xref: /dflybsd-src/sys/kern/vfs_mount.c (revision b5d16701e255c342d21e69a6c80b8711c028dc65)
1 /*
2  * Copyright (c) 2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  * $DragonFly: src/sys/kern/vfs_mount.c,v 1.37 2008/09/17 21:44:18 dillon Exp $
71  */
72 
73 /*
74  * External virtual filesystem routines
75  */
76 #include "opt_ddb.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/proc.h>
84 #include <sys/vnode.h>
85 #include <sys/buf.h>
86 #include <sys/eventhandler.h>
87 #include <sys/kthread.h>
88 #include <sys/sysctl.h>
89 
90 #include <machine/limits.h>
91 
92 #include <sys/buf2.h>
93 #include <sys/thread2.h>
94 #include <sys/sysref2.h>
95 #include <sys/mplock2.h>
96 
97 #include <vm/vm.h>
98 #include <vm/vm_object.h>
99 
100 struct mountscan_info {
101 	TAILQ_ENTRY(mountscan_info) msi_entry;
102 	int msi_how;
103 	struct mount *msi_node;
104 };
105 
106 struct vmntvnodescan_info {
107 	TAILQ_ENTRY(vmntvnodescan_info) entry;
108 	struct vnode *vp;
109 };
110 
111 struct vnlru_info {
112 	int	pass;
113 };
114 
115 static int vnlru_nowhere = 0;
116 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RD,
117 	    &vnlru_nowhere, 0,
118 	    "Number of times the vnlru process ran without success");
119 
120 
121 static struct lwkt_token mntid_token;
122 static struct mount dummymount;
123 
124 /* note: mountlist exported to pstat */
125 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
126 static TAILQ_HEAD(,mountscan_info) mountscan_list;
127 static struct lwkt_token mountlist_token;
128 static TAILQ_HEAD(,vmntvnodescan_info) mntvnodescan_list;
129 struct lwkt_token mntvnode_token;
130 
131 static TAILQ_HEAD(,bio_ops) bio_ops_list = TAILQ_HEAD_INITIALIZER(bio_ops_list);
132 
133 /*
134  * Called from vfsinit()
135  */
136 void
137 vfs_mount_init(void)
138 {
139 	lwkt_token_init(&mountlist_token, 1, "mntlist");
140 	lwkt_token_init(&mntvnode_token, 1, "mntvnode");
141 	lwkt_token_init(&mntid_token, 1, "mntid");
142 	TAILQ_INIT(&mountscan_list);
143 	TAILQ_INIT(&mntvnodescan_list);
144 	mount_init(&dummymount);
145 	dummymount.mnt_flag |= MNT_RDONLY;
146 	dummymount.mnt_kern_flag |= MNTK_ALL_MPSAFE;
147 }
148 
149 /*
150  * Support function called with mntvnode_token held to remove a vnode
151  * from the mountlist.  We must update any list scans which are in progress.
152  */
153 static void
154 vremovevnodemnt(struct vnode *vp)
155 {
156         struct vmntvnodescan_info *info;
157 
158 	TAILQ_FOREACH(info, &mntvnodescan_list, entry) {
159 		if (info->vp == vp)
160 			info->vp = TAILQ_NEXT(vp, v_nmntvnodes);
161 	}
162 	TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
163 }
164 
165 /*
166  * Allocate a new vnode and associate it with a tag, mount point, and
167  * operations vector.
168  *
169  * A VX locked and refd vnode is returned.  The caller should setup the
170  * remaining fields and vx_put() or, if he wishes to leave a vref,
171  * vx_unlock() the vnode.
172  */
173 int
174 getnewvnode(enum vtagtype tag, struct mount *mp,
175 		struct vnode **vpp, int lktimeout, int lkflags)
176 {
177 	struct vnode *vp;
178 
179 	KKASSERT(mp != NULL);
180 
181 	vp = allocvnode(lktimeout, lkflags);
182 	vp->v_tag = tag;
183 	vp->v_data = NULL;
184 
185 	/*
186 	 * By default the vnode is assigned the mount point's normal
187 	 * operations vector.
188 	 */
189 	vp->v_ops = &mp->mnt_vn_use_ops;
190 
191 	/*
192 	 * Placing the vnode on the mount point's queue makes it visible.
193 	 * VNON prevents it from being messed with, however.
194 	 */
195 	insmntque(vp, mp);
196 
197 	/*
198 	 * A VX locked & refd vnode is returned.
199 	 */
200 	*vpp = vp;
201 	return (0);
202 }
203 
204 /*
205  * This function creates vnodes with special operations vectors.  The
206  * mount point is optional.
207  *
208  * This routine is being phased out but is still used by vfs_conf to
209  * create vnodes for devices prior to the root mount (with mp == NULL).
210  */
211 int
212 getspecialvnode(enum vtagtype tag, struct mount *mp,
213 		struct vop_ops **ops,
214 		struct vnode **vpp, int lktimeout, int lkflags)
215 {
216 	struct vnode *vp;
217 
218 	vp = allocvnode(lktimeout, lkflags);
219 	vp->v_tag = tag;
220 	vp->v_data = NULL;
221 	vp->v_ops = ops;
222 
223 	if (mp == NULL)
224 		mp = &dummymount;
225 
226 	/*
227 	 * Placing the vnode on the mount point's queue makes it visible.
228 	 * VNON prevents it from being messed with, however.
229 	 */
230 	insmntque(vp, mp);
231 
232 	/*
233 	 * A VX locked & refd vnode is returned.
