523  *
524  * Execute the specified interlock function with the mountlist token
525  * held.  The function will be called in a serialized fashion verses
526  * other functions called through this mechanism.
527  */
528 int
529 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
530 {
531 	int error;
532 
533 	lwkt_gettoken(&mountlist_token);
534 	error = callback(mp);
535 	lwkt_reltoken(&mountlist_token);
536 	return (error);
537 }
538 
539 /*
540  * mountlist_boot_getfirst (DURING BOOT ONLY)
541  *
542  * This function returns the first mount on the mountlist, which is
543  * expected to be the root mount.  Since no interlocks are obtained
544  * this function is only safe to use during booting.
545  */
546 
547 struct mount *
548 mountlist_boot_getfirst(void)
549 {
550 	return(TAILQ_FIRST(&mountlist));
551 }
552 
553 /*
554  * mountlist_remove (MP SAFE)
555  *
556  * Remove a node from the mountlist.  If this node is the next scan node
557  * for any active mountlist scans, the active mountlist scan will be
558  * adjusted to skip the node, thus allowing removals during mountlist
559  * scans.
560  */
561 void
562 mountlist_remove(struct mount *mp)
563 {
564 	struct mountscan_info *msi;
565 
566 	lwkt_gettoken(&mountlist_token);
567 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
568 		if (msi->msi_node == mp) {
569 			if (msi->msi_how & MNTSCAN_FORWARD)
570 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
571 			else
572 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
573 		}
574 	}
575 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
576 	lwkt_reltoken(&mountlist_token);
577 }
578 
579 /*
580  * mountlist_exists (MP SAFE)
581  *
582  * Checks if a node exists in the mountlist.
583  * This function is mainly used by VFS quota code to check if a
584  * cached nullfs struct mount pointer is still valid at use time
585  *
586  * FIXME: there is no warranty the mp passed to that function
587  * will be the same one used by VFS_ACCOUNT() later
588  */
589 int
590 mountlist_exists(struct mount *mp)
591 {
592 	int node_exists = 0;
593 	struct mount* lmp;
594 
595 	lwkt_gettoken(&mountlist_token);
596 	TAILQ_FOREACH(lmp, &mountlist, mnt_list) {
597 		if (lmp == mp) {
598 			node_exists = 1;
599 			break;
600 		}
601 	}
602 	lwkt_reltoken(&mountlist_token);
603 	return(node_exists);
604 }
605 
606 /*
607  * mountlist_scan (MP SAFE)
608  *
609  * Safely scan the mount points on the mount list.  Unless otherwise
610  * specified each mount point will be busied prior to the callback and
611  * unbusied afterwords.  The callback may safely remove any mount point
612  * without interfering with the scan.  If the current callback
613  * mount is removed the scanner will not attempt to unbusy it.
614  *
615  * If a mount node cannot be busied it is silently skipped.
616  *
617  * The callback return value is aggregated and a total is returned.  A return
618  * value of < 0 is not aggregated and will terminate the scan.
619  *
620  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
621  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
622  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
623  *			  the mount node.
624  *
625  * NOTE: mount_hold()/mount_drop() sequence primarily helps us avoid
626  *	 confusion for the unbusy check, particularly if a kfree/kmalloc
627  *	 occurs quickly (lots of processes mounting and unmounting at the
628  *	 same time).
629  */
630 int
631 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
632 {
633 	struct mountscan_info info;
634 	struct mount *mp;
635 	int count;
636 	int res;
637 
638 	lwkt_gettoken(&mountlist_token);
639 
640 	info.msi_how = how;
641 	info.msi_node = NULL;	/* paranoia */
642 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
643 
644 	res = 0;
645 
646 	if (how & MNTSCAN_FORWARD) {
647 		info.msi_node = TAILQ_FIRST(&mountlist);
648 		while ((mp = info.msi_node) != NULL) {
649 			mount_hold(mp);
650 			if (how & MNTSCAN_NOBUSY) {
651 				count = callback(mp, data);
652 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
653 				count = callback(mp, data);
654 				if (mp == info.msi_node)
655 					vfs_unbusy(mp);
656 			} else {
657 				count = 0;
658 			}
659 			mount_drop(mp);
660 			if (count < 0)
661 				break;
662 			res += count;
663 			if (mp == info.msi_node)
664 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
665 		}
666 	} else if (how & MNTSCAN_REVERSE) {
667 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
668 		while ((mp = info.msi_node) != NULL) {
669 			mount_hold(mp);
670 			if (how & MNTSCAN_NOBUSY) {
671 				count = callback(mp, data);
672 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
673 				count = callback(mp, data);
674 				if (mp == info.msi_node)
675 					vfs_unbusy(mp);
676 			} else {
677 				count = 0;
678 			}
679 			mount_drop(mp);
680 			if (count < 0)
681 				break;
682 			res += count;
683 			if (mp == info.msi_node)
684 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
685 		}
686 	}
687 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
688 	lwkt_reltoken(&mountlist_token);
689 	return(res);
690 }
691 
692 /*
693  * MOUNT RELATED VNODE FUNCTIONS
694  */
695 
696 static struct kproc_desc vnlru_kp = {
697 	"vnlru",
698 	vnlru_proc,
699 	&vnlruthread
700 };
701 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp);
702 
703 /*
704  * Move a vnode from one mount queue to another.