234 	 */
235 	*vpp = vp;
236 	return (0);
237 }
238 
239 /*
240  * Interlock against an unmount, return 0 on success, non-zero on failure.
241  *
242  * The passed flag may be 0 or LK_NOWAIT and is only used if an unmount
243  * is in-progress.
244  *
245  * If no unmount is in-progress LK_NOWAIT is ignored.  No other flag bits
246  * are used.  A shared locked will be obtained and the filesystem will not
247  * be unmountable until the lock is released.
248  */
249 int
250 vfs_busy(struct mount *mp, int flags)
251 {
252 	int lkflags;
253 
254 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
255 		if (flags & LK_NOWAIT)
256 			return (ENOENT);
257 		/* XXX not MP safe */
258 		mp->mnt_kern_flag |= MNTK_MWAIT;
259 		/*
260 		 * Since all busy locks are shared except the exclusive
261 		 * lock granted when unmounting, the only place that a
262 		 * wakeup needs to be done is at the release of the
263 		 * exclusive lock at the end of dounmount.
264 		 */
265 		tsleep((caddr_t)mp, 0, "vfs_busy", 0);
266 		return (ENOENT);
267 	}
268 	lkflags = LK_SHARED;
269 	if (lockmgr(&mp->mnt_lock, lkflags))
270 		panic("vfs_busy: unexpected lock failure");
271 	return (0);
272 }
273 
274 /*
275  * Free a busy filesystem.
276  */
277 void
278 vfs_unbusy(struct mount *mp)
279 {
280 	lockmgr(&mp->mnt_lock, LK_RELEASE);
281 }
282 
283 /*
284  * Lookup a filesystem type, and if found allocate and initialize
285  * a mount structure for it.
286  *
287  * Devname is usually updated by mount(8) after booting.
288  */
289 int
290 vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
291 {
292 	struct vfsconf *vfsp;
293 	struct mount *mp;
294 
295 	if (fstypename == NULL)
296 		return (ENODEV);
297 
298 	vfsp = vfsconf_find_by_name(fstypename);
299 	if (vfsp == NULL)
300 		return (ENODEV);
301 	mp = kmalloc(sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
302 	mount_init(mp);
303 	lockinit(&mp->mnt_lock, "vfslock", VLKTIMEOUT, 0);
304 
305 	vfs_busy(mp, LK_NOWAIT);
306 	mp->mnt_vfc = vfsp;
307 	mp->mnt_op = vfsp->vfc_vfsops;
308 	vfsp->vfc_refcount++;
309 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
310 	mp->mnt_flag |= MNT_RDONLY;
311 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
312 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
313 	copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
314 	*mpp = mp;
315 	return (0);
316 }
317 
318 /*
319  * Basic mount structure initialization
320  */
321 void
322 mount_init(struct mount *mp)
323 {
324 	lockinit(&mp->mnt_lock, "vfslock", 0, 0);
325 	lwkt_token_init(&mp->mnt_token, 1, "permnt");
326 
327 	TAILQ_INIT(&mp->mnt_nvnodelist);
328 	TAILQ_INIT(&mp->mnt_reservedvnlist);
329 	TAILQ_INIT(&mp->mnt_jlist);
330 	mp->mnt_nvnodelistsize = 0;
331 	mp->mnt_flag = 0;
332 	mp->mnt_iosize_max = DFLTPHYS;
333 }
334 
335 /*
336  * Lookup a mount point by filesystem identifier.
337  */
338 struct mount *
339 vfs_getvfs(fsid_t *fsid)
340 {
341 	struct mount *mp;
342 
343 	lwkt_gettoken(&mountlist_token);
344 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
345 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
346 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
347 			break;
348 		}
349 	}
350 	lwkt_reltoken(&mountlist_token);
351 	return (mp);
352 }
353 
354 /*
355  * Get a new unique fsid.  Try to make its val[0] unique, since this value
356  * will be used to create fake device numbers for stat().  Also try (but
357  * not so hard) make its val[0] unique mod 2^16, since some emulators only
358  * support 16-bit device numbers.  We end up with unique val[0]'s for the
359  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
360  *
361  * Keep in mind that several mounts may be running in parallel.  Starting
362  * the search one past where the previous search terminated is both a
363  * micro-optimization and a defense against returning the same fsid to
364  * different mounts.
365  */
366 void
367 vfs_getnewfsid(struct mount *mp)
368 {
369 	static u_int16_t mntid_base;
370 	fsid_t tfsid;
371 	int mtype;
372 
373 	lwkt_gettoken(&mntid_token);
374 	mtype = mp->mnt_vfc->vfc_typenum;
375 	tfsid.val[1] = mtype;
376 	mtype = (mtype & 0xFF) << 24;
377 	for (;;) {
378 		tfsid.val[0] = makeudev(255,
379 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
380 		mntid_base++;
381 		if (vfs_getvfs(&tfsid) == NULL)
382 			break;
383 	}
384 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
385 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
386 	lwkt_reltoken(&mntid_token);
387 }
388 
389 /*
390  * Set the FSID for a new mount point to the template.  Adjust
391  * the FSID to avoid collisions.
392  */
393 int
394 vfs_setfsid(struct mount *mp, fsid_t *template)
395 {
396 	int didmunge = 0;
397 
398 	bzero(&mp->mnt_stat.f_fsid, sizeof(mp->mnt_stat.f_fsid));
399 	for (;;) {
400 		if (vfs_getvfs(template) == NULL)
401 			break;
402 		didmunge = 1;
403 		++template->val[1];
404 	}
405 	mp->mnt_stat.f_fsid = *template;
406 	return(didmunge);
407 }
408 
409 /*
410  * This routine is called when we have too many vnodes.  It attempts
411  * to free <count> vnodes and will potentially free vnodes that still
412  * have VM backing store (VM backing store is typically the cause
413  * of a vnode blowout so we want to do this).  Therefore, this operation
414  * is not considered cheap.
415  *
416  * A number of conditions may prevent a vnode from being reclaimed.
417  * the buffer cache may have references on the vnode, a directory
418  * vnode may still have references due to the namei cache representing
419  * underlying files, or the vnode may be in active use.   It is not
420  * desireable to reuse such vnodes.  These conditions may cause the
421  * number of vnodes to reach some minimum value regardless of what
422  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
423  */
424 
425 /*
426  * This is a quick non-blocking check to determine if the vnode is a good
427  * candidate for being (eventually) vgone()'d.  Returns 0 if the vnode is
428  * not a good candidate, 1 if it is.
429  */
430 static __inline int
431 vmightfree(struct vnode *vp, int page_count, int pass)
432 {
433 	if (vp->v_flag & VRECLAIMED)
434 		return (0);
435 #if 0
436 	if ((vp->v_flag & VFREE) && TAILQ_EMPTY(&vp->v_namecache))
437 		return (0);
438 #endif
439 	if (sysref_isactive(&vp->v_sysref))
440 		return (0);
441 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
442 		return (0);
443 
444 	/*
445 	 * XXX horrible hack.  Up to four passes will be taken.  Each pass
446 	 * makes a larger set of vnodes eligible.  For now what this really
447 	 * means is that we try to recycle files opened only once before
448 	 * recycling files opened multiple times.
449 	 */
450 	switch(vp->v_flag & (VAGE0 | VAGE1)) {
451 	case 0:
452 		if (pass < 3)
453 			return(0);
454 		break;
455 	case VAGE0:
456 		if (pass < 2)
457 			return(0);
458 		break;
459 	case VAGE1:
460 		if (pass < 1)
461 			return(0);
462 		break;
463 	case VAGE0 | VAGE1:
464 		break;
465 	}
466 	return (1);
467 }
468 
469 /*
470  * The vnode was found to be possibly vgone()able and the caller has locked it
471  * (thus the usecount should be 1 now).  Determine if the vnode is actually
472  * vgone()able, doing some cleanups in the process.  Returns 1 if the vnode
473  * can be vgone()'d, 0 otherwise.
474  *
475  * Note that v_auxrefs may be non-zero because (A) this vnode is not a leaf
476  * in the namecache topology and (B) this vnode has buffer cache bufs.
477  * We cannot remove vnodes with non-leaf namecache associations.  We do a
478  * tentitive leaf check prior to attempting to flush out any buffers but the
479  * 'real' test when all is said in done is that v_auxrefs must become 0 for
480  * the vnode to be freeable.
481  *
482  * We could theoretically just unconditionally flush when v_auxrefs != 0,
483  * but flushing data associated with non-leaf nodes (which are always
484  * directories), just throws it away for no benefit.  It is the buffer
485  * cache's responsibility to choose buffers to recycle from the cached
486  * data point of view.
487  */
488 static int
489 visleaf(struct vnode *vp)
490 {
491 	struct namecache *ncp;
492 
493 	spin_lock(&vp->v_spinlock);
494 	TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
495 		if (!TAILQ_EMPTY(&ncp->nc_list)) {
496 			spin_unlock(&vp->v_spinlock);
497 			return(0);
498 		}
499 	}
500 	spin_unlock(&vp->v_spinlock);
501 	return(1);
502 }
503 
504 /*
505  * Try to clean up the vnode to the point where it can be vgone()'d, returning
506  * 0 if it cannot be vgone()'d (or already has been), 1 if it can.  Unlike
507  * vmightfree() this routine may flush the vnode and block.  Vnodes marked
508  * VFREE are still candidates for vgone()ing because they may hold namecache
509  * resources and could be blocking the namecache directory hierarchy (and
510  * related vnodes) from being freed.
511  */
512 static int
513 vtrytomakegoneable(struct vnode *vp, int page_count)
514 {
515 	if (vp->v_flag & VRECLAIMED)
516 		return (0);
517 	if (vp->v_sysref.refcnt > 1)
518 		return (0);
519 	if (vp->v_object && vp->v_object->resident_page_count >= page_count)
520 		return (0);
521 	if (vp->v_auxrefs && visleaf(vp)) {
522 		vinvalbuf(vp, V_SAVE, 0, 0);
523 #if 0	/* DEBUG */
524 		kprintf((vp->v_auxrefs ? "vrecycle: vp %p failed: %s\n" :
525 			"vrecycle: vp %p succeeded: %s\n"), vp,
526 			(TAILQ_FIRST(&vp->v_namecache) ?
527 			    TAILQ_FIRST(&vp->v_namecache)->nc_name : "?"));
528 #endif
529 	}
530 
531 	/*
532 	 * This sequence may seem a little strange, but we need to optimize
533 	 * the critical path a bit.  We can't recycle vnodes with other
534 	 * references and because we are trying to recycle an otherwise
535 	 * perfectly fine vnode we have to invalidate the namecache in a
536 	 * way that avoids possible deadlocks (since the vnode lock is being
537 	 * held here).  Finally, we have to check for other references one
538 	 * last time in case something snuck in during the inval.