705  */
706 void
707 insmntque(struct vnode *vp, struct mount *mp)
708 {
709 	struct mount *omp;
710 
711 	/*
712 	 * Delete from old mount point vnode list, if on one.
713 	 */
714 	if ((omp = vp->v_mount) != NULL) {
715 		lwkt_gettoken(&omp->mnt_token);
716 		KKASSERT(omp == vp->v_mount);
717 		KASSERT(omp->mnt_nvnodelistsize > 0,
718 			("bad mount point vnode list size"));
719 		vremovevnodemnt(vp);
720 		omp->mnt_nvnodelistsize--;
721 		lwkt_reltoken(&omp->mnt_token);
722 	}
723 
724 	/*
725 	 * Insert into list of vnodes for the new mount point, if available.
726 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
727 	 */
728 	if (mp == NULL) {
729 		vp->v_mount = NULL;
730 		return;
731 	}
732 	lwkt_gettoken(&mp->mnt_token);
733 	vp->v_mount = mp;
734 	if (mp->mnt_syncer) {
735 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
736 	} else {
737 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
738 	}
739 	mp->mnt_nvnodelistsize++;
740 	lwkt_reltoken(&mp->mnt_token);
741 }
742 
743 
744 /*
745  * Scan the vnodes under a mount point and issue appropriate callbacks.
746  *
747  * The fastfunc() callback is called with just the mountlist token held
748  * (no vnode lock).  It may not block and the vnode may be undergoing
749  * modifications while the caller is processing it.  The vnode will
750  * not be entirely destroyed, however, due to the fact that the mountlist
751  * token is held.  A return value < 0 skips to the next vnode without calling
752  * the slowfunc(), a return value > 0 terminates the loop.
753  *
754  * WARNING! The fastfunc() should not indirect through vp->v_object, the vp
755  *	    data structure is unstable when called from fastfunc().
756  *
757  * The slowfunc() callback is called after the vnode has been successfully
758  * locked based on passed flags.  The vnode is skipped if it gets rearranged
759  * or destroyed while blocking on the lock.  A non-zero return value from
760  * the slow function terminates the loop.  The slow function is allowed to
761  * arbitrarily block.  The scanning code guarentees consistency of operation
762  * even if the slow function deletes or moves the node, or blocks and some
763  * other thread deletes or moves the node.
764  */
765 int
766 vmntvnodescan(
767     struct mount *mp,
768     int flags,
769     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
770     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
771     void *data
772 ) {
773 	struct vmntvnodescan_info info;
774 	struct vnode *vp;
775 	int r = 0;
776 	int maxcount = mp->mnt_nvnodelistsize * 2;
777 	int stopcount = 0;
778 	int count = 0;
779 
780 	lwkt_gettoken(&mp->mnt_token);
781 
782 	/*
783 	 * If asked to do one pass stop after iterating available vnodes.
784 	 * Under heavy loads new vnodes can be added while we are scanning,
785 	 * so this isn't perfect.  Create a slop factor of 2x.
786 	 */
787 	if (flags & VMSC_ONEPASS)
788 		stopcount = mp->mnt_nvnodelistsize;
789 
790 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
791 	TAILQ_INSERT_TAIL(&mp->mnt_vnodescan_list, &info, entry);
792 
793 	while ((vp = info.vp) != NULL) {
794 		if (--maxcount == 0) {
795 			kprintf("Warning: excessive fssync iteration\n");
796 			maxcount = mp->mnt_nvnodelistsize * 2;
797 		}
798 
799 		/*
800 		 * Skip if visible but not ready, or special (e.g.
801 		 * mp->mnt_syncer)
802 		 */
803 		if (vp->v_type == VNON)
804 			goto next;
805 		KKASSERT(vp->v_mount == mp);
806 
807 		/*
808 		 * Quick test.  A negative return continues the loop without
809 		 * calling the slow test.  0 continues onto the slow test.