539 	 */
540 	if (vp->v_sysref.refcnt > 1 || vp->v_auxrefs != 0)
541 		return (0);
542 	if (cache_inval_vp_nonblock(vp))
543 		return (0);
544 	return (vp->v_sysref.refcnt <= 1 && vp->v_auxrefs == 0);
545 }
546 
547 /*
548  * Reclaim up to 1/10 of the vnodes associated with a mount point.  Try
549  * to avoid vnodes which have lots of resident pages (we are trying to free
550  * vnodes, not memory).
551  *
552  * This routine is a callback from the mountlist scan.  The mount point
553  * in question will be busied.
554  *
555  * NOTE: The 1/10 reclamation also ensures that the inactive data set
556  *	 (the vnodes being recycled by the one-time use) does not degenerate
557  *	 into too-small a set.  This is important because once a vnode is
558  *	 marked as not being one-time-use (VAGE0/VAGE1 both 0) that vnode
559  *	 will not be destroyed EXCEPT by this mechanism.  VM pages can still
560  *	 be cleaned/freed by the pageout daemon.
561  */
562 static int
563 vlrureclaim(struct mount *mp, void *data)
564 {
565 	struct vnlru_info *info = data;
566 	struct vnode *vp;
567 	int done;
568 	int trigger;
569 	int usevnodes;
570 	int count;
571 	int trigger_mult = vnlru_nowhere;
572 
573 	/*
574 	 * Calculate the trigger point for the resident pages check.  The
575 	 * minimum trigger value is approximately the number of pages in
576 	 * the system divded by the number of vnodes.  However, due to
577 	 * various other system memory overheads unrelated to data caching
578 	 * it is a good idea to double the trigger (at least).
579 	 *
580 	 * trigger_mult starts at 0.  If the recycler is having problems
581 	 * finding enough freeable vnodes it will increase trigger_mult.
582 	 * This should not happen in normal operation, even on machines with
583 	 * low amounts of memory, but extraordinary memory use by the system
584 	 * verses the amount of cached data can trigger it.
585 	 */
586 	usevnodes = desiredvnodes;
587 	if (usevnodes <= 0)
588 		usevnodes = 1;
589 	trigger = vmstats.v_page_count * (trigger_mult + 2) / usevnodes;
590 
591 	done = 0;
592 	lwkt_gettoken(&mntvnode_token);
593 	count = mp->mnt_nvnodelistsize / 10 + 1;
594 
595 	while (count && mp->mnt_syncer) {
596 		/*
597 		 * Next vnode.  Use the special syncer vnode to placemark
598 		 * the LRU.  This way the LRU code does not interfere with
599 		 * vmntvnodescan().
600 		 */
601 		vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
602 		TAILQ_REMOVE(&mp->mnt_nvnodelist, mp->mnt_syncer, v_nmntvnodes);
603 		if (vp) {
604 			TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp,
605 					   mp->mnt_syncer, v_nmntvnodes);
606 		} else {
607 			TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, mp->mnt_syncer,
608 					  v_nmntvnodes);
609 			vp = TAILQ_NEXT(mp->mnt_syncer, v_nmntvnodes);
610 			if (vp == NULL)
611 				break;
612 		}
613 
614 		/*
615 		 * __VNODESCAN__
616 		 *
617 		 * The VP will stick around while we hold mntvnode_token,
618 		 * at least until we block, so we can safely do an initial
619 		 * check, and then must check again after we lock the vnode.
620 		 */
621 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
622 		    !vmightfree(vp, trigger, info->pass) /* critical path opt */
623 		) {
624 			--count;
625 			continue;
626 		}
627 
628 		/*
629 		 * VX get the candidate vnode.  If the VX get fails the
630 		 * vnode might still be on the mountlist.  Our loop depends
631 		 * on us at least cycling the vnode to the end of the
632 		 * mountlist.
633 		 */
634 		if (vx_get_nonblock(vp) != 0) {
635 			--count;
636 			continue;
637 		}
638 
639 		/*
640 		 * Since we blocked locking the vp, make sure it is still
641 		 * a candidate for reclamation.  That is, it has not already
642 		 * been reclaimed and only has our VX reference associated
643 		 * with it.
644 		 */
645 		if (vp->v_type == VNON ||	/* syncer or indeterminant */
646 		    (vp->v_flag & VRECLAIMED) ||
647 		    vp->v_mount != mp ||
648 		    !vtrytomakegoneable(vp, trigger)	/* critical path opt */
649 		) {
650 			--count;
651 			vx_put(vp);
652 			continue;
653 		}
654 
655 		/*
656 		 * All right, we are good, move the vp to the end of the
657 		 * mountlist and clean it out.  The vget will have returned
658 		 * an error if the vnode was destroyed (VRECLAIMED set), so we
659 		 * do not have to check again.  The vput() will move the
660 		 * vnode to the free list if the vgone() was successful.
661 		 */
662 		KKASSERT(vp->v_mount == mp);
663 		vgone_vxlocked(vp);
664 		vx_put(vp);
665 		++done;
666 		--count;
667 	}
668 	lwkt_reltoken(&mntvnode_token);
669 	return (done);
670 }
671 
672 /*
673  * Attempt to recycle vnodes in a context that is always safe to block.
674  * Calling vlrurecycle() from the bowels of file system code has some
675  * interesting deadlock problems.
676  */
677 static struct thread *vnlruthread;
678 static int vnlruproc_sig;
679 
680 void
681 vnlru_proc_wait(void)
682 {
683 	if (vnlruproc_sig == 0) {
684 		vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
685 		wakeup(vnlruthread);
686 	}
687 	tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
688 }
689 
690 static void
691 vnlru_proc(void)
692 {
693 	struct thread *td = curthread;
694 	struct vnlru_info info;
695 	int done;
696 
697 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
698 			      SHUTDOWN_PRI_FIRST);
699 
700 	get_mplock();
701 	crit_enter();
702 
703 	for (;;) {
704 		kproc_suspend_loop();
705 
706 		/*
707 		 * Try to free some vnodes if we have too many
708 		 */
709 		if (numvnodes > desiredvnodes &&
710 		    freevnodes > desiredvnodes * 2 / 10) {
711 			int count = numvnodes - desiredvnodes;
712 
713 			if (count > freevnodes / 100)
714 				count = freevnodes / 100;
715 			if (count < 5)
716 				count = 5;
717 			freesomevnodes(count);
718 		}
719 
720 		/*
721 		 * Nothing to do if most of our vnodes are already on
722 		 * the free list.
723 		 */
724 		if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
725 			vnlruproc_sig = 0;
726 			wakeup(&vnlruproc_sig);
727 			tsleep(td, 0, "vlruwt", hz);
728 			continue;
729 		}
730 		cache_hysteresis();
731 
732 		/*
733 		 * The pass iterates through the four combinations of
734 		 * VAGE0/VAGE1.  We want to get rid of aged small files
735 		 * first.
736 		 */
737 		info.pass = 0;
738 		done = 0;
739 		while (done == 0 && info.pass < 4) {
740 			done = mountlist_scan(vlrureclaim, &info,
741 					      MNTSCAN_FORWARD);
742 			++info.pass;
743 		}
744 
745 		/*
746 		 * The vlrureclaim() call only processes 1/10 of the vnodes
747 		 * on each mount.  If we couldn't find any repeat the loop
748 		 * at least enough times to cover all available vnodes before
749 		 * we start sleeping.  Complain if the failure extends past
750 		 * 30 second, every 30 seconds.
751 		 */
752 		if (done == 0) {
753 			++vnlru_nowhere;
754 			if (vnlru_nowhere % 10 == 0)
755 				tsleep(td, 0, "vlrup", hz * 3);
756 			if (vnlru_nowhere % 100 == 0)
757 				kprintf("vnlru_proc: vnode recycler stopped working!\n");
758 			if (vnlru_nowhere == 1000)
759 				vnlru_nowhere = 900;
760 		} else {
761 			vnlru_nowhere = 0;
762 		}
763 	}
764 
765 	crit_exit();
766 	rel_mplock();
767 }
768 
769 /*
770  * MOUNTLIST FUNCTIONS
771  */
772 
773 /*
774  * mountlist_insert (MP SAFE)
775  *
776  * Add a new mount point to the mount list.
777  */
778 void
779 mountlist_insert(struct mount *mp, int how)
780 {
781 	lwkt_gettoken(&mountlist_token);
782 	if (how == MNTINS_FIRST)
783 	    TAILQ_INSERT_HEAD(&mountlist, mp, mnt_list);
784 	else
785 	    TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
786 	lwkt_reltoken(&mountlist_token);
787 }
788 
789 /*
790  * mountlist_interlock (MP SAFE)
791  *
792  * Execute the specified interlock function with the mountlist token
793  * held.  The function will be called in a serialized fashion verses
794  * other functions called through this mechanism.
795  */
796 int
797 mountlist_interlock(int (*callback)(struct mount *), struct mount *mp)
798 {
799 	int error;
800 
801 	lwkt_gettoken(&mountlist_token);
802 	error = callback(mp);
803 	lwkt_reltoken(&mountlist_token);
804 	return (error);
805 }
806 
807 /*
808  * mountlist_boot_getfirst (DURING BOOT ONLY)
809  *
810  * This function returns the first mount on the mountlist, which is
811  * expected to be the root mount.  Since no interlocks are obtained
812  * this function is only safe to use during booting.
813  */
814 
815 struct mount *
816 mountlist_boot_getfirst(void)
817 {
818 	return(TAILQ_FIRST(&mountlist));
819 }
820 
821 /*
822  * mountlist_remove (MP SAFE)
823  *
824  * Remove a node from the mountlist.  If this node is the next scan node
825  * for any active mountlist scans, the active mountlist scan will be
826  * adjusted to skip the node, thus allowing removals during mountlist
827  * scans.
828  */
829 void
830 mountlist_remove(struct mount *mp)
831 {
832 	struct mountscan_info *msi;
833 
834 	lwkt_gettoken(&mountlist_token);
835 	TAILQ_FOREACH(msi, &mountscan_list, msi_entry) {
836 		if (msi->msi_node == mp) {
837 			if (msi->msi_how & MNTSCAN_FORWARD)
838 				msi->msi_node = TAILQ_NEXT(mp, mnt_list);
839 			else
840 				msi->msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
841 		}
842 	}
843 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
844 	lwkt_reltoken(&mountlist_token);
845 }
846 
847 /*
848  * mountlist_scan (MP SAFE)
849  *
850  * Safely scan the mount points on the mount list.  Unless otherwise
851  * specified each mount point will be busied prior to the callback and
852  * unbusied afterwords.  The callback may safely remove any mount point
853  * without interfering with the scan.  If the current callback
854  * mount is removed the scanner will not attempt to unbusy it.
855  *
856  * If a mount node cannot be busied it is silently skipped.
857  *
858  * The callback return value is aggregated and a total is returned.  A return
859  * value of < 0 is not aggregated and will terminate the scan.
860  *
861  * MNTSCAN_FORWARD	- the mountlist is scanned in the forward direction
862  * MNTSCAN_REVERSE	- the mountlist is scanned in reverse
863  * MNTSCAN_NOBUSY	- the scanner will make the callback without busying
864  *			  the mount node.