810 		 * A positive number aborts the loop.
811 		 */
812 		if (fastfunc) {
813 			if ((r = fastfunc(mp, vp, data)) < 0) {
814 				r = 0;
815 				goto next;
816 			}
817 			if (r)
818 				break;
819 		}
820 
821 		/*
822 		 * Get a vxlock on the vnode, retry if it has moved or isn't
823 		 * in the mountlist where we expect it.
824 		 */
825 		if (slowfunc) {
826 			int error;
827 
828 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
829 			case VMSC_GETVP:
830 				error = vget(vp, LK_EXCLUSIVE);
831 				break;
832 			case VMSC_GETVP|VMSC_NOWAIT:
833 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
834 				break;
835 			case VMSC_GETVX:
836 				vx_get(vp);
837 				error = 0;
838 				break;
839 			default:
840 				error = 0;
841 				break;
842 			}
843 			if (error)
844 				goto next;
845 			/*
846 			 * Do not call the slow function if the vnode is
847 			 * invalid or if it was ripped out from under us
848 			 * while we (potentially) blocked.
849 			 */
850 			if (info.vp == vp && vp->v_type != VNON)
851 				r = slowfunc(mp, vp, data);
852 
853 			/*
854 			 * Cleanup
855 			 */
856 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
857 			case VMSC_GETVP:
858 			case VMSC_GETVP|VMSC_NOWAIT:
859 				vput(vp);
860 				break;
861 			case VMSC_GETVX:
862 				vx_put(vp);
863 				break;
864 			default:
865 				break;
866 			}
867 			if (r != 0)
868 				break;
869 		}
870 
871 next:
872 		/*
873 		 * Yield after some processing.  Depending on the number
874 		 * of vnodes, we might wind up running for a long time.
875 		 * Because threads are not preemptable, time critical
876 		 * userland processes might starve.  Give them a chance
877 		 * now and then.
878 		 */
879 		if (++count == 10000) {
880 			/*
881 			 * We really want to yield a bit, so we simply
882 			 * sleep a tick
883 			 */
884 			tsleep(mp, 0, "vnodescn", 1);
885 			count = 0;
886 		}
887 
888 		/*
889 		 * If doing one pass this decrements to zero.  If it starts
890 		 * at zero it is effectively unlimited for the purposes of
891 		 * this loop.
892 		 */
893 		if (--stopcount == 0)
894 			break;
895 
896 		/*
897 		 * Iterate.  If the vnode was ripped out from under us
898 		 * info.vp will already point to the next vnode, otherwise
899 		 * we have to obtain the next valid vnode ourselves.
900 		 */
901 		if (info.vp == vp)
902 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
903 	}
904 
905 	TAILQ_REMOVE(&mp->mnt_vnodescan_list, &info, entry);
906 	lwkt_reltoken(&mp->mnt_token);
907 	return(r);
908 }
909 
910 /*
911  * Remove any vnodes in the vnode table belonging to mount point mp.
912  *
913  * If FORCECLOSE is not specified, there should not be any active ones,
914  * return error if any are found (nb: this is a user error, not a
915  * system error). If FORCECLOSE is specified, detach any active vnodes
916  * that are found.
917  *
918  * If WRITECLOSE is set, only flush out regular file vnodes open for
919  * writing.
920  *
921  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
922  *
923  * `rootrefs' specifies the base reference count for the root vnode
924  * of this filesystem. The root vnode is considered busy if its
925  * v_refcnt exceeds this value. On a successful return, vflush()
926  * will call vrele() on the root vnode exactly rootrefs times.
927  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
928  * be zero.
929  */
930 #ifdef DIAGNOSTIC
931 static int busyprt = 0;		/* print out busy vnodes */
932 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
933 #endif
934 
935 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
936 
937 struct vflush_info {
938 	int flags;
939 	int busy;
940 	thread_t td;
941 };
942 
943 int
944 vflush(struct mount *mp, int rootrefs, int flags)
945 {
946 	struct thread *td = curthread;	/* XXX */
947 	struct vnode *rootvp = NULL;
948 	int error;
949 	struct vflush_info vflush_info;
950 
951 	if (rootrefs > 0) {
952 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
953 		    ("vflush: bad args"));
954 		/*
955 		 * Get the filesystem root vnode. We can vput() it
956 		 * immediately, since with rootrefs > 0, it won't go away.