865  */
866 int
867 mountlist_scan(int (*callback)(struct mount *, void *), void *data, int how)
868 {
869 	struct mountscan_info info;
870 	struct mount *mp;
871 	thread_t td;
872 	int count;
873 	int res;
874 
875 	lwkt_gettoken(&mountlist_token);
876 
877 	info.msi_how = how;
878 	info.msi_node = NULL;	/* paranoia */
879 	TAILQ_INSERT_TAIL(&mountscan_list, &info, msi_entry);
880 
881 	res = 0;
882 	td = curthread;
883 
884 	if (how & MNTSCAN_FORWARD) {
885 		info.msi_node = TAILQ_FIRST(&mountlist);
886 		while ((mp = info.msi_node) != NULL) {
887 			if (how & MNTSCAN_NOBUSY) {
888 				count = callback(mp, data);
889 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
890 				count = callback(mp, data);
891 				if (mp == info.msi_node)
892 					vfs_unbusy(mp);
893 			} else {
894 				count = 0;
895 			}
896 			if (count < 0)
897 				break;
898 			res += count;
899 			if (mp == info.msi_node)
900 				info.msi_node = TAILQ_NEXT(mp, mnt_list);
901 		}
902 	} else if (how & MNTSCAN_REVERSE) {
903 		info.msi_node = TAILQ_LAST(&mountlist, mntlist);
904 		while ((mp = info.msi_node) != NULL) {
905 			if (how & MNTSCAN_NOBUSY) {
906 				count = callback(mp, data);
907 			} else if (vfs_busy(mp, LK_NOWAIT) == 0) {
908 				count = callback(mp, data);
909 				if (mp == info.msi_node)
910 					vfs_unbusy(mp);
911 			} else {
912 				count = 0;
913 			}
914 			if (count < 0)
915 				break;
916 			res += count;
917 			if (mp == info.msi_node)
918 				info.msi_node = TAILQ_PREV(mp, mntlist, mnt_list);
919 		}
920 	}
921 	TAILQ_REMOVE(&mountscan_list, &info, msi_entry);
922 	lwkt_reltoken(&mountlist_token);
923 	return(res);
924 }
925 
926 /*
927  * MOUNT RELATED VNODE FUNCTIONS
928  */
929 
930 static struct kproc_desc vnlru_kp = {
931 	"vnlru",
932 	vnlru_proc,
933 	&vnlruthread
934 };
935 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
936 
937 /*
938  * Move a vnode from one mount queue to another.
939  *
940  * MPSAFE
941  */
942 void
943 insmntque(struct vnode *vp, struct mount *mp)
944 {
945 	lwkt_gettoken(&mntvnode_token);
946 	/*
947 	 * Delete from old mount point vnode list, if on one.
948 	 */
949 	if (vp->v_mount != NULL) {
950 		KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
951 			("bad mount point vnode list size"));
952 		vremovevnodemnt(vp);
953 		vp->v_mount->mnt_nvnodelistsize--;
954 	}
955 	/*
956 	 * Insert into list of vnodes for the new mount point, if available.
957 	 * The 'end' of the LRU list is the vnode prior to mp->mnt_syncer.
958 	 */
959 	if ((vp->v_mount = mp) == NULL) {
960 		lwkt_reltoken(&mntvnode_token);
961 		return;
962 	}
963 	if (mp->mnt_syncer) {
964 		TAILQ_INSERT_BEFORE(mp->mnt_syncer, vp, v_nmntvnodes);
965 	} else {
966 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
967 	}
968 	mp->mnt_nvnodelistsize++;
969 	lwkt_reltoken(&mntvnode_token);
970 }
971 
972 
973 /*
974  * Scan the vnodes under a mount point and issue appropriate callbacks.
975  *
976  * The fastfunc() callback is called with just the mountlist token held
977  * (no vnode lock).  It may not block and the vnode may be undergoing
978  * modifications while the caller is processing it.  The vnode will
979  * not be entirely destroyed, however, due to the fact that the mountlist
980  * token is held.  A return value < 0 skips to the next vnode without calling
981  * the slowfunc(), a return value > 0 terminates the loop.
982  *
983  * The slowfunc() callback is called after the vnode has been successfully
984  * locked based on passed flags.  The vnode is skipped if it gets rearranged
985  * or destroyed while blocking on the lock.  A non-zero return value from
986  * the slow function terminates the loop.  The slow function is allowed to
987  * arbitrarily block.  The scanning code guarentees consistency of operation
988  * even if the slow function deletes or moves the node, or blocks and some
989  * other thread deletes or moves the node.
990  *
991  * NOTE: We hold vmobj_token to prevent a VM object from being destroyed
992  *	 out from under the fastfunc()'s vnode test.  It will not prevent
993  *	 v_object from getting NULL'd out but it will ensure that the
994  *	 pointer (if we race) will remain stable.
995  */
996 int
997 vmntvnodescan(
998     struct mount *mp,
999     int flags,
1000     int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
1001     int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
1002     void *data
1003 ) {
1004 	struct vmntvnodescan_info info;
1005 	struct vnode *vp;
1006 	int r = 0;
1007 	int maxcount = 1000000;
1008 	int stopcount = 0;
1009 	int count = 0;
1010 
1011 	lwkt_gettoken(&mntvnode_token);
1012 	lwkt_gettoken(&vmobj_token);
1013 
1014 	/*
1015 	 * If asked to do one pass stop after iterating available vnodes.
1016 	 * Under heavy loads new vnodes can be added while we are scanning,
1017 	 * so this isn't perfect.  Create a slop factor of 2x.
1018 	 */
1019 	if (flags & VMSC_ONEPASS)
1020 		stopcount = mp->mnt_nvnodelistsize * 2;
1021 
1022 	info.vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1023 	TAILQ_INSERT_TAIL(&mntvnodescan_list, &info, entry);
1024 	while ((vp = info.vp) != NULL) {
1025 		if (--maxcount == 0)
1026 			panic("maxcount reached during vmntvnodescan");
1027 
1028 		/*
1029 		 * Skip if visible but not ready, or special (e.g.
1030 		 * mp->mnt_syncer)
1031 		 */
1032 		if (vp->v_type == VNON)
1033 			goto next;
1034 		KKASSERT(vp->v_mount == mp);
1035 
1036 		/*
1037 		 * Quick test.  A negative return continues the loop without
1038 		 * calling the slow test.  0 continues onto the slow test.
1039 		 * A positive number aborts the loop.
1040 		 */
1041 		if (fastfunc) {
1042 			if ((r = fastfunc(mp, vp, data)) < 0) {
1043 				r = 0;
1044 				goto next;
1045 			}
1046 			if (r)
1047 				break;
1048 		}
1049 
1050 		/*
1051 		 * Get a vxlock on the vnode, retry if it has moved or isn't
1052 		 * in the mountlist where we expect it.
1053 		 */
1054 		if (slowfunc) {
1055 			int error;
1056 
1057 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1058 			case VMSC_GETVP:
1059 				error = vget(vp, LK_EXCLUSIVE);
1060 				break;
1061 			case VMSC_GETVP|VMSC_NOWAIT:
1062 				error = vget(vp, LK_EXCLUSIVE|LK_NOWAIT);
1063 				break;
1064 			case VMSC_GETVX:
1065 				vx_get(vp);
1066 				error = 0;
1067 				break;
1068 			default:
1069 				error = 0;
1070 				break;
1071 			}
1072 			if (error)
1073 				goto next;
1074 			/*
1075 			 * Do not call the slow function if the vnode is
1076 			 * invalid or if it was ripped out from under us
1077 			 * while we (potentially) blocked.
1078 			 */
1079 			if (info.vp == vp && vp->v_type != VNON)
1080 				r = slowfunc(mp, vp, data);
1081 
1082 			/*
1083 			 * Cleanup
1084 			 */
1085 			switch(flags & (VMSC_GETVP|VMSC_GETVX|VMSC_NOWAIT)) {
1086 			case VMSC_GETVP:
1087 			case VMSC_GETVP|VMSC_NOWAIT:
1088 				vput(vp);
1089 				break;
1090 			case VMSC_GETVX:
1091 				vx_put(vp);
1092 				break;
1093 			default:
1094 				break;
1095 			}
1096 			if (r != 0)
1097 				break;
1098 		}
1099 
1100 next:
1101 		/*
1102 		 * Yield after some processing.  Depending on the number
1103 		 * of vnodes, we might wind up running for a long time.
1104 		 * Because threads are not preemptable, time critical
1105 		 * userland processes might starve.  Give them a chance
1106 		 * now and then.
1107 		 */
1108 		if (++count == 10000) {
1109 			/* We really want to yield a bit, so we simply sleep a tick */
1110 			tsleep(mp, 0, "vnodescn", 1);
1111 			count = 0;
1112 		}
1113 
1114 		/*
1115 		 * If doing one pass this decrements to zero.  If it starts
1116 		 * at zero it is effectively unlimited for the purposes of
1117 		 * this loop.
1118 		 */
1119 		if (--stopcount == 0)
1120 			break;
1121 
1122 		/*
1123 		 * Iterate.  If the vnode was ripped out from under us
1124 		 * info.vp will already point to the next vnode, otherwise
1125 		 * we have to obtain the next valid vnode ourselves.
1126 		 */
1127 		if (info.vp == vp)
1128 			info.vp = TAILQ_NEXT(vp, v_nmntvnodes);
1129 	}
1130 	TAILQ_REMOVE(&mntvnodescan_list, &info, entry);
1131 	lwkt_reltoken(&vmobj_token);
1132 	lwkt_reltoken(&mntvnode_token);
1133 	return(r);
1134 }
1135 
1136 /*
1137  * Remove any vnodes in the vnode table belonging to mount point mp.
1138  *
1139  * If FORCECLOSE is not specified, there should not be any active ones,
1140  * return error if any are found (nb: this is a user error, not a
1141  * system error). If FORCECLOSE is specified, detach any active vnodes
1142  * that are found.
1143  *
1144  * If WRITECLOSE is set, only flush out regular file vnodes open for
1145  * writing.
1146  *
1147  * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1148  *
1149  * `rootrefs' specifies the base reference count for the root vnode
1150  * of this filesystem. The root vnode is considered busy if its
1151  * v_sysref.refcnt exceeds this value. On a successful return, vflush()
1152  * will call vrele() on the root vnode exactly rootrefs times.
1153  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1154  * be zero.