957 		 */
958 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
959 			if ((flags & FORCECLOSE) == 0)
960 				return (error);
961 			rootrefs = 0;
962 			/* continue anyway */
963 		}
964 		if (rootrefs)
965 			vput(rootvp);
966 	}
967 
968 	vflush_info.busy = 0;
969 	vflush_info.flags = flags;
970 	vflush_info.td = td;
971 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
972 
973 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
974 		/*
975 		 * If just the root vnode is busy, and if its refcount
976 		 * is equal to `rootrefs', then go ahead and kill it.
977 		 */
978 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
979 		KASSERT(VREFCNT(rootvp) >= rootrefs, ("vflush: rootrefs"));
980 		if (vflush_info.busy == 1 && VREFCNT(rootvp) == rootrefs) {
981 			vx_lock(rootvp);
982 			vgone_vxlocked(rootvp);
983 			vx_unlock(rootvp);
984 			vflush_info.busy = 0;
985 		}
986 	}
987 	if (vflush_info.busy)
988 		return (EBUSY);
989 	for (; rootrefs > 0; rootrefs--)
990 		vrele(rootvp);
991 	return (0);
992 }
993 
994 /*
995  * The scan callback is made with an VX locked vnode.
996  */
997 static int
998 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
999 {
1000 	struct vflush_info *info = data;
1001 	struct vattr vattr;
1002 	int flags = info->flags;
1003 
1004 	/*
1005 	 * Generally speaking try to deactivate on 0 refs (catch-all)
1006 	 */
1007 	atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1008 
1009 	/*
1010 	 * Skip over a vnodes marked VSYSTEM.
1011 	 */
1012 	if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1013 		return(0);
1014 	}
1015 
1016 	/*
1017 	 * Do not force-close VCHR or VBLK vnodes
1018 	 */
1019 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1020 		flags &= ~(WRITECLOSE|FORCECLOSE);
1021 
1022 	/*
1023 	 * If WRITECLOSE is set, flush out unlinked but still open
1024 	 * files (even if open only for reading) and regular file
1025 	 * vnodes open for writing.
1026 	 */
1027 	if ((flags & WRITECLOSE) &&
1028 	    (vp->v_type == VNON ||
1029 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1030 	    vattr.va_nlink > 0)) &&
1031 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1032 		return(0);
1033 	}
1034 
1035 	/*
1036 	 * If we are the only holder (refcnt of 1) or the vnode is in
1037 	 * termination (refcnt < 0), we can vgone the vnode.
1038 	 */
1039 	if (VREFCNT(vp) <= 1) {
1040 		vgone_vxlocked(vp);
1041 		return(0);
1042 	}
1043 
1044 	/*
1045 	 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1046 	 * it to a dummymount structure so vop_*() functions don't deref
1047 	 * a NULL pointer.
1048 	 */
1049 	if (flags & FORCECLOSE) {
1050 		vhold(vp);
1051 		vgone_vxlocked(vp);
1052 		if (vp->v_mount == NULL)
1053 			insmntque(vp, &dummymount);
1054 		vdrop(vp);
1055 		return(0);
1056 	}
1057 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1058 		kprintf("vflush: Warning, cannot destroy busy device vnode\n");
1059 #ifdef DIAGNOSTIC
1060 	if (busyprt)
1061 		vprint("vflush: busy vnode", vp);
1062 #endif
1063 	++info->busy;
1064 	return(0);
1065 }
1066 
1067 void
1068 add_bio_ops(struct bio_ops *ops)
1069 {
1070 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1071 }
1072 
1073 void
1074 rem_bio_ops(struct bio_ops *ops)
1075 {
1076 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1077 }
1078 
1079 /*
1080  * This calls the bio_ops io_sync function either for a mount point
1081  * or generally.
1082  *
1083  * WARNING: softdeps is weirdly coded and just isn't happy unless
1084  * io_sync is called with a NULL mount from the general syncing code.
1085  */
1086 void
1087 bio_ops_sync(struct mount *mp)
1088 {
1089 	struct bio_ops *ops;
1090 
1091 	if (mp) {
1092 		if ((ops = mp->mnt_bioops) != NULL)
1093 			ops->io_sync(mp);
1094 	} else {
1095 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1096 			ops->io_sync(NULL);
1097 		}
1098 	}
1099 }
1100 
1101 /*
1102  * Lookup a mount point by nch
1103  */
1104 struct mount *
1105 mount_get_by_nc(struct namecache *ncp)
1106 {
1107 	struct mount *mp = NULL;
1108 
1109 	lwkt_gettoken(&mountlist_token);
1110 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1111 		if (ncp == mp->mnt_ncmountpt.ncp)
1112 			break;
1113 	}
1114 	lwkt_reltoken(&mountlist_token);
1115 	return (mp);
1116 }
1117 
1118