1155  */
1156 #ifdef DIAGNOSTIC
1157 static int busyprt = 0;		/* print out busy vnodes */
1158 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1159 #endif
1160 
1161 static int vflush_scan(struct mount *mp, struct vnode *vp, void *data);
1162 
1163 struct vflush_info {
1164 	int flags;
1165 	int busy;
1166 	thread_t td;
1167 };
1168 
1169 int
1170 vflush(struct mount *mp, int rootrefs, int flags)
1171 {
1172 	struct thread *td = curthread;	/* XXX */
1173 	struct vnode *rootvp = NULL;
1174 	int error;
1175 	struct vflush_info vflush_info;
1176 
1177 	if (rootrefs > 0) {
1178 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1179 		    ("vflush: bad args"));
1180 		/*
1181 		 * Get the filesystem root vnode. We can vput() it
1182 		 * immediately, since with rootrefs > 0, it won't go away.
1183 		 */
1184 		if ((error = VFS_ROOT(mp, &rootvp)) != 0) {
1185 			if ((flags & FORCECLOSE) == 0)
1186 				return (error);
1187 			rootrefs = 0;
1188 			/* continue anyway */
1189 		}
1190 		if (rootrefs)
1191 			vput(rootvp);
1192 	}
1193 
1194 	vflush_info.busy = 0;
1195 	vflush_info.flags = flags;
1196 	vflush_info.td = td;
1197 	vmntvnodescan(mp, VMSC_GETVX, NULL, vflush_scan, &vflush_info);
1198 
1199 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1200 		/*
1201 		 * If just the root vnode is busy, and if its refcount
1202 		 * is equal to `rootrefs', then go ahead and kill it.
1203 		 */
1204 		KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1205 		KASSERT(rootvp->v_sysref.refcnt >= rootrefs, ("vflush: rootrefs"));
1206 		if (vflush_info.busy == 1 && rootvp->v_sysref.refcnt == rootrefs) {
1207 			vx_lock(rootvp);
1208 			vgone_vxlocked(rootvp);
1209 			vx_unlock(rootvp);
1210 			vflush_info.busy = 0;
1211 		}
1212 	}
1213 	if (vflush_info.busy)
1214 		return (EBUSY);
1215 	for (; rootrefs > 0; rootrefs--)
1216 		vrele(rootvp);
1217 	return (0);
1218 }
1219 
1220 /*
1221  * The scan callback is made with an VX locked vnode.
1222  */
1223 static int
1224 vflush_scan(struct mount *mp, struct vnode *vp, void *data)
1225 {
1226 	struct vflush_info *info = data;
1227 	struct vattr vattr;
1228 
1229 	/*
1230 	 * Skip over a vnodes marked VSYSTEM.
1231 	 */
1232 	if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1233 		return(0);
1234 	}
1235 
1236 	/*
1237 	 * If WRITECLOSE is set, flush out unlinked but still open
1238 	 * files (even if open only for reading) and regular file
1239 	 * vnodes open for writing.
1240 	 */
1241 	if ((info->flags & WRITECLOSE) &&
1242 	    (vp->v_type == VNON ||
1243 	    (VOP_GETATTR(vp, &vattr) == 0 &&
1244 	    vattr.va_nlink > 0)) &&
1245 	    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1246 		return(0);
1247 	}
1248 
1249 	/*
1250 	 * If we are the only holder (refcnt of 1) or the vnode is in
1251 	 * termination (refcnt < 0), we can vgone the vnode.
1252 	 */
1253 	if (vp->v_sysref.refcnt <= 1) {
1254 		vgone_vxlocked(vp);
1255 		return(0);
1256 	}
1257 
1258 	/*
1259 	 * If FORCECLOSE is set, forcibly destroy the vnode and then move
1260 	 * it to a dummymount structure so vop_*() functions don't deref
1261 	 * a NULL pointer.
1262 	 */
1263 	if (info->flags & FORCECLOSE) {
1264 		vhold(vp);
1265 		vgone_vxlocked(vp);
1266 		if (vp->v_mount == NULL)
1267 			insmntque(vp, &dummymount);
1268 		vdrop(vp);
1269 		return(0);
1270 	}
1271 #ifdef DIAGNOSTIC
1272 	if (busyprt)
1273 		vprint("vflush: busy vnode", vp);
1274 #endif
1275 	++info->busy;
1276 	return(0);
1277 }
1278 
1279 void
1280 add_bio_ops(struct bio_ops *ops)
1281 {
1282 	TAILQ_INSERT_TAIL(&bio_ops_list, ops, entry);
1283 }
1284 
1285 void
1286 rem_bio_ops(struct bio_ops *ops)
1287 {
1288 	TAILQ_REMOVE(&bio_ops_list, ops, entry);
1289 }
1290 
1291 /*
1292  * This calls the bio_ops io_sync function either for a mount point
1293  * or generally.
1294  *
1295  * WARNING: softdeps is weirdly coded and just isn't happy unless
1296  * io_sync is called with a NULL mount from the general syncing code.
1297  */
1298 void
1299 bio_ops_sync(struct mount *mp)
1300 {
1301 	struct bio_ops *ops;
1302 
1303 	if (mp) {
1304 		if ((ops = mp->mnt_bioops) != NULL)
1305 			ops->io_sync(mp);
1306 	} else {
1307 		TAILQ_FOREACH(ops, &bio_ops_list, entry) {
1308 			ops->io_sync(NULL);
1309 		}
1310 	}
1311 }
1312 
1313 /*
1314  * Lookup a mount point by nch
1315  */
1316 struct mount *
1317 mount_get_by_nc(struct namecache *ncp)
1318 {
1319 	struct mount *mp = NULL;
1320 
1321 	lwkt_gettoken(&mountlist_token);
1322 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1323 		if (ncp == mp->mnt_ncmountpt.ncp)
1324 			break;
1325 	}
1326 	lwkt_reltoken(&mountlist_token);
1327 	return (mp);
1328 }
1329 
1